EP1520104A2 - Halleffecktplasmaantrieb - Google Patents

Halleffecktplasmaantrieb

Info

Publication number
EP1520104A2
EP1520104A2 EP03763933A EP03763933A EP1520104A2 EP 1520104 A2 EP1520104 A2 EP 1520104A2 EP 03763933 A EP03763933 A EP 03763933A EP 03763933 A EP03763933 A EP 03763933A EP 1520104 A2 EP1520104 A2 EP 1520104A2
Authority
EP
European Patent Office
Prior art keywords
arms
permanent magnet
magnetic
magnetic circuit
plasma thruster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03763933A
Other languages
English (en)
French (fr)
Other versions
EP1520104B1 (de
Inventor
Vladimir Cagan
Patrice Renaudin
Marcel Guyot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National dEtudes Spatiales CNES
Original Assignee
Centre National dEtudes Spatiales CNES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National dEtudes Spatiales CNES filed Critical Centre National dEtudes Spatiales CNES
Publication of EP1520104A2 publication Critical patent/EP1520104A2/de
Application granted granted Critical
Publication of EP1520104B1 publication Critical patent/EP1520104B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/0062Electrostatic ion thrusters grid-less with an applied magnetic field
    • F03H1/0075Electrostatic ion thrusters grid-less with an applied magnetic field with an annular channel; Hall-effect thrusters with closed electron drift

