EP2442892A1 - Verfahren zur reduzierung des ausstosses von kohlendioxid nebst vorrichtung - Google Patents

Verfahren zur reduzierung des ausstosses von kohlendioxid nebst vorrichtung

Info

Publication number
EP2442892A1
EP2442892A1 EP10730705A EP10730705A EP2442892A1 EP 2442892 A1 EP2442892 A1 EP 2442892A1 EP 10730705 A EP10730705 A EP 10730705A EP 10730705 A EP10730705 A EP 10730705A EP 2442892 A1 EP2442892 A1 EP 2442892A1
Authority
EP
European Patent Office
Prior art keywords
carbon dioxide
tank
pressure
bar
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10730705A
Other languages
German (de)
English (en)
French (fr)
Inventor
Manfred KÜVER
Hans-Christian HAARMANN-KÜHN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGE Marine Gas Engineering GmbH
Original Assignee
TGE Marine Gas Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGE Marine Gas Engineering GmbH filed Critical TGE Marine Gas Engineering GmbH
Publication of EP2442892A1 publication Critical patent/EP2442892A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/14Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of aluminium; constructed of non-magnetic steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0027Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0254Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • F25J1/0278Unit being stationary, e.g. on floating barge or fixed platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/011Barges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0171Trucks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to a method for reducing the emission of carbon dioxide into the atmosphere and to an apparatus for carrying out the method.
  • Carbon dioxide (CO 2 ) is mainly produced during the combustion of carbonaceous fuels.
  • the resulting carbon dioxide escapes into the atmosphere and contributes to global warming. This environmental problem is described, for example, in German patent application DE 1 98 340 73 A1.
  • the special feature of a shipment is that the CO 2 is generated continuously in the power plant, while ship transport can not be made only batchwise. This creates the need to create a buffer volume.
  • Liquefied carbon dioxide can be filled in tanks, transported to a warehouse such as depleted oil or gas fields or salt caverns by means of transport such as ships or vehicles, and brought into storage after reaching the warehouse.
  • the bearing pressure can be up to 18 bar absolute, since the gas can be liquefied solely by such an increase in pressure. This applies at ambient temperatures up to 45 ° C. 45 ° C is usually the upper design temperature adopted for globally moving gas tankers. It is also known to lower the temperature of LPG to be transported to -42 0 C in order to be able to transport LPG in a large volume tank, which must be grown no particular printing needs. The bearing pressure of transported LPG can then be lowered to ambient pressure.
  • Fine grain steels are subject to a so-called
  • the aim of the present invention is to transport carbon dioxide, which is produced by a combustion process, economically and as completely as possible to a warehouse.
  • the object of the invention is achieved by a method in which carbon dioxide, which has formed as a result of a combustion process, is separated from the gas.
  • the carbon dioxide is then brought to a pressure of at least 10 bar absolute, preferably at least 15 bar absolute, most preferably from at least 1 8 bar absolute and cooled to a temperature of up to -10 0 C, preferably from up to -20 0 C.
  • the temperature of the liquefied carbon dioxide to -40 0 C. If the temperature of the liquefied carbon dioxide during transportation is in a tank more preferably between -25 ° C and - 35 ° C.
  • the temperature required for liquefaction depends on the bearing pressure. According to the invention, however, the aim is not to have to choose low temperatures.
  • the maximum wall thickness for a tank is approx. 50 mm.
  • the proportion of nitrogen is not more than 0, 7% mol or the proportion of oxygen is not more than 0, 99% mol or the proportion of hydrogen is not more than 0, 1 4% mol in carbon dioxide, so may on the separation of Oxygen, nitrogen or hydrogen from the separated
  • Carbon dioxide advantageously be completely dispensed with, if the CO2 temperature is about -30 0 C and the pressure is about 1 8 bar absolute. If there are several different noxious gases in the CO 2 , which disadvantageously require a pressure increase or a temperature reduction in order to liquefy CO 2 , different upper limits apply depending on the composition.
  • carbon dioxide is cooled to -30 ° C and the pressure chosen so that a separation of noxious gases from the separated carbon dioxide can be avoided.
  • Sch ⁇ dg ⁇ se and in particular nitrogen oxygen and hydrogen are removed from the separated CO 2 , so as to be able to save energy for liquefaction.
  • CO 2 is generally saturated with water vapor. In one embodiment of the invention, carbon dioxide is therefore dried before
  • the invention particularly relates to the case where carbon dioxide is separated from the flue gas of a power plant. Combustion processes in power plants contribute significantly to the environmental impact of carbon dioxide. Therefore, the invention is particularly useful in such a case.
  • the invention also relates to a Bärge, the C. with a plant for the liquefaction of carbon dioxide and / or a sufficiently pressure-resistant tank for storage of liquid carbon dioxide at a temperature of -20 0 C to -40 0 is preferably at a temperature of ca. -30 0 C is provided.
  • the tank is sufficiently pressure-resistant when it is able to cope with the pressure required to liquefy CO 2 .
  • the tank volume of a Bärge tank is in particular at least 2000 cubic meters, preferably at least 3000 cubic meters, in order to be able to store large quantities of CO 2 without having to spend too much on the provision of tanks.
  • a Borge is particularly advantageous
  • liquid CO 2 is brought from a tank of a Bärge into a tank of a smaller volume vessel. The ship then transports the liquid CO 2 to a suitable warehouse.
  • the buffer storage is transferred from one power plant to another power plants in an embodiment of the invention, in order to use this buffer storage can continue.
  • the provision of a bear is superior to a land plant.
  • a bearskin is anchored outside a commercial port to overcome access water depth limitations for the shuttle ships.
  • the volume of a tank with which liquefied CO2 is transported to the warehouse also preferably at least 2000 cubic meters, more preferably at least 3000 cubic meters.
  • the largest single pressure tanks with a design pressure of 18 bar g to 20 barg, which can be usefully built for the storage of CO 2 at 1 8 bar a and -30 ° C according to the current state of the art, are in the order of 5000 - 6500 m 3 . From this, a corresponding buffer volume or transport volume can then be built up on a ship by combining any number of tanks.
