EP2433002B1 - Hall-effekt-plasmatriebwerk - Google Patents

Hall-effekt-plasmatriebwerk Download PDF

Info

Publication number
EP2433002B1
EP2433002B1 EP10728782.3A EP10728782A EP2433002B1 EP 2433002 B1 EP2433002 B1 EP 2433002B1 EP 10728782 A EP10728782 A EP 10728782A EP 2433002 B1 EP2433002 B1 EP 2433002B1
Authority
EP
European Patent Office
Prior art keywords
conductive
semi
plasma thruster
plasma
thruster according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10728782.3A
Other languages
English (en)
French (fr)
Other versions
EP2433002A1 (de
Inventor
Serge Barral
Stéphan J. ZURBACH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute Of Fundamental Technological Research Po
Safran Aircraft Engines SAS
Centre National dEtudes Spatiales CNES
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National dEtudes Spatiales CNES
Centre National de la Recherche Scientifique CNRS
SNECMA SAS
Institute Of Fundamental Technological Research Polish Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National dEtudes Spatiales CNES, Centre National de la Recherche Scientifique CNRS, SNECMA SAS, Institute Of Fundamental Technological Research Polish Academy Of Sciences filed Critical Centre National dEtudes Spatiales CNES
Publication of EP2433002A1 publication Critical patent/EP2433002A1/de
Application granted granted Critical
Publication of EP2433002B1 publication Critical patent/EP2433002B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/0062Electrostatic ion thrusters grid-less with an applied magnetic field
    • F03H1/0075Electrostatic ion thrusters grid-less with an applied magnetic field with an annular channel; Hall-effect thrusters with closed electron drift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/0062Electrostatic ion thrusters grid-less with an applied magnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/08Ion sources; Ion guns using arc discharge
    • H01J27/14Other arc discharge ion sources using an applied magnetic field
    • H01J27/143Hall-effect ion sources with closed electron drift
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/54Plasma accelerators

