EP2211056B1 - Antrieb mit geschlossenem Elektronenlaufbahn - Google Patents

Antrieb mit geschlossenem Elektronenlaufbahn Download PDF

Info

Publication number
EP2211056B1
EP2211056B1 EP10151687.0A EP10151687A EP2211056B1 EP 2211056 B1 EP2211056 B1 EP 2211056B1 EP 10151687 A EP10151687 A EP 10151687A EP 2211056 B1 EP2211056 B1 EP 2211056B1
Authority
EP
European Patent Office
Prior art keywords
pole piece
magnetic
thruster
coils
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10151687.0A
Other languages
English (en)
French (fr)
Other versions
EP2211056A1 (de
Inventor
Olivier Duchemin
Dominique Valentian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP2211056A1 publication Critical patent/EP2211056A1/de
Application granted granted Critical
Publication of EP2211056B1 publication Critical patent/EP2211056B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/0062Electrostatic ion thrusters grid-less with an applied magnetic field
    • F03H1/0075Electrostatic ion thrusters grid-less with an applied magnetic field with an annular channel; Hall-effect thrusters with closed electron drift

Definitions

  • the present invention relates to a closed electron drift propellant comprising a main annular channel of ionization and acceleration around the axis of the propellant, at least one hollow cathode, an annular anode concentric to the main annular channel, a channel and a distributor for supplying ionizable gas to the anode and a magnetic circuit for creating a magnetic field in said main annular channel, said magnetic circuit comprising at least one axial magnetic core surrounded by a first coil and a pole piece of internal upstream revolution and a plurality of external magnetic cores surrounded by external coils.
  • a first type of closed electron drift propellant comprises an outer pole piece magnetized by an annular coil.
  • the patent document FR 2 693 770 A1 also discloses a three-coil closed electron drift thruster including an annular outer coil.
  • the figure 8 is an axial half-sectional elevational view of an example of an external annular coil electron drift propeller 31 described in the document FR 2 693 770 A1 .
  • This known thruster 20 comprises a main annular channel of ionization and acceleration 24 delimited by pieces 22 of insulating material and open at its downstream end 225, at least one hollow cathode 40 associated with means 41 for supplying ionizable gas and an annular anode 25 concentric with the main annular channel 24 and disposed at a distance from the open downstream end 225.
  • the anode 25 is disposed on the insulating parts 22 and connected by a power line 43 to the positive pole of a voltage source continuous 44, which may be for example 200 to 300 V and whose negative pole is connected by a line 42 to the hollow cathode 40 which is associated with a circuit 41 for supplying ionizable gas such as xenon.
  • the hollow cathode 40 supplies a plasma 29 substantially at the reference potential from which the electrons traveling towards the anode 25 are extracted under the effect of the electrostatic field E due to the potential difference between the anode 25 and the cathode 40
  • a circuit 26 for supplying ionizable gas opens upstream of the anode 25 through an annular distributor 27.
  • the control of the radial magnetic field gradient in the main annular channel 24 is obtained thanks to the arrangement of internal annular coils 32, 33 and outer 31 and internal 35 and outer pole pieces 34, the inner pole piece 35 being connected by a core central 38 and the outer pole piece being connected by connecting bars 37 to a yoke 36 which can be protected by one or more layers 30 of super thermally insulating material.
  • Thrusters with closed electron drift with an outer annular coil such as the known propellant illustrated in FIG. figure 8 , guarantee a constant radial magnetic field in the gap defined between the outer pole pieces 34 and inner 35.
  • closed electron drift plasma thrusters have thermal drawbacks because an outer annular coil involves a large length of wire which results in dissipation. high thermal efficiency and also a high winding mass.