Definitions

  • the invention relates to the field of plasma thrusters, in particular Hall effect.
  • Such motors can for example be used in space for example to maintain a satellite in geostationary orbit, or to operate a transfer of a satellite between two orbits, or to compensate for drag forces on satellites in low orbit, or again for missions requiring low thrust over very long times such as during an interplanetary mission.
  • FIG. 1 represents an axial section of an example of such a thruster
  • FIG. 2 represents a perspective view seen from the rear of said example of thruster.
  • the propellant has substantially a form of revolution around an axis 00 '.
  • the cutting plane of Figure 1 has this axis 00 '.
  • a rear front or downstream direction upstream in the axial direction is materialized by arrows E substantially representing the direction of an electric field created by the association of an annular anode 1 placed at the rear of an annular channel 3 and d 'A cathode 2 placed substantially in front of the annular channel 3, outside of it and adjacent to it.
  • the arrangement of the cathode 2 thus makes it possible to create, with the anode 1, an electric field oriented substantially in the axial direction 00 ', while being outside the propulsion jet.
  • this cathode is generally, as shown in FIG. 2, doubled by a second redundant cathode.
  • the annular anode 1 has an annular bottom placed concentrically with the annular channel 3. This bottom has passages, for example in the form of through holes allowing the passage of a gas which can be ionized, for example xenon.
  • the propellant comprises a magnetic circuit 40 made of ferro-magnetic materials constituted by a plate 4 perpendicular to the axis 00 'of the propellant, a central arm 41 having as axis the axis 00', two circular cylindrical poles 63 and 64 having as axis l 'axis 00' and external peripheral arms 42, arranged in a symmetry of revolution around the axis 00 ', outside the annular channel 3.
  • the peripheral arms 42 may be 2, 3, 4 or more, or even be constituted by a single annular arm.
  • the central arm 41 is finished at its upstream end by a central magnetic pole 49, and each of the outer peripheral arms 42, is terminated at its upstream end by a magnetic pole 48
  • the magnetic poles 48 are constituted by plates substantially perpendicular to the axial direction 00 '. They can, as described in column 5 lines 51-62 of US Pat. No. 6,281,622 already cited, be inclined for example between - 15 and +15 degrees relative to a plane perpendicular to the axis OO '.
  • a central coil 51 centered on the central arm 41, and peripheral coils 52 wound around the outer magnetic arms 42 make it possible to create magnetic field lines joining the central pole 49 to the peripheral poles 48 and the pole 63 to the pole 64.
  • the field magnetic in the annular channel is thus substantially perpendicular to the axis 00 '.
  • This direction of the magnetic field in the annular channel 3 is materialized, Figure 1, by arrows M.
  • the magnetic field lines are not all parallel to each other.
  • the annular channel 3 is materially delimited by internal and external annular walls 61, 62 respectively, both centered on the axis 00 '. These walls are made of a refractory material as resistant as possible to ablation.
  • Electrons emitted by cathode 2 go to anode 1 from upstream to downstream of annular channel 3. Part of these electrons are trapped in the annular channel 3 by the inter-polar magnetic field. The shocks between electrons and gaseous molecules contribute to ionizing the gas introduced into the channel 3 through the anode 1. The mixture of ions and electrons then constitutes a self-sustaining ionized plasma. The ions are ejected downstream under the effect of the electric field, thus creating an engine thrust directed upstream. The jet is electrically neutralized by electrons coming from cathode 2.
  • the ion ejection speed is around 5 times higher than the ejection speed that can be obtained with chemical propellants. It follows that with a much smaller ejected mass one can obtain an improved thrust efficiency.
  • the supply of the coils for creating the magnetic field requires an electrical supply generally made from solar panels.
  • the invention relates to a plasma thruster having for the same thrust, a reduced consumption of electric current and therefore a reduced mass of electric generators, a reduced mass and size of the magnetic circuit, increased reliability and finally a reduced production cost.
  • the magnetic field creation coils have a reduced number of turns wound with special high temperature wire.
  • This reduced number of coiled turns results in the following advantages. Joule losses are reduced, which results in a reduction of the heating of the propellant, the reliability of the propellant is increased because the special high temperature wire is fragile.
  • the total mass of the magnetic field producing elements is reduced, due to the reduction in the number of turns and the corresponding size of the magnetic circuit.
  • the production cost is reduced because the special high temperature wire is expensive, and because the coils whose role is then limited to a simple adjustment of the value of the magnetic field are simplified.
  • the propellant is also lightened by the reduction in the mass of the electrical power supplies made possible by the reduction in current consumption.
  • the invention relates to a Hall effect plasma propellant having a longitudinal axis substantially parallel to a direction of propulsion defining an upstream part and a downstream part, and comprising - a main annular ionization and acceleration channel made of refractory material, the annular channel being open at its upstream end,
  • annular gas distributing anode receiving gas from distribution conduits and provided with passages for letting this gas enter the annular channel, said annular anode being placed inside the channel in a downstream part of this channel,
  • a magnetic circuit comprising upstream polar ends to create a field magnetic radial in an upstream part of the annular channel between these pole parts, this circuit being constituted by a downstream plate, from which spring upstream parallel to the axis, a central arm, located in the center of the annular channel, two cylindrical poles circular on either side of the annular channel and of the peripheral arms situated outside and adjacent to the annular channel, plasma propellant characterized in that at least one of the arms of the magnetic circuit comprises a permanent magnet.
  • part of the arms of the magnetic circuit has a permanent magnet and another part of the arms of the magnetic circuit does not have permanent magnets.
  • all of the arms of the magnetic circuit include a permanent magnet.
