RU2319040C2 - Плазменный реактивный двигатель с гальваномагнитным эффектом холла - Google Patents

Плазменный реактивный двигатель с гальваномагнитным эффектом холла Download PDF

Info

Publication number
RU2319040C2
RU2319040C2 RU2005103228/06A RU2005103228A RU2319040C2 RU 2319040 C2 RU2319040 C2 RU 2319040C2 RU 2005103228/06 A RU2005103228/06 A RU 2005103228/06A RU 2005103228 A RU2005103228 A RU 2005103228A RU 2319040 C2 RU2319040 C2 RU 2319040C2
Authority
RU
Russia
Prior art keywords
permanent magnet
jet engine
plasma jet
engine according
magnetic
Prior art date
Application number
RU2005103228/06A
Other languages
English (en)
Other versions
RU2005103228A (ru
Inventor
Владимир КАГАН
Патрис РЕНОДЕН
Марсель ГИЙО
Original Assignee
Сантр Насьональ Д`Этюд Спасьаль
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сантр Насьональ Д`Этюд Спасьаль filed Critical Сантр Насьональ Д`Этюд Спасьаль
Publication of RU2005103228A publication Critical patent/RU2005103228A/ru
Application granted granted Critical
Publication of RU2319040C2 publication Critical patent/RU2319040C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/0062Electrostatic ion thrusters grid-less with an applied magnetic field
    • F03H1/0075Electrostatic ion thrusters grid-less with an applied magnetic field with an annular channel; Hall-effect thrusters with closed electron drift

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma Technology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Изобретение относится к плазменным реактивным двигателям, в частности использующим гальваномагнитный эффект Холла. Такие двигатели могут быть использованы, например, в космическом пространстве для удержания спутника на геостационарной орбите или для осуществления перевода спутника с одной орбиты на другую, или для компенсации сил сопротивления, действующих на спутники на низкой орбите, или для выполнения задач, требующих наличия незначительной силы тяги в течение очень продолжительного времени, как при межпланетных полетах. Двигатель содержит главный кольцевой канал и магнитный контур, включающий донную заднюю плиту, от которой отходят центральная и периферийные стойки. По меньшей мере, одна из стоек или часть стоек содержат постоянные магниты; индукционные катушки располагают или вокруг стоек, содержащих постоянные магниты, или вокруг стоек, не содержащих постоянные магниты. Таким образом уменьшают массу, габариты, потребление электрического тока и стоимость реактивного двигателя. 9 з.п. ф-лы, 5 ил.

Description

Область техники
Настоящее изобретение относится к области плазменных реактивных двигателей, в частности, использующих гальваномагнитный эффект Холла.
Такие двигатели могут быть использованы, например, в космическом пространстве для удержания спутника на геостационарной орбите или для осуществления перевода спутника с одной орбиты на другую, или для компенсации сил сопротивления, действующих на спутники на низкой орбите, или для выполнения задач, требующих наличия незначительной силы тяги в течение очень продолжительного времени, как при межпланетных полетах.
Предшествующий уровень техники
Такие двигатели уже известны и описаны, например, в патенте США 6281622 или в патенте США 5359258.
В этих двух документах подробно описана конструкция таких двигателей. В настоящем описании со ссылками на фиг.1 и 2 будет использована упрощенная схема такой конструкции. Эта схема, в частности, предназначена для пояснения принципа работы такого двигателя.
На фиг.1 в осевом разрезе представлен пример такого двигателя, а на фиг.2 - вид в перспективе сзади упомянутого примера двигателя.
По существу двигатель имеет форму тела, образованного вращением вокруг оси ОО'. На фиг.2 плоскость сечения содержит эту ось ОО'. Направление от задней части к передней или от выхода к входу в осевом направлении показано стрелками Е, по существу обозначающими направление электрического поля, созданного в результате взаимодействия между кольцевым анодом 1, установленным в задней части кольцевого канала 3, и катодом 2, по существу установленным спереди кольцевого канала, снаружи и смежно относительно последнего. Такое расположение катода 2 обеспечивает создание при взаимодействии с анодом 1 электрического поля, по существу ориентированного в осевом направлении ОО', оставаясь при этом за пределами реактивной струи. Для повышения надежности, как правило, этот катод дублируют вторым резервным катодом, как показано на фиг.2. Кольцевой анод 1 содержит кольцевое дно, выполненное концентрично кольцевому каналу 3. Это дно содержит проходы, выполненные, например, в виде сквозных отверстий, обеспечивающих прохождение газа, который может быть ионизирован, например ксенон.
