EP2439451B1 - Vorrichtung zur Erkennung des Vorhandenseins einer Flamme - Google Patents

Vorrichtung zur Erkennung des Vorhandenseins einer Flamme Download PDF

Info

Publication number
EP2439451B1
EP2439451B1 EP10013450.1A EP10013450A EP2439451B1 EP 2439451 B1 EP2439451 B1 EP 2439451B1 EP 10013450 A EP10013450 A EP 10013450A EP 2439451 B1 EP2439451 B1 EP 2439451B1
Authority
EP
European Patent Office
Prior art keywords
tubes
tube
flame
voltage
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10013450.1A
Other languages
English (en)
French (fr)
Other versions
EP2439451A1 (de
Inventor
Kurt-Henry Dr. Mindermann
Jens Michael Mindermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BFI Automation Mindermann GmbH
Original Assignee
BFI Automation Mindermann GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BFI Automation Mindermann GmbH filed Critical BFI Automation Mindermann GmbH
Priority to PL10013450T priority Critical patent/PL2439451T3/pl
Priority to DK10013450.1T priority patent/DK2439451T3/da
Priority to EP10013450.1A priority patent/EP2439451B1/de
Priority to ES10013450.1T priority patent/ES2446317T3/es
Priority to US13/317,002 priority patent/US8618493B2/en
Publication of EP2439451A1 publication Critical patent/EP2439451A1/de
Application granted granted Critical
Publication of EP2439451B1 publication Critical patent/EP2439451B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/16Flame sensors using two or more of the same types of flame sensor