  • the magnetic circuit comprises an inductor coil this is wound around an arm having no permanent magnet.
  • No field coil is housed around the arms of the magnetic circuit (40) having a permanent magnet.
  • FIG. 3A shows an axial section of a first example of a magnetic circuit of a plasma thruster according to the invention, section taken along the line CD of Figure 3B.
  • FIG. 3B shows a cross section of the first example of a magnetic circuit of a plasma thruster according to the invention, section taken along the line AB of Figure 3A.
  • FIG. 4A shows an axial section of a second example of a magnetic circuit of a plasma thruster according to the invention, section taken along the line CD of Figure 4B.
  • - Figure 4B shows a cross section of the second example of a magnetic circuit of a plasma thruster according to the invention, section taken along the line AB of Figure 4A.
  • FIG. 5A shows an axial section of a third example of a magnetic circuit of a plasma thruster according to the invention, section taken along the line CD of Figure 5B.
  • FIG. 5B shows a cross section of the third example of a magnetic circuit of a plasma thruster according to the invention, section taken along the line AB of Figure 5A.
  • one or more arms of the circuit include permanent magnets, for example in rare earths.
  • This characteristic makes it possible to reduce the number of turns of the induction coils, possibly to the point of eliminating these coils or part of these coils.
  • the reduction in the size of the coils which results from this modification makes it possible to reduce the transverse dimension of the magnetic circuit since the thickness of the coils to be housed can be reduced. It also makes it possible to reduce the axial dimension which is often determined as a function of the number of turns to be housed around the central arm. It thus becomes possible to limit the axial length of the propellant to the minimum length of the ionization chamber.
  • Each of the embodiments of magnetic circuit 40 described - in connection with Figures 3, 4 and 5 A and B includes as in the prior art described in connection with Figures 1 and 2, an upstream plate 4, made of soft magnetic material , placed perpendicular to an axis 00 'of the circuit 40.
  • This plate is completed by a central arm 41 of cylindrical shape having for axis the axis 00', by circular cylindrical poles 63 and 64 having for axis the axis 00 ', arranged on either side of an annular channel 3 and by peripheral arms 42, 42 'arranged in a symmetry of revolution about the axis 00' outside the annular channel 3.
  • peripheral arms 42 there are four peripheral arms 42. Naturally the number of arms can be different.
  • each of the arms 41, 42 is terminated in its upstream part by a magnetic pole referenced 49 for the pole of the central arm 41 and 48 for each of the poles of the peripheral arms 42.
  • Each pole 49, 48 ending an arm 41, 42 respectively, is arranged perpendicular to the axis of said arm.
  • the poles of the tilt angle may be different as described in connection with the description of the prior art.
  • the increase in the number of separate peripheral arms provides an improvement in the circular symmetry of the magnetic field, between the central pole 49 and the peripheral poles 48.
  • At least one of the arms comprises a permanent magnet constituting a part of the axial length of the arm.
  • the arms comprising a permanent magnet bear the reference 41 'when it is the central arm and 42' when it is a peripheral arm.
  • the permanent magnet is referenced 54 when it is incorporated into a peripheral arm 42 'and 55 when it is incorporated into the central arm 41'.
  • all the peripheral arms 42 ′ are thus constituted from downstream to upstream of a downstream part 43 made of soft magnetic material in contact with the downstream plate 4, of a magnet in rare earth 54, of an upstream part 45 made of soft magnetic material, this upstream part 45 bearing the magnetic pole 48. It can be seen that a central part of the arm adjacent to the downstream part 43 and to the upstream part 45 is formed by said permanent magnet 54.
  • the central arm 41 is made entirely of soft magnetic material.
  • the peripheral arms 42 ′ each comprise a permanent magnet 54, and the central arm 41 is made only of magnetic material, an induction coil 51 being housed around said central arm 41.
  • the peripheral arms 42 are made entirely of soft magnetic material.
  • An induction coil 52 is arranged around each of the arms 42.
  • the central arm 41 ′ has a downstream part 44 made of soft magnetic material, a permanent rare earth magnet 55, and an upstream part 46 made of soft magnetic material, this upstream part 46 carrying the magnetic pole 49.
  • the central arm 41 ' has a permanent magnet 55
  • the peripheral arms 42 are made only of material magnetic and an induction coil 52 is housed around each of said peripheral arms 42.
  • Each of the arms 41 ′ or 42 ′ comprising a permanent magnet 55, 54 respectively, comprises a peripheral jacket 47, external to the said arm, made of non-magnetic metal.
  • This jacket 47 makes it possible to hold mechanically assembled, for example by clamping, the downstream parts 43, 44, upstream 45, 46 as well as the magnet 54, 55 together constituting an arm 42 '41' respectively.
  • the magnet 54, 55 is kept in contact with the downstream parts 43, 44 and upstream 45, 46 respectively.
  • peripheral arms 42 ′ which comprise, as in the embodiment described in connection with FIGS. 3 A and B, permanent magnets 54.
  • the central arm 41 ′ comprises a downstream part 44 made of soft magnetic material, a permanent rare earth magnet 55, and an upstream part 46 made of soft magnetic material, this upstream part 46 carrying the magnetic pole 49.
  • a jacket 47 ensures the mechanical cohesion of the parts constituting together a arm 42 'or 41' and ensures that the parts of magnetic core 43, 45 and the permanent magnet 54 are kept coaxial.
  • the central arm 41 ' has a permanent magnet 55
  • all the peripheral arms 42' have a permanent magnet 54.
  • the power of the magnets is adjusted so that the magnetic field has its optimum value in the envisaged range of operating temperature of the propellant.
  • the power of the magnets is further adjusted so that the number of turns is minimal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma Technology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
EP03763933A 2002-07-09 2003-07-07 Halleffecktplasmaantrieb Expired - Lifetime EP1520104B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0208612A FR2842261A1 (fr) 2002-07-09 2002-07-09 Propulseur plasmique a effet hall
FR0208612 2002-07-09
PCT/FR2003/002100 WO2004007957A2 (fr) 2002-07-09 2003-07-07 Propulseur plasmique a effet hall

