EP2433002B1 - Hall-effekt-plasmatriebwerk - Google Patents
Hall-effekt-plasmatriebwerk Download PDFInfo
- Publication number
- EP2433002B1 EP2433002B1 EP10728782.3A EP10728782A EP2433002B1 EP 2433002 B1 EP2433002 B1 EP 2433002B1 EP 10728782 A EP10728782 A EP 10728782A EP 2433002 B1 EP2433002 B1 EP 2433002B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- conductive
- semi
- plasma thruster
- plasma
- thruster according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005355 Hall effect Effects 0.000 title claims description 20
- 230000005291 magnetic effect Effects 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 239000010439 graphite Substances 0.000 claims description 8
- 229910002804 graphite Inorganic materials 0.000 claims description 8
- 238000009413 insulation Methods 0.000 claims description 8
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 7
- 230000001133 acceleration Effects 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 2
- 238000005234 chemical deposition Methods 0.000 claims 1
- 238000003475 lamination Methods 0.000 claims 1
- 239000012808 vapor phase Substances 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 description 17
- 239000000919 ceramic Substances 0.000 description 10
- 230000003628 erosive effect Effects 0.000 description 6
- 239000003380 propellant Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052582 BN Inorganic materials 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000010849 ion bombardment Methods 0.000 description 4
- 239000012212 insulator Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03H—PRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03H1/00—Using plasma to produce a reactive propulsive thrust
- F03H1/0037—Electrostatic ion thrusters
- F03H1/0062—Electrostatic ion thrusters grid-less with an applied magnetic field
- F03H1/0075—Electrostatic ion thrusters grid-less with an applied magnetic field with an annular channel; Hall-effect thrusters with closed electron drift
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03H—PRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03H1/00—Using plasma to produce a reactive propulsive thrust
- F03H1/0037—Electrostatic ion thrusters
- F03H1/0062—Electrostatic ion thrusters grid-less with an applied magnetic field
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J27/00—Ion beam tubes
- H01J27/02—Ion sources; Ion guns
- H01J27/08—Ion sources; Ion guns using arc discharge
- H01J27/14—Other arc discharge ion sources using an applied magnetic field
- H01J27/143—Hall-effect ion sources with closed electron drift
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/54—Plasma accelerators
Definitions
- the present invention relates to a Hall effect plasma thruster comprising a main annular ionization and acceleration channel having an open downstream end, at least one cathode, an annular anode concentric to the main annular channel, a pipe and a distributor. for supplying ionizable gas to the channel and a magnetic circuit for creating a magnetic field in said main annular channel.
- the invention relates in particular to Hall effect plasma thrusters used for the electric propulsion of satellites.
- the life of Hall effect plasma thrusters is essentially determined by the erosion of the ceramic insulating channel under the effect of ion bombardment. Indeed, due to the topography of the electrical potential in the channel, part of the ions created is accelerated radially towards the walls.
- the discharge channels of the Hall effect thrusters currently consist of homogeneous insulating ceramic, usually based on boron nitride and silica (BN-SIO 2 materials ). Boron nitride ceramics allow Hall effect thrusters to achieve high performance in terms of efficiency, but exhibit high erosion rates under ion bombardment that limit the life of the propellants to about 10,000 hours as well. as their operation at higher specific impulses.
- the document US 2002/008455 A1 describes an example of a Hall effect plasma thruster.
- the present invention aims to overcome the aforementioned drawbacks and in particular to increase the life of the Hall effect plasma thrusters while maintaining a high energy efficiency.
- a Hall effect plasma thruster comprising a main annular ionization and acceleration channel having an open downstream end, at least one cathode, an annular anode concentric with the annular channel.
- main a pipe and a distributor for supplying ionizable gas to the channel and a magnetic circuit for creating a magnetic field in said main annular channel, characterized in that the main annular channel comprises internal and external annular wall portions located at the adjacent said open end each comprising an assembly of juxtaposed conductive rings or semi-conductors in the form of lamellae separated by thin layers of insulation.