  • the outer annular coil 31 opposes the cooling of the ceramic channel 24, in particular the downstream part with the highest thermal load.
  • a second type of closed-electron drift propellant is still known in which no large external annular coil centered on the axis of the thruster is used, but several small coils distributed around the periphery of the thruster used to magnetize the outer pole piece.
  • Patent documents US 6,208,080 B1 and US 5,359,258 also describe a thruster with four external coils.
  • ALT D55 uses three external coils.
  • Such an ALT D 55 closed electron drift propellant is described in AIAA-94-3011 - AIAA 30th Propulsion Conference " Operating Characteristics of the Russian D-55 Thruster with Anode Layer ", by John M Sankovic and Thomas X. Haag, NASA Lewis Research Center, Cleveland, Ohio and H. Manzella Davis, Nyma, Inc. Brook Park, Ohio - and also in the article AIAA-94-3010 - same conference " Experimental Evaluation of Russian Anode Layer Thrusters ", by C. Garner, JR Bropy, JE Polk, S. Semenkin, V. Garkusha, S. Tverdokhelbov, C. Marrese -.
  • the present invention aims to overcome the aforementioned drawbacks and to make it possible to produce a closed-beam thruster of high power electrons which at the same time benefits from good cooling of the main annular channel, makes it possible to obtain a radial magnetic field. uniformly within this channel and minimizes the length of wire needed for the windings and therefore minimizes the mass of these windings.
  • a closed electron drift propellant comprising a main annular channel of ionization and acceleration around the axis of the propellant, at least one hollow cathode, an annular anode concentric with main annular channel, a pipe and a distributor for supplying ionizable gas to the anode and a magnetic circuit for creating a magnetic field in said main annular channel, said magnetic circuit comprising at least one axial magnetic core surrounded by a first coil and an internal upstream revolution pole piece and a plurality of external magnetic cores surrounded by outer coils, further comprises a first substantially radial outer pole piece defining a concave inner circumferential surface and a second substantially radial inner pole piece defining a peripheral surface.
  • said surfac concave inner peripheral and said convex outer peripheral surface each have an adjusted profile distinct from a circular cylindrical surface so as to form therebetween a gap of variable width having zones of maximum value to the right of the outer coils and zones of minimum value between said outer coils so as to create a uniform radial magnetic field.
  • said inner upstream revolution pole piece is substantially conical and defines a contoured peripheral edge at its free end closest to said cathode.
  • said magnetic circuit further comprises an essentially conical outermost pole piece which defines a profiled peripheral edge at its free end closest to said cathode and said profiled peripheral edge of said pole piece of upstream revolution.
  • internal substantially conical and said profiled peripheral edge of said substantially conical outermost pole piece each have an adjusted profile with recessed portions along the axis of the thruster to the right of the outer coils so as to maintain the constant azimuth magnetic field profile.
  • said internal upstream revolution pole piece comprises an internal magnetic screen substantially cylindrical which defines a contoured peripheral edge at its free end closest to said cathode.
  • said magnetic circuit further comprises a substantially cylindrical external magnetic screen which defines a contoured peripheral edge at its free end closest to said cathode and said contoured peripheral edge of said internal magnetic screen and said peripheral edge profilée said external magnetic screen each have an adjusted profile with recessed portions along the axis of the thruster to the right of the outer coils so as to maintain the constant azimuth magnetic field profile.
  • the thruster according to the present invention preferably comprises four outer coils surrounding four outer magnetic cores.