Definitions

  • the present invention relates to a Hall effect plasma thruster comprising a main annular ionization and acceleration channel having an open downstream end, at least one cathode, an annular anode concentric to the main annular channel, a pipe and a distributor. for supplying ionizable gas to the channel and a magnetic circuit for creating a magnetic field in said main annular channel.
  • the invention relates in particular to Hall effect plasma thrusters used for the electric propulsion of satellites.
  • the life of Hall effect plasma thrusters is essentially determined by the erosion of the ceramic insulating channel under the effect of ion bombardment. Indeed, due to the topography of the electrical potential in the channel, part of the ions created is accelerated radially towards the walls.
  • the discharge channels of the Hall effect thrusters currently consist of homogeneous insulating ceramic, usually based on boron nitride and silica (BN-SIO 2 materials ). Boron nitride ceramics allow Hall effect thrusters to achieve high performance in terms of efficiency, but exhibit high erosion rates under ion bombardment that limit the life of the propellants to about 10,000 hours as well. as their operation at higher specific impulses.
  • the document US 2002/008455 A1 describes an example of a Hall effect plasma thruster.
  • the present invention aims to overcome the aforementioned drawbacks and in particular to increase the life of the Hall effect plasma thrusters while maintaining a high energy efficiency.
  • a Hall effect plasma thruster comprising a main annular ionization and acceleration channel having an open downstream end, at least one cathode, an annular anode concentric with the annular channel.
  • main a pipe and a distributor for supplying ionizable gas to the channel and a magnetic circuit for creating a magnetic field in said main annular channel, characterized in that the main annular channel comprises internal and external annular wall portions located at the adjacent said open end each comprising an assembly of juxtaposed conductive rings or semi-conductors in the form of lamellae separated by thin layers of insulation.
  • each conductive or semiconductor ring is divided into segments arranged in angular sectors and isolated from each other.
  • each conductive or semiconductor ring is arranged in staggered relation to the segments of neighboring conductive or semiconductor rings.
  • the thin insulating layers are disposed on all sides of a conductive or semiconductor ring with the exception of the face defining a portion of the inner wall of the main annular channel.
  • the assembly of conductive or semiconductor rings may extend over a length of the inner and outer annular walls less than the total length of the main annular channel.
  • the conductive or semiconductor rings are made of graphite whereas the thin insulating layers are made of dielectric material and in particular of pyrolytic boron nitride.
  • the thickness of the conductive or semiconductor rings is of the order of the electronic Larmor radius.
  • the conductive or semiconductor rings have a thickness of between 0.7 and 0.9 mm while the thin insulating layers have a thickness of between 0.04 and 0.08 mm.
  • a pseudo-insulating discharge channel is made from a stack of rings or portions of rings made of a conductive or semiconductor material and covered with a thin layer of insulating ceramic.
  • the invention thus optimizes the structure of the discharge channels of the Hall effect plasma thrusters by implementing a partitioning of conducting or semiconducting walls into segments. isolated small dimensions which results in a sharp decrease in the short-circuit current which avoids a significant loss of efficiency.
  • the propulsion of telecommunication satellites is associated with strong economic stakes and the improvements that can be made to Hall effect plasma sources - currently recognized as the best performing for station keeping - are of great interest.
  • the present invention responds directly to the trend of increased mission times required of geostationary satellites by improving the longevity of Hall effect plasma thrusters.
  • the present invention also makes it possible to operate thrusters with higher specific pulses (Isp) while maintaining a significant service life. It can therefore provide a significant competitive advantage of Hall effect plasma thruster propulsion.
  • Hall effect plasma thruster also called stationary plasma thruster (PPS)
  • PPS stationary plasma thruster
  • the anode 125 and the ionizable gas distributor can inject the fuel (such as xenon) into the propellant and collect the electrons from the plasma discharge.
  • the fuel such as xenon
  • the hollow cathode 140 has the function of generating the electrons which allow the creation of a plasma in the propellant and the neutralization of the jet of ions ejected by the propellant.
  • the magnetic circuit comprises an internal pole 134, an external pole 136, a magnetic yoke connecting the internal 134 and outer 136 poles, with a central ferromagnetic core 133 and peripheral ferromagnetic bars 135, one or more coils 131 arranged around the central core 133 and coils 132 disposed around peripheral bars 135.
  • the magnetic circuit allows the confinement of the plasma and the creation of a strong magnetic field E at the output of the thruster which allows the acceleration of ions up to speeds of the order of 20 km / s.
  • the discharge channel 120 allows the confinement of the plasma and its composition determines the performance of the propellant.
  • the discharge channel 120 is ceramic.
  • the thrust of the engine is ensured by the ejection of a jet of ions at high speed.
  • this jet being slightly divergent, the collision of high energy ions with the channel wall leads to erosion of the ceramic output of the propellant.
  • the discharge channel 120 comprises at least a portion 127 of the inner annular wall and at least a portion 128 of the outer annular wall, located in the vicinity of the open end 129 of the channel, which are not made of solid ceramic, but which each comprise an assembly of conductive rings or semi-conductors 150 juxtaposed in the form of lamellae separated by thin layers of insulator 152 (see figure 2 ).
  • the object of the invention is to significantly reduce the erosion of the thruster discharge channel. It also reduces energy losses and discharge instabilities that usually affect Hall effect thrusters using a discharge channel of electrically conductive or semiconductor material. While using materials such as graphite and carbides more resistant than ceramics with respect to ion bombardment, thanks to an assembly of conductive or semiconductor rings (for example in graphite) separated by thin layers of insulation (for example boron nitride), the invention makes it possible at the same time to reduce the erosion of the channel and to reduce the instabilities of discharge.
  • the discharge channel 120 of a plasma thruster can thus comprise both a traditional upstream ceramic part with a bottom wall 123 and outer cylindrical walls 121 and internal 122 and a downstream part located between the part upstream and the opening 129 and comprising outer cylindrical walls 128 and internal 127 with a laminated structure composed of juxtaposed conductive or semi-conducting rings 150, which are insulated by thin layers of insulator 152 but have an uncoated surface 151 of insulation on the inner side facing the inner space 124 of the annular channel 120.
  • the rings 150 are furthermore positioned in a plurality of isolated angular sections each extending over an angular sector ⁇ ( Figures 3 and 3A ).
  • angular sector
  • the segments 150a of a conductive or semiconductor ring 150 are arranged in staggered relation to the segments 150b of the neighboring rings 150 ( Fig. 3 ).
  • the thin insulating layers 152, 153, 154, 155 are disposed on all sides of a segment of a conductive or semiconductor ring 150 with the exception of the face 151 defining a portion of the inner wall of the main annular channel 120.
  • the assembly of conductive rings 150 extends over a length of the inner and outer annular walls of between 20 and 50% and preferably between 30 and 40% of the total length of the main annular channel 120. but this range of values is not limiting.
  • the sizing of the conductive or semiconductor rings 150 can be established from the calculation of the electronic currents received and emitted by the walls. As a first approximation, it can be shown that the short-circuit current flowing in the walls is proportional to the ionic current collected, which at constant electronic temperature and plasma density is approximately proportional to the conductive surface in contact with the plasma.
  • the potential difference seen by a conductive element is approximately proportional to its axial extent.
  • all losses by Joule effect by short circuit of the plasma is approximately proportional to the thickness of the rings.
  • the short-circuit current becomes negligible in the currents related to the secondary electronic emission (which are the only ones that exist in the case of an insulator) when the thickness of the rings is of the order of electronic Larmor radius. This defines the critical thickness of the rings to obtain a pseudo-insulating channel.
  • the conductive rings 150 for example made of graphite with a low coefficient of expansion, may have a thickness of between 0.7 and 0.9 mm and typically of 0.8 mm.
  • the thin insulating layers 152 to 155 can have a thickness of between 0.04 and 0.08 mm, typically 0.05 mm, and can be deposited on the segments of conductive rings. 150 by a chemical vapor deposition process so as to cover each ring segment over its entire surface except at the edge 151 in contact with the plasma.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)