- each conductive or semiconductor ring is divided into segments arranged in angular sectors and isolated from each other.
- each conductive or semiconductor ring is arranged in staggered relation to the segments of neighboring conductive or semiconductor rings.
- the thin insulating layers are disposed on all sides of a conductive or semiconductor ring with the exception of the face defining a portion of the inner wall of the main annular channel.
- the assembly of conductive or semiconductor rings may extend over a length of the inner and outer annular walls less than the total length of the main annular channel.
- the conductive or semiconductor rings are made of graphite whereas the thin insulating layers are made of dielectric material and in particular of pyrolytic boron nitride.
- the thickness of the conductive or semiconductor rings is of the order of the electronic Larmor radius.
- the conductive or semiconductor rings have a thickness of between 0.7 and 0.9 mm while the thin insulating layers have a thickness of between 0.04 and 0.08 mm.
- a pseudo-insulating discharge channel is made from a stack of rings or portions of rings made of a conductive or semiconductor material and covered with a thin layer of insulating ceramic.
- the invention thus optimizes the structure of the discharge channels of the Hall effect plasma thrusters by implementing a partitioning of conducting or semiconducting walls into segments. isolated small dimensions which results in a sharp decrease in the short-circuit current which avoids a significant loss of efficiency.
- the propulsion of telecommunication satellites is associated with strong economic stakes and the improvements that can be made to Hall effect plasma sources - currently recognized as the best performing for station keeping - are of great interest.
- the present invention responds directly to the trend of increased mission times required of geostationary satellites by improving the longevity of Hall effect plasma thrusters.
- the present invention also makes it possible to operate thrusters with higher specific pulses (Isp) while maintaining a significant service life. It can therefore provide a significant competitive advantage of Hall effect plasma thruster propulsion.
- Hall effect plasma thruster also called stationary plasma thruster (PPS)
- PPS stationary plasma thruster
- the anode 125 and the ionizable gas distributor can inject the fuel (such as xenon) into the propellant and collect the electrons from the plasma discharge.
- the fuel such as xenon
- the hollow cathode 140 has the function of generating the electrons which allow the creation of a plasma in the propellant and the neutralization of the jet of ions ejected by the propellant.
- the magnetic circuit comprises an internal pole 134, an external pole 136, a magnetic yoke connecting the internal 134 and outer 136 poles, with a central ferromagnetic core 133 and peripheral ferromagnetic bars 135, one or more coils 131 arranged around the central core 133 and coils 132 disposed around peripheral bars 135.
- the magnetic circuit allows the confinement of the plasma and the creation of a strong magnetic field E at the output of the thruster which allows the acceleration of ions up to speeds of the order of 20 km / s.
- the discharge channel 120 allows the confinement of the plasma and its composition determines the performance of the propellant.
- the discharge channel 120 is ceramic.
- the thrust of the engine is ensured by the ejection of a jet of ions at high speed.
- this jet being slightly divergent, the collision of high energy ions with the channel wall leads to erosion of the ceramic output of the propellant.
- the discharge channel 120 comprises at least a portion 127 of the inner annular wall and at least a portion 128 of the outer annular wall, located in the vicinity of the open end 129 of the channel, which are not made of solid ceramic, but which each comprise an assembly of conductive rings or semi-conductors 150 juxtaposed in the form of lamellae separated by thin layers of insulator 152 (see figure 2 ).
- the object of the invention is to significantly reduce the erosion of the thruster discharge channel. It also reduces energy losses and discharge instabilities that usually affect Hall effect thrusters using a discharge channel of electrically conductive or semiconductor material. While using materials such as graphite and carbides more resistant than ceramics with respect to ion bombardment, thanks to an assembly of conductive or semiconductor rings (for example in graphite) separated by thin layers of insulation (for example boron nitride), the invention makes it possible at the same time to reduce the erosion of the channel and to reduce the instabilities of discharge.