  • the Figures 1 to 4 show a first example of closed electron drift propellant to which the present invention is applied.
  • Such a type of thruster comprises a basic structure which corresponds largely to the description given in the patent document. EP 0 982 976 .
  • the plasma thruster thus essentially comprises a main annular channel of ionization and acceleration 124 delimited by insulating walls 122.
  • the channel 124 is open at its downstream end 125a and has in axial plane a frustoconical section at its end. upstream and cylindrical at its downstream part.
  • a hollow cathode 140 is disposed outside the main channel 124 and an annular anode 125 is disposed in the main channel 124.
  • a distributor 127 of ionizable gas supplied by a pipe 126 allows the injection of ionizable gas through holes 120 formed in the wall of the anode 125. Also seen on the figure 1 a wire 145 of polarization of the anode 125.
  • the discharge between the anode 125 and the cathode 140 is controlled by a magnetic field distribution determined by a magnetic circuit which comprises an essentially radial outer pole piece 134 defining a concave inner peripheral surface 134a.
  • the outer pole piece 134 is connected by a plurality of magnetic cores 137 surrounded by outer coils 131 to another substantially cone-shaped outer pole piece 311 which defines a contoured peripheral rim 311a at its free end closest to the cathode 140.
  • the magnetic circuit also includes an essentially radial inner pole piece 135 which defines a convex outer peripheral surface 135a.
  • the inner pole piece 135 is extended by a central axial magnetic core 138 surrounded by an inner coil 133.
  • the axial magnetic core 138 is itself extended to the upstream portion of the thruster by a connecting portion to another upstream inner pole piece cone 351, whose tip of the cone is preferably directed upstream ( Figures 1 and 2 ).
  • the term downstream signifies a zone adjacent to the exit plane S and the open end 125a of the channel 124 while the term upstream denotes a zone remote from the exit plane S by going in the direction of the closed portion of the annular channel 124 equipped with the anode 125.
  • An additional internal magnetic coil 132 may be placed in the upstream portion of the inner pole piece 351 outside thereof.
  • the magnetic field of the coil 132 is channeled by the outer and outer pole pieces 311 and 351 as well as radial arms 136 connecting the axial magnetic core 138 to the external magnetic cores 137.
  • the coils 133, 131, 132 can be directly conductive cooled on a structural base 175 of heat conducting material which also serves as a mechanical support for the propellant.
  • external coils 131 the number of which can be between 2 and 8 and preferably equal to three or four, which are provided with magnetic cores 137 arranged between the outer pole pieces 134, 311 makes it possible to let a large part of the radiation from the outer wall of the annular channel 124.
  • the conical shape of the outer pole piece 311 makes it possible to increase the available volume for the outer coils 131 and to increase the solid angle of radiation.
  • the tapered outer pole piece 311 is advantageously perforated to increase the view factor of the ceramic pieces 122, so that a very compact and very ventilated magnetic circuit is obtained which allows the radiation of the entire face. side of channel 124.
  • the closed-electron drift plasma propellant according to the present invention is suitable for high power, since it allows a good cooling of the main annular channel, that it minimizes the length of wire required for the windings because of the implementing a plurality of external coils 131 instead of a single coil annular large diameter and that measures are taken to ensure a uniform radial magnetic field within the channel 124.
