EP0982976B1 - Auf hohen thermischen Belastungen abgestimmter Plasmamotor mit geschlossenem Elektronendrift - Google Patents

Auf hohen thermischen Belastungen abgestimmter Plasmamotor mit geschlossenem Elektronendrift Download PDF

Info

Publication number
EP0982976B1
EP0982976B1 EP99401981A EP99401981A EP0982976B1 EP 0982976 B1 EP0982976 B1 EP 0982976B1 EP 99401981 A EP99401981 A EP 99401981A EP 99401981 A EP99401981 A EP 99401981A EP 0982976 B1 EP0982976 B1 EP 0982976B1
Authority
EP
European Patent Office
Prior art keywords
plasma thruster
thruster according
pole piece
channel
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99401981A
Other languages
English (en)
French (fr)
Other versions
EP0982976A1 (de
Inventor
Dominique Valentian
Jean-Pierre Bugeat
Eric Klinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP0982976A1 publication Critical patent/EP0982976A1/de
Application granted granted Critical
Publication of EP0982976B1 publication Critical patent/EP0982976B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/0062Electrostatic ion thrusters grid-less with an applied magnetic field
    • F03H1/0075Electrostatic ion thrusters grid-less with an applied magnetic field with an annular channel; Hall-effect thrusters with closed electron drift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0031Thermal management, heating or cooling parts of the thruster
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/54Plasma accelerators