  • a tank In order for a tank to meet the requirements in terms of temperature and pressure, it consists in particular of high-strength special steels such as, for example, according to EN 1 0028 -6 with a yield strength> 500 MPa to 900 MPa. Such a material is known under the material number P690QL2 or 1 .8888.
  • Tanks with a volume of 2000 cubic meters and more are transported by ship.
  • other vehicles such as trains or trucks can also be used to transport tanks to transport liquid carbon dioxide from a location where a corresponding combustion process takes place to a warehouse. Then, however, a tank volume is smaller. It can then be carried out tanks easier particularly pressure resistant.
  • the present invention therefore relates primarily to the cases that carbon dioxide is brought in large quantities by ships to a suitable warehouse. However, a ship is then usually not just one, but provided with a variety of tanks (tank farm). The total volume is regularly at least 5000 m 3 .
  • a method for reducing the emission of carbon dioxide is brought to a pressure of at least 10 bar absolute, preferably of at least 15 bar absolute, more preferably of at least 18 bar absolute, the separated carbon dioxide to a temperature of up to -10 0 C, preferably up to -20 0 C, more preferably brought to a temperature of up to -40 0 C, the separated carbon dioxide is brought so liquefied in a tank and the tank is transported to a warehouse for carbon dioxide.
  • Tank of a means of transport with liquid carbon dioxide contained therein with a tank volume of at least 2,000 m 3 , wherein in the tank a pressure of at least 10 bar g, preferably of at least 15 bar g, most preferably of at least 18 bar g prevails and the temperature of Carbon dioxide -30 0 C to -20 0 C.
  • a pressure of at least 10 bar g, preferably of at least 15 bar g, most preferably of at least 18 bar g prevails and the temperature of Carbon dioxide -30 0 C to -20 0 C.
  • tank for a means of transport with liquid carbon dioxide contained therein which was prepared by a method of embodiments 1 to 14.
  • Tank in one of the two previous embodiments which consists of P690QL2.
  • tank farm having a plurality of tanks with liquid carbon dioxide contained therein, in particular according to one of the two preceding embodiments, wherein in each tank a pressure of at least 10 bar g, preferably of at least 15 bar g, most preferably of at least 18 bar g prevails and the temperature of the carbon dioxide is -30 0 C to -20 0 C, wherein the total volume of the tanks is at least 5,000 m 3 , preferably 10,000 m 3 .
  • the invention will be explained in more detail with reference to an example.
  • a typical post-combustion capture process the entire flue gas of a power plant is subjected to an additional washing process (amine absorption process) after the usual treatment steps (dedusting, desulfurization, denitrification). Since the CO 2 is preferably absorbed in the amine solution, it can be withdrawn via an enriched solution at the bottom of the wash columns. In the amine regeneration, the CO 2 is then expelled by heat from the amine solution and falls as water-saturated ROh-CO 2 at atmospheric pressure. In a multi-stage compression, it is brought to the desired liquefaction pressure, which can be between 1 2 and 40 bar absolute.
  • CO 2 was transported absolutely at a pressure of 18 bar and the liquefaction pressure expediently chosen to be somewhat higher (about 19 bar absolute). At higher compaction pressures is a multi-level Compaction required, which takes place expediently with an intermediate cooling and separation of the resulting water condensate. Then we dried the gas. This is done first in a refrigeration dryer to a pressure dew point of about 4 0 C and then in an adsorption dryer. The dry CO 2 is then liquefied, eg by using a
  • Refrigerant condensing system Here are different refrigerants and processes possible.
  • the refrigerant R410 was used. It evaporates at low pressure and a temperature of about -3O 0 C, thereby generating the cold, against which the CO 2 condenses. Then the refrigerant is compressed and condensed at approx. 30 ° C against cooling water.
  • other methods eg condensation against air, etc.
  • the advantage of the inventive selection which is mainly intended for northern Europe, is the low energy consumption and the ability to use in refrigeration conventional components.
  • the compression of the gas takes place at the power plant in order to make economic transport possible.
  • the drying is carried out expediently at the power plant, otherwise obtained during transport condensate.
  • a buffer volume is provided if a further removal is to take place batchwise. If such a buffer volume or buffer storage provided directly at the power plant site, so the compaction can be carried out useful in a multi-stage process. If the power plant and the bearings are separated from each other, then a re-compaction (to compensate for transport losses) is advantageously carried out on the condenser.
  • Boil-off gas which necessarily occurs due to heat input into the buffer tanks, can be brought back to liquefaction pressure by means of a corresponding booster.
  • a compressor is then saved in this embodiment (after-compressor in the device for liquefying CO 2 ). However, the liquefaction and intermediate treatment can very well (but not necessarily) be carried out locally separately.
  • the liquefaction and the intermediate storage takes place on a Bärge, ie a ship without its own drive.
  • a Bärge reduces the land requirement and can be built in the short term cost compared to a land plant. Basically, a Bärge as a modernization for power plants can be easier to implement than a corresponding land camp. If liquefaction and buffer storage or ship are spatially separated, the liquid transport is accomplished by suitable pumps.
  • the transport ship either pumps the CO 2 to a fixed installation that will increase the pressure and heat it up to feed into the warehouse, or the ship is equipped with the appropriate components and feeds directly (eg via a temporary connection to a sub-pipeline) into a wellbore one that makes the connection to the warehouse. Since the bearings are under pressure and the equipment of the wells is not suitable for low temperature, an increase in pressure and a warming is needed.
  • the bearing pressure was 1 8 bar absolute.
  • the condensing pressure was slightly higher.
  • the temperature of the liquid carbon dioxide was about -35 0 C.
  • the tanks were cylindrical tanks made of P690QL2 with a design pressure of 1 9 bar g with a volume of 3000 cubic meters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Treating Waste Gases (AREA)
EP10730705A 2009-06-16 2010-06-16 Verfahren zur reduzierung des ausstosses von kohlendioxid nebst vorrichtung Withdrawn EP2442892A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009026970A DE102009026970A1 (de) 2009-06-16 2009-06-16 Verfahren zur Reduzierung des Ausstoßes von Kohlendioxid nebst Vorrichtung
PCT/EP2010/003598 WO2010145808A1 (de) 2009-06-16 2010-06-16 Verfahren zur reduzierung des ausstosses von kohlendioxid nebst vorrichtung