Definitions

  • the invention relates to a device for detecting the presence of a flame and a method for detecting the presence of a flame according to the preamble of claim 1 or 13.
  • Devices for detecting the presence of a flame are used as a flame detector in the monitoring of incinerators and as a flame detector in the field of fire protection.
  • the goal of any incineration plant operator is to increase overall efficiency in terms of safety advances and optimal availability improve its combustion, reduce pollutant emissions and safely monitor the combustion process.
  • radiation detectors are provided which convert radiations into a measurable electrical quantity according to a fixed law. If a detectable threshold for the measured variable is undershot, a "flame-off" signal can be generated, whereupon the fuel supply can be switched off for safety reasons.
  • the photoelectric detectors respond to the energy quanta of a radiation and are dependent on the wavelength in their spectral sensitivity.
  • UV tubes are still used for flame monitoring as a flame sensor or flame detector, but there is basically the problem that in these components so-called "percussion” may occur. It can take place without external UV radiation, a glow discharge, which can not distinguish the electronics connected to the UV tube electronics from a normal flame signal.
  • the incident radiation is periodically interrupted by a diaphragm mechanism. If further discharges occur in the tube in this dark phase, this is detected by the electronics connected to the UV tube, that is, a flame relay is switched off.
  • a mechanically designed aperture mechanism which periodically interrupts the incoming radiation, has a limited lifetime due to wear. If the times between two successive closures of the mechanical diaphragm are lengthened, the switching complexity becomes less, to determine flashes between the two shutters of the diaphragm; the detector element should be redesigned and secure.
  • Reducing the time between two consecutive shutters of the shutter mechanism increases safety with respect to the detection of a bleeder, but also increases the mechanical wear with respect to the shutter mechanism.
  • deviations from the adjustment of the diaphragm and, for example, soiling due to abrasion can lead to failure of the flame monitoring.
  • Out DE 1 293 837 A is a device for monitoring a UV tube having a pulse generator for errors of the UV tube is known in which a threshold value at the output of the pulse generator is such that it responds only to those pulses that occur when working properly UV tube. In this case, certain signal shapes and values can be assumed, which lead to a faulty detection of fürzündern or extraneous radiation.
  • the DE 1 955 338 B which discloses the preamble of claims 1 and 13, it is known to use two UV photovoltaic cells monitoring the same flame, which are followed by relay circuits consisting of at least two relays.
  • the relay circuits only have a switching state which allows a fuel supply when the sum of the signals - a voltage drop occurring at a series resistor - of the UV photocells exceeds a certain value, and the difference between the two voltage drops falls below a certain value. It is described that a detection of fürzündens is of no importance, as long as the second UV photocell is working properly. This is disadvantageous for burners that are in operation for half a year or more, so that it can not be ruled out that both UV photocells will also ignite during this time.
  • the DE 1 955 338 B Therefore, the path is taken to design a UV flame detector with a single UV photocell and a downstream channel without the use of mechanical elements.
  • the ignition of a UV photocell can be recognized by the fact that a constant gas discharge at the series resistor generates a DC voltage, which is utilized as a signal for the faulty state of the UV photocell. This requires a (foreign) radiation.
  • the object of the invention is therefore to provide a device for detecting the presence of a flame or a method for detecting the presence of a flame, with the or the presence of a flame with little effort and a long service life is provided with constant reliability and availability.
  • a device for detecting the presence of a flame or a method for detecting the presence of a flame wherein at least two UV tubes arranged in this way are provided which have the substantially same field of vision. That is, with the UV tubes, the substantially same flame area of the flame can be monitored.
  • the UV tubes can be supplied with DC voltage via an operating resistor. Via a controller, the two UV tubes are switched on and off in succession within a predetermined time interval. That is, one of the two UV tubes is supplied in each case via the operating resistance with the DC voltage, that is turned on, while the other is turned off. After switching off the previously supplied with the DC voltage UV tube, the other of the two UV tubes is turned on.
  • the operating voltage returns to its original value, which is above the ignition voltage, with a re-ignition starts when UV radiation occurs.
  • This process is repeated rapidly in succession, so that pulses per period, in which the UV tube is turned on, arise, the number of which is dependent on the intensity of the UV radiation.
  • These pulses are recorded for each of the two UV tubes and compared with each other.
  • the anode of the respective UV tube is grounded to extract an ionization in the discharge area.
  • the anode of the switched-off UV tube is set to ground potential. If differences of the signals contained by each UV tube are detected, they can be used for any necessary alarm messages or shutdowns of the burner.
  • the controller is designed for the programmable definition of turn-on and turn-off, so that even strong influences due to the aging of the tubes are detected due to Glühzünditch. Sudden ionization clouds, which lead to pulse ignition, can initiate the recordable ignitions. Again, this would be recognized within a short time.
  • the self-test according to the invention even if there is no flame, leads, for example, to better availability in the case of stand-by gas blocks in power plants. Even if the gas blocks are not fired, the self-test takes place. Even before the gas block is to be fired, it can be seen that the device is defective or occur in the UV tubes. The device can then be replaced immediately. In previously known methods and devices takes place only shortly before firing a (Vorbelichtungs-) control, which can lead to the fact that the burner or the gas block can not be put into operation, since previously the device must be replaced. Since the exchange is made on request for firing the gas block, the availability has been reduced so far.
  • the device and the method are used as a flame detector.
  • the required high voltage generation for the UV tubes via a Villard cascade circuit is generated with a charge pump for the frequency, wherein a control voltage in the low voltage range is present at one to five volts DC.
  • the Villard cascade circuit can be operated with a supply voltage of 24 V DC as in the usual and common switchgear.
  • the amount of DC voltage can be preselected by the controller to operate the UV tube with a predetermined sensitivity setting and to undergo a self or self-test.
  • a pre-selectable time applicable to the respective UV tube DC voltage for operation of the UV tube can be automatically changed to a predetermined value, for example, an increase of about 15% according to EN 298 or TÜV regulation of for example, be provided 236 volts to 271 volts.
  • the overall sensitivity and number of pulses in UV irradiation is strongly dependent on the DC voltage. The number of pulses increases sharply with the increase of the DC voltage. An increase of about 10% of the DC voltage will increase the relative sensitivity by about 50%.
  • the sensitivities change with an increase the DC voltage from about -10% to about + 10% by about 100%. If the expected or pre-calculable number of pulses is not determined as part of the increase in the operating voltage, the UV tube is defective. With the operating voltage change of the UV tube thus takes place a self-examination by the controller. The greater the increase in the operating voltage is selected, the more sensitive is the setting with regard to a self-test of the UV tube.
  • the increase of the DC voltage for each UV tube is periodically, wherein in particular with a successive switching on of the two UV tubes does not take place at the same time in both an increase in the DC voltage during operation of the UV tube.
  • the UV tubes are rotatable about a rotatable latchable unit to the flame.
  • the alignment of the tubes can be made very precisely rotatable and lockable on a housing. It is possible that the UV radiation radiates axially or radially to the unit with the UV tubes. With a radial irradiation on the unit, a small longitudinal extent in the direction perpendicular to the monitoring flame or a sudden flame is possible.
  • the UV tubes in the housing or the unit via plug connections with secured locking in the unit can be fastened, so that in case of service, the tubes are easily interchangeable in the block.
  • the replacement can be done by replacing a complete unit or a unit separable section, which simplifies maintenance and / or repair.
  • the control is preferably in the form of an SMD, that is to say a surface-mounted component or flat component.
  • the permissible ambient temperature can be increased to a maximum of 120 ° C depending on the data of the selected UV tubes.
  • the time interval is in the range of one second and the time that the UV tubes are on, in the range of a few hundred milliseconds.
  • the time that the UV tubes are each set to ground potential is in the range of a few milliseconds, so that an error in the range of within one second is recognized immediately. Safe monitoring is guaranteed. A timely shutdown or error message, especially during continuous operation and long unattended operation of the burner over 72 hours, is thus guaranteed as well as the readiness at standstill.
  • Fig. 1 shows UV tubes 1, 2 of a device according to the invention.
  • the device has at least the two UV tubes 1, 2, which can be supplied via an operating resistor with a DC voltage.
  • the two UV tubes 1, 2 have substantially the same field of view, so that they capture the same flame area of a flame.
  • the two UV tubes 1, 2 are arranged close to one another and can be exposed in the direction of a flame to be monitored or possibly occurring.
  • a unit 4 is provided, on which the two UV tubes 1, 2 are arranged or attached.
  • the two UV tubes 1, 2 are releasably secured by means of plug connections with secured locking in a cylindrical portion 20 of the unit 4.
  • the cylindrical portion 20 of the unit 4 has a radially aligned window 21, which exposes the UV tubes 1, 2 with its front region relative to the flame, so that the two UV tubes 1, 2 in particular to the flame root to be monitored or . are aligned with a possibly occurring flame.
  • the unit 4 is securely held in a mounting bracket 3.
  • the cylindrical portion 20 of the unit 4 has an external toothing 22.
  • the mounting bracket 3 has a recess into which the cylindrical portion 20 can be inserted and which in turn has one of the external teeth 22 corresponding or complementary teeth 23.
  • Fig. 1 is the mounting bracket 3 as from two mounting bracket sections 3a, 3b configured receptacle for the unit 4 shown.
  • the two mounting bracket sections 3a, 3b receive the cylindrical unit 20 with its external teeth 22 in the recess with the toothing 23.
  • the mounting bracket 3 is pivotally mounted so that the arranged in the cylindrical portion 20 of the unit 4 UV tubes 1, 2 can be aligned with the flame to be monitored or a possibly occurring flame.
  • the unit 4 is locked in the mounting bracket 3 with a balance.
  • the two UV tubes 1, 2 are aligned with the flame root, since there the UV content is highest.
  • the UV tubes 1, 2 each capture half the flame root, that is, one of the two UV tubes 1, 2 detects the "right” and the other of the two UV tubes 1, 2 the "left” area of the flame root.
  • optimal alignment and at identical behavior of the two UV tubes 1, 2 is measured at an existing flame an identical number of pulses at the same time unit.
  • By a possibly set different DC voltage for the operation of the UV tubes 1, 2 different detected pulse counts of the two UV tubes 1, 2 can be compensated for a balance.
  • Fig. 2 is the device according to the invention according to Fig. 1 shown in front of a combustion chamber of a burner arranged as a flame detector.
  • Two flame guards are provided, which are aligned with the flame root (the area of the flame designated w).
  • the units 4 are locked in the mounting brackets 3.
  • the area of the flame designated m is the combustion zone.
  • Below the flame the pressure is indicated relative to the burner center axis, which represents the x-axis.
  • the frequency, the amplitude and the wavelength can be evaluated.
  • a sensor 24 see. Fig. 1
  • a sensor 24 be provided as he, for example, in EP 2105669 A1 is disclosed.
  • a control is provided which may be present as an SMD.
  • the controller for operating the UV tubes 1, 2 can also control the sensor 24 and evaluate the detected signals.
  • Fig. 3 schematically shows the control with other elements.
  • the controller has a microcontroller or microprocessor 5 which is connected to the UV tubes 1, 2 via a high voltage switching and tube discharge unit 6. With the microprocessor 5, the controller also controls a cascade circuit 7, which is designed as a Villard cascade circuit.
  • the cascade circuit 7 and the high voltage switching and tube discharge unit 6 may be implemented as part of the controller.
  • the cascade circuit 7 can the Hochstructsumscens- and tube discharge unit 6 with Supply voltage.
  • the microprocessor 5 and the cascade circuit 7 are connected bidirectionally. As a result, a regulation of the high voltage is possible.
  • the cascade circuit 7 shown schematically as a Villard cascade circuit has a charge pump, which adjusts the high voltage via a frequency, wherein the control voltage is in the low voltage range.
  • the cascade voltage can be operated with a DC voltage, in particular 24 V DC.
  • the DC voltage generated by the cascade circuit 7 can be fed to the UV tubes 1, 2 for the operation of the UV tubes 1, 2 via the high voltage switching and tube discharge unit 6.
  • the DC voltage used for the operation of the UV tubes 1, 2 can be preselected.
  • the operating voltage of the UV tubes 1, 2 can be selected via the control.
  • Exemplary DC voltages for the operation of the UV tubes 1, 2 are 325 volts, 345 volts, 365 volts and 385 volts.
  • the signal to the UV tubes 1, 2 in the form of pulses due to a detected existing flame is supplied to both the microprocessor 5 of the controller and a safety-related monitor channel 8.
  • the output of the monitor channel 8 is connected to an input of a safety-related relay drive 9, the is also bidirectionally coupled to the microprocessor 5 of the controller. This also allows monitoring of the relay stage or relay control 9.
  • the monitor channel 8 checks for the presence of a gap in the pulsating UV tube signal.
  • the periodically occurring gap arises when switching the UV tube voltage between the UV tubes 1, 2 and is checked for compliance with their characteristic values.
  • the characteristic values are the minimum and maximum width of the gap as well as their minimum and maximum distance.
  • Fig. 4 is a block diagram of the monitor channel 8 with the two UV tubes 1, 2 shown.
  • the first flip-flop 14 detects the actual signal gap in the flame signal, which is assumed to be at least 50 ms.
  • the second flip-flop 15 detects the minimum period of occurrence of the signal gap in the signal, which is assumed to be about 800 ms.
  • a downstream high-pass filter 16 filters fewer and more frequent gaps, such as a flame that is too weak or a defective tube if there is no flame.
  • a high pass 16 downstream rectifier 17 finally generates a sawtooth-shaped analog signal, which is checked by the subsequent safety-related relay stage 9 for compliance with a voltage window.
  • the monitor channel 8 operates only with dynamic signals of a specific timing, so that an occurrence of a static signal inevitably leads to a (safety-related) shutdown.
  • the timing of the monitor channel 8 can be designed so that here a flame break leads within a second to shutdown.
  • the microprocessor 5 of the controller carries out a signal evaluation of the signals detected by the UV tubes 1, 2 for flame monitoring, which allows a test of the UV tubes 1, 2 with reliable detection of a non-existing flame. If, as described below, a weak flame or a flame break is detected, the fuel supply is interrupted via the safety-related relay control 9. It is also possible, in addition to the safety-related channel to control a evaluation relay 10 by the microprocessor 5 of the controller.
  • a current driver 12 is provided for small currents in the range of 4 to 20 milli-ampere, which can be controlled by the microprocessor 5; the current driver 12 may provide a signal representative of the qualitative flame evaluation in the form of a current.
  • the circuit according to Fig. 2 is operated with the voltage or the current of the power supply 13.
  • Fig. 5 is the inventive process of switching on and off of the two UV tubes 1, 2 with the detection of pulses to the UV tubes 1, 2 with existing flame and correctly operating UV tubes 1, 2 shown.
  • the time t is plotted on the x-axis.
  • the topmost curve in Fig. 5 indicates the voltage applied to the UV tube 1 voltage.
  • the middle curve indicates the voltage applied to the UV tube 2.
  • the voltage applied to the UV tubes 1, 2 varies between the voltage levels 0 volts, 325 volts and 380 volts.
  • the controller switches the two UV tubes 1, 2 on and off in succession at a distance of a predetermined time.
  • the switching on and off of the two UV tubes 1, 2 takes place successively within a predetermined time interval, wherein the two UV tubes 1, 2 are turned on for a predeterminable period of time.
  • the values of the predetermined time interval and the predetermined time interval as well as the distance are stored in the variable memory of the microprocessor 5.
  • the time period for each UV tube 1, 2 stored in the memory of the microprocessor 5 is the same as the distance between the direct succession switching one and the same UV tube 1, 2.
  • the following comparison and the self-examination of the UV tubes 1, 2 and the consistency check against each other is simplified when the time of operation for both UV tubes 1, 2 is identical. Furthermore, the distance between the adjacent switching one and the same UV tube 1, 2 for both UV tubes also be the same.
  • Fig. 5 results in the predetermined time interval between the indicated times t 1 and t. 5
  • the distance between turning off the UV tube 1 and turning on the UV tube 2 is determined by the in Fig. 4 defined times t 2 and t 3 defined.
  • the period of time, the two UV tubes 1, 2 are turned on, resulting from the in Fig. 4 indicated times t 2 and t 1 for UV tube 1 and t 4 and t 3 for UV tube 2.
  • the anode of the respective UV tube 1, 2 on Ground potential placed for the extraction of ionization in the discharge area, ie the UV tube 1 is placed between t 2 and t 5 and the UV tube 2 between t 4 and t 7 to ground potential.
  • a periodic switching on and off of the two UV tubes 1, 2 is ensured, in which the two UV tubes 1, 2 are driven with the same periodicity, which is the control and comparison of the number of pulses obtained, as subsequently is described simplified.
  • the lower curve represents the number of pulses detected by each of the two UV tubes 1, 2 during their operation by the microprocessor 5.
  • the two UV tubes 1, 2 have the same field of view on the flame, the number of pulses counted relative to a unit of time and at the same operating voltage is equal or within a tolerance range of approximately 5% -10%. Therefore results in correctly functioning flame detector and existing flame that each of the quotient of number of pulses and pre-definable period of time, the UV tubes 1, 2 are turned on, ie here t 6 -t 5 or t 4 -t 3 , is equal to or within the tolerance is equal for the same operating voltage. If this is not the case, it is possible to draw conclusions about an error or a defective or aged UV tube 1, 2. This will be with reference to Fig. 6 explained.
  • the number of pulses detectable on the UV tube 1, 2 also varies.
  • the two UV tubes 1, 2 at two different operating voltages, namely 325 volts and 380 volts, operated. At higher operating voltage more pulses from the microprocessor to the UV tubes 1, 2 are counted. If this is not the case or if the expected number of pulses does not result, it is possible to draw conclusions about an error or a defective or aged UV tube 1, 2. This is in relation to Fig. 6 explained.
  • the increase of the operating voltage for the two UV tubes 1, 2 from 325 volts to 380 volts to an increase in the number of pulses from 1000 to 2000, in the considered embodiment, the difference between t 5 and t 1 , ie the predetermined Time interval is one second.
  • a self-consistency test is performed for each of the UV tubes 1, 2.
  • the detected number of pulses must be higher at elevated operating voltage than at the lower operating voltage at incident UV radiation or existing flame.
  • the detected number of pulses must be in a predictable range.
  • the detected pulses of a UV tube 1, 2 are compared against each other.
  • the detected pulse counts for the two UV tubes 1, 2 are compared with each other. Identical UV tubes 1, 2 must provide the same or within a tolerance range equal pulse counts at the same operating voltage.
  • threshold values can be stored in the memory of the microprocessor 5, which form a lower limit and an upper limit for the value of the number of pulses at the respective operating voltage of the UV tube 1, 2. These thresholds may also be used for testing the UV tube 1, 2.
  • Fig. 6 shows the in Fig. 5 According to the invention, the process of switching on and off the two UV tubes 1, 2 with the detection of pulses to the UV tubes 1, 2 in the explanation of assumed defective UV tube 2. There are two different cases in the period a and Period b in Fig. 6 shown.
  • a flame exists in the period a and there is no flame in the period b.
  • the time t is plotted on the x-axis.
  • the uppermost curve indicates the voltage applied to the UV tube 1.
  • the middle curve indicates the voltage applied to the UV tube 2.
  • the voltage applied to the UV tubes 1, 2 varies between the voltage levels 0 volts, 325 volts and 380 volts.
  • the defect of the UV tube 2 in the time interval a is recognized by the fact that the number of pulses detected for the UV tube 2 is compared with the number of pulses detected for the UV tube 1.
  • the number of pulses determined by the UV tube 2 is increased with respect to the number of pulses detected by UV tube 1 at the same operating voltage.
  • the UV tube 2 is identified as defective.
  • a self-examination of the flame guard also takes place when there is no flame, ie in the idle mode of the burner, as are detected even in the absence of flame igniter, since the presence of two UV tubes 1, 2 allows each of the two UV tubes. 1 To compare 2 determined pulse numbers. If only one of the two UV tubes 1, 2 shows pulses, then it is possible to conclude that there is a defect or a puncture in the UV tube 1, 2 detecting the pulses. As described also due to Deviations in the number of pulses in the presence of a flame, that is detected in the operating mode of the burner, the fuse.