Definitions

  • the subject of the present invention is a drift plasma thruster closed electron suitable for high thermal loads, including a main annular ionization and acceleration channel delimited by pieces of insulating material and open at its downstream end, at least one hollow cathode disposed outside the main annular channel on the side from the downstream part thereof, an annular anode concentric with the channel main annular and arranged at a distance from the open downstream end, a pipe and distributor to supply ionizable gas to the anode annular, and a magnetic circuit for creating a magnetic field in the main annular canal.
  • a propellant of this type comprises a cathode 2, a distributor gas 1 forming an anode, an annular acceleration channel ( discharge) 3 delimited by internal walls 3a and external 3b, and a circuit magnetic comprising an external pole 6, an internal pole 7, a core central 12, a magnetic jacket 8, an internal coil 9 and a external coil 10.
  • the annular acceleration channel 3 is located between a screen internal magnetic 4 and an external magnetic screen 5, which allow increase the radial magnetic field gradient in channel 3.
  • the channel 3 is connected to the external pole piece 6 by a metal piece cylindrical 17.
  • channel 3 is surrounded not only by magnetic screens 4, 5 but also by screens thermal radiation 13 towards the axis and the central coil as well as outwards.
  • the only effective possibility of cooling by radiation is located at the downstream end of channel 3, open towards space. This results in a higher channel temperature than if the channel 3 had the possibility of radiating through its external lateral face.
  • FIG. 14 is a view in elevation and in axial half-section of such a structure.
  • the plasma thruster depicted in Figure 14 includes a channel main ring of ionization and acceleration 24 delimited by parts 22 of insulating material and open at its downstream end 25a, at least one hollow cathode 40 and an annular anode 25 concentric with the channel main 24.
  • Des means 31 to 33, 34 to 38 for creating a magnetic field in the main channel 24 are suitable for producing in this main channel 24 an essentially radial magnetic field which has a gradient with maximum induction at the downstream end 25a of channel 24.
  • These means of creating a magnetic field include essentially an external coil 31, surrounded by a shield magnetic, two external 34 and internal 35 pole pieces, a first axial coil 33, a second axial coil 32 surrounded by a shield magnetic and a magnetic yoke 36.
  • the stilling chamber 23 which can radiate freely towards space, helps to cool channel 24.
  • the external coil toric 31 is opposed to the cooling of the channel 24 in the most thermally charged.
  • the first internal coil 33 must provide a very high number of ampere-turns for its volume allocated by the magnetic screen associated with the second axial coil 32. It this results in a relatively high temperature.
  • Closed electron drift plasma thrusters currently known which can also be referred to as propellants with stationary plasma, are mainly used for North-South control geostationary satellites.
  • closed electron drift plasma thrusters cannot have a power level high enough to allow primary propulsion missions such as an orbit transfer geostationary or a planetary mission, since the relationship between the surface and the dissipated power is lower for a large propellant, which means that the temperature of a large plasma thruster of the type known increases exaggeratedly, or that the mass of this large known plasma thruster becomes excessive if the heat flux is kept constant.
  • the invention aims to remedy the aforementioned drawbacks and to to optimize the operation and evacuation of heat flow in closed electron drift plasma thrusters so that allow more powerful plasma thrusters important than that of closed drift plasma thrusters of currently known electrons.
  • the invention thus aims to propose a new configuration of closed electron drift propellant whose thermal design and structural is improved compared to plasma thrusters already known.
  • the presence of a plurality of external magnetic cores connecting the first and second external pole pieces allows to leave pass much of the radiation from the inner wall of the ceramic channel.
  • the conical shape of the second pole piece external increases the volume available for the coils external and increase the solid angle of radiation.
  • the conical shape of the second internal pole piece also increases the volume allocated to the first internal coil while ensuring channeling of the magnetic flux ensuring a shielding function for the second internal coil.
  • the plasma thruster comprises a plurality of first radial arms connecting the axial magnetic core to the upstream part of the second internal conical pole piece and a plurality second radial arms extending the first radial arms and connected to said plurality of external magnetic cores as well as to the upstream part of the second conical outer pole piece.
  • the number of the first radial arms and that of the second arms radial is equal to that of external magnetic cores.
  • a small air gap can be left between the first radial arms and the second radial arms, so as to complete the effect of the second internal coil.
  • the plasma thruster includes a structural base of good material conductor of heat which constitutes a mechanical support of the propellant, separate from the axial magnetic core, from the first and second external pole pieces and first and second pole pieces internal, and which ensures the conduction cooling of the first internal coil, second internal coil and external coils.
  • the structural base is covered on its side faces of an emissive coating.
  • the main annular channel present in a axial plane a frustoconical section at its upstream part and cylindrical at its downstream part and the annular anode present in a plane axial a profiled section in the shape of a truncated cone.
  • the parts delimiting the channel annular ring define a monobloc annular channel and are connected to the base by a single support provided with expansion slots, said parts being made integral with the single support by screwing.
  • the main channel annular has a downstream end delimited by two shaped parts ring made of insulating ceramic and each connected to the base by an individual support, and the upstream part of the main channel annular is materialized by the walls of the anode which is insulated electrically supports by vacuum. Individual supports are coaxial.
  • the ratio between the axial length of parts in insulating ceramic and the width of the channel is between 0.25 and 0.5 and the distance between the walls of the anode and the supports of the workpieces insulating ceramic is between 0.8 mm and 5 mm.
  • the anode is fixed relative to the base using a small column massive and flexible blades.
  • Milling can be provided in the base to receive the second radial arms, the gas supply pipe ionizable provided with an insulator, a line of polarization of the anode and supply wires for external coils and first and second internal coils.
  • the circuit magnetic can essentially perform the function of channeling the magnetic flux while the solid base in good conductive material heat, for example an anodized light alloy on its lateral face, or in carbon-carbon composite material coated on its face downstream of a copper deposit, ensures both cooling by conduction of the coils then evacuation of heat losses by radiation and the structural behavior of the propellant.
  • good conductive material heat for example an anodized light alloy on its lateral face, or in carbon-carbon composite material coated on its face downstream of a copper deposit
  • Plasma thruster includes sheets of material super-insulation placed upstream of the main annular channel and sheets of super-insulating material interposed between the annular channel main and first internal coil.
  • the tip of the cone of the second internal conical pole piece upstream is directed downstream.
  • the tip of the cone of the second conical upstream internal pole piece is directed upstream.