Claims (11)

  1. Hall-Effekt-Plasmatriebwerk, umfassend einen ringförmigen Hauptkanal zur Ionisierung und Beschleunigung (120), der ein offenes stromabwärtiges Ende (129) aufweist und in der Nähe des offenen Endes (129) gelegene innere (127) und äußere (128) ringförmige Wandabschnitte umfasst, die jeweils eine Anordnung von leitenden oder Halbleiter-Ringen (150) umfassen, wenigstens eine Kathode (140), eine ringförmige Anode (125), die zu dem ringförmigen Hauptkanal (120) konzentrisch ist, eine Rohrleitung (126) und einen Verteiler zum Versorgen des Kanals (120) mit ionisierbarem Gas sowie einen Magnetkreis (131 bis 136) zum Erzeugen eines Magnetfeldes in dem ringförmigen Hauptkanal (120),
    dadurch gekennzeichnet, dass in dem ringförmigen Hauptkanal (120) die in der Nähe des offenen Endes (129) gelegenen inneren (127) und äußeren (128) ringförmigen Wandabschnitte jeweils eine Anordnung von nebeneinander liegenden, lamellenförmigen leitenden oder Halbleiter-Ringen (150) umfassen, die durch feine Isolatorschichten (152), deren Dicke zwischen 4 und 12 % von derjenigen der leitenden oder Halbleiter-Ringe (150) beträgt, getrennt sind.
  2. Plasmatriebwerk nach Anspruch 1, dadurch gekennzeichnet, dass jeder leitende oder Halbleiter-Ring (150) in Segmente, die in Winkelsektoren angeordnet und voneinander isoliert sind, unterteilt ist.
  3. Plasmatriebwerk nach Anspruch 2, dadurch gekennzeichnet, dass die Segmente eines jeden leitenden oder Halbleiter-Rings (150) in Bezug auf die Segmente der benachbarten leitenden oder Halbleiter-Ringe (150) versetzt angeordnet sind.
  4. Plasmatriebwerk nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die feinen Isolatorschichten auf allen Seiten eines leitenden oder Halbleiter-Rings (150) angeordnet sind, mit Ausnahme der Seite (151), die einen Teil der Innenwand des ringförmigen Hauptkanals (120) definiert.
  5. Plasmatriebwerk nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Anordnung von leitenden Ringen (150) sich über eine Länge der inneren (127) und äußeren (128) ringförmigen Wände im Bereich zwischen 20 und 50 % der Gesamtlänge des ringförmigen Hauptkanals (120) erstreckt.
  6. Plasmatriebwerk nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die leitenden oder Halbleiter-Ringe (150) aus Graphit bestehen.
  7. Plasmatriebwerk nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die feinen Isolatorschichten (152) aus pyrolytischem Bornitrid bestehen.
  8. Plasmatriebwerk nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Dicke der leitenden oder Halbleiter-Ringe (150) in der Größenordnung des Elektronen-Larmor-Radius liegt.
  9. Plasmatriebwerk nach Anspruch 6, dadurch gekennzeichnet, dass die leitenden oder Halbleiter-Ringe (150) eine Dicke im Bereich zwischen 0,7 und 0,9 mm aufweisen.
  10. Plasmatriebwerk nach den Ansprüchen 4 und 7, dadurch gekennzeichnet, dass die feinen Isolatorschichten (152) eine Dicke im Bereich zwischen 0,04 und 0,08 mm aufweisen.
  11. Plasmatriebwerk nach den Ansprüchen 4 und 7, dadurch gekennzeichnet, dass die feinen Isolatorschichten (152) auf den Segmenten von leitenden oder Halbleiter-Ringen (150) mittels eines Verfahrens zur chemischen Abscheidung aus der Gasphase abgeschieden werden, um jedes Ringsegment auf seiner gesamten Fläche zu überziehen, mit Ausnahme auf der mit dem Plasma in Kontakt stehenden Seite (151), die einen Teil der Innenwand des ringförmigen Hauptkanals (120) definiert.
EP10728782.3A 2009-05-20 2010-05-19 Hall-effekt-plasmatriebwerk Active EP2433002B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0953370A FR2945842B1 (fr) 2009-05-20 2009-05-20 Propulseur a plasma a effet hall.
PCT/FR2010/050963 WO2010133802A1 (fr) 2009-05-20 2010-05-19 Propulseur a plasma a effet hall