Description

  • Die Erfindung betrifft eine Vorrichtung zur Erkennung des Vorhandenseins einer Flamme und eine Methode zum Erkennen des Vorhandenseins einer Flamme nach dem Oberbegriff des Anspruchs 1 bzw. 13.
  • Vorrichtungen zur Erkennung des Vorhandenseins einer Flamme werden als Flammenwächter bei der Überwachung von Verbrennungsanlagen und als Flammenmelder im Bereich des Brandschutzes verwendet.
  • Das Ziel eines jeden Betreibers von Verbrennungsanlagen ist, bei sicherheitstechnischem Fortschritt und optimaler Verfügbarkeit den Gesamtwirkungsgrad seiner Feuerung zu verbessern, den Schadstoffausstoß zu verringern und den Verbrennungsprozess sicher zu überwachen.
  • Zur sicheren Überwachung sind Strahlungsdetektoren vorgesehen, die Strahlungen nach einer festen Gesetzmäßigkeit in eine messbare elektrische Größe umwandeln. Bei Unterschreiten eines festlegbaren Schwellenwerts für die gemessene Größe ist ein "Flamme-Aus"-Signal erzeugbar, woraufhin die Brennstoffversorgung aus Sicherheitsgründen abschaltbar ist.
  • Bei den Strahlungsdetektoren unterscheidet man zwischen fotoelektrischen und thermischen Detektoren, die unterschiedliche Strahlungsempfindlichkeiten aufweisen und - entsprechend der gestellten Aufgabe - in Bezug auf die zu erfassenden Parameter eingesetzt werden.
  • Die fotoelektrischen Detektoren sprechen auf die Energiequanten einer Strahlung an und sind in ihrer spektralen Empfindlichkeit von der Wellenlänge abhängig.
  • Insbesondere aus Preisgründen werden nach wie vor UV-Röhren zur Flammenüberwachung als Flammenfühler bzw. Flammenwächter eingesetzt, jedoch besteht grundsätzlich das Problem, dass bei diesen Bauelementen sogenannte "Durchzünder" auftreten können. Es kann ohne äußere UV-Bestrahlung eine Glimmentladung stattfinden, die die an der UV-Röhre angeschlossene Elektronik nicht von einem normalen Flammensignal unterscheiden kann.
  • Es sind mehrere Lösungen bekannt, wie Durchzünder erkannt und sicherheitsgerichtet verarbeitet werden können.
  • Aus DE 1 256 828 A ist beispielsweise bekannt, die Fotozelle nur periodisch mit der von einer Flamme stammenden UV-Strahlung zu beaufschlagen, indem ein UV-empfindliches Element durch eine rotierende Lochscheibe nur periodisch der Strahlung ausgesetzt wird. Mit einer Überwachungsschaltung, die Kondensatoren und Transistoren aufweist, kann in Verbindung mit der rotierenden Lochscheibe ein Durchzünden des UV-empfindlichen Elements erkannt werden.
  • Grundsätzlich wird also, um ein Durchzünden zu erkennen, die eintreffende Strahlung durch einen Blendenmechanismus periodisch unterbrochen. Treten in dieser Dunkelphase weitere Entladungen in der Röhre auf, so wird das von der an der UV-Röhre angeschlossenen Elektronik erkannt, das heißt, es kommt zur Abschaltung eines Flammenrelais.
  • Ein mechanisch ausgestalteter Blendenmechanismus, der periodisch die eintreffende Strahlung unterbricht, hat verschleißbedingt eine begrenzte Lebensdauer. Verlängert man die Zeiten zwischen zwei aufeinanderfolgenden Verschlüssen der mechanischen Blende, so wird der Schaltaufwand geringer, Durchzünder zwischen den beiden Verschlüssen der Blende festzustellen; das Detektorelement sollte neu und sicher gestaltet werden.
  • Verringert man die Zeit zwischen zwei aufeinanderfolgenden Verschlüssen des Blendenmechanismus, so wird zwar die Sicherheit in Bezug auf die Erkennung eines Durchzünders erhöht, es nimmt jedoch auch der mechanische Verschleiß in Bezug auf den Blendenmechanismus zu. Außerdem können Abweichungen von der Justage der Blende und zum Beispiel Verschmutzungen durch Abrieb zu einem Ausfall der Flammenüberwachung führen.
  • Aus DE 1 293 837 A ist eine Einrichtung zur Überwachung eines eine UV-Röhre aufweisenden Impulsgebers auf Fehler der UV-Röhre bekannt, bei der eine Schwellwertschaltung am Ausgang des Impulsgebers so bemessen ist, dass sie nur auf solche Impulse anspricht, die bei einwandfrei arbeitender UV-Röhre auftreten. Dabei können bestimmte Signalformen und -werte unterstellt werden, die zu einer fehlerbehafteten Erkennung von Durchzündern oder Fremdstrahlung führen.
  • Die DE 1 955 338 B , welche den Oberbegriff der Ansprüche 1 und 13 offenbart, beschreibt, es sei bekannt, zwei dieselbe Flamme überwachende UV-Fotozellen zu verwenden, denen aus mindestens zwei Relais bestehende Relaiskreise nachgeschaltet sind. Die Relaiskreise weisen nur dann einen Schaltzustand auf, der eine Brennstoffzufuhr zulässt, wenn die Summe der Signale - ein an einem Vorwiderstand auftretender Spannungsabfall - von den UV-Fotozellen einen bestimmten Wert überschreitet, und die Differenz der beiden Spannungsabfälle einen bestimmten Wert unterschreitet. Es wird beschrieben, dass eine Erkennung eines Durchzündens ohne Bedeutung ist, solange die zweite UV-Fotozelle einwandfrei arbeitet. Dies ist nachteilig für Brenner, die ein halbes Jahr und länger ununterbrochen in Betrieb sind, so dass nicht ausgeschlossen werden kann, dass während dieser Zeit auch beide UV-Fotozellen durchzünden. Die DE 1 955 338 B beschreitet daher den Weg, mit einer einzigen UV-Fotozelle und einem nachgeschalteten Kanal ohne Verwendung mechanischer Elemente einen UV-Flammenwächter auszugestalten. Das Durchzünden einer UV-Fotozelle erkenne man dadurch, dass eine konstante Gasentladung am Vorwiderstand eine Gleichspannung erzeuge, die als Signal für den Fehlzustand der UV-Fotozelle ausgenutzt wird. Dazu ist eine (Fremdein-)Strahlung notwendig.
  • Aus DE 26 29 321 A1 ist eine Einrichtung zur Flammen-Überwachung bei Brennern in Feuerungsanlagen bekannt, bei der vor dem optischen Flammenfühler eine elektronisch steuerbare Flüssigkristallblende angebracht ist, durch die allein das optische Signal von der Flamme auf den Flammenfühler gelangt und die periodisch vom transparenten Zustand in den abgedunkelten Zustand gesteuert ist. Das modulierte Lichtsignal vom Flammenfühler wird über einen Frequenzfilter zur Flammenüberwachung ausgewertet. Die DE 26 29 321 A1 beschreitet also den Weg, für die Abschattung des Flammenfühlers eine Flüssigkristallblende zu verwenden, die keine (fein-)mechanischen Bauteile benötigt. Diese Anwendung führt in der Praxis zu einer hohen Dämpfung der UV-Strahlung und zu einer Unempfindlichkeit, die für die gewünschten Messzwecke nicht mehr ausreicht. Aus dem Vorgenannten wird deutlich, dass mehrere Lösungen vorgeschlagen wurden, einen sichere Vorrichtung zur Erkennung des Vorhandenseins einer Flamme bzw. ein Verfahren zum Erkennen des Vorhandenseins einer Flamme zu konzipieren, der Durchzünder bzw. ein Fehlverhalten zuverlässig erkennt. Die vorgeschlagenen Lösungen bergen jedoch alle einen Nachteil, der zu einem hohen Verschleiß und/oder einer aufwändigen Konstruktion mechanischer Bauteile oder elektronischer Schaltungen führt, wobei Kompromisse in Kauf genommen werden.
  • Aufgabe der Erfindung ist es demnach eine Vorrichtung zur Erkennung des Vorhandenseins einer Flamme bzw. ein Verfahren zum Erkennen des Vorhandenseins einer Flamme zu schaffen, mit der bzw. dem das Vorhandensein einer Flamme mit geringem Aufwand und hoher Standzeit bei ständiger Funktionssicherheit und Verfügbarkeit gegeben ist.
  • Diese Aufgabe wird durch die Merkmale des Anspruchs 1 bzw. 13 gelöst.
  • Hierdurch wird eine Vorrichtung zur Erkennung des Vorhandenseins einer Flamme bzw. ein Verfahren zum Erkennen des Vorhandenseins einer Flamme geschaffen, wobei mindestens zwei so angeordnete UV-Röhren vorgesehen sind, die das im Wesentlichen selbe Sichtfeld aufweisen. Das heißt, mit den UV-Röhren ist der im Wesentlichen gleiche Flammenbereich der Flamme überwachbar. Die UV-Röhren sind über einen Betriebswiderstand mit einer Gleichspannung versorgbar. Über eine Steuerung sind die zwei UV-Röhren nacheinander ein- und ausschaltbar innerhalb eines vorbestimmten Zeitintervalls. Das heißt, eine der beiden UV-Röhren wird jeweils über den Betriebswiderstand mit der Gleichspannung versorgt, also eingeschaltet, während die andere ausgeschaltet ist. Nach einem Ausschalten der zuvor mit der Gleichspannung versorgten UV-Röhre wird die andere der beiden UV-Röhren eingeschaltet. Es gibt keinen Zeitbereich, in dem beide UV-Röhren gleichzeitig zusammen eingeschaltet sind. In das vorbestimmte Zeitintervall fällt sowohl das Ein- und das Ausschalten der beiden UV-Röhren als auch eine Zeit, die zwischen dem Ausschalten der einen UV-Röhre und dem Einschalten der anderen UV-Röhre verstreicht. Diese Zeit ist über die Steuerung vorgebbar. Es ist also über die Steuerung eine Zeit bzw. ein Abstand zwischen dem Ausschalten der einen UV-Röhre und dem Einschalten der anderen UV-Röhre vorbestimmbar. Die UV-Röhren werden für eine vorbestimmbare Zeitspanne eingeschaltet. Bei Auftreffen einer UV-Strahlung erfolgt in der UV-Röhre eine Zündung, und ein Strom fließt über den Betriebswiderstand durch die Röhre mit einem Spannungsabfall bis unter die Brennspannung. Dadurch muss die Zündung in der UV-Röhre unmittelbar abreißen. Danach erreicht die Betriebsspannung wieder ihren ursprünglichen Wert, der oberhalb der Zündspannung liegt, wobei eine erneute Zündung startet, wenn UV-Strahlung auftritt. Dieser Vorgang wiederholt sich schnell hintereinander, so dass Impulse pro Zeitraum, in dem die UV-Röhre eingeschaltet ist, entstehen, deren Anzahl abhängig von der Intensität der