  • the plasma thruster includes a common support to support the first internal coil, the second internal conical pole piece and the second internal coil fixed by brazing or diffusion welding on this common support, and this common support is assembled by screwing on the base with interposition of a thermally conductive sheet.
  • the first internal coil is cooled by a heat pipe connected to the internal part of the common support and located in a recess in the magnetic core.
  • the first internal coil is cooled by a plurality of heat pipes connected to the upstream part of the common support and passing through holes in the second pole piece internal.
  • the second external conical pole piece is openwork.
  • the first and second external pole pieces are connected mechanically by a non-magnetic structural part openwork.
  • the external magnetic cores external coils are inclined at an angle ⁇ relative to the axis of the propellant so that the axis of these magnetic cores external is substantially perpendicular to the bisector of the angle formed by the generators of the cones of the first and second parts external polar.
  • the annular anode comprises a dispenser with internal baffles and having a flat plate downstream delimiting with the walls of the main channel two diaphragms annulars, a back plate fitted on the walls of the main channel to limit gas leaks upstream and from cylindrical walls fitted with ionizable gas injection holes in the main channel.
  • the closed electron drift plasma thruster of Figures 1 and 2 includes a main annular ionization and acceleration channel 124 delimited by insulating walls 122.
  • the channel 124 is open to its downstream end 125a and has a section in an axial plane frustoconical at its upstream part and cylindrical at its downstream part.
  • a hollow cathode 140 is arranged outside the channel main 124 and advantageously presents with the axis X'X of the propellant an angle ⁇ between 15 and 45 °.
  • An annular anode 125 has a cross-section in an axial plane profiled in the shape of a truncated cone open downstream.
  • the anode 125 may have slits increasing the surface of contact with plasma. Holes 120 for injecting an ionizable gas from a distributor 127 of ionizable gas are formed in the wall of the anode 125.
  • the distributor 127 is supplied with ionizable gas by a line 126.
  • the discharge between the anode 125 and the cathode 140 is controlled by a magnetic field distribution determined by a circuit magnetic.
  • the magnetic circuit comprises a first, essentially radial, external pole piece 134.
  • This external pole piece 134 may be planar or may have a low conicity defining an angle e 1 of between + 15 ° and -15 ° relative to the outlet plane S (FIG. 1).
  • the external pole piece 134 is connected by a plurality of magnetic cores 137 surrounded by external coils 131 to a second external pole piece 311 of conical shape more marked than the possible slight conical shape of the first external pole piece 134.
  • the half angle e 2 of the cone of the external pole piece 311 can be between 25 and 60 °.
  • the external pole piece 311 is advantageously perforated in line with the passages of the external coils 131 in order to reduce the radial size and between the coils in order to improve the cooling by radiation of the ceramic constituting the walls 122 of the channel 124.
  • a first internal pole piece 135 which is essentially radial may be planar or may have a low taper defining a angle il between -15 ° and + 15 ° relative to the exit plane S.
  • the first internal pole piece 135 is extended by a central axial magnetic core 138 surrounded by a first internal coil 133.
  • the axial magnetic core 138 is itself extended to the upstream part of the propellant by a plurality of radial arms 352 connected to a second internal conical pole piece 351 having a half angle i 2 from 15 to 45 ° with the axis X'X of the propellant.
  • the tip of the cone of the second internal pole piece 351 is directed downstream.
  • downstream means an area close to the exit plane S and the open end 125a of the channel 124 while the term upstream designates a zone remote from the exit plane S going in the direction of the closed part of the annular channel 124 equipped with the anode 125 and the distributor 127 for supplying ionizable gas.
  • a second internal magnetic coil 132 is placed in the upstream part of the second internal pole piece 351, outside of it.
  • the magnetic field of the second internal coil 132 is channeled by radial arms 136 placed in the extension of the arms radials 352, as well as by the external pole piece 311 and the pole piece internal 351.
  • a small air gap for example of the order of 1 to 4 mm, can be formed between the radial arms 352 and the radial arms 136 for complete the effect of the second internal coil 132.
  • the axial magnetic core 138 is connected to the magnetic cores 137 by the plurality of magnetic arms 136 placed in the extension of the radial arms 352.
  • the radial arms 352, and the arms radial 136 are equal in number to that of the external coils 131 arranged on the external magnetic cores 137.
  • the coils 133, 131, 132 are directly cooled by conduction on a base structural 175 in heat conductive material, this 175 base also serving as a mechanical support for the propellant.
  • Base 175 is advantageously provided on its lateral faces with an emissive coating improving the radiation of heat losses to space.
  • the base 175 can be made of light alloy, anodized on its lateral face so as to increase its emissivity.
  • the base 175 can also be made of composite material carbon-carbon coated on its downstream face with a metallic deposit such as copper so as to maximize the emissivity of the side faces and to minimize the absorbency of the downstream face subjected to radiation from the ceramic from the canal.
  • the magnetic circuit comprises four external coils 131, two of which are visible in FIG. 2.
  • a number of external coils could be used 131 different from four.
  • the external coils 131 and their magnetic cores 137 create a magnetic field channeled in part by the downstream 134 and upstream 311 external pole pieces.
  • the rest of the field magnetic is taken up by the arms 136 grouped around the nucleus axial magnetic 138 itself provided with the downstream internal pole piece 135, of the first axial coil 133, of the second conical pole piece upstream 351 and the second coil 132.
  • the magnetic flux supplied by the coil 132 is channeled by the pole piece 351, the core 138, the radial arms 136 and the pole piece 311, so this coil 132 does not need shielding particular magnetic.
  • the coil 133, the pole piece 351 and the coil 132 can be made integral with the common support 332 by brazing or welding by diffusion.
  • the support 332 can itself be assembled by screws on the base 175.
  • a conductive sheet is interposed between the base 175 and the support 332 to reduce the thermal contact resistance.
  • the inner bore of the pole piece 351 is adjusted to the core axial magnetic 138 so as to allow the assembly of the assembly of the two internal coils 133, 132 and of the pole piece 351 on the kernel 138.
  • the structure 122 in ceramic material delimiting the annular channel 124 is held opposite of the outer pole piece by a metal support.
  • the structure 122 of ceramic material delimiting the channel 124 is fixed to the rear (i.e. upstream) of the thruster by a metal support 162, so that the latter does not obstruct the radiation from the downstream part of part 122 which is free to radiate towards space.
  • Some boron nitride ceramics are difficult to braze on metals. This problem can be eliminated by adopting a mechanical fixing.
  • a thread with a semi-circular profile can be provided both in room 122 of ceramic material and in the support 162. It is then possible to slide a metallic wire 163 between the two pieces 122, 162 so as to secure these. Such a arrangement allows the ceramic part 122 to be placed on the support 162 previously mounted on the elements of the magnetic circuit.
  • the metal support 162 can be provided with a rib 165 and notches 164 defining lamellae which compensate metal-ceramic differential expansion while ensuring tightening elastic.
  • Figure 11 shows yet another alternative embodiment of the channel 124.