Двигатель содержит магнитный контур 40 в виде плиты 4, выполненной из ферромагнитных материалов, и перпендикулярной оси ОО' двигателя, центральную стойку 41, ось которой совпадает с осью ОО', два круговых цилиндрических полюса 63 и 64, оси которых совпадают с осью ОО', и две наружные периферийные стойки 42, расположенные согласно симметрии вращения вокруг оси ОО' снаружи кольцевого канала 3. Периферийные стойки 42 могут быть выполнены в количестве 2, 3, 4 или больше, или могут быть выполнены в виде единой кольцевой стойки. На своем переднем конце центральная стойка 41 содержит центральный магнитный полюс 49, а каждая из наружных периферийных стоек 42 на своем переднем конце содержит магнитный полюс 48. Магнитные полюсы 48 выполнены в виде плит, по существу перпендикулярных к осевому направлению ОО'. Как описано в упомянутом патенте США 6281622, кол.5, стр.51-62, они могут иметь наклон, например, от -15 до +15 градусов относительно плоскости, перпендикулярной к оси ОО'. Центральная катушка 51, центрированная на центральной стойке 41, и периферийные катушки 52, намотанные вокруг наружных магнитных стоек 42, способствуют созданию линий магнитного поля, соединяющих центральный полюс 49 с периферийными полюсами 48 и полюс 63 с полюсом 64. Таким образом, магнитное поле в кольцевом канале по существу является перпендикулярным к оси ОО'. На фиг.1 это направление магнитного поля в кольцевом канале 3 показано стрелками М. Разумеется, как известно, в кольцевом канале не все линии магнитного поля являются параллельными между собой. Физически кольцевой канал ограничен кольцевыми стенками, - соответственно внутренней 61 и наружной 62, центрированными вокруг оси ОО'. Эти стенки выполнены из огнеупорного материала, обладающего максимальным сопротивлением абляции.
Теоретическая модель работы такого двигателя пока еще далека от совершенства. Однако с некоторыми допущениями она практически может быть представлена следующим образом. Испускаемые катодом 2 электроны направляются к аноду 1 по направлению от входа к выходу кольцевого канала 3. Часть этих электронов задерживается в кольцевом канале 3 межполюсным магнитным полем. Столкновения между электронами и молекулами газа способствуют ионизации газа, поступающего в канал 3 через анод 1. При этом смесь ионов и электронов образует самоподдерживающуюся ионизированную плазму. Ионы отбрасываются назад под действием электрического поля, создавая таким образом тяговое усилие двигателя, направленное вперед. Струя электрически нейтрализуется электронами, излучаемыми катодом 2.
Скорость выбрасывания ионов примерно в 5 раз превышает скорость выбрасывания, которую можно получить посредством химических реактивных двигателей. Отсюда следует, что при гораздо меньшей выбрасываемой массе можно достичь тяги большей эффективности.
Катушки, создающие магнитное поле, требуют электрического питания, обеспечиваемого, как правило, солнечными батареями.
Сущность изобретения
По сравнению с описанным выше известным техническим решением объектом настоящего изобретения является плазменный двигатель, который при том же значении тяги отличается меньшим потреблением электрического тока и, следовательно, меньшей массой электрических генераторов, меньшими массой и габаритами магнитного контура, более высокой надежностью и, наконец, меньшими затратами на изготовление.
В соответствии с настоящим изобретением создающие магнитное поле катушки имеют меньшее число витков из специального высокотемпературного провода. Меньшее число намотанных витков обеспечивает нижеперечисленные преимущества. Уменьшаются потери от эффекта Джоуля, в результате чего снижается нагрев двигателя и повышается надежность двигателя, так как специальный высокотемпературный провод является хрупким. Общая масса элементов, создающих магнитное поле, уменьшилась вследствие уменьшения числа витков и соответствующего уменьшения габаритов магнитного контура. Снижается стоимость производства, поскольку специальный высокотемпературный провод является дорогим, а также катушки, роль которых в данном случае сводится к регулированию величины магнитного поля, являются более простыми. Наконец, двигатель является более облегченным за счет уменьшения массы системы электрического питания, которое стало возможным благодаря снижению потребления электрического тока.