Publications (1)

Publication Number Publication Date
EP2442892A1 true EP2442892A1 (de) 2012-04-25

Family

ID=42980335

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10730705A Withdrawn EP2442892A1 (de) 2009-06-16 2010-06-16 Verfahren zur reduzierung des ausstosses von kohlendioxid nebst vorrichtung

Country Status (6)

Country Link
EP (1) EP2442892A1 (ja)
JP (1) JP2012530239A (ja)
KR (1) KR20120020198A (ja)
CN (1) CN102458611A (ja)
DE (1) DE102009026970A1 (ja)
WO (1) WO2010145808A1 (ja)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973415A (ja) * 1982-10-15 1984-04-25 Ishikawajima Harima Heavy Ind Co Ltd 液化天然ガスの燃焼排ガスからの液化炭酸製造方法
EP0408979B1 (en) * 1989-07-19 1998-01-21 Mitsubishi Jukogyo Kabushiki Kaisha Method and system for throwing carbon dioxide into the deep sea
US5100635A (en) * 1990-07-31 1992-03-31 The Boc Group, Inc. Carbon dioxide production from combustion exhaust gases with nitrogen and argon by-product recovery
JP3082786B2 (ja) * 1991-06-27 2000-08-28 中部電力株式会社 炭酸ガスの処理方法
US5233837A (en) * 1992-09-03 1993-08-10 Enerfex, Inc. Process and apparatus for producing liquid carbon dioxide
US6170264B1 (en) * 1997-09-22 2001-01-09 Clean Energy Systems, Inc. Hydrocarbon combustion power generation system with CO2 sequestration
DE19531842A1 (de) * 1995-08-29 1997-04-30 Messer Griesheim Gmbh Verfahren zur Verringerung von Rauchgas bei Verbrennungsprozessen
DZ2527A1 (fr) * 1997-12-19 2003-02-01 Exxon Production Research Co Pièces conteneurs et canalisations de traitement aptes à contenir et transporter des fluides à des températures cryogéniques.
US5974829A (en) * 1998-06-08 1999-11-02 Praxair Technology, Inc. Method for carbon dioxide recovery from a feed stream
DE19834073A1 (de) 1998-07-29 2000-02-03 Zbigniew Boguslawski Globales, integriertes System zur wirtschaftlichen und leistungsbedingten Kontrolle des weltweiten anthropogenen Treibhauseffektes durch Einsatz von umweltschutz-relevanten multifunktionellen Verbundunternehmen
NO324883B1 (no) * 2001-12-03 2007-12-27 Statoil Asa Fartoy
GB2416389B (en) * 2004-07-16 2007-01-10 Statoil Asa LCD liquefaction process
GB0614250D0 (en) * 2006-07-18 2006-08-30 Ntnu Technology Transfer As Apparatus and Methods for Natural Gas Transportation and Processing
DE102006035273B4 (de) * 2006-07-31 2010-03-04 Siegfried Dr. Westmeier Verfahren zum effektiven und emissionsarmen Betrieb von Kraftwerken, sowie zur Energiespeicherung und Energiewandlung
CN101622051A (zh) * 2007-01-25 2010-01-06 国际壳牌研究有限公司 用于在与co2捕集设备联合的发电装置中产生加压co2物流的方法
JP4147562B1 (ja) * 2007-05-30 2008-09-10 有限会社新科学開発研究所 発電システム
EP2058471A1 (en) * 2007-11-06 2009-05-13 Bp Exploration Operating Company Limited Method of injecting carbon dioxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010145808A1 *