Publications (2)

Publication Number Publication Date
EP1520104A2 true EP1520104A2 (de) 2005-04-06
EP1520104B1 EP1520104B1 (de) 2008-05-07

Family

ID=29763672

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03763933A Expired - Lifetime EP1520104B1 (de) 2002-07-09 2003-07-07 Halleffecktplasmaantrieb

Country Status (9)

Country Link
US (1) US7543441B2 (de)
EP (1) EP1520104B1 (de)
AT (1) ATE394596T1 (de)
AU (1) AU2003263268A1 (de)
DE (1) DE60320795D1 (de)
ES (1) ES2306893T3 (de)
FR (1) FR2842261A1 (de)
RU (1) RU2319040C2 (de)
WO (1) WO2004007957A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104033346A (zh) * 2014-06-25 2014-09-10 哈尔滨工业大学 一种具有通道磁场引导结构的多级会切磁场等离子体推力器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7624566B1 (en) * 2005-01-18 2009-12-01 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Magnetic circuit for hall effect plasma accelerator
FR2919755B1 (fr) 2007-08-02 2017-05-05 Centre Nat De La Rech Scient (C N R S ) Dispositif d'ejection d'electrons a effet hall
US20100146931A1 (en) * 2008-11-26 2010-06-17 Lyon Bradley King Method and apparatus for improving efficiency of a hall effect thruster
FR2945842B1 (fr) * 2009-05-20 2011-07-01 Snecma Propulseur a plasma a effet hall.
EP2487343B1 (de) * 2009-10-09 2015-04-08 Toyota Jidosha Kabushiki Kaisha Abgasreiniger für eine brennkraftmaschine
US8468794B1 (en) * 2010-01-15 2013-06-25 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Electric propulsion apparatus
CN105156290A (zh) * 2015-07-13 2015-12-16 兰州空间技术物理研究所 一种新型三环混合电推力器
CN105003408B (zh) * 2015-07-16 2018-05-08 兰州空间技术物理研究所 一种离子与霍尔混合型电推力器
FR3053784B1 (fr) * 2016-07-07 2020-01-17 Airbus Defence And Space Sas Procedes de determination et de regulation de la temperature d’un propulseur electrique
CN109779865B (zh) * 2019-03-14 2024-04-19 南华大学 永磁霍尔推力器点火装置
CN110594115B (zh) * 2019-10-17 2020-12-11 大连理工大学 一种无放电阴极的环型离子推力器
CN113202706A (zh) * 2021-04-25 2021-08-03 上海宇航系统工程研究所 一种用于geo轨道卫星的霍尔电推进系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463408A3 (en) * 1990-06-22 1992-07-08 Hauzer Techno Coating Europe Bv Plasma accelerator with closed electron drift
US5359258A (en) * 1991-11-04 1994-10-25 Fakel Enterprise Plasma accelerator with closed electron drift
US5646476A (en) * 1994-12-30 1997-07-08 Electric Propulsion Laboratory, Inc. Channel ion source
US5763989A (en) * 1995-03-16 1998-06-09 Front Range Fakel, Inc. Closed drift ion source with improved magnetic field
RU2084085C1 (ru) * 1995-07-14 1997-07-10 Центральный научно-исследовательский институт машиностроения Ускоритель с замкнутым дрейфом электронов
RU2092983C1 (ru) * 1996-04-01 1997-10-10 Исследовательский центр им.М.В.Келдыша Плазменный ускоритель
FR2743191B1 (fr) * 1995-12-29 1998-03-27 Europ Propulsion Source d'ions a derive fermee d'electrons
FR2782884B1 (fr) 1998-08-25 2000-11-24 Snecma Propulseur a plasma a derive fermee d'electrons adapte a de fortes charges thermiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004007957A2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104033346A (zh) * 2014-06-25 2014-09-10 哈尔滨工业大学 一种具有通道磁场引导结构的多级会切磁场等离子体推力器
CN104033346B (zh) * 2014-06-25 2016-08-24 哈尔滨工业大学 一种具有通道磁场引导结构的多级会切磁场等离子体推力器