  • a uniform radial magnetic field is obtained in the channel 124, since the concave inner peripheral surface 134a of the outer pole piece 134 and the convex outer peripheral surface 135a of the inner pole piece 135 each have a profile. adjusted distinct from a circular cylindrical surface so as to form between them a gap of variable width having zones 232 of maximum value to the right of the outer coils 131 and zones 231 of minimum value between the outer coils 131 (see figures 2 and 3 ).
  • the profiled peripheral edge 351a of the substantially cone-shaped inner upstream revolution piece 351 and the profiled peripheral edge 311a of the substantially conical outer upstream pole piece 311 also each have an adjusted profile with recessed portions along the axis of the thruster to the right of the external coils 131 so as to maintain constant the azimuth magnetic field profile in the channel 124 (see figures 1 and 4 ).
  • the dotted line 411a of the contoured peripheral edge 311a is shown in dotted lines in the absence of correction, that is to say in a manner analogous to the prior art where this border did not include any recessed part.
  • the correction leading to the corrected profiles 135a, 134a of the inner and outer pole pieces 135 and 134 can be calculated using a 3D magnetic field calculation software that first makes it possible to calculate the magnetic field increase to the right of the external coils 131, then to determine the increase in air gap necessary to standardize the field.
  • FIG 3 which relates to an embodiment with four external coils 131 mounted on cores 137 arranged substantially at the vertices of a square, it is seen that the gap width is greater in the zone 232 to the right of the coils 131 than in the zones 231 located at 45 ° of the cores 137 where the gap width is minimal.
  • the correction can be determined experimentally by an iterative method: after a first 3D measurement of the magnetic field on a revolution configuration, a first digital correction machining is performed and the field distribution is measured. 3D magnetic. A second machining is performed if the first correction is not satisfactory and so on.
  • the present invention is also applicable to magnetic drift plasma drift plasma thrusters, such as those described in the patent document. US 5,359,258 .
  • FIGS 5 to 7 illustrate such a type of plasma thruster with an annular anode gas distributor 1, a cathode 2, an annular discharge chamber 3, an external magnetic shield surrounding the discharge chamber 3 and terminating in a terminal free surface 5a, a external pole piece 6 ending in a concave peripheral surface 6a, an inner pole piece 7 terminating in a convex peripheral surface 7a, a magnetic circuit 8, a central coil 9 creating an internal magnetic field, a plurality of external coils 10 for creating an external magnetic field, a central core 12, heat shields 13, and a support 17.
  • outer coils 10 I , 10 II , 10 III , IV and an outer pole piece 6 are shown.
  • the concave internal peripheral surface 6a of the pole piece 6 and the convex outer peripheral surface 7a of the pole piece 7 each have an adjusted profile distinct from a circular cylindrical surface so as to form between them a gap of variable width presenting zones. of maximum value to the right of the external coils 10 and valuable areas between the outer coils 10 (coils 10 I , 10 II , 10 III , 10 IV on the figure 5 ).
  • the profiles of uncorrected surfaces 6a, 7a (that is to say, strictly circular surfaces as they appear before correction) have been shown in dashed lines on the figure 5 .
  • the thruster of Figures 5 to 7 comprises an essentially cylindrical internal magnetic screen 4 which defines a contoured peripheral edge 4a at its free end closest to the cathode 2.
  • the profiled peripheral edge 4a of the internal magnetic screen 4 and the profiled peripheral edge 5a of the magnetic screen external 5 each have an adjusted profile with recessed portions along the axis of the thruster to the right of the outer coils 10 so as to maintain the constant azimuth magnetic field profile.
  • the figure 7 shows in solid lines the adjusted profile of the contoured peripheral edge 5a and dashed the initial profile 405a of the contoured peripheral edge 5a before its adjustment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Particle Accelerators (AREA)