Publications (2)

Publication Number Publication Date
EP2433002A1 EP2433002A1 (de) 2012-03-28
EP2433002B1 true EP2433002B1 (de) 2018-01-03

Family

ID=41435261

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10728782.3A Active EP2433002B1 (de) 2009-05-20 2010-05-19 Hall-effekt-plasmatriebwerk

Country Status (7)

Country Link
US (1) US9127654B2 (de)
EP (1) EP2433002B1 (de)
CN (1) CN102439305A (de)
ES (1) ES2660213T3 (de)
FR (1) FR2945842B1 (de)
RU (1) RU2527267C2 (de)
WO (1) WO2010133802A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2950115B1 (fr) * 2009-09-17 2012-11-16 Snecma Propulseur plasmique a effet hall
US20130026917A1 (en) * 2011-07-29 2013-01-31 Walker Mitchell L R Ion focusing in a hall effect thruster
US9453502B2 (en) * 2012-02-15 2016-09-27 California Institute Of Technology Metallic wall hall thrusters
US9038364B2 (en) 2012-10-18 2015-05-26 The Boeing Company Thruster grid clear circuits and methods to clear thruster grids
US10082133B2 (en) 2013-02-15 2018-09-25 California Institute Of Technology Hall thruster with magnetic discharge chamber and conductive coating
US9260204B2 (en) 2013-08-09 2016-02-16 The Aerospace Corporation Kinetic energy storage and transfer (KEST) space launch system
US10696425B2 (en) 2013-08-09 2020-06-30 The Aerospace Corporation System for imparting linear momentum transfer for higher orbital insertion
CN103945632B (zh) * 2014-05-12 2016-05-18 哈尔滨工业大学 角向速度连续可调的等离子体射流源及该射流源的使用方法
FR3038663B1 (fr) * 2015-07-08 2019-09-13 Safran Aircraft Engines Propulseur a effet hall exploitable en haute altitude
CN105003409A (zh) * 2015-07-16 2015-10-28 兰州空间技术物理研究所 一种霍尔推力器的阴极中心布局
US10428806B2 (en) * 2016-01-22 2019-10-01 The Boeing Company Structural Propellant for ion rockets (SPIR)
CN105736271B (zh) * 2016-02-16 2018-05-08 兰州空间技术物理研究所 一种小口径霍尔推力器
CN105756875B (zh) * 2016-05-12 2018-06-19 哈尔滨工业大学 电离加速一体化空间碎片等离子体推进器
US10850871B2 (en) 2017-04-13 2020-12-01 Northrop Grumman Innovation Systems, Inc. Electrostatic discharge mitigation for a first spacecraft operating in proximity to a second spacecraft
US12078154B1 (en) * 2017-10-05 2024-09-03 The Board Of Trustees Of The University Of Alabama, For And On Behalf Of The University Of Alabama In Huntsville Microplasma-based heaterless, insertless cathode
CN109707583A (zh) * 2018-04-23 2019-05-03 李超 脉冲式冲量循环发动机
CN111156140B (zh) * 2018-11-07 2021-06-15 哈尔滨工业大学 可提高推力分辨率和工质利用率的会切场等离子体推力器
CN110594114B (zh) * 2019-09-04 2020-05-29 北京航空航天大学 双极多模式微阴极弧推力器
CN110594115B (zh) * 2019-10-17 2020-12-11 大连理工大学 一种无放电阴极的环型离子推力器
CN113357113B (zh) * 2021-07-02 2022-08-26 兰州空间技术物理研究所 一种空间电推力器供气绝缘一体化结构
CN114412739B (zh) * 2022-02-24 2024-10-25 兰州空间技术物理研究所 一种大功率霍尔推力器磁路组件
CN115711208B (zh) * 2022-11-22 2023-07-28 哈尔滨工业大学 一种适合高比冲后加载霍尔推力器的供气结构
CN118090517B (zh) * 2024-04-19 2024-07-30 哈尔滨工业大学 霍尔推力器通道壁面侵蚀产物的光学监测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892329A (en) * 1997-05-23 1999-04-06 International Space Technology, Inc. Plasma accelerator with closed electron drift and conductive inserts
US6777862B2 (en) * 2000-04-14 2004-08-17 General Plasma Technologies Llc Segmented electrode hall thruster with reduced plume
DE10130464B4 (de) * 2001-06-23 2010-09-16 Thales Electron Devices Gmbh Plasmabeschleuniger-Anordnung
FR2842261A1 (fr) * 2002-07-09 2004-01-16 Centre Nat Etd Spatiales Propulseur plasmique a effet hall