Все эти задачи решаются настоящим изобретением, объектом которого является плазменный двигатель с гальваномагнитным эффектом Холла, имеющий ось, по существу параллельную направлению реактивного движения, определяющему переднюю часть и заднюю часть, содержащий:
- главный кольцевой канал ионизации и ускорения, выполненный из огнеупорного материала, при этом кольцевой канал выполнен открытым с переднего конца;
- газораспределительный кольцевой анод, в который из газораспределительных каналов поступает газ и который содержит проходы для прохождения этого газа в кольцевой канал, при этом упомянутый кольцевой анод устанавливают внутри канала в его задней части;
- по меньшей мере, один полый катод, расположенный снаружи кольцевого канала и смежно по отношению к нему;
- магнитный контур, содержащий передние полюсные концы, предназначенный для создания радиального магнитного поля в передней части кольцевого канала между этими полюсными концами, при этом данный контур выполнен в виде задней плиты, от которой в переднюю сторону параллельно оси отходят центральная стойка, расположенная в центре кольцевого канала, два круговых цилиндрических полюса по обе стороны от кольцевого канала и периферийные стойки, расположенные снаружи и смежно относительно кольцевого канала, при этом плазменный двигатель отличается тем, что, по меньшей мере, одна из стоек магнитного контура содержит постоянный магнит.
В варианте выполнения настоящего изобретения часть стоек магнитного контура содержит постоянный магнит, а другая часть стоек магнитного контура не содержит постоянный магнит.
В другом варианте выполнения все стойки магнитного контура содержат постоянный магнит.
Если магнитный контур содержит индукционную катушку, то ее наматывают вокруг стойки, не содержащей постоянного магнита.
Вокруг стоек магнитного контура (40), содержащих постоянный магнит, индукционные катушки не выполняют.
Краткое описание чертежей
Далее следует описание вариантов выполнения настоящего изобретения, представленных в качестве не ограничивающих примеров со ссылками на прилагаемые чертежи, на которых:
Фиг.1 и 2 уже были прокомментированы и представляют собой соответственно вид в осевом разрезе и вид сзади в перспективе примера выполнения плазменного реактивного двигателя согласно предшествующему уровню техники.
Фиг.3А - вид в осевом разрезе первого примера выполнения магнитного контура плазменного реактивного двигателя в соответствии с настоящим изобретением, при этом разрез сделан по линии CD на фиг.3В.
Фиг.3В - вид в поперечном разрезе первого примера выполнения магнитного контура плазменного реактивного двигателя в соответствии с настоящим изобретением, при этом разрез сделан по линии АВ на фиг.3А.
Фиг.4А - вид в осевом разрезе второго примера выполнения магнитного контура плазменного реактивного двигателя в соответствии с настоящим изобретением, при этом разрез сделан по линии CD на фиг.4В.
Фиг.4В - вид в поперечном разрезе второго примера выполнения магнитного контура плазменного реактивного двигателя в соответствии с настоящим изобретением, при этом разрез сделан по линии АВ на фиг.4А.
Фиг.5А - вид в осевом разрезе третьего примера выполнения магнитного контура плазменного реактивного двигателя в соответствии с настоящим изобретением, при этом разрез сделан по линии CD на фиг.5В.
Фиг.5В - вид в поперечном разрезе третьего примера выполнения магнитного контура плазменного реактивного двигателя в соответствии с настоящим изобретением, при этом разрез сделан по линии АВ на фиг.5А.
Подробное описание частных вариантов выполнения
В описанных ниже вариантах выполнения представлено описание только магнитного контура реактивного двигателя в соответствии с настоящим изобретением. Эти контуры обеспечивают выполнение тех же функций, что и известные магнитные контуры, и имеют аналогичное расположение.
Эти магнитные контуры отличаются от известных решений тем, что одна или несколько стоек контура содержат постоянные магниты, например, выполненные из редкоземельных элементов. Этот отличительный признак позволяет сократить число витков индукционных катушек и, в случае необходимости, даже обойтись без этих катушек или без части этих катушек. Уменьшение габаритов катушек в результате такого изменения позволяет уменьшить поперечный размер магнитного контура, так как толщина наматываемых катушек может быть уменьшена. Это позволяет также уменьшить осевой размер, который часто определяется в зависимости от числа витков, наматываемых вокруг центральной стойки. Таким образом, появилась возможность ограничить осевую длину реактивного двигателя минимальной длиной камеры ионизации.