UV-Strahlung ist. Diese Impulse werden für jede der beiden UV-Röhren erfasst und miteinander verglichen. Zwischen dem Aus- und Einschalten der UV-Röhren wird die Anode der jeweiligen UV-Röhre auf Massepotenzial gelegt zur Absaugung einer Ionisierung im Entladungsbereich. Die Anode der ausgeschalteten UV-Röhre wird auf Massepotenzial gelegt. Sollten Differenzen der von jeder UV-Röhre enthaltenen Signale ermittelt werden, können diese für eventuell nötige Alarmmeldungen oder Abschaltungen des Brenners verwendet werden. Sollten Durchzünderimpulse in einer UV-Röhre während eines möglichen Dauerbetriebs des Brenners auftreten, addieren sich diese Durchzünderimpulse zu den Impulsen, die von der zu überwachenden UV-Strahlung stammen. Die Durchzünder werden somit erfasst und gelangen mit zur Auswertung. Ferner wird eine ungleichmäßige Alterung der UV-Röhren durch einen Vergleich der erfassten Signale der beiden UV-Röhren erkannt. Das Vorhandensein einer Flamme wird sicher redundant vollelektronisch ohne mechanischen Verschleiß erkannt. Das Erkennen der Flamme ist sicher, da eine Selbstprüfung der UV-Röhren ständig erfolgt. Die Selbstprüfung ist unabhängig davon, ob eine Flamme vorhanden ist oder nicht. Durch eine weitere doppelte Absicherung bei den Auswertungen analog und parallel zu der digital geschalteten Auswertung, erhält man die geforderte hohe Sicherheit bei guter Verfügbarkeit. Die zusätzliche Verwendung der Impulszahl führt zu einer Verwendung einer verlässlicheren Größe als der Entladestrom oder die Spannung, die bisher im Stand der Technik erfasst wird, da bei dem zu messenden Strom oder der Spannung noch die Glühionisation einen negativen Einfluss haben könnte. Die aufgrund längerer Betriebszeit und längerer Lagerung möglicherweise auftretenden Durchzünder werden sicher erkannt.
  • Vorzugsweise ist die Steuerung zur programmierbaren Festlegung von Einschalt-und Ausschaltschwellen ausgestaltet, so dass auch starke Einflüsse infolge der Alterung der Röhren aufgrund von Glühzündungen erkannt werden. Plötzlich auftretende Ionisationswolken, die zu Pulszündungen führen, können die registrierbaren Durchzündungen einleiten. Auch dies würde innerhalb kürzester Zeit erkannt.
  • Die erfindungsgemäße Selbstprüfung auch bei nicht vorhandener Flamme führt beispielsweise bei in Bereitschaft stehenden Gasblöcken in Kraftwerken zu einer besseren Verfügbarkeit. Auch wenn die Gasblöcke nicht befeuert werden, findet die Selbstprüfung statt. Schon bevor der Gasblock befeuert werden soll, kann erkannt werden, dass die Vorrichtung defekt ist bzw. Durchzünder der UV-Röhren auftreten. Die Vorrichtung kann dann sofort ausgetauscht werden. Bei bisher bekannten Verfahren und Vorrichtungen findet nur kurz vor dem Befeuern eine (Vorbelichtungs-)Kontrolle statt, die dazu führen kann, dass der Brenner bzw. der Gasblock nicht in Betrieb genommen werden kann, da zuvor die Vorrichtung ausgetauscht werden muss. Da der Austausch nach Anfrage zum Befeuern des Gasblocks erfolgt, ist die Verfügbarkeit bisher reduziert. Die Vorrichtung und das Verfahren finden Anwendung als Flammenwächter.
  • Hinsichtlich des Brandschutzes führt die ständige Selbstprüfung im Hinblick auf eine ungleichmäßige Alterung der UV-Röhren zu einer Selbstdiagnose, wann die Vorrichtung erneuert bzw. gewechselt werden muss. Die Vorrichtung und das Verfahren finden Anwendung als Flammenmelder.
  • Die bisher beschrittenen Lösungswege zur Erkennung des Fehlverhaltens von UV-Röhren beim Erkennen des Vorhandenseins einer Flamme gingen einen anderen Weg. Trotz des Alters der vorgeschlagenen Lösungsmöglichkeiten erkannte der Erfinder als Erster, dass die erfindungsgemäße Vorrichtung bzw. das erfindungsgemäße Verfahren die Nachteile der aus dem Stand der Technik bisher bekannten Vorrichtungen bzw. Verfahren überwindet.
  • Vorzugsweise wird die erforderliche Hochspannungserzeugung für die UV-Röhren über eine Kaskadenschaltung nach Villard mit einer Ladepumpe für die Frequenz erzeugt, wobei eine Steuerspannung im Niederspannungsbereich mit ein bis fünf Volt Gleichspannung vorliegt. Die Villard-Kaskadenschaltung ist mit einer Versorgungsspannung von 24 Volt DC wie in den üblichen und gebräuchlichen Schaltanlagen betreibbar. Durch die gewählte Konstruktion der Hochspannungserzeugung mittels Kaskadenschaltung werden die Nachteile der auf dem Markt bekannten Netzteillösungen vermieden. Beispielsweise wäre ein Schalttransformator oder ein Netztransformator auch eine sehr teure und zudem platzintensivere Lösung.
  • Vorzugsweise ist die Höhe der Gleichspannung durch die Steuerung vorwählbar, um die UV-Röhre mit einer vorbestimmten Empfindlichkeitseinstellung betreiben und einer Selbst- bzw. Eigenprüfung unterziehen zu können. So kann sehr leicht zu einem vorwählbaren Zeitpunkt die an die jeweilige UV-Röhre anlegbare Gleichspannung zum Betrieb der UV-Röhre automatisch auf einen vorbestimmten Wert geändert werden, beispielsweise kann eine Erhöhung um ungefähr 15% gemäß EN-Norm 298 bzw. TÜV-Vorschrift von beispielsweise 236 Volt auf 271 Volt vorgesehen sein. Die Gesamtempfindlichkeit und Anzahl der Impulse bei UV-Bestrahlung ist von der Gleichspannung stark abhängig. Die Zahl der Impulse nimmt mit der Erhöhung der Gleichspannung stark zu. Eine Erhöhung von etwa 10% der Gleichspannung führt zu einer Erhöhung der relativen Empfindlichkeit um etwa 50%. So ändern sich in der Regel die Empfindlichkeiten bei einer Steigerung der Gleichspannung von etwa -10% bis etwa +10% um etwa 100%. Wird im Rahmen der Erhöhung der Betriebsspannung nicht die erwartete bzw. vorberechenbare Impulsanzahl ermittelt, ist die UV-Röhre defekt. Mit der Betriebsspannungsänderung der UV-Röhre findet somit eine Selbstprüfung durch die Steuerung statt. Je größer die Erhöhung der Betriebsspannung gewählt wird, desto empfindlicher ist die Einstellung hinsichtlich eines Selbsttests der UV-Röhre.
  • Vorzugsweise erfolgt die Erhöhung der Gleichspannung für jede UV-Röhre periodisch, wobei insbesondere bei einem aufeinanderfolgenden Einschalten der beiden UV-Röhren nicht gleichzeitig bei beiden eine Erhöhung der Gleichspannung beim Betrieb der UV-Röhre stattfindet.
  • Vorzugsweise sind die UV-Röhren über eine drehbare verrastbare Einheit ausrichtbar auf die Flamme. Dadurch kann die Ausrichtung der Röhren sehr genau drehbar und arretierbar an einem Gehäuse vorgenommen werden. Dabei ist es möglich, dass die UV-Strahlung axial oder radial auf die Einheit mit den UV-Röhren einstrahlt. Bei einer radialen Einstrahlung auf die Einheit, ist eine geringe Längserstreckung in Richtung senkrecht zur überwachenden Flamme oder einer plötzlich auftretenden Flamme möglich.
  • Vorzugsweise sind die UV-Röhren im Gehäuse bzw. der Einheit über Steckanschlüsse mit gesicherter Arretierung in der Einheit befestigbar, so dass im Servicefalle die Röhren im Block leicht austauschbar sind. Der Austausch kann über den Austausch einer kompletten Einheit bzw. eines von der Einheit abtrennbaren Abschnitts erfolgen, was die Wartung und/oder Reparatur vereinfacht.
  • Vorzugsweise liegt die Steuerung als SMD, d.h. Oberflächen bestücktes Bauteil bzw. Flachbauelement, vor. Die zulässige Umgebungstemperatur kann abhängig von den Daten der gewählten UV-Röhren auf maximal 120° C erhöht werden. Vorzugsweise ist das Zeitintervall im Bereich einer Sekunde und die Zeit, die die UV-Röhren jeweils eingeschaltet sind, im Bereich von einigen Hundert Millisekunden. Die Zeit, die die UV-Röhren jeweils auf Massepotenzial gelegt sind, ist im Bereich von einigen Millisekunden, so dass ein Fehler im Bereich von innerhalb einer Sekunde sofort erkannt wird. Eine sichere Überwachung ist damit gewährleistet. Eine rechtzeitige Abschaltung oder Fehlermeldung, insbesondere auch bei Dauerbetrieb und lange unbeaufsichtigtem Betrieb der Brenner über 72 Stunden, ist damit gewährleistet sowie auch die Bereitschaft im Stillstand.
  • Die Erfindung wird nachstehend anhand der in den beigefügten Abbildungen dargestellten Ausführungsbeispiele näher erläutert.
    • Fig. 1 zeigt schematisch UV-Röhren einer erfindungsgemäßen Vorrichtung;
    • Fig. 2 zeigt schematisch die in Fig. 1 gezeigten UV-Röhren eingebaut in einen Brennraum eines Brenners;
    • Fig. 3 zeigt schematisch ein Blockschaltbild einer erfindungsgemäßen Vorrichtung;
    • Fig. 4 zeigt schematisch ein Blockschaltbild eines Monitorkanals der in Fig. 3 gezeigten Vorrichtung;
    • Fig. 5 zeigt schematisch eine Auswertung von der als Flammenwächter verwendeten erfindungsgemäßen Vorrichtung ermittelten Signalen bei korrekt arbeitenden UV-Röhren sowohl bei vorhandener Flamme und nicht vorhandener Flamme; und
    • Fig. 6 zeigt schematisch eine Auswertung von der als Flammenwächter verwendeten erfindungsgemäßen Vorrichtung ermittelten Signalen bei einer defekten UV-Röhre mit nicht vorhandener Flamme.
  • Fig. 1 zeigt UV-Röhren 1, 2 einer erfindungsgemäßen Vorrichtung . Die Vorrichtung weist mindestens die zwei UV-Röhren 1, 2 auf, die über einen Betriebswiderstand mit einer Gleichspannung versorgbar sind. Die beiden UV-Röhren 1, 2 weisen im Wesentlichen dasselbe Sichtfeld auf, so dass sie den gleichen Flammenbereich einer Flamme erfassen. Die beiden UV-Röhren 1, 2 sind nahe beieinander angeordnet und in Richtung einer zu überwachenden bzw. möglichen auftretenden Flamme exponierbar.