Also Published As

Publication number Publication date
EP2433002A1 (de) 2012-03-28
WO2010133802A1 (fr) 2010-11-25
RU2527267C2 (ru) 2014-08-27
FR2945842A1 (fr) 2010-11-26
CN102439305A (zh) 2012-05-02
US9127654B2 (en) 2015-09-08
FR2945842B1 (fr) 2011-07-01
US20120117938A1 (en) 2012-05-17
ES2660213T3 (es) 2018-03-21
RU2011149159A (ru) 2013-06-27

Similar Documents

Publication Publication Date Title
EP2433002B1 (de) Hall-effekt-plasmatriebwerk
EP0650557B1 (de) Plasmatriebwerk mit geschlossener elektronenlaufbahn
EP0982976B1 (de) Auf hohen thermischen Belastungen abgestimmter Plasmamotor mit geschlossenem Elektronendrift
EP1815570B1 (de) Funkfrequenz-plasmazündkerze
WO1995000758A1 (fr) Moteur a plasma de longueur reduite a derive fermee d'electrons
EP0914560B1 (de) PLASMATRIEBWERK mit einer IONENSTRAHLFOKUSIERUNGSVORRICHTUNG
EP1496727B1 (de) Plasmabeschleuniger mit geschlossener Elektronenbahn
FR2950114A1 (fr) Moteur a effet hall avec refroidissement de la ceramique interne
FR2941503A1 (fr) Propulseur a derive fermee d'electrons
WO2009016264A1 (fr) Dispositif d'ejection d'ions a effet hall
EP3526472B1 (de) Ionenantrieb mit externer plasmaentladung
EP1520104A2 (de) Halleffecktplasmaantrieb
FR2817392A1 (fr) Source d'electrons a haute frequence a couplage inductif a demande de puissance reduite par inclusion electrostatique d'electrons
EP3250822B1 (de) Hall-effekt-antrieb und raumfahrzeug mit diesem antrieb
FR2467480A1 (fr) Appareil a hyperfrequences du type magnetron
CA2139581A1 (fr) Moteur a plasma a derive fermee d'electrons
EP0488852A1 (de) Kathode für Ultrahochfrequenzröhren
FR3080154A1 (fr) Procede de fabrication d'un propulseur electrique
FR2826542A1 (fr) Dispositif pour la production d'ions de charges positives variables et a resonnance cyclotronique
FR2999332A1 (fr) Generateur d'ondes hyperfrequences et procede de generation d'ondes associe
FR3052326A1 (fr) Generateur de plasma

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150511

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170830

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 960543

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010047773

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2660213

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180321

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180103

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 960543

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180103

Ref country code: CH

Ref legal event code: PFA

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, FR

Free format text: FORMER OWNER: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, FR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Owner name: SAFRAN AIRCRAFT ENGINES

Owner name: INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH PO

Owner name: CENTRE NATIONAL D'ETUDES SPATIALES

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180503

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010047773

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

26N No opposition filed

Effective date: 20181005

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100519

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240419

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240603

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240418

Year of fee payment: 15

Ref country code: FR

Payment date: 20240418

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240418

Year of fee payment: 15