  • the piece of material ceramic 122 is subdivided into two separate rings 122a, 122b mounted on separate supports 162a, 162b.
  • the ratio between the length of the ceramic pieces 122a, 122b in shape of rings and the width of channel 124 can be typically understood between 0.25 and 0.5.
  • the rest of channel 124 is materialized by the walls of the anode 125.
  • the electrical insulation between the anode 125 and the two supports 162a, 162b is provided by the vacuum.
  • the distance between the walls of the anode 125 and the supports 162a, 162b constitutes a reduced clearance included between 0.8 and 5 mm.
  • the anode 125 illustrated in FIG. 11 is supported by insulators such as 151 fixed on the massive base 175 which constitutes a natural electrostatic screen for insulators such as 151.
  • insulators 151 are extended by flexible blades 115a which protect from differential expansion efforts.
  • external coils 131 the number of which can for example be between 3 and 8, provided with magnetic cores 137 arranged between the external pole pieces 134, 311, allows pass much of the radiation from the outer wall of the annular channel 124.
  • the conical shape of the second pole piece external 311 increases the volume available for the coils 131 and increase the solid angle of radiation.
  • the room tapered outer fleece 311 is also advantageously perforated to increase the view factor of ceramic pieces 122, so that we obtain a very compact and very ventilated magnetic circuit which allows the radiation of the entire lateral face of channel 124.
  • the base 175 plays a role essential structural.
  • This massive 175 base has a frequency high resonance. The same must apply to the pole pieces.
  • the upstream external pole piece 311 is perforated, its resonant frequency becomes relatively low.
  • the essentially planar shape of the downstream external pole piece 134 also gives a frequency of low resonance.
  • a non-magnetic connection piece 341 (FIG. 9), of form essentially conical between the two pole pieces 311 and 134.
  • the part 341 must itself be strongly openwork, but this does not affect its resonant frequency because the lattice-like elements that make it up, basically work in traction and compression.
  • FIG. 10 we improves the relationship between the geometry of the pole pieces 134, 311 and the volume allocated to the external coils by tilting the axis of the latter.
  • the axis of the external coils 131 forms an angle ⁇ with the axis X'X of the propellant, so that the axis of an external coil 131 is substantially perpendicular to the bisector of the angle u formed by the generators of the cones of the two pole pieces 134, 311, a coil external 131 may have a larger volume, and the bulk of base 175 can be reduced.
  • the coils 133, 132 and pole piece 351 it is entirely possible to combine the implementation of inclined external coils 131 and a pole piece tapered external taper 311.
  • the base 175 plays an essential role in conduction cooling, common support 332, coils 133, 132 and pole piece 351, which is itself advantageously provided with notches as shown in FIG. 2.
  • Cooling of coil 133 can however be improved by the implementation of a or more heat pipes.
  • a heat pipe 433 arranged in a recess 381 of the axial magnetic core 138, but without contact with the latter.
  • Heat pipe 433 can be welded or brazed on the internal face of the internal support 332 of the coil 133, so as to make this support 332 insulated.
  • FIG 3 there is shown a coil 133 cooled by several heat pipes 433a, 433b connected to the upstream part of the support of the coil 133, and passing through openings in the room upstream internal polar 351.
  • sheets of super-insulating material forming a screen 130 are arranged in upstream of annular channel 124 and sheets of super-insulating material 301 forming a screen are also interposed between channel 124 and the first internal coil 133.
  • the super-insulating screens 130, 301 eliminate thus most of the flux radiated through channel 124 towards the coils internal 133, 132 and 175 base.
  • the parts 122 delimiting the channel 124 are free to radiate towards space by the angle solid between pole pieces 134 and 311.
  • a screen electrostatic 302 is arranged upstream of the anode 125 to ensure the compliance with Paschen's law (vacuum insulation) while contributing to hold in place the sheets of super-insulating material 130. Furthermore, the external face of the external support 162a can receive a coating emissive to improve the cooling of the ceramic parts 122a, 122b.
  • Figure 12 shows an example of a particular embodiment a plasma thruster according to the invention, in which the tip of the cone of the second upstream internal pole piece 351 is directed upstream.
  • This arrangement is more particularly adapted to the thrusters of large diameter, but can also be used with a channel acceleration 124 delimited by a monobloc piece 122 of material ceramic, as shown in figure 12, that with a channel acceleration 124 delimited by two separate parts 122a, 122b in ceramic material, as already described with reference to FIG. 11.
  • the various elements functionally equivalent to the elements already described with reference to the figures already described, in particular the figures 1 and 2 have the same reference numbers and will not be described in new.
  • recesses or millings 751 are provided in the base 175 to receive the second radial arms 136, a line 145 of polarization of the anode 125 and supply wires 313, 323, 333 of the external coils 131 and first and second internal coils 133, 132 ( Figures 7 and 12).
  • a recess can also be provided in the base 175 to receive the ionizable gas supply line 126 provided with an insulator 300 (shown for example in Figure 4).
  • the external coils 131 as well as the first and second internal coils 133, 132 are made from a wire shielded with mineral insulation.
  • the wires of the different turns of the coils 131, 132, 133 are joined by a solder metal with high conductivity thermal.
  • the external coils 131, as well as the first and second internal coils 133, 132 are connected in series and electrically connected to cathode 140 and to a negative pole of the electrical supply of the anode-cathode discharge.
  • annular buffer chamber 23 which has a dimension in the radial direction at least equal to that of the main annular channel 24 and extends upstream thereof beyond the zone in which the annular anode 25 is placed.
  • a more compact arrangement is obtained by implementing a main annular channel 124 which has a cross-section in an axial plane frustoconical in its upstream part and cylindrical in its downstream part.
  • the annular anode 125 then has in an axial plane a section shaped like a truncated cone.
  • FIG. 4 There is shown in Figure 4 a possible embodiment for the annular anode 125.
  • a series of circular slots 117 made in the massive part 116 of the anode 125 ensures a protection against contamination.
  • the ionizable gas is introduced by a rigid pipe 126 in a distribution chamber 127 which communicates with the circular slots 117 by injection holes 120.
  • An insulator 300 is interposed between the line 126 and the anode 125 which is connected by an electrical link 145 to the positive pole of the power supply anode-cathode discharge.
  • FIG. 4 A possible solution has been shown in Figure 4.
  • the anode 125 is supported at the same time by a massive baluster 114 with circular section and by at least two balusters 115 thinned into flexible blades, which achieves a satisfactory compromise from the point of view of dilations differential.
  • FIG. 5 represents another possible embodiment for an anode 125 arranged in the frustoconical part of a channel acceleration 124.
  • the annular anode 125 comprises a distributor 127 provided with internal baffles 271 and comprising a plate downstream plane 272 delimiting with the walls of the main channel 124 two annular diaphragms 273.
  • a back plate 274 is fitted on the walls 122 of main channel 124 to limit gas leaks to upstream. Cylindrical walls provided with holes 120 allow injection ionizable gas in the main channel 124.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Claims (28)