- the discharge channel 120 of a plasma thruster can thus comprise both a traditional upstream ceramic part with a bottom wall 123 and outer cylindrical walls 121 and internal 122 and a downstream part located between the part upstream and the opening 129 and comprising outer cylindrical walls 128 and internal 127 with a laminated structure composed of juxtaposed conductive or semi-conducting rings 150, which are insulated by thin layers of insulator 152 but have an uncoated surface 151 of insulation on the inner side facing the inner space 124 of the annular channel 120.
- the rings 150 are furthermore positioned in a plurality of isolated angular sections each extending over an angular sector ⁇ ( Figures 3 and 3A ).
- ⁇ angular sector
- the segments 150a of a conductive or semiconductor ring 150 are arranged in staggered relation to the segments 150b of the neighboring rings 150 ( Fig. 3 ).
- the thin insulating layers 152, 153, 154, 155 are disposed on all sides of a segment of a conductive or semiconductor ring 150 with the exception of the face 151 defining a portion of the inner wall of the main annular channel 120.
- the assembly of conductive rings 150 extends over a length of the inner and outer annular walls of between 20 and 50% and preferably between 30 and 40% of the total length of the main annular channel 120. but this range of values is not limiting.
- the sizing of the conductive or semiconductor rings 150 can be established from the calculation of the electronic currents received and emitted by the walls. As a first approximation, it can be shown that the short-circuit current flowing in the walls is proportional to the ionic current collected, which at constant electronic temperature and plasma density is approximately proportional to the conductive surface in contact with the plasma.
- the potential difference seen by a conductive element is approximately proportional to its axial extent.
- all losses by Joule effect by short circuit of the plasma is approximately proportional to the thickness of the rings.
- the short-circuit current becomes negligible in the currents related to the secondary electronic emission (which are the only ones that exist in the case of an insulator) when the thickness of the rings is of the order of electronic Larmor radius. This defines the critical thickness of the rings to obtain a pseudo-insulating channel.
- the conductive rings 150 for example made of graphite with a low coefficient of expansion, may have a thickness of between 0.7 and 0.9 mm and typically of 0.8 mm.
- the thin insulating layers 152 to 155 can have a thickness of between 0.04 and 0.08 mm, typically 0.05 mm, and can be deposited on the segments of conductive rings. 150 by a chemical vapor deposition process so as to cover each ring segment over its entire surface except at the edge 151 in contact with the plasma.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Plasma Technology (AREA)
Claims (11)
- Hall-Effekt-Plasmatriebwerk, umfassend einen ringförmigen Hauptkanal zur Ionisierung und Beschleunigung (120), der ein offenes stromabwärtiges Ende (129) aufweist und in der Nähe des offenen Endes (129) gelegene innere (127) und äußere (128) ringförmige Wandabschnitte umfasst, die jeweils eine Anordnung von leitenden oder Halbleiter-Ringen (150) umfassen, wenigstens eine Kathode (140), eine ringförmige Anode (125), die zu dem ringförmigen Hauptkanal (120) konzentrisch ist, eine Rohrleitung (126) und einen Verteiler zum Versorgen des Kanals (120) mit ionisierbarem Gas sowie einen Magnetkreis (131 bis 136) zum Erzeugen eines Magnetfeldes in dem ringförmigen Hauptkanal (120),
dadurch gekennzeichnet, dass in dem ringförmigen Hauptkanal (120) die in der Nähe des offenen Endes (129) gelegenen inneren (127) und äußeren (128) ringförmigen Wandabschnitte jeweils eine Anordnung von nebeneinander liegenden, lamellenförmigen leitenden oder Halbleiter-Ringen (150) umfassen, die durch feine Isolatorschichten (152), deren Dicke zwischen 4 und 12 % von derjenigen der leitenden oder Halbleiter-Ringe (150) beträgt, getrennt sind. - Plasmatriebwerk nach Anspruch 1, dadurch gekennzeichnet, dass jeder leitende oder Halbleiter-Ring (150) in Segmente, die in Winkelsektoren angeordnet und voneinander isoliert sind, unterteilt ist.