Каждый из вариантов выполнения магнитного контура 40, описанного со ссылками на фиг.3, 4 и 5А и 5В, как и в известном техническом решении, описанном со ссылками на фиг.1 и 2, содержит переднюю плиту 4 из мягкого магнитного материала, установленную перпендикулярно к оси ОО' контура 40. Каждая плита дополнена центральной стойкой 41 цилиндрической формы, ось которой совпадает с осью ОО', круговыми цилиндрическими полюсами 63 и 64, ось которых совпадает с осью ОО' и которые расположены по обе стороны от кольцевого канала 3, и периферийными стойками 42, 42', расположенными согласно симметрии вращения вокруг оси ОО' снаружи кольцевого канала 3. На фиг.3А и 3В и 4А и 4В показаны четыре периферийные стойки 42. Разумеется, что число стоек может быть другим. В частности, оно может быть больше 4, как показано на фиг.5А и 5В, на которых это число равно 8 по причине уменьшения габаритов в результате исключения индукционных катушек или уменьшения их размера.
В своей передней части каждая из стоек 41, 42 заканчивается магнитным полюсом, обозначенным позицией 49 в случае полюса центральной стойки 41 и позицией 48 в случае каждой из периферийных стоек 42. Каждый полюс 49, 48 на конце стойки 41, 42, соответственно, расположен перпендикулярно оси упомянутой стойки. Угол наклона полюсов может быть разным, как было указано в связи с описанием предшествующего уровня техники.
Увеличение числа различных периферийных стоек улучшает круговую симметрию магнитного поля между центральным полюсом 49 и периферийными полюсами 48.
В отличие от описанного известного технического решения, по меньшей мере, одна из стоек содержит постоянный магнит, составляющий часть осевой длины стойки. Стойки, содержащие постоянный магнит, обозначены позицией 41', когда речь идет о центральной стойке, и позицией 42', когда речь идет о периферийной стойке. На фиг.3, 4, 5А и 5В постоянный магнит обозначен позицией 54, когда он встроен в периферийную стойку 42', и позицией 55, когда он встроен в центральную стойку 41'.
В примере, представленном на фиг.3А и 3В, все периферийные стойки 42' имеют в направлении от заднего к переднему концу задний участок 43 из мягкого магнитного материала, контактирующий с задней плитой 4, магнит 54 из редкоземельного элемента, передний участок 45 из мягкого магнитного материала, причем на этом переднем участке 45 установлен магнитный полюс 48. Как видно из чертежей, центральный участок стойки, смежный с задним участком 43 и с передним участком 43, образован упомянутым постоянным магнитом 54.
В представленном на фиг.3А и 3В примере центральная стойка 41 полностью выполнена из мягкого магнитного материала. Центральная индукционная катушка 51, выполненная, как и в известном решении, из специального высокотемпературного провода, содержащего металлическую оболочку вокруг центрального проводника, позволяет регулировать межполюсное магнитное поле. В этом варианте выполнения вокруг периферийных стоек 42' не выполняют индукционных катушек.
Таким образом, в этом первом примере выполнения каждая из периферийных стоек 42' содержит постоянный магнит 54, и центральную стойку 41 полностью выполняют из магнитного материала, при этом индукционную катушку 51 выполняют вокруг упомянутой центральной стойки 41.
В примере, показанном на фиг.4А и 4В, все периферийные стойки 42 полностью выполнены из мягкого магнитного материала. Вокруг каждой из стоек 42 выполняют индукционную катушку 52. Что же касается центральной стойки 41', то она содержит задний участок 44 из мягкого магнитного материала, постоянный магнит 55 из редкоземельного элемента и передний участок 46 с установленным на нем магнитным полюсом 49.
В этом варианте выполнения вокруг центральной стойки 41 не выполняют центральной индукционной катушки.
Во втором варианте выполнения настоящего изобретения центральная стойка 41' содержит постоянный магнит 55, при этом периферийные стойки 42 выполнены только из магнитного материала, и вокруг каждой из упомянутых периферийных стоек 42 выполнена индукционная катушка 52.
Каждая из стоек 41' или 42', содержащая, соответственно, постоянный магнит 55, 54, имеет периферийный кожух 47, являющийся наружным относительно упомянутой стойки и выполненный из немагнитного металла. Этот кожух 47 обеспечивает механическое соединение, например, путем стягивания, заднего 43, 44 и переднего 45, 46 участков, а также магнита 54, 55, которые вместе образуют стойку, соответственно 42', 41'. Магнит 54, 55 удерживается в контакте с задним 43, 44 и передним 45, 46 участками соответственно.