  1. Plasmaantrieb mit geschlossener Elektronendrift, der auf hohe Wärmebelastungen abgestimmt ist, aufweisend einen ringförmigen lonisations- und Beschleunigungshauptkanal (124), der durch Teile (122) aus isolierendem Werkstoff abgegrenzt und an seinem stromabseitigen Ende (125a) geöffnet ist, zumindest eine hohle Kathode (140), die außerhalb des ringförmigen Hauptkanals (124) seitwärts dessen stromabseitigen Bereiches angeordnet ist, eine ringförmige Anode (125), die konzentrisch in dem ringförmigen Hauptkanal (124) und in einem Abstand von dem offenen stromabseitigen Ende (125a) angeordnet ist, eine Röhrenleitung (126). und einen Verteiler (127) zum Speisen der ringförmigen Anode (125) mit ionisierbarem Gas, und einen Magnetkreis zur Schaffung eines Magnetfeldes in dem ringförmigen Hauptkanal (124),
    dadurch gekennzeichnet, dass der Magnetkreis aufweist:
    ein erstes äußeres, im wesentlichen radiales Polstück (134),
    ein zweites äußeres konisches Polstück (311),
    ein erstes inneres, im wesentlichen radiales Polstück (135),
    ein zweites inneres konisches Polstück (351),
    eine Vielzahl äußerer Magnetkerne (137), umgeben von äußeren Wicklungen (131) zur Verbindung des ersten und des zweiten äußeren Polstücks (134, 311) untereinander,
    einen axialen Magnetkern (138), umgeben von einer ersten inneren Wicklung (133) und verbunden mit dem ersten inneren Polstück (135), und
    eine zweite innere Wicklung (132), angeordnet stromaufseitig von den äußeren Wicklungen (131).
  2. Plasmaantrieb nach Anspruch 1,
    dadurch gekennzeichnet, dass er eine Vielzahl erster radialer Arme (352), die den axialen Magnetkern (138) mit dem stromaufseitigen Bereich des zweiten inneren konischen Polstücks (351) verbinden, und eine Vielzahl zweiter radialer Arme (136), die die ersten radialen Arme (352) verlängern und an die Vielzahl äußerer Magnetkerne sowie an den stromaufseitigen Bereich des zweiten äußeren konischen Polstücks (311) angeschlossen sind, aufweist.
  3. Plasmaantrieb nach Anspruch 2,
    dadurch gekennzeichnet, dass die Zahl der ersten radialen Arme (352) und die der zweiten radialen Arme (136) gleich derjenigen der äußeren Magnetkerne (137) ist.
  4. Plasmaantrieb nach Anspruch 2 oder Anspruch 3,
    dadurch gekennzeichnet, dass ein dünner Spalt zwischen den ersten radialen Armen (352) und den zweiten radialen Armen (136) vorgesehen ist.
  5. Plasmaantrieb nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass der ringförmige Hauptkanal (124) in einer Achsenebene einen Schnitt aufweist, der in seinem stromaufseitigen Bereich kegelstumpfartiger und in seinem stromabseitigen Bereich zylindrischer Gestalt ist, und dass die ringförmige Anode (125) in einer Achsenebene einen Schnitt aufweist, der in Gestalt eines Kegelstumpfes profiliert ist.
  6. Plasmaantrieb nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass er eine Strukturplatte (175) bestehend aus einem Werkstoff, der ein guter Wärmeleiter ist, aufweist, die einen mechanischen Träger des Antriebs darstellt, die verschieden ist von dem axialen Magnetkern (138), dem ersten und dem zweiten äußeren Polstück (134, 311) und dem ersten und dem zweiten inneren Polstück (135, 351), und die die Kühlung der ersten inneren Wicklung (133), der zweiten inneren Wicklung (132) und der äußeren Wicklungen (131) mittels Wärmeleitung gewährleistet.
  7. Plasmaantrieb nach Anspruch 6,
    dadurch gekennzeichnet, dass die Strukturplatte (175) an ihren Seitenflächen mit einer abstrahlenden Beschichtung bedeckt ist.
  8. Plasmaantrieb nach Anspruch 6 oder Anspruch 7,
    dadurch gekennzeichnet, dass die Teile (122), die den ringförmigen Hauptkanal (124) abgrenzen, einen Ringkanalblock definieren, mit der Platte (175) mittels eines einzigen Tragteils (162) verbunden sind, der mit Wärmedehnungsschlitzen (164) versehen ist, und mit dem einzigen Tragteil mittels Schraubverbindung zu einem Stück verbunden sind.
  9. Plasmaantrieb nach Anspruch 6 oder Anspruch 7,
    dadurch gekennzeichnet, dass der ringförmige Hauptkanal (124) ein stromabseitiges Ende aufweist, das durch zwei ringförmige Teile, (122a, 122b) abgegrenzt ist, die aus isolierender Keramik bestehen, von denen jedes mit der Platte (175) mittels eines individuellen Tragteils (162a, 162b) verbunden ist, und dass der stromaufseitige Bereich des ringförmigen Hauptkanals (124) durch die Wandungen der Anode (125) verkörperlicht ist, die durch den leeren Raum von den Tragteilen (162) elektrisch isoliert ist.
  10. Plasmaantrieb nach Anspruch 9,
    dadurch gekennzeichnet, dass das Verhältnis zwischen der axiale Länge der Teile (122) aus isolierender Keramik und der Breite des Kanals (124) zwischen 0,25 und 0,5 beträgt, und dass der Abstand zwischen den Wandungen der Anode (125) und den Tragteilen (162) der Teile (122) aus isolierender Keramik zwischen 0,8 mm und 5 mm beträgt.
  11. Plasmaantrieb nach Anspruch 9 oder Anspruch 10,
    dadurch gekennzeichnet, dass die Anode (125) in Bezug auf die Platte (175) mit Hilfe eines massiven Säulchens (114, 151) und flexibler Plättchen (115) befestigt ist.
  12. Plasmaantrieb nach Anspruch 2 und einem der Ansprüche 6 bis 11,
    dadurch gekennzeichnet, dass in der Platte (175) Ausfräsungen (751) vorgesehen sind zum Aufnehmen der zweiten radialen Arme (136), der mit einem Isolator (300) versehenen Röhrenleitung (126) zur Speisung mit ionisierbarem Gas, einer Leitung (145) zur Polung der Anode (125) und Drähten zur Speisung der äußeren Wicklungen (131) und der ersten und der zweiten inneren Wicklung (133, 132).