  • Es ist eine Einheit 4 vorgesehen, an der die beiden UV-Röhren 1, 2 angeordnet bzw. befestigt sind. Die beiden UV-Röhren 1, 2 sind mittels Steckanschlüssen mit gesicherter Arretierung in einem zylindrischen Abschnitt 20 der Einheit 4 lösbar befestigt. Der zylindrische Abschnitt 20 der Einheit 4 weist ein radial ausgerichtetes Fenster 21 auf, das die UV-Röhren 1, 2 mit ihrem vorderen Bereich gegenüber der Flamme exponiert, so dass die beiden UV-Röhren 1, 2 insbesondere auf die Flammenwurzel der zu überwachenden bzw. einer möglicherweise auftretenden Flamme ausrichtbar sind. Die Einheit 4 wird in einem Montagehalter 3 sicher gehalten. Für eine drehbare Arretierung zur Ausrichtung der UV-Röhren 1, 2 auf die Flamme weist der zylindrische Abschnitt 20 der Einheit 4 eine Außenverzahnung 22 auf. Der Montagehalter 3 besitzt eine Ausnehmung, in die der zylindrische Abschnitt 20 einführbar ist und die ihrerseits eine der Außenverzahnung 22 entsprechende bzw. komplementäre Verzahnung 23 aufweist. In Fig. 1 ist der Montagehalter 3 als aus zwei Montagehalterabschnitten 3a, 3b ausgestaltete Aufnahme für die Einheit 4 dargestellt. Die beiden Montagehalterabschnitte 3a, 3b nehmen die zylindrische Einheit 20 mit ihrer Außenverzahnung 22 in der Ausnehmung mit der Verzahnung 23 auf. Der Montagehalter 3 ist schwenkbar befestigt, so dass die im zylindrischen Abschnitt 20 der Einheit 4 angeordneten UV-Röhren 1, 2 auf die zu überwachende Flamme bzw. eine möglicherweise auftretende Flamme ausgerichtet werden können.
  • Die Einheit 4 wird in dem Montagehalter 3 mit einem Abgleich eingerastet. Bei optimaler Ausrichtung sind die beiden UV-Röhren 1, 2 auf die Flammenwurzel ausgerichtet, da dort der UV-Anteil am höchsten ist. Die UV-Röhren 1, 2 erfassen im optimierten Fall jeweils die hälftige Flammenwurzel, dass heißt, eine der beiden UV-Röhren 1, 2 erfasst den "rechten" und die andere der beiden UV-Röhren 1,2 den "linken" Bereich der Flammenwurzel. Bei optimaler Ausrichtung und bei identischem Verhalten der beiden UV-Röhren 1, 2 wird bei vorhandener Flamme eine identische Impulsanzahl bei gleicher Zeiteinheit gemessen. Durch eine eventuell unterschiedlich eingestellte Gleichspannung zum Betrieb der UV-Röhren 1, 2 lassen sich unterschiedliche erfasste Impulsanzahlen der beiden UV-Röhren 1, 2 bei einem Abgleich ausgleichen.
  • In Fig. 2 ist die erfindungsgemäße Vorrichtung gemäß Fig. 1 vor einem Brennraum eines Brenners als Flammenwächter angeordnet dargestellt. In der Fig. 2 sind zwei Flammenwächter vorgesehen, die auf die Flammenwurzel (der mit w bezeichnete Bereich der Flamme) ausgerichtet sind. Die Einheiten 4 sind in den Montagehaltern 3 eingerastet. Bei dem mit m bezeichneten Bereich der Flamme handelt es sich um die Verbrennungszone. Unter der Flamme ist bezogen auf die Brennermittelachse, die die x-Achse darstellt, der Druck angegeben. Bei einer Flammenbewertung kann die Frequenz, die Amplitude und die Wellenlänge ausgewertet werden. Für die Flammenbewertung kann ein Sensor 24 (vgl. Fig. 1) vorgesehen sein, wie er beispielsweise in EP 2105669 A1 offenbart ist.
  • Zur Ansteuerung und zum Betrieb der UV-Röhren 1, 2 ist eine Steuerung vorgesehen, die als SMD vorliegen kann. Die Steuerung zum Betrieb der UV-Röhren 1, 2 kann auch den Sensor 24 ansteuern und die erfassten Signale auswerten.
  • Fig. 3 zeigt schematisch die Steuerung mit weiteren Elementen. Die Steuerung weist einen Mikrokontroller oder Mikroprozessor 5 auf, der über eine Hochspannungsumschaltungs- und Röhrenentladungseinheit 6 mit den UV-Röhren 1, 2 verbunden ist. Mit dem Mikroprozessor 5 steuert die Steuerung zudem eine Kaskadenschaltung 7, die als Villard-Kaskadenschaltung ausgestaltet ist. Die Kaskadenschaltung 7 und die Hochspannungsumschaltungs- und Röhrenentladungseinheit 6 können als Teil der Steuerung ausgeführt sein. Die Kaskadenschaltung 7 kann die Hochspannungsumschaltungs- und Röhrenentladungseinheit 6 mit Spannung versorgen. Der Mikroprozessor 5 und die Kaskadenschaltung 7 sind bidirektional verbunden. Dadurch ist eine Regelung der Hochspannung möglich.
  • Die schematisch gezeigte Kaskadenschaltung 7 als Villard-Kaskadenschaltung weist eine Ladepumpe auf, die die Hochspannung über eine Frequenz einstellt, wobei die Steuerspannung im Niederspannungsbereich ist. Die Kaskadenspannung ist mit einer Gleichspannung, insbesondere 24 Volt DC, betreibbar.
  • Die durch die Kaskadenschaltung 7 erzeugte Gleichspannung ist den UV-Röhren 1, 2 für den Betrieb der UV-Röhren 1, 2 über die Hochspannungsumschaltungs-und Röhrenentladungseinheit 6 zuführbar. Durch die Steuerung kann mittels des Mikroprozessors 5 die für den Betrieb der UV-Röhren 1, 2 verwendete Gleichspannung vorgewählt werden. Über die Steuerung ist damit die Betriebsspannung der UV-Röhren 1, 2 wählbar. Beispielhafte Gleichspannungen für den Betrieb der UV-Röhren 1, 2 sind 325 Volt, 345 Volt, 365 Volt und 385 Volt.
  • Das Signal an den UV-Röhren 1, 2 in Form von Pulsen aufgrund einer erfassten vorhandenen Flamme wird sowohl dem Mikroprozessor 5 der Steuerung zugeführt als auch einem sicherheitsgerichteten Monitorkanal 8. Der Ausgang des Monitorkanals 8 ist mit einem Eingang einer sicherheitsgerichteten Relaisansteuerung 9 verbunden, der auch bidirektional mit dem Mikroprozessor 5 der Steuerung gekoppelt ist. Dadurch wird auch eine Überwachung der Relaisstufe bzw. Relaisansteuerung 9 ermöglicht.
  • Der Monitorkanal 8 prüft das Vorhandensein einer Lücke im pulsenden UV-Röhrensignal. Die periodisch auftretende Lücke entsteht bei der Umschaltung der UV-Röhrenspannung zwischen den UV-Röhren 1, 2 und wird auf Einhaltung ihrer Kennwerte geprüft. Die Kennwerte sind die Mindest- und Höchstbreite der Lücke sowie ihr Mindest- und Höchstabstand. So wird im sicherheitsgerichteten Monitorkanal 8 sichergestellt, dass jeder beschreibbare Bauelementeausfall im UV-Röhrenkreis erkannt wird. Der Monitorkanal 8 selbst ist derart sicherheitsgerichtet aufgebaut, dass jeder Bauelementeausfall im Monitorkanal 8 zu einer sicheren Abschaltung führt. Darüber hinaus wird das zeitliche Verhalten des im Monitorkanal 8 generierten Signals vom Mikroprozessor 5 auf Plausibilität geprüft.
  • In Fig. 4 ist ein Blockschaltbild des Monitorkanals 8 mit den beiden UV-Röhren 1, 2 dargestellt. Es sind zwei re-triggerbare monostabile Flipflops 14, 15 vorgesehen. Das erste Flipflop 14 detektiert die eigentliche Signallücke im Flammensignal, die mit mindestens 50 ms angenommen wird. Das zweite Flipflop 15 detektiert die Mindestperiode des Auftretens der Signallücke im Signal, die mit ungefähr 800 ms angenommen wird. Ein nachgeschalteter Hochpass 16 filtert seltener und häufiger auftretende Lücken aus, etwa bei zu schwacher Flamme oder bei defekter Röhre bei fehlender Flamme. Ein dem Hochpass 16 nachgeschalteter Gleichrichter 17 generiert schließlich ein sägezahnförmiges Analogsignal, welches von der nachfolgenden sicherheitsgerichteten Relaisstufe 9 auf Einhaltung eines Spannungsfensters geprüft wird.
  • Der Monitorkanal 8 arbeitet nur mit dynamischen Signalen eines bestimmten Timings, so dass ein Auftreten eines statischen Signals unweigerlich zu einer (sicherheitsgerichteten) Abschaltung führt. Das Zeitverhalten des Monitorkanals 8 kann so gestaltet werden, dass auch hier ein Flammenabriss innerhalb einer Sekunde zur Abschaltung führt.
  • Der Mikroprozessor 5 der Steuerung führt eine Signalbewertung der von den UV-Röhren 1, 2 erfassten Signale zur Flammenüberwachung durch, die eine Prüfung der UV-Röhren 1, 2 bei sicherer Erkennung einer nicht vorhandenen Flamme ermöglicht. Wird, wie nachstehend beschrieben, eine schwache Flamme oder ein Flammenabriss erkannt, wird über die sicherheitsgerichtete Relaisansteuerung 9 die Brennstoffzufuhr unterbrochen. Ferner besteht die Möglichkeit, neben dem sicherheitsgerichteten Kanal ein Bewertungsrelais 10 durch den Mikroprozessor 5 der Steuerung anzusteuern.
  • Über die von dem Mikroprozessor 5 ansteuerbare(n) LED(s) 11 bzw. die LED-Anordnung 11 ist eine berührungs- und drahtlose Datenfernübertragung bidirektional zu der Steuerung möglich. Daten und Signale des Mikroprozessors 5 können zu Wartungszwecken und/oder in einem Fehlerfalle ausgelesen und über einen Datenbus vorgewählt werden.
  • Zudem ist ein Stromtreiber 12 für kleine Ströme im Bereich von 4 bis 20 Milli-Ampere vorgesehen, der von dem Mikroprozessor 5 angesteuert werden kann; der Stromtreiber 12 kann ein für die qualitative Flammenbewertung repräsentatives Signal in Form eines Stromes liefern. Die Schaltung gemäß Fig. 2 wird mit der Spannung bzw. dem Strom des Netzteils 13 betrieben.
  • In Fig. 5 ist der erfindungsgemäße Ablauf des Ein- und Ausschaltens der beiden UV-Röhren 1, 2 mit der Erfassung von Impulsen an den UV-Röhren 1, 2 bei vorhandener Flamme und korrekt arbeitenden UV-Röhren 1, 2 gezeigt. Auf der x-Achse ist die Zeit t aufgetragen.