Claims (8)

  1. Triebwerk mit geschlossener Elektronendrift, umfassend einen ringförmigen Hauptkanal zur lonisierung und Beschleunigung (124; 3) um die Achse des Triebwerks, wenigstens eine Hohlkathode (140; 2), eine ringförmige Anode (125; 1), die zu dem ringförmigen Hauptkanal (124; 3) konzentrisch ist, eine Rohrleitung (126) und einen Verteiler (127), um die Anode (125; 1) mit ionisierbarem Gas zu versorgen, sowie einen Magnetkreis zur Erzeugung eines Magnetfeldes in dem ringförmigen Hauptkanal (124; 3), wobei der Magnetkreis wenigstens einen axialen Magnetkern (138; 12), der von einer ersten Spule (133; 9) und von einem stromaufwärtigen inneren Rotationspolschuh (351) umgeben ist, sowie eine Vielzahl von äußeren Magnetkernen (137), die von äußeren Spulen (131; 10) umgeben sind, umfasst,
    wobei der Magnetkreis ferner einen im Wesentlichen radialen, ersten äußeren Polschuh (134; 6), der eine konkave innere Umfangsfläche (134a; 6a) definiert, sowie einen im Wesentlichen radialen, zweiten inneren Polschuh (135; 7), der eine konvexe äußere Umfangsfläche (135a; 7a) definiert, umfasst,
    dadurch gekennzeichnet, dass die konkave innere Umfangsfläche (134a; 6a) und die konvexe äußere Umfangsfläche (135a; 7a) jeweils ein abgestimmtes, von einer kreisförmigen Zylinderfläche verschiedenes Profil aufweisen, um zwischen sich einen Luftspalt mit veränderlicher Breite zu bilden, der Bereiche (232) mit maximalem Wert gegenüber den äußeren Spulen (131; 10) und Bereiche (231) mit minimalem Wert zwischen den äußeren Spulen (131; 10) aufweist, so dass ein gleichförmiges radiales Magnetfeld erzeugt wird.
  2. Triebwerk nach Anspruch 1, dadurch gekennzeichnet, dass der stromaufwärtige innere Rotationspolschuh (351) im Wesentlichen konisch ist und einen profilierten Umfangsrand (351 a) an seinem der Kathode (140) am nächsten gelegenen freien Ende definiert.
  3. Triebwerk nach Anspruch 2, dadurch gekennzeichnet, dass der Magnetkreis ferner einen im Wesentlichen konischen, stromaufwärtigen äußeren Polschuh (311) umfasst, der einen profilierten Umfangsrand (311a) an seinem der Kathode (140) am nächsten gelegenen freien Ende definiert und dass der profilierte Umfangsrand (351 a) des im Wesentlichen konischen, stromaufwärtigen inneren Rotationspolschuhs (351) und der profilierte Umfangsrand (311a) des im Wesentlichen konischen, stromaufwärtigen äußeren Polschuhs (311) jeweils ein abgestimmtes Profil mit zurückspringenden Abschnitten entlang der Achse des Triebwerks gegenüber den äußeren Spulen (131) aufweisen, um das Magnetfeldprofil im Azimut konstant zu halten.
  4. Triebwerk nach Anspruch 1, dadurch gekennzeichnet, dass der stromaufwärtige innere Rotationspolschuh (4) einen im Wesentlichen zylindrischen, inneren Magnetschirm umfasst, der einen profilierten Umfangsrand (4a) an seinem der Kathode (2) am nächsten gelegenen freien Ende definiert.
  5. Triebwerk nach Anspruch 4, dadurch gekennzeichnet, dass der Magnetkreis ferner einen im Wesentlichen zylindrischen, äußeren Magnetschirm (5) umfasst, der einen profilierten Umfangsrand (5a) an seinem der Kathode (2) am nächsten gelegenen freien Ende definiert, und dass der profilierte Umfangsrand (4a) des inneren Magnetschirms (4) und der profilierte Umfangsrand (5a) des äußeren Magnetschirms (5) jeweils ein abgestimmtes Profil mit zurückspringenden Abschnitten entlang der Achse des Triebwerks gegenüber den äußeren Spulen (10) aufweisen, um das Magnetfeldprofil im Azimut konstant zu halten.
  6. Triebwerk nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es vier äußere Spulen (131; 10), die vier äußere Magnetkerne (137) umgeben, umfasst.
  7. Triebwerk nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es drei äußere Spulen (131; 10), die drei äußere Magnetkerne (137) umgeben, umfasst.
  8. Triebwerk nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es zwei äußere Spule (131; 10), die zwei äußere Magnetkerne (137) umgeben, umfasst.
EP10151687.0A 2009-01-27 2010-01-26 Antrieb mit geschlossenem Elektronenlaufbahn Active EP2211056B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0950486A FR2941503B1 (fr) 2009-01-27 2009-01-27 Propulseur a derive fermee d'electrons