Also Published As

Publication number Publication date
KR20120020198A (ko) 2012-03-07
WO2010145808A1 (de) 2010-12-23
DE102009026970A1 (de) 2010-12-23
JP2012530239A (ja) 2012-11-29
CN102458611A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
AT508249B1 (de) Verfahren zum reinigen und verflüssigen von biogas
DE102010044646A1 (de) Verfahren zum Abtrennen von Stickstoff und Wasserstoff aus Erdgas
WO2007144078A2 (de) Verfahren zum verflüssigen von wasserstoff
CH694136A5 (de) Anlage zum Aufnehmen und Transportieren eines Fluides kryogener Temperatur.
DE1258882B (de) Verfahren und Anlage zur Luftzerlegung durch Rektifikation unter Verwendung eines Hochdruckgas-Kaeltekreislaufes zur Druckverdampfung fluessigen Sauerstoffs
DE102011014678A1 (de) Verfahren und Vorrichtung zur Behandlung eines kohlendioxidhaltigen Gasstroms
DE19946557B4 (de) Verfahren zum Eliminieren der Verdunstung von in einem dichten und isothermischen Tank enthaltenem Flüssiggas sowie eine Vorrichtung zur Durchführung des Verfahrens
DE1501695A1 (de) Verfahren zur Verfluessigung eines fluechtigen Gases
WO2010121752A2 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
DE102009039898A1 (de) Verfahren und Vorrichtung zur Behandlung eines kohlendioxidhaltigen Gasstroms
DE102014012316A1 (de) Verfahren zum Abkühlen einer Kohlenwasserstoff-reichen Fraktion
DE102010000946A1 (de) Tankanlage für das Verflüssigen von Boil-Off Gas nebst Verfahren
DE102012020469A1 (de) Verfahren und Vorrichtung zur Abtrennung von Methan aus einem Synthesegas
DE102006021620B4 (de) Vorbehandlung eines zu verflüssigenden Erdgasstromes
DE947711C (de) Verfahren zur Gewinnung einer kohlenoxydreichen Fraktion durch Tiefkuehlung verdichteter kohlenoxydhaltiger Gase
WO2010145808A1 (de) Verfahren zur reduzierung des ausstosses von kohlendioxid nebst vorrichtung
EP1913319A2 (de) Verfahren und anlage zum verflüssigen eines kohlenwasserstoffreichen stroms
DE1170435B (de) Verfahren zur Verfluessigung eines im fluessigen Zustand unter niedrigem Druck zu lagernden Gases
DE19940371A1 (de) Verfahren und Vorrichtung zur Gewinnung von Kohlendioxid aus Abgasen
WO2016155863A1 (de) Verfahren zum abtrennen von stickstoff aus einer kohlenwasserstoff-reichen fraktion
DE1274092B (de) Verfahren zur Herstellung von Ammoniaksynthesegas
DE538920C (de) Verfahren zum Zerlegen tiefsiedender Gasgemische unter Verwendung von Kaeltespeichern
WO1999058624A1 (de) Kältemittelgemisch für einen gemisch-drossel-prozess
DE102016013091A1 (de) Verfahren und Anlage zum Reinigen eines Gases
AT125409B (de) Verfahren zum Zerlegen tiefsiedender Gasgemische.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150102