  • Die oberste Kurve in Fig. 5 gibt die an die UV-Röhre 1 angelegte Spannung an. Die mittlere Kurve gibt die an die UV-Röhre 2 angelegte Spannung an. Im dargestellten Ausführungsbeispiel variiert die an die UV-Röhren 1, 2 angelegte Spannung zwischen den Spannungspegeln 0 Volt, 325 Volt und 380 Volt. Die Steuerung schaltet mit einem Abstand einer vorgegebenen Zeit nacheinander die beiden UV-Röhren 1, 2 ein und aus. Das Ein- und Ausschalten der beiden UV-Röhren 1, 2 nacheinander geschieht innerhalb eines vorbestimmten Zeitintervalls, wobei die beiden UV-Röhren 1, 2 für eine vorbestimmbare Zeitspanne eingeschaltet sind. Die Werte des vorbestimmten Zeitintervalls und der vorbestimmten Zeitspanne sowie des Abstands sind im veränderbaren Speicher des Mikroprozessors 5 hinterlegt. Bei einer periodischen Ansteuerung bzw. einem periodischen Betrieb der UV-Röhren 1, 2 kann es auch vorgesehen sein, dass die Zeitspanne für jede UV-Röhre 1, 2 im Speicher des Mikroprozessors 5 hinterlegt ist ebenso, wie der Abstand zwischen dem direkt aufeinander folgenden Einschalten ein und derselben UV-Röhre 1, 2. Der nachfolgende Vergleich und die Eigenprüfung der UV-Röhren 1, 2 sowie die Konsistenzprüfung gegeneinander wird dadurch vereinfacht, wenn die Zeit des Betriebs für beide UV-Röhren 1, 2 identisch ist. Ferner kann der Abstand zwischen dem benachbarten Einschalten ein und derselben UV-Röhre 1, 2 für beide UV-Röhren ebenfalls gleich gewählt werden.
  • Gemäß Fig. 5 ergibt sich das vorbestimmte Zeitintervall zwischen den angegebenen Zeitpunkten t1 und t5. Der Abstand zwischen dem Ausschalten der UV-Röhre 1 und dem Einschalten der UV-Röhre 2 ist durch die in Fig. 4 angegebenen Zeitpunkte t2 und t3 definiert. Die Zeitspanne, die die beiden UV-Röhren 1, 2 eingeschaltet sind, ergibt sich aus den in Fig. 4 angegebenen Zeitpunkten t2 und t1 für UV-Röhre 1 bzw. t4 und t3 für UV-Röhre 2. Zwischen dem Aus- und Einschalten der UV-Röhren 1, 2 wird die Anode der jeweiligen UV-Röhre 1, 2 auf Massepotenzial gelegt zur Absaugung einer Ionisierung im Entladungsbereich, d.h. die UV-Röhre 1 wird zwischen t2 und t5 und die UV-Röhre 2 zwischen t4 und t7 auf Massepotenzial gelegt.
  • Das vorbestimmte Zeitintervall ist vorzugsweise ungefähr eine Sekunde, so dass t5-t1=1s. Der Abstand zwischen dem Ausschalten der UV-Röhre 1 und dem Einschalten der UV-Röhre 2 ist vorzugsweise im Bereich von einigen hundert Millisekunden, wobei insbesondere t7-t6= t5-t4=t3-t2=200ms; und die Zeitspanne, die die beiden UV-Röhren 1, 2 eingeschaltet sind, vorzugsweise t4-t3=t2-t1=300ms beträgt. Mit den bevorzugten Werten ist ein periodisches Ein- und Ausschalten der beiden UV-Röhren 1, 2 gewährleistet, bei dem die beiden UV-Röhren 1, 2 mit der gleichen Periodizität angesteuert werden, was die Ansteuerung und den Vergleich der erhaltenen Impulsanzahl, wie nachher beschrieben wird vereinfacht. Es ist jedoch auch möglich die UV-Röhren 1, 2 unterschiedlich anzusteuern, indem zum Vergleich der Impulsanzahl dieser jeweils durch die Einschaltdauer der jeweiligen UV-Röhre 1, 2 zuerst dividiert wird.
  • Die untere Kurve gibt die Anzahl von Impulsen wieder, die von jeder der beiden UV-Röhren 1, 2 während ihres Betriebs von dem Mikroprozessor 5 erfasst werden.
  • In der Fig. 5 ist der Fall dargestellt, dass die Flamme bis zum Zeitpunkt t1 nicht vorhanden ist, und erst bei t1 gezündet wird. Bis zum Zeitpunkt t1 sind die von dem Mikroprozessor 5 an den UV-Röhren 1, 2 erfassten bzw. gezählten Impulse null. Ab dem Zeitpunkt t1 werden aufgrund der vorhandenen Flamme Impulse an den UV-Röhren 1, 2 von dem Mikroprozessor erfasst und gezählt während des Betriebs der UV-Röhren 1, 2.
  • Da die beiden UV-Röhren 1, 2 dasselbe Sichtfeld auf die Flamme haben, ist die Anzahl der gezählten Impulse bezogen auf eine Zeiteinheit und bei gleicher Betriebsspannung gleich bzw. bewegt sich in einem Toleranzbereich von ungefähr 5%-10%. Daher ergibt sich bei korrekt funktionierendem Flammenwächter und vorhandener Flamme, dass jeweils der Quotient aus Impulsanzahl und vorbestimmbarer Zeitspanne, die die UV-Röhren 1, 2 eingeschaltet sind, d.h. hier t6-t5 bzw. t4-t3, gleich ist bzw. im Rahmen der Toleranz gleich ist bei gleicher Betriebsspannung. Ist dies nicht der Fall, können Rückschlüsse auf einen Fehler bzw. eine defekte oder gealterte UV-Röhre 1, 2 gezogen werden. Dies wird mit Bezug auf Fig. 6 erläutert.
  • Wird die Betriebsspannung der UV-Röhren 1, 2 variiert, so variiert auch die an der UV-Röhre 1, 2 erfassbare Impulsanzahl. Gemäß der Fig. 5 werden die beiden UV-Röhren 1, 2 bei zwei unterschiedlichen Betriebsspannungen, nämlich 325 Volt und 380 Volt, betrieben. Bei höherer Betriebsspannung werden mehr Impulse von dem Mikroprozessor an den UV-Röhren 1, 2 gezählt. Ist dies nicht der Fall bzw. ergeben sich nicht die erwarteten Impulszahlen, so können Rückschlüsse auf einen Fehler bzw. eine defekte oder gealterte UV-Röhre 1, 2 gezogen werden. Dies wird in Bezug auf Fig. 6 erläutert.
  • Wie Fig. 5 zu entnehmen ist, führt die Erhöhung der Betriebsspannung für die beiden UV-Röhren 1, 2 von 325 Volt auf 380 Volt auf eine Erhöhung der Impulszahl von 1000 auf 2000, wobei im betrachteten Ausführungsbeispiel die Differenz zwischen t5 und t1, also das vorbestimmte Zeitintervall, eine Sekunde ist.
  • Bei der Eigenprüfung des Flammenwächters, die von dem Mikroprozessor 5 durchgeführt wird, wird eine Eigenkonsistenzprüfung für jede der UV-Röhren 1, 2 durchgeführt. Die erfasste Impulsanzahl muss bei erhöhter Betriebsspannung höher sein als bei der niedrigeren Betriebsspannung bei einfallender UV-Strahlung bzw. vorhandener Flamme. Zudem muss sich die erfasste Impulsanzahl in einem vorberechenbaren Bereich befinden. Es werden somit die erfassten Impulse einer UV-Röhre 1, 2 gegeneinander verglichen. Ferner werden die erfassten Impulszahlen für die beiden UV-Röhren 1, 2 untereinander verglichen. Identische UV-Röhren 1, 2 müssen gleiche oder in einem Toleranzbereich gleiche Impulsanzahlen bei gleicher Betriebsspannung liefern. Ferner können für die UV-Röhren 1, 2 Schwellenwerte im Speicher des Mikroprozessors 5 hinterlegt sein, die eine untere Grenze und eine obere Grenze für den Wert der Impulsanzahl bei jeweiliger Betriebsspannung der UV-Röhre 1, 2 bilden. Diese Schwellenwerte können ebenfalls für eine Prüfung der UV-Röhre 1, 2 verwendet werden.
  • Fig. 6 zeigt den in Fig. 5 erfindungsgemäßen Ablauf des Ein- und Ausschaltens der beiden UV-Röhren 1, 2 mit der Erfassung von Impulsen an den UV-Röhren 1, 2 bei zum Zwecke der Erläuterung angenommener defekter UV-Röhre 2. Es sind zwei unterschiedliche Fälle im Zeitabschnitt a und im Zeitabschnitt b in Fig. 6 dargestellt.
  • Zum Zwecke der Erläuterung ist im Zeitabschnitt a eine Flamme vorhanden, und im Zeitabschnitt b ist keine Flamme vorhanden.
  • So wie in Fig. 5 ist auf der x-Achse die Zeit t aufgetragen. Die oberste Kurve gibt die an die UV-Röhre 1 angelegte Spannung an. Die mittlere Kurve gibt die an die UV-Röhre 2 angelegte Spannung an. Die an die UV-Röhren 1, 2 angelegte Spannung variiert zwischen den Spannungspegeln 0 Volt, 325 Volt und 380 Volt.
  • Der Defekt der UV-Röhre 2 im Zeitabschnitt a wird dadurch erkannt, dass die für die UV-Röhre 2 erfasste Impulsanzahl mit der für die UV-Röhre 1 erfassten Impulsanzahl verglichen wird. Die von der UV-Röhre 2 ermittelte Impulsanzahl ist gegenüber der von UV-Röhre 1 erfassten Impulsanzahl bei gleicher Betriebsspannung erhöht. Die UV-Röhre 2 wird als defekt identifiziert.
  • Da im Zeitabschnitt b keine Flamme vorhanden ist, werden an der UV-Röhre 1 keine Pulse gezählt, weder bei 325 Volt Betriebsspannung noch bei 380 Volt Betriebsspannung. Bei der UV-Röhre 2 werden bei 325 Volt Betriebsspannung keine Pulse gezählt, aber bei erhöhter Betriebsspannung von 380 Volt werden Pulse gezählt. Das Verhalten der UV-Röhre 2 lässt den Schluss zu, dass die UV-Röhre 2 gealtert ist und ausgetauscht werden muss. Bei der UV-Röhre 2 treten sogenannte Durchzünder auf. Mit der variierenden Betriebsspannung ein und derselben UV-Röhre ist eine Selbstprüfung möglich. Durch den Vergleich der Impulse der gleichen UV-Röhre 1, 2 bei variierenden Betriebsspannungen kann somit ermittelt werden, ob die UV-Röhre 1, 2 noch korrekt arbeitet. Zudem ist ein Vergleich mit den Impulsen der zweiten der beiden UV-Röhren 1, 2 möglich.
  • Eine Selbstprüfung des Flammenwächters findet auch bei nicht vorhandener Flamme statt, das heißt im Ruhebetrieb des Brenners, da Durchzünder auch bei nicht vorhandener Flamme erkannt werden, da das Vorhandensein zweier UV-Röhren 1, 2 ermöglicht, die jeweils von den beiden UV-Röhren 1, 2 ermittelten Impulszahlen zu vergleichen. Zeigt nur eine der beiden UV-Röhren 1, 2 Impulse, so kann auf einen Defekt bzw. Durchzünder bei der die Impulse erfassenden UV-Röhre 1, 2 geschlossen werden. Wie beschrieben werden auch aufgrund von Abweichungen der Impulszahl bei dem Vorhandensein einer Flamme, das heißt im Arbeitsbetrieb des Brenners, Durchzünder erkannt.
  • Zudem ist eine weitere Selbstprüfung, wie es beispielsweise in Fig. 5 in Bezug auf die Zeitspanne b beschrieben ist, möglich, indem die Betriebsspannung der UV-Röhren 1, 2 verändert wird. Obwohl die Flamme nicht vorhanden ist, wird eine Prüfung der Konsistenz der ermittelten Signale durchgeführt. Die Prüfung auf Konsistenz schließt sowohl den Vergleich der Signale ein und derselben UV-Röhre 1, 2 bei gleicher oder veränderter Betriebsspannung als auch den Vergleich der Signale der beiden UV-Röhren 1, 2 miteinander mit ein.
  • Bisher nicht als solche erkennbare, so genannte Durchzünder werden sicher erkannt und eine zuverlässige Aussage, ob eine Flamme vorhanden ist oder nicht, ist möglich.