  13. Plasmaantrieb nach einem der Ansprüche 1 bis 12,
    dadurch gekennzeichnet, dass er Folien aus hochisolierendem Werkstoff (130), die stromaufseitig von dem des ringförmigen Hauptkanal (124) angeordnet sind, und Folien aus hochisolierendem Werkstoff (301), die zwischen dem ringförmigen Hauptkanal (124) und der ersten inneren Wicklung (133) angeordnet sind, aufweist.
  14. Plasmaantrieb nach einem der Ansprüche 1 bis 13,
    dadurch gekennzeichnet, dass die Konusspitze des stromaufseitigen zweiten inneren konischen Polstücks (351) nach stromab gerichtet ist.
  15. Plasmaantrieb nach einem der Ansprüche 1 bis 13,
    dadurch gekennzeichnet, dass die Konusspitze des strömaufseitigen zweiten inneren konischen Pölstücks (351) nach stromauf gerichtet ist.
  16. Plasmaantrieb nach einem der Ansprüche 6 bis 12,
    dadurch gekennzeichnet, dass es ein gemeinsames Tragteil (332) aufweist zum Tragen der ersten inneren Wicklung (133), des zweiten konischen inneren Polstück (351) und der zweiten inneren Wicklung (132), die mittels Löten oder Diffusionsschweißen auf dem gemeinsamen Tragteil (332) befestigt sind, und dass das gemeinsame Tragteil (332) mittels Schrauben auf der Platte (175) montiert ist, wobei eine thermisch leitende Folie dazwischen angeordnet ist.
  17. Plasmaantrieb nach Anspruch 16,
    dadurch gekennzeichnet, dass die erste innere Wicklung (133) mittels eines Wärmerohres (433) gekühlt wird, das mit dem inneren Bereich des gemeinsamen Tragteils (332) verbunden und in einer Aussparung (381) des Magnetkernes (38) angeordnet ist.
  18. Plasmaantrieb nach Anspruch 16,
    dadurch gekennzeichnet, dass die erste innere Wicklung (133) mittels einer Vielzahl von Wärmerohren (433a, 433b) gekühlt wird, die mit dem stromaufseitigen Bereich des gemeinsamen Tragteils (332) verbunden sind und die durch Öffnungen hindurch gehen, die in dem zweiten inneren Polstück (351) vorgesehen sind.
  19. Plasmaantrieb nach einem der Ansprüche 1 bis 18,
    dadurch gekennzeichnet, dass das zweite äußere konische Polstück (311) durchbrochen ist.
  20. Plasmaantrieb nach Anspruch 19,
    dadurch gekennzeichnet, dass das erste und das zweite äußere Polstück (134, 311) mittels eines nichtmagnetischen durchbrochenen strukturellen Verbindungsteiles (341) mechanisch verbunden sind.
  21. Plasmaantrieb nach einem der Ansprüche 1 bis 20,
    dadurch gekennzeichnet, dass die äußeren Magnetkerne (137) der äußeren Wicklungen (131) in Bezug auf die Achse des Antriebs so in einem Winkel β geneigt sind, dass die Achse dieser äußeren Magnetkerne (137) etwa rechtwinklig zu der Winkelhalbierenden des Winkels ist, der aus den Mantellinien der Kegel des ersten und des zweiten äußeren Polstücks (34, 311) gebildet ist.
  22. Plasmaantrieb nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass die ringförmige Anode (125) einen mit inneren Schikanen (271) versehenen Verteiler (127), der eine stromabseitige flache Platte (272) aufweist, die mit den Wandungen des Hauptkanals (124) zwei ringförmige Blenden (273) abgrenzt, eine hintere Platte (274), die an die Wandungen des Hauptkanals (124) angepasst ist zum Begrenzen von Gasentweichungen nach stromauf, und zylindrische Wandungen, die mit Löchern (120) zur Injektion ionisierbarer Gase in den Hauptkanal (124) versehen sind, aufweist.
  23. Plasmaantrieb nach einem der Ansprüche 6 bis 12,
    dadurch gekennzeichnet, dass die Platte (175) aus einer Leichtmetalllegierung gebildet ist, die auf ihrer Seitenfläche anodisch oxidiert ist.
  24. Plasmaantrieb nach einem der Ansprüche 6 bis 12,
    dadurch gekennzeichnet, dass die Platte (175) aus einem Carbon-Carbon-Verbundwerkstoff gebildet ist, der auf seiner stromabseitigen Fläche mit einer Kupferschicht beschichtet ist.
  25. Plasmaantrieb nach einem der Ansprüche 1 bis 24,
    dadurch gekennzeichnet, dass die äußeren Wicktungen (131) sowie die erste und die zweite innere Wicklung (133, 132) aus einem mit mineralischem Isolationsmaterial umgebenen Draht gebildet sind, und dass die Drähte der unterschiedlichen Windungen der Wicklungen (131, 133, 132) mittels eines Lötmetalls mit hoher thermischer Leitfähigkeit zu einem Stück vereinigt sind.
  26. Plasmaantrieb nach einem der Ansprüche 1 bis 25,
    dadurch gekennzeichnet, dass die äußeren Wicklungen (131) sowie die erste und die zweite innere Wicklung (133,'132) in Reihe geschaltet sind und elektrisch mit der Kathode (140) und einem negativen Pol der elektrischen Versorgung der Anoden-Kathoden-Entladung verbunden sind.
  27. Plasmaantrieb nach einem der Ansprüche 1 bis 26,
    dadurch gekennzeichnet, dass das zweite äußere konische Polstück (311) einen Konushalbwinkel aufweist, der zwischen 25° und 60° beträgt.
  28. Plasmaantrieb nach einem der Ansprüche 1 bis 27,
    dadurch gekennzeichnet, dass das zweite innere konische Polstück (351) mit der Achse des Antriebs einen Halbwinkel aufweist, der zwischen 15° und 45° beträgt.
EP99401981A 1998-08-25 1999-08-04 Auf hohen thermischen Belastungen abgestimmter Plasmamotor mit geschlossenem Elektronendrift Expired - Lifetime EP0982976B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9810674 1998-08-25
FR9810674A FR2782884B1 (fr) 1998-08-25 1998-08-25 Propulseur a plasma a derive fermee d'electrons adapte a de fortes charges thermiques