- Plasmatriebwerk nach Anspruch 2, dadurch gekennzeichnet, dass die Segmente eines jeden leitenden oder Halbleiter-Rings (150) in Bezug auf die Segmente der benachbarten leitenden oder Halbleiter-Ringe (150) versetzt angeordnet sind.
- Plasmatriebwerk nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die feinen Isolatorschichten auf allen Seiten eines leitenden oder Halbleiter-Rings (150) angeordnet sind, mit Ausnahme der Seite (151), die einen Teil der Innenwand des ringförmigen Hauptkanals (120) definiert.
- Plasmatriebwerk nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Anordnung von leitenden Ringen (150) sich über eine Länge der inneren (127) und äußeren (128) ringförmigen Wände im Bereich zwischen 20 und 50 % der Gesamtlänge des ringförmigen Hauptkanals (120) erstreckt.
- Plasmatriebwerk nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die leitenden oder Halbleiter-Ringe (150) aus Graphit bestehen.
- Plasmatriebwerk nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die feinen Isolatorschichten (152) aus pyrolytischem Bornitrid bestehen.
- Plasmatriebwerk nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Dicke der leitenden oder Halbleiter-Ringe (150) in der Größenordnung des Elektronen-Larmor-Radius liegt.
- Plasmatriebwerk nach Anspruch 6, dadurch gekennzeichnet, dass die leitenden oder Halbleiter-Ringe (150) eine Dicke im Bereich zwischen 0,7 und 0,9 mm aufweisen.
- Plasmatriebwerk nach den Ansprüchen 4 und 7, dadurch gekennzeichnet, dass die feinen Isolatorschichten (152) eine Dicke im Bereich zwischen 0,04 und 0,08 mm aufweisen.
- Plasmatriebwerk nach den Ansprüchen 4 und 7, dadurch gekennzeichnet, dass die feinen Isolatorschichten (152) auf den Segmenten von leitenden oder Halbleiter-Ringen (150) mittels eines Verfahrens zur chemischen Abscheidung aus der Gasphase abgeschieden werden, um jedes Ringsegment auf seiner gesamten Fläche zu überziehen, mit Ausnahme auf der mit dem Plasma in Kontakt stehenden Seite (151), die einen Teil der Innenwand des ringförmigen Hauptkanals (120) definiert.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0953370A FR2945842B1 (fr) | 2009-05-20 | 2009-05-20 | Propulseur a plasma a effet hall. |
PCT/FR2010/050963 WO2010133802A1 (fr) | 2009-05-20 | 2010-05-19 | Propulseur a plasma a effet hall |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2433002A1 EP2433002A1 (de) | 2012-03-28 |
EP2433002B1 true EP2433002B1 (de) | 2018-01-03 |
Family
ID=41435261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10728782.3A Active EP2433002B1 (de) | 2009-05-20 | 2010-05-19 | Hall-effekt-plasmatriebwerk |
Country Status (7)
Country | Link |
---|---|
US (1) | US9127654B2 (de) |
EP (1) | EP2433002B1 (de) |
CN (1) | CN102439305A (de) |
ES (1) | ES2660213T3 (de) |
FR (1) | FR2945842B1 (de) |
RU (1) | RU2527267C2 (de) |
WO (1) | WO2010133802A1 (de) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2950115B1 (fr) * | 2009-09-17 | 2012-11-16 | Snecma | Propulseur plasmique a effet hall |
US20130026917A1 (en) * | 2011-07-29 | 2013-01-31 | Walker Mitchell L R | Ion focusing in a hall effect thruster |
US9453502B2 (en) * | 2012-02-15 | 2016-09-27 | California Institute Of Technology | Metallic wall hall thrusters |
US9038364B2 (en) | 2012-10-18 | 2015-05-26 | The Boeing Company | Thruster grid clear circuits and methods to clear thruster grids |
US10082133B2 (en) | 2013-02-15 | 2018-09-25 | California Institute Of Technology | Hall thruster with magnetic discharge chamber and conductive coating |