Publications (2)

Publication Number Publication Date
EP2211056A1 EP2211056A1 (de) 2010-07-28
EP2211056B1 true EP2211056B1 (de) 2015-03-11

Family

ID=41055267

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10151687.0A Active EP2211056B1 (de) 2009-01-27 2010-01-26 Antrieb mit geschlossenem Elektronenlaufbahn

Country Status (6)

Country Link
US (1) US8129913B2 (de)
EP (1) EP2211056B1 (de)
JP (1) JP5615565B2 (de)
FR (1) FR2941503B1 (de)
IL (1) IL203365A (de)
RU (1) RU2509918C2 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9453502B2 (en) 2012-02-15 2016-09-27 California Institute Of Technology Metallic wall hall thrusters
CN103108482B (zh) * 2013-01-11 2015-08-05 哈尔滨工业大学 一种等离子体射流密度大范围调节器
US10082133B2 (en) * 2013-02-15 2018-09-25 California Institute Of Technology Hall thruster with magnetic discharge chamber and conductive coating
CN106438252B (zh) * 2016-11-29 2018-09-07 哈尔滨工业大学 推力方向可控的会切场等离子体推力器
CN107687404B (zh) * 2017-06-12 2019-07-05 北京航空航天大学 一种磁等离子体推力器的阴极水冷结构
FR3080154B1 (fr) * 2018-04-13 2021-02-19 Safran Aircraft Engines Procede de fabrication d'un propulseur electrique
RU2702709C1 (ru) * 2018-05-07 2019-10-09 Федеральное государственное унитарное предприятие "Опытное конструкторское бюро "Факел" ФГУП "ОКБ "Факел" Плазменный двигатель с замкнутым дрейфом электронов
RU195043U1 (ru) * 2019-01-25 2020-01-14 Ольгерт Петрович Забак Плазменный реактивный двигатель для дисколета
CN110230581B (zh) * 2019-06-13 2020-05-08 哈尔滨工业大学 一种涡旋共振电离的微牛级离子推进装置
CN111005849B (zh) * 2019-11-28 2020-12-15 兰州空间技术物理研究所 一种环形磁钢环切场离子推力器放电室等离子体密封结构
CN115822905B (zh) * 2023-01-03 2023-05-05 国科大杭州高等研究院 阳极/气体分配器及包括其的霍尔推力器、空间设备
CN115681061B (zh) * 2023-01-03 2023-06-02 国科大杭州高等研究院 阳极磁屏组件及霍尔推力器

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463408A3 (en) * 1990-06-22 1992-07-08 Hauzer Techno Coating Europe Bv Plasma accelerator with closed electron drift
RU1796777C (ru) * 1991-06-28 1993-02-23 Опытное конструкторское бюро "Факел" Стационарный плазменный двигатель
EP0541309B1 (de) * 1991-11-04 1996-01-17 Fakel Enterprise Plasmabeschleuniger mit geschlossener Elektronenlaufbahn
US5359258A (en) * 1991-11-04 1994-10-25 Fakel Enterprise Plasma accelerator with closed electron drift
FR2693770B1 (fr) * 1992-07-15 1994-10-14 Europ Propulsion Moteur à plasma à dérive fermée d'électrons.
RU2046210C1 (ru) * 1992-10-05 1995-10-20 Игорь Глебович Богданов Электроракетный двигатель богданова
IT1289520B1 (it) 1996-12-24 1998-10-15 Zambon Spa Processo per la preparazione di un intermedio utile nella sintesi di mezzi di contrasto iodurati
JP2895472B1 (ja) * 1998-03-17 1999-05-24 インターナショナル・スペイス・テクノロジー・インコーポレイテッド 閉電子ドリフト及び導電性挿入物を備えるプラズマ加速器
US6208080B1 (en) * 1998-06-05 2001-03-27 Primex Aerospace Company Magnetic flux shaping in ion accelerators with closed electron drift
US6612105B1 (en) * 1998-06-05 2003-09-02 Aerojet-General Corporation Uniform gas distribution in ion accelerators with closed electron drift
JP4294867B2 (ja) * 1998-06-05 2009-07-15 エアロジェット−ジェネラル・コーポレーション 閉じた電子ドリフトを使用するイオン加速器での磁束形成
FR2782884B1 (fr) * 1998-08-25 2000-11-24 Snecma Propulseur a plasma a derive fermee d'electrons adapte a de fortes charges thermiques
FR2788084B1 (fr) * 1998-12-30 2001-04-06 Snecma Propulseur a plasma a derive fermee d'electrons a vecteur poussee orientable
US6777862B2 (en) * 2000-04-14 2004-08-17 General Plasma Technologies Llc Segmented electrode hall thruster with reduced plume
RU2196397C2 (ru) * 2000-12-28 2003-01-10 Петросов Валерий Александрович Способ и устройство для ускорения ионов в плазменных ускорителях холловского типа
RU2191292C2 (ru) * 2000-12-28 2002-10-20 Федеральное государственное унитарное предприятие Российского космического агентства "Опытное конструкторское бюро "Факел" Способ создания реактивной тяги в космосе
WO2002069364A2 (en) * 2001-02-23 2002-09-06 Kaufman & Robinson Inc. Magnetic field for small closed-drift thruster
US7030576B2 (en) * 2003-12-02 2006-04-18 United Technologies Corporation Multichannel hall effect thruster
JP2006147449A (ja) * 2004-11-24 2006-06-08 Japan Aerospace Exploration Agency 高周波放電プラズマ生成型二段式ホール効果プラズマ加速器
US7459858B2 (en) * 2004-12-13 2008-12-02 Busek Company, Inc. Hall thruster with shared magnetic structure
JP2007071055A (ja) * 2005-09-05 2007-03-22 Osaka Univ 磁場集中構造を有する磁気回路を備えたホールスラスタ