Publications (2)

Publication Number Publication Date
EP0982976A1 EP0982976A1 (de) 2000-03-01
EP0982976B1 true EP0982976B1 (de) 2004-02-25

Family

ID=9529859

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99401981A Expired - Lifetime EP0982976B1 (de) 1998-08-25 1999-08-04 Auf hohen thermischen Belastungen abgestimmter Plasmamotor mit geschlossenem Elektronendrift

Country Status (9)

Country Link
US (1) US6281622B1 (de)
EP (1) EP0982976B1 (de)
JP (1) JP4347461B2 (de)
CA (1) CA2280479C (de)
DE (1) DE69914987T2 (de)
FR (1) FR2782884B1 (de)
IL (1) IL131182A (de)
RU (1) RU2219371C2 (de)
UA (1) UA57770C2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2211056A1 (de) 2009-01-27 2010-07-28 Snecma Antrieb mit geschlossenem Elektronenlaufbahn

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10014033C2 (de) * 2000-03-22 2002-01-24 Thomson Tubes Electroniques Gm Plasma-Beschleuniger-Anordnung
US6448721B2 (en) * 2000-04-14 2002-09-10 General Plasma Technologies Llc Cylindrical geometry hall thruster
FR2842261A1 (fr) * 2002-07-09 2004-01-16 Centre Nat Etd Spatiales Propulseur plasmique a effet hall
US7461502B2 (en) 2003-03-20 2008-12-09 Elwing Llc Spacecraft thruster
JP2006147449A (ja) * 2004-11-24 2006-06-08 Japan Aerospace Exploration Agency 高周波放電プラズマ生成型二段式ホール効果プラズマ加速器
US7624566B1 (en) 2005-01-18 2009-12-01 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Magnetic circuit for hall effect plasma accelerator
US7500350B1 (en) 2005-01-28 2009-03-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Elimination of lifetime limiting mechanism of hall thrusters
JP4816004B2 (ja) * 2005-10-28 2011-11-16 三菱電機株式会社 ホールスラスタ及び宇宙航行体
JP4816179B2 (ja) * 2006-03-20 2011-11-16 三菱電機株式会社 ホールスラスタ
FR2919755B1 (fr) * 2007-08-02 2017-05-05 Centre Nat De La Rech Scient (C N R S ) Dispositif d'ejection d'electrons a effet hall
DE102007062150A1 (de) * 2007-09-14 2009-04-02 Thales Electron Devices Gmbh Vorrichtung zur Ableitung von Verlustwärme sowie Ionenbeschleunigeranordnung und Wanderfeldröhrenanordnung mit einer Wärmeleitanordnung
FR2950114B1 (fr) 2009-09-17 2012-07-06 Snecma Moteur a effet hall avec refroidissement de la ceramique interne
JP5295423B2 (ja) * 2010-03-01 2013-09-18 三菱電機株式会社 ホールスラスタ及び宇宙航行体及び推進方法
RU2447625C2 (ru) * 2010-03-22 2012-04-10 Федеральное государственное унитарное предприятие "Опытное конструкторское бюро "Факел" Плазменный ускоритель с замкнутым дрейфом электронов
FR2976029B1 (fr) 2011-05-30 2016-03-11 Snecma Propulseur a effet hall
FR2979956B1 (fr) 2011-09-09 2013-09-27 Snecma Systeme de propulsion electrique a propulseurs a plasma stationnaire
US8575565B2 (en) 2011-10-10 2013-11-05 Guardian Industries Corp. Ion source apparatus and methods of using the same
RU2504683C1 (ru) * 2012-06-22 2014-01-20 Михаил Никитович Алексенко Способ управления вектором тяги реактивного двигателя летательного аппарата
RU2527798C2 (ru) * 2012-11-28 2014-09-10 Михаил Никитович Алексенко Устройство управления вектором тяги реактивного двигателя
RU2523427C1 (ru) * 2012-12-28 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Способ формирования компактного плазмоида
RU2524571C1 (ru) * 2013-01-22 2014-07-27 Объединенный Институт Ядерных Исследований Индукционный циклический ускоритель электронов
RU2527898C1 (ru) * 2013-04-17 2014-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет радиотехники, электроники и автоматики" Стационарный плазменный двигатель малой мощности
US10273944B1 (en) 2013-11-08 2019-04-30 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Propellant distributor for a thruster
RU2568825C2 (ru) * 2014-03-24 2015-11-20 Акционерное общество "Научно-исследовательский институт электромеханики" (АО "НИИЭМ") Электрореактивная двигательная установка
US9642239B2 (en) 2015-04-17 2017-05-02 Fermi Research Alliance, Llc Conduction cooling systems for linear accelerator cavities
RU2620442C2 (ru) * 2015-05-29 2017-05-25 Открытое акционерное общество "ОКБ-Планета" ОАО "ОКБ-Планета" Источник ионов
CN105163475A (zh) * 2015-08-03 2015-12-16 兰州空间技术物理研究所 一种离子推力器放电室双向气体供给装置
WO2017099773A1 (en) * 2015-12-10 2017-06-15 Halliburton Energy Services, Inc. Downhole field ionization neutron generator
RU167315U1 (ru) * 2016-10-11 2017-01-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский технологический университет" (МИРЭА) Стационарный плазменный двигатель малой мощности
CN107795445B (zh) * 2017-09-01 2019-08-23 兰州空间技术物理研究所 一种环形磁钢环切场离子推力器结构和主支撑环
US10932355B2 (en) 2017-09-26 2021-02-23 Jefferson Science Associates, Llc High-current conduction cooled superconducting radio-frequency cryomodule
CN109779863B (zh) * 2019-01-31 2020-06-23 哈尔滨工业大学 一种霍尔推力器安装支架
RU2724375C1 (ru) * 2019-12-24 2020-06-23 Николай Борисович Болотин Ионный ракетный двигатель и способ его работы
RU2735043C1 (ru) * 2020-05-20 2020-10-27 Николай Борисович Болотин Плазменно-ионный ракетный двигатель
CN112017840B (zh) * 2020-08-11 2021-12-07 北京控制工程研究所 一种低功率霍尔推力器用磁屏及固定结构
WO2023038611A1 (ru) * 2021-09-13 2023-03-16 Частное Акционерное Общество "Фэд" Стационарный ионно-плазменный двигатель
CN114352831A (zh) * 2021-12-21 2022-04-15 上海空间推进研究所 气体分配器
WO2023244857A1 (en) * 2022-06-17 2023-12-21 The Regents Of The University Of Michigan Hall thruster