US9260204B2 (en) | 2013-08-09 | 2016-02-16 | The Aerospace Corporation | Kinetic energy storage and transfer (KEST) space launch system |
US10696425B2 (en) | 2013-08-09 | 2020-06-30 | The Aerospace Corporation | System for imparting linear momentum transfer for higher orbital insertion |
CN103945632B (zh) * | 2014-05-12 | 2016-05-18 | 哈尔滨工业大学 | 角向速度连续可调的等离子体射流源及该射流源的使用方法 |
FR3038663B1 (fr) * | 2015-07-08 | 2019-09-13 | Safran Aircraft Engines | Propulseur a effet hall exploitable en haute altitude |
CN105003409A (zh) * | 2015-07-16 | 2015-10-28 | 兰州空间技术物理研究所 | 一种霍尔推力器的阴极中心布局 |
US10428806B2 (en) * | 2016-01-22 | 2019-10-01 | The Boeing Company | Structural Propellant for ion rockets (SPIR) |
CN105736271B (zh) * | 2016-02-16 | 2018-05-08 | 兰州空间技术物理研究所 | 一种小口径霍尔推力器 |
CN105756875B (zh) * | 2016-05-12 | 2018-06-19 | 哈尔滨工业大学 | 电离加速一体化空间碎片等离子体推进器 |
US10850871B2 (en) | 2017-04-13 | 2020-12-01 | Northrop Grumman Innovation Systems, Inc. | Electrostatic discharge mitigation for a first spacecraft operating in proximity to a second spacecraft |
US12078154B1 (en) * | 2017-10-05 | 2024-09-03 | The Board Of Trustees Of The University Of Alabama, For And On Behalf Of The University Of Alabama In Huntsville | Microplasma-based heaterless, insertless cathode |
CN109707583A (zh) * | 2018-04-23 | 2019-05-03 | 李超 | 脉冲式冲量循环发动机 |
CN111156140B (zh) * | 2018-11-07 | 2021-06-15 | 哈尔滨工业大学 | 可提高推力分辨率和工质利用率的会切场等离子体推力器 |
CN110594114B (zh) * | 2019-09-04 | 2020-05-29 | 北京航空航天大学 | 双极多模式微阴极弧推力器 |
CN110594115B (zh) * | 2019-10-17 | 2020-12-11 | 大连理工大学 | 一种无放电阴极的环型离子推力器 |
CN113357113B (zh) * | 2021-07-02 | 2022-08-26 | 兰州空间技术物理研究所 | 一种空间电推力器供气绝缘一体化结构 |
CN114412739B (zh) * | 2022-02-24 | 2024-10-25 | 兰州空间技术物理研究所 | 一种大功率霍尔推力器磁路组件 |
CN115711208B (zh) * | 2022-11-22 | 2023-07-28 | 哈尔滨工业大学 | 一种适合高比冲后加载霍尔推力器的供气结构 |
CN118090517B (zh) * | 2024-04-19 | 2024-07-30 | 哈尔滨工业大学 | 霍尔推力器通道壁面侵蚀产物的光学监测方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5892329A (en) * | 1997-05-23 | 1999-04-06 | International Space Technology, Inc. | Plasma accelerator with closed electron drift and conductive inserts |
US6777862B2 (en) * | 2000-04-14 | 2004-08-17 | General Plasma Technologies Llc | Segmented electrode hall thruster with reduced plume |
DE10130464B4 (de) * | 2001-06-23 | 2010-09-16 | Thales Electron Devices Gmbh | Plasmabeschleuniger-Anordnung |
FR2842261A1 (fr) * | 2002-07-09 | 2004-01-16 | Centre Nat Etd Spatiales | Propulseur plasmique a effet hall |
-
2009
- 2009-05-20 FR FR0953370A patent/FR2945842B1/fr active Active
-
2010
- 2010-05-19 CN CN2010800219907A patent/CN102439305A/zh active Pending
- 2010-05-19 ES ES10728782.3T patent/ES2660213T3/es active Active
- 2010-05-19 RU RU2011149159/06A patent/RU2527267C2/ru active
- 2010-05-19 US US13/321,292 patent/US9127654B2/en active Active
- 2010-05-19 WO PCT/FR2010/050963 patent/WO2010133802A1/fr active Application Filing
- 2010-05-19 EP EP10728782.3A patent/EP2433002B1/de active Active
Also Published As
Publication number | Publication date |
---|---|
EP2433002A1 (de) | 2012-03-28 |
WO2010133802A1 (fr) | 2010-11-25 |
RU2527267C2 (ru) | 2014-08-27 |
FR2945842A1 (fr) | 2010-11-26 |
CN102439305A (zh) | 2012-05-02 |
US9127654B2 (en) | 2015-09-08 |
FR2945842B1 (fr) | 2011-07-01 |
US20120117938A1 (en) | 2012-05-17 |
ES2660213T3 (es) | 2018-03-21 |
RU2011149159A (ru) | 2013-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2433002B1 (de) | Hall-effekt-plasmatriebwerk | |
EP0650557B1 (de) | Plasmatriebwerk mit geschlossener elektronenlaufbahn | |