Claims (15)

  1. Vorrichtung zur Erkennung des Vorhandenseins einer Flamme mit einer UV-Röhre, die über einen Betriebswiderstand mit einer Gleichspannung versorgbar ist, in der mindestens zwei so angeordnete UV-Röhren (1, 2), die das im Wesentlichen selbe Sichtfeld aufweisen und eine Steuerung vorgesehen sind, dadurch gekennzeichnet, dass die Steuerung so konfiguriert ist, dass die zwei UV-Röhren (1, 2) nacheinander mit einem Abstand einer vorgegebenen Zeit innerhalb eines vorbestimmten Zeitintervalls ein- und ausschaltbar sind, so dass die UV-Röhren (1, 2) für eine vorbestimmbare Zeitspanne eingeschaltet sind, wobei die Anzahl von jeder UV-Röhre (1, 2) erhaltener Impulse erfassbar und miteinander vergleichbar ist, wobei zwischen dem Aus- und Einschalten der UV-Röhren (1, 2) die Anode der jeweiligen UV-Röhre (1, 2) auf Massepotential legbar ist zur Absaugung einer Ionisierung im Entladungsbereich.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die vorbestimmbare Zeitspanne für jede der beiden UV-Röhren (1, 2) gleich ist.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das vorbestimmte Zeitintervall eine Sekunde ist.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Gleichspannung eine Hochspannung ist, die durch eine Kaskadenschaltung (7), insbesondere eine Villard-Kaskadenschaltung, mit Ladepumpe erzeugbar ist.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Höhe der Gleichspannung für den Betrieb der UV-Röhren (1, 2) durch die Steuerung für eine Eigenprüfung der UV-Röhre (1, 2) vorwählbar ist.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Gleichspannung zum Betrieb der UV-Röhren (1, 2) für vorbestimmbare Zeitspannen erhöht ist zur Erhöhung der Empfindlichkeit einer Eigenprüfung der jeweiligen UV-Röhre (1, 2).
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass eine Zeitspanne mit erhöhter Gleichspannung zum Betrieb der UV-Röhre (1, 2) gefolgt ist durch eine Zeitspanne mit nicht erhöhter Gleichspannung für den Betrieb der anderen UV-Röhre (1, 2).
  8. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass Zeitspannen mit erhöhter Gleichspannung periodisch für eine UV-Röhre (1, 2) sind.
  9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die UV-Röhren (1, 2) über eine drehbare verrastbare Einheit (4) auf die Flammenwurzel der zu überwachenden Flamme ausrichtbar sind.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die UV-Röhren (1, 2) über Steckanschlüsse mit gesicherter Arretierung in der Einheit (4) befestigbar sind.
  11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Steuerung als SMD vorliegt.
  12. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Zeit, die die UV-Röhren (1, 2) jeweils eingeschaltet sind, im Bereich von einigen Millisekunden ist, und das Zeitintervall ungefähr eine Sekunde ist.
  13. Verfahren zum Erkennen des Vorhandenseins einer Flamme mit einer UV-Röhre, die über einen Betriebswiderstand mit einer Gleichspannung versorgbar ist, in der mindestens zwei so angeordnete UV-Röhren (1, 2), die das im Wesentlichen selbe Sichtfeld aufweisen, verwendet werden, dadurch gekennzeichnet, dass die zwei UV-Röhren (1, 2) nacheinander mit einem Abstand einer vorgegebenen Zeit innerhalb eines vorbestimmten Zeitintervalls ein- und ausgeschaltet werden, so dass die UV-Röhren (1, 2) für eine vorbestimmbare Zeitspanne eingeschaltet sind, wobei die Anzahl von jeder UV-Röhre (1, 2) erhaltener Impulse gezählt und miteinander verglichen werden, wobei zwischen dem Aus- und Einschalten der UV-Röhren (1, 2) die Anode der jeweiligen UV-Röhre (1, 2) auf Massepotenzial gelegt wird zur Absaugung einer Ionisierung im Entladungsbereich.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das Einschalten der UV-Röhren (1, 2) und das Zählen und Vergleichen der Impulse sowie das Anlegen der Anode auf Massepotenzial periodisch und kontinuierlich durchgeführt wird.
  15. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass das Verfahren ununterbrochen durchgeführt wird.
EP10013450.1A 2010-10-08 2010-10-08 Vorrichtung zur Erkennung des Vorhandenseins einer Flamme Active EP2439451B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL10013450T PL2439451T3 (pl) 2010-10-08 2010-10-08 Urządzenie do wykrywania obecności płomienia
DK10013450.1T DK2439451T3 (da) 2010-10-08 2010-10-08 Apparat til erkendelse af tilstedeværelsen af en flamme
EP10013450.1A EP2439451B1 (de) 2010-10-08 2010-10-08 Vorrichtung zur Erkennung des Vorhandenseins einer Flamme
ES10013450.1T ES2446317T3 (es) 2010-10-08 2010-10-08 Dispositivo para detectar la presencia de una llama
US13/317,002 US8618493B2 (en) 2010-10-08 2011-10-06 Apparatus and method for detecting the presence of a flame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10013450.1A EP2439451B1 (de) 2010-10-08 2010-10-08 Vorrichtung zur Erkennung des Vorhandenseins einer Flamme