Also Published As

Publication number Publication date
US8129913B2 (en) 2012-03-06
RU2509918C2 (ru) 2014-03-20
FR2941503B1 (fr) 2011-03-04
JP5615565B2 (ja) 2014-10-29
EP2211056A1 (de) 2010-07-28
IL203365A (en) 2014-07-31
JP2010174894A (ja) 2010-08-12
FR2941503A1 (fr) 2010-07-30
US20100188000A1 (en) 2010-07-29
RU2010102004A (ru) 2011-07-27

Similar Documents

Publication Publication Date Title
EP2211056B1 (de) Antrieb mit geschlossenem Elektronenlaufbahn
EP0982976B1 (de) Auf hohen thermischen Belastungen abgestimmter Plasmamotor mit geschlossenem Elektronendrift
EP0662195B1 (de) Plasmamotor geringer länge mit geschlossenem elektronendrift
EP2433002B1 (de) Hall-effekt-plasmatriebwerk
EP0914560B1 (de) PLASMATRIEBWERK mit einer IONENSTRAHLFOKUSIERUNGSVORRICHTUNG
FR2950115A1 (fr) Propulseur plasmique a effet hall
EP0781921A1 (de) Ionenquelle mit geschlossener Elektronendrift
FR2693770A1 (fr) Moteur à plasma à dérive fermée d'électrons.
EP2179435B1 (de) Halleffekt-ionenauswurfeinrichtung
WO2014053728A1 (fr) Chambre de combustion comprenant un tube à flamme fixé au moyen de trois éléments de centrage
EP1520104B1 (de) Halleffecktplasmaantrieb
FR2651835A1 (fr) Propulseur a reaction assiste par un arc electrique.
EP2079096B1 (de) Ionenquelle mit elektrischer Entladung über Glühfaden
EP3250822B1 (de) Hall-effekt-antrieb und raumfahrzeug mit diesem antrieb
FR2817392A1 (fr) Source d'electrons a haute frequence a couplage inductif a demande de puissance reduite par inclusion electrostatique d'electrons
FR3071369A1 (fr) Machine electrique comprenant un stator muni d'un manchon tubulaire interne
CA3084342A1 (fr) Element de repartition d'un fluide de refroidissement et ensemble d'anneau de turbine associe
Huang et al. Non-Contact Thermal Characterization of NASA’s 12.5-kW Hall Thruster
FR2716573A1 (fr) Système d'optique ionique à trois grilles.
BE1027359B1 (fr) Rotor hybride à coquille externe rapportée contre la paroi annulaire composite
FR3080154A1 (fr) Procede de fabrication d'un propulseur electrique
FR2669771A1 (fr) Cathode amelioree pour tubes hyperfrequence.
EP4189706A1 (de) Kernbrennstoffverkleidungselement und verfahren zur herstellung dieses verkleidungselements
FR2807202A3 (fr) Bobine en forme de tige pour une installation d'allumage de moteurs thermiques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20101118

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F03H 1/00 20060101AFI20141029BHEP

INTG Intention to grant announced

Effective date: 20141117

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 715515

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010022982

Country of ref document: DE

Effective date: 20150423

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150311

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150611

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 715515

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150311

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150612

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150713

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150711

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010022982

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

26N No opposition filed

Effective date: 20151214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160126

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SNECMA, FR

Effective date: 20170713

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100126

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150311

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230103

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231219

Year of fee payment: 15

Ref country code: FR

Payment date: 20231219

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602010022982

Country of ref document: DE

Owner name: SAFRAN SPACECRAFT PROPULSION, FR

Free format text: FORMER OWNER: SNECMA, PARIS, FR

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20240321 AND 20240327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 15