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0541309B1 (de) * 1991-11-04 1996-01-17 Fakel Enterprise Plasmabeschleuniger mit geschlossener Elektronenlaufbahn
FR2693770B1 (fr) * 1992-07-15 1994-10-14 Europ Propulsion Moteur à plasma à dérive fermée d'électrons.
US5763989A (en) * 1995-03-16 1998-06-09 Front Range Fakel, Inc. Closed drift ion source with improved magnetic field
FR2743191B1 (fr) * 1995-12-29 1998-03-27 Europ Propulsion Source d'ions a derive fermee d'electrons
EP0914560B1 (de) * 1997-05-23 2005-08-24 Société Nationale d'Etude et de Construction de Moteurs d' Aviation PLASMATRIEBWERK mit einer IONENSTRAHLFOKUSIERUNGSVORRICHTUNG
US6208080B1 (en) * 1998-06-05 2001-03-27 Primex Aerospace Company Magnetic flux shaping in ion accelerators with closed electron drift

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2211056A1 (de) 2009-01-27 2010-07-28 Snecma Antrieb mit geschlossenem Elektronenlaufbahn

Also Published As

Publication number Publication date
FR2782884B1 (fr) 2000-11-24
CA2280479C (en) 2007-10-23
JP2000073937A (ja) 2000-03-07
RU2219371C2 (ru) 2003-12-20
FR2782884A1 (fr) 2000-03-03
IL131182A (en) 2003-06-24
US6281622B1 (en) 2001-08-28
JP4347461B2 (ja) 2009-10-21
IL131182A0 (en) 2001-01-28
CA2280479A1 (en) 2000-02-25
UA57770C2 (uk) 2003-07-15
DE69914987T2 (de) 2004-12-16
EP0982976A1 (de) 2000-03-01
DE69914987D1 (de) 2004-04-01

Similar Documents

Publication Publication Date Title
EP0982976B1 (de) Auf hohen thermischen Belastungen abgestimmter Plasmamotor mit geschlossenem Elektronendrift
EP0650557B1 (de) Plasmatriebwerk mit geschlossener elektronenlaufbahn
EP2433002B1 (de) Hall-effekt-plasmatriebwerk
EP0781921B1 (de) Ionenquelle mit geschlossener Elektronendrift
EP0662195B1 (de) Plasmamotor geringer länge mit geschlossenem elektronendrift
EP2211056B1 (de) Antrieb mit geschlossenem Elektronenlaufbahn
EP0914560B1 (de) PLASMATRIEBWERK mit einer IONENSTRAHLFOKUSIERUNGSVORRICHTUNG
EP2179435B1 (de) Halleffekt-ionenauswurfeinrichtung
EP1520104B1 (de) Halleffecktplasmaantrieb
EP0995345B1 (de) Vorrichtung zur anregung eines gases durch oberflächenwellenplasma
FR3018316A1 (fr) Propulseur plasmique a effet hall
FR2764730A1 (fr) Canon electronique pour tube electronique multifaisceau et tube electronique multifaisceau equipe de ce canon
EP2079096B1 (de) Ionenquelle mit elektrischer Entladung über Glühfaden
EP0048690B1 (de) Hochstabilisierte Gasentladungsröhre für Laserstrahlung mit hoher Leistung
FR3032325A1 (fr) Propulseur a effet hall et engin spatial comprenant un tel propulseur
EP1292963A1 (de) Kathode mit optimiertem thermischen wirkungsgrad
FR2467480A1 (fr) Appareil a hyperfrequences du type magnetron
CA2179654A1 (fr) Torche a plasma a bobine electromagnetique de deplacement du pied d'arc independante et integree
FR2775118A1 (fr) Grille pour tube electronique a faisceau axial a performances ameliorees
FR2669771A1 (fr) Cathode amelioree pour tubes hyperfrequence.
WO2024126424A1 (fr) Arrangement de câble électrique comprenant au moins un organe de pincement du câble
FR3132411A1 (fr) Torche de coupage plasma munie d'un empilement de consommables
FR2826542A1 (fr) Dispositif pour la production d'ions de charges positives variables et a resonnance cyclotronique
FR2810790A1 (fr) Cathode pour tube a rayons cathodiques a encombrement reduit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000627

AKX Designation fees paid

Free format text: DE GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69914987

Country of ref document: DE

Date of ref document: 20040401

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040617

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041126

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120517 AND 20120523

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69914987

Country of ref document: DE

Representative=s name: KLUNKER, SCHMITT-NILSON, HIRSCH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69914987

Country of ref document: DE

Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE

Effective date: 20121005

Ref country code: DE

Ref legal event code: R082

Ref document number: 69914987

Country of ref document: DE

Representative=s name: KLUNKER, SCHMITT-NILSON, HIRSCH, DE

Effective date: 20121005

Ref country code: DE

Ref legal event code: R081

Ref document number: 69914987

Country of ref document: DE

Owner name: SNECMA, FR

Free format text: FORMER OWNER: SOCIETE NATIONALE D'ETUDE ET DE CONSTRUCTION DE MOTEURS D'AVIATION "S.N.E.C.M.A.", PARIS, FR

Effective date: 20121005

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69914987

Country of ref document: DE

Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180719

Year of fee payment: 20

Ref country code: IT

Payment date: 20180719

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180720

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69914987

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190803