Publications (2)

Publication Number Publication Date
EP2439451A1 EP2439451A1 (de) 2012-04-11
EP2439451B1 true EP2439451B1 (de) 2013-12-11

Family

ID=43920743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10013450.1A Active EP2439451B1 (de) 2010-10-08 2010-10-08 Vorrichtung zur Erkennung des Vorhandenseins einer Flamme

Country Status (5)

Country Link
US (1) US8618493B2 (de)
EP (1) EP2439451B1 (de)
DK (1) DK2439451T3 (de)
ES (1) ES2446317T3 (de)
PL (1) PL2439451T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021130911A1 (de) 2021-11-25 2023-05-25 Bfi Automation Mindermann Gmbh Steueranordnung zur erkennung des vorhandenseins einer flamme mit flammenwächtern für einen brenner und flammenwächtersystem

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140287369A1 (en) * 2013-03-20 2014-09-25 Bruce George Yates Dual/Redundant Self Check Ultraviolet Flame Sensor and Combustion Safeguard Control
PL3045816T3 (pl) * 2015-01-19 2019-07-31 Siemens Aktiengesellschaft Urządzenie do regulacji instalacji palnikowej
US9417124B1 (en) * 2015-05-13 2016-08-16 Honeywell International Inc. Utilizing a quench time to deionize an ultraviolet (UV) sensor tube
US10648857B2 (en) 2018-04-10 2020-05-12 Honeywell International Inc. Ultraviolet flame sensor with programmable sensitivity offset
US11473973B2 (en) 2018-11-30 2022-10-18 Carrier Corporation Ultraviolet flame detector
US10739192B1 (en) 2019-04-02 2020-08-11 Honeywell International Inc. Ultraviolet flame sensor with dynamic excitation voltage generation

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1211844A (fr) * 1958-10-17 1960-03-18 Dispositif de sécurité pour l'alimentation d'un brûleur à combustible liquide ou gazeux
DE1256828B (de) 1964-07-17 1967-12-21 Philips Patentverwaltung Betriebsueberwachungsschaltung fuer Gas- oder OElfeuerungsanlagen
DE1293837B (de) 1966-07-23 1969-04-30 Sylvania Vakuumtechnik Gmbh Einrichtung zur UEberwachung eines eine UV-Roehre aufweisenden Impulsgebers auf Fehler der UV-Roehre
DE1955338C2 (de) 1969-11-04 1971-09-30 Durag Appbau Gmbh Uv flammenwaechter
CH587449A5 (de) 1975-07-08 1977-04-29 Brupel Ag
US4279254A (en) * 1978-10-30 1981-07-21 Paul B. Elder Company Ultraviolet light control
DE3108409C2 (de) * 1981-03-06 1990-04-19 3119 Bienenbüttel Friedrich Bartels Ingenieurbüro Flammenwächter
CH672949A5 (de) * 1987-06-22 1990-01-15 Landis & Gyr Ag
EP1173711A1 (de) * 1999-04-26 2002-01-23 Satronic Ag Flammenüberwachungseinrichtung
DE10055831C2 (de) * 2000-11-11 2002-11-21 Bfi Automation Gmbh Flammenwächter für einen mit Öl oder Gas betriebenen Brenner
JP4521153B2 (ja) * 2002-05-07 2010-08-11 株式会社山武 紫外線検出装置
EP2105669B1 (de) 2008-03-26 2016-01-06 BFI Automation Mindermann GmbH Flammenueberwachungs- und Bewertungseinrichtung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021130911A1 (de) 2021-11-25 2023-05-25 Bfi Automation Mindermann Gmbh Steueranordnung zur erkennung des vorhandenseins einer flamme mit flammenwächtern für einen brenner und flammenwächtersystem

Also Published As

Publication number Publication date
PL2439451T3 (pl) 2014-06-30
EP2439451A1 (de) 2012-04-11
US8618493B2 (en) 2013-12-31
DK2439451T3 (da) 2014-03-10
US20120138809A1 (en) 2012-06-07
ES2446317T3 (es) 2014-03-07

Similar Documents

Publication Publication Date Title
EP2439451B1 (de) Vorrichtung zur Erkennung des Vorhandenseins einer Flamme
EP1256763B1 (de) Langzeitsicheres Flammenüberwachungsverfahren und Überwachungsvorrichtung
DE3507344C2 (de)
EP2357410B1 (de) Verfahren und Brenner mit einer auf Ionisationsstrommessung basierenden Flammenerkennung
DE19959944C2 (de) Blendschutzeinrichtung und Verfahren zu deren Steuerung
EP1983264B1 (de) Flammenüberwachungsvorrichtung mit einer Spannungserzeugungs- und Messanordnung; Betriebsverfahren zur Vorrichtung
WO1999019672A1 (de) Verfahren und vorrichtung zur überwachung einer flamme
WO2001006179A1 (de) Überwachungsvorrichtung für ölbrenner
EP3245694B1 (de) Verfahren zur kategorisierung eines lichtbogens beziehungsweise detektion eines störlichtbogens
DE19631821C2 (de) Verfahren und Einrichtung zur Sicherheits-Flammenüberwachung bei einem Gasbrenner
EP1843645B1 (de) Schaltungsanordnung für Hochdruck-Gasentladungslampen
DE60014980T2 (de) Flammenüberwachung in einem Brenner
EP2584874B1 (de) LED-Leuchte mit Überwachung
DE3026787A1 (de) Eigensicherer flammenwaechter
DE2809993C3 (de) Flammenwächterschaltung zur Überwachung einer Brennerflamme
DE3331478A1 (de) Verfahren und vorrichtung zur optischen ueberwachung von flammen
DE10012542A1 (de) Einrichtung zur Überprüfung der Auswerteschaltung einer automatischen Schaltung für Beleuchtungseinrichtungen bei Fahrzeugen
DE3142987C2 (de) Vorrichtung zur Überwachung von Öl- und Gasflammen bei wahlweiser Verfeuerung von Öl oder von gasförmigen Brennstoffen
CH690508A5 (de) Flammenfühler eines sich selbstüberwachenden Flammenwächters.
DE2932129A1 (de) Flammenwaechter an oel- oder gasbrennern
DE3723278C2 (de)
DE3230331C2 (de) Anordnung zur Feuerlöschung
DE102021130911A1 (de) Steueranordnung zur erkennung des vorhandenseins einer flamme mit flammenwächtern für einen brenner und flammenwächtersystem
DE2532448C3 (de) UV-Flammenwächter, insbesondere zur Überwachung von öl- und Gasbrennerflammen, mit unabhängigem Generator- und Triggerkreis
DE3410257C2 (de)

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121005

17Q First examination report despatched

Effective date: 20130301

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130710

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. LUSUARDI AG, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 644798

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010005590

Country of ref document: DE

Effective date: 20140206

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2446317

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140307

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140307

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140311

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140411

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010005590

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010005590

Country of ref document: DE

Effective date: 20140912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010005590

Country of ref document: DE

Representative=s name: SPARING - ROEHL - HENSELER, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010005590

Country of ref document: DE

Owner name: BFI AUTOMATION MINDERMANN GMBH, DE

Free format text: FORMER OWNER: BFI AUTOMATION DIPL.-ING. KURT-HENRY MINDERMANN GMBH, 40883 RATINGEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010005590

Country of ref document: DE

Owner name: BFI AUTOMATION MINDERMANN GMBH, DE

Free format text: FORMER OWNER: BFI AUTOMATION MINDERMANN GMBH, 40883 RATINGEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010005590

Country of ref document: DE

Representative=s name: SPARING - ROEHL - HENSELER, DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BFI AUTOMATION MINDERMANN GMBH, DE

Free format text: FORMER OWNER: BFI AUTOMATION DIPL.-ING. KURT-HENRY MINDERMANN GMBH, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141008

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: BFI AUTOMATION MINDERMANN GMBH

Effective date: 20151130

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: BFI AUTOMATION MINDERMANN GMBH

Effective date: 20160118

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 644798

Country of ref document: AT

Kind code of ref document: T

Owner name: BFI AUTOMATION MINDERMANN GMBH, DE

Effective date: 20160125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: FR

Ref legal event code: RM

Effective date: 20160527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101008

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221019

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221222

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230928

Year of fee payment: 14

Ref country code: NL

Payment date: 20231019

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20231019

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231222

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231006

Year of fee payment: 14

Ref country code: SE

Payment date: 20231019

Year of fee payment: 14

Ref country code: IT

Payment date: 20231026

Year of fee payment: 14

Ref country code: FR

Payment date: 20231024

Year of fee payment: 14

Ref country code: FI

Payment date: 20231019

Year of fee payment: 14

Ref country code: DK

Payment date: 20231024

Year of fee payment: 14

Ref country code: CZ

Payment date: 20231004

Year of fee payment: 14

Ref country code: CH

Payment date: 20231102

Year of fee payment: 14

Ref country code: AT

Payment date: 20231020

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231019

Year of fee payment: 14