EP0982976B1 (de) | Auf hohen thermischen Belastungen abgestimmter Plasmamotor mit geschlossenem Elektronendrift | |
EP1815570B1 (de) | Funkfrequenz-plasmazündkerze | |
WO1995000758A1 (fr) | Moteur a plasma de longueur reduite a derive fermee d'electrons | |
EP0914560B1 (de) | PLASMATRIEBWERK mit einer IONENSTRAHLFOKUSIERUNGSVORRICHTUNG | |
EP1496727B1 (de) | Plasmabeschleuniger mit geschlossener Elektronenbahn | |
FR2950114A1 (fr) | Moteur a effet hall avec refroidissement de la ceramique interne | |
FR2941503A1 (fr) | Propulseur a derive fermee d'electrons | |
WO2009016264A1 (fr) | Dispositif d'ejection d'ions a effet hall | |
EP3526472B1 (de) | Ionenantrieb mit externer plasmaentladung | |
EP1520104A2 (de) | Halleffecktplasmaantrieb | |
FR2817392A1 (fr) | Source d'electrons a haute frequence a couplage inductif a demande de puissance reduite par inclusion electrostatique d'electrons | |
EP3250822B1 (de) | Hall-effekt-antrieb und raumfahrzeug mit diesem antrieb | |
FR2467480A1 (fr) | Appareil a hyperfrequences du type magnetron | |
CA2139581A1 (fr) | Moteur a plasma a derive fermee d'electrons | |
EP0488852A1 (de) | Kathode für Ultrahochfrequenzröhren | |
FR3080154A1 (fr) | Procede de fabrication d'un propulseur electrique | |
FR2826542A1 (fr) | Dispositif pour la production d'ions de charges positives variables et a resonnance cyclotronique | |
FR2999332A1 (fr) | Generateur d'ondes hyperfrequences et procede de generation d'ondes associe | |
FR3052326A1 (fr) | Generateur de plasma |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20111216 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20150511 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170830 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 960543 Country of ref document: AT Kind code of ref document: T Effective date: 20180115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010047773 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2660213 Country of ref document: ES Kind code of ref document: T3 Effective date: 20180321 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180103 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 960543 Country of ref document: AT Kind code of ref document: T Effective date: 20180103 Ref country code: CH Ref legal event code: PFA Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, FR Free format text: FORMER OWNER: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, FR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE Owner name: SAFRAN AIRCRAFT ENGINES Owner name: INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH PO Owner name: CENTRE NATIONAL D'ETUDES SPATIALES |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180403 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180404 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180503 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010047773 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 |
|
26N | No opposition filed |
Effective date: 20181005 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100519 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180103 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240419 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240418 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240603 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240418 Year of fee payment: 15 Ref country code: FR Payment date: 20240418 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240418 Year of fee payment: 15 |