Also Published As

Publication number Publication date
WO2004007957A2 (fr) 2004-01-22
FR2842261A1 (fr) 2004-01-16
ATE394596T1 (de) 2008-05-15
RU2005103228A (ru) 2005-10-27
US7543441B2 (en) 2009-06-09
DE60320795D1 (de) 2008-06-19
US20060010851A1 (en) 2006-01-19
AU2003263268A1 (en) 2004-02-02
ES2306893T3 (es) 2008-11-16
WO2004007957A3 (fr) 2004-05-13
EP1520104B1 (de) 2008-05-07
RU2319040C2 (ru) 2008-03-10

Similar Documents

Publication Publication Date Title
EP0650557B1 (de) Plasmatriebwerk mit geschlossener elektronenlaufbahn
EP3146205B1 (de) Motor für ein raumfahrzeug und raumfahrzeug mit solch einem motor
EP0662195B1 (de) Plasmamotor geringer länge mit geschlossenem elektronendrift
EP1520104B1 (de) Halleffecktplasmaantrieb
EP2812571B1 (de) Hall-effekt-antrieb
EP2179435B1 (de) Halleffekt-ionenauswurfeinrichtung
EP0982976B1 (de) Auf hohen thermischen Belastungen abgestimmter Plasmamotor mit geschlossenem Elektronendrift
EP2798209B1 (de) Plasmatriebwerk und verfahren zur erzeugung eines plasmaantriebsschubs
EP1496727B1 (de) Plasmabeschleuniger mit geschlossener Elektronenbahn
EP0914560B1 (de) PLASMATRIEBWERK mit einer IONENSTRAHLFOKUSIERUNGSVORRICHTUNG
EP3320208B1 (de) In hoher flughöhe verwendbares hall-effekt-triebwerk
EP2433002A1 (de) Hall-effekt-plasmatriebwerk
EP3250822B1 (de) Hall-effekt-antrieb und raumfahrzeug mit diesem antrieb
WO2021233909A1 (fr) Circuit magnetique de creation d'un champ magnetique dans un canal annulaire principal d'ionisation et d'acceleration de propulseur plasmique a effet hall
EP1152445A1 (de) Vakuumröhre für elektrisches Schutzgerät wie z.B. einen Schalter oder einen Lastschalter
EP0813223B1 (de) Magnetfelderzeugungsvorrichtung und ECR Ionenquelle dafür
CA2139581A1 (fr) Moteur a plasma a derive fermee d'electrons

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050104

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20061004

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60320795

Country of ref document: DE

Date of ref document: 20080619

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2306893

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080807

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

26N No opposition filed

Effective date: 20090210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081108

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080808

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120629

Year of fee payment: 10

Ref country code: IE

Payment date: 20120629

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120723

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120816

Year of fee payment: 10

Ref country code: IT

Payment date: 20120718

Year of fee payment: 10

Ref country code: DE

Payment date: 20120713

Year of fee payment: 10

Ref country code: ES

Payment date: 20120726

Year of fee payment: 10

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130707

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60320795

Country of ref document: DE

Effective date: 20140201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130707

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130708