В примере, показанном на фиг.5А и 5В, имеется 8 периферийных стоек 42', которые, как и в варианте выполнения, описанном со ссылками на фиг.3А и 3В, содержат постоянные магниты 54. Точно так же центральная стойка 41' содержит задний участок 44 из мягкого магнитного материала, постоянный магнит 55 из редкоземельного элемента и передний участок 46 из мягкого магнитного материала, при этом на переднем участке 46 установлен магнитный полюс 49. Кожух 47 обеспечивает механическое соединение элементов, вместе образующих стойку 42' или 41', а также удержание участков 43, 45 магнитного сердечника и постоянного магнита 54 в коаксиальном положении.
В этом варианте выполнения ни вокруг центральной стойки 41', ни вокруг периферийных стоек 42', содержащих постоянный магнит 54, не выполняют индукционной катушки.
В этом третьем варианте выполнения центральная стойка 41' содержит постоянный магнит 55, и все периферийные стойки 42' содержат постоянный магнит 54.
Во всех вариантах выполнения настоящего изобретения мощность магнитов регулируют таким образом, чтобы магнитное поле имело свое оптимальное значение в заданном диапазоне рабочей температуры реактивного двигателя.
В случае вариантов выполнения, содержащих катушки 51 и/или 52, мощность магнитов дополнительно регулируют таким образом, чтобы число витков было минимальным.

Claims (10)

1. Плазменный реактивный двигатель с гальваномагнитным эффектом Холла, имеющий продольную ось OO', по существу параллельную направлению реактивного движения, определяющему переднюю часть и заднюю часть, содержащий
главный кольцевой канал (3) ионизации и ускорения, выполненный из огнеупорного материала, окруженный двумя круговыми магнитными полюсами (63, 64), при этом кольцевой канал (3) выполнен открытым с переднего конца;
газораспределительный кольцевой анод (1), в который из газораспределительных каналов поступает газ и который содержит проходы для прохождения этого газа в кольцевой канал (3), при этом упомянутый кольцевой анод (1) установлен внутри канала (3) в задней части этого канала (3);
по меньшей мере, один полый катод (2), расположенный снаружи кольцевого канала (3) и рядом по отношению к нему;
магнитный контур (40), содержащий передние полюсные концы (49, 48), предназначенный для создания радиального магнитного поля в передней части кольцевого канала (3) между этими полюсными концами (49, 48), при этом данный контур (40) выполнен в виде задней плиты (4), от которой в переднюю сторону параллельно оси OO' отходят центральная стойка (41), расположенная в центре кольцевого канала (3), два круговых цилиндрических полюса (63, 64) по обе стороны от кольцевого канала (3) и периферийные стойки (42), расположенные снаружи и смежно относительно кольцевого канала (3),
отличающийся тем, что, по меньшей мере, одна из стоек (42', 41') магнитного контура (40) содержит постоянный магнит (54, 55).
2. Плазменный реактивный двигатель по п.1, отличающийся тем, что часть стоек (41', 42') магнитного контура (40) содержит постоянный магнит (55, 54), и тем, что другая часть стоек (41, 42) магнитного контура (40) не содержит постоянный магнит.
3. Плазменный реактивный двигатель по п.1, отличающийся тем, что каждая стойка (41', 42') магнитного контура, содержащая постоянный магнит (55, 54), имеет задний участок (43, 44), контактирующий с задней плитой (4), передний участок (45, 46) с установленным на нем магнитным полюсом (49, 48) и центральный участок, смежный с задним участком (43, 44) и с передним участком (45, 46) и образованный упомянутым постоянным магнитом (55, 54).
4. Плазменный реактивный двигатель по п.3, отличающийся тем, что кожух (47) выполнен на каждой стойке (41', 42') магнитного контура (40), содержащей упомянутый постоянный магнит (55, 54).
5. Плазменный реактивный двигатель по п.1, отличающийся тем, что индукционную катушку (51, 52) наматывают вокруг стоек (42, 41), не содержащих постоянных магнитов.
6. Плазменный реактивный двигатель по п.1, отличающийся тем, что вокруг стоек (41', 42') магнитного контура (40), содержащих постоянный магнит (55, 54), не выполняют индукционной катушки.
7. Плазменный реактивный двигатель по п.1, отличающийся тем, что периферийные стойки (42, 42') расположены согласно симметрии вращения вокруг оси OO'.
8. Плазменный реактивный двигатель по п.1, отличающийся тем, что каждая из периферийных стоек (42') содержит постоянный магнит (54), тем, что центральную стойку (41) выполняют из магнитного материала, и тем, что вокруг упомянутой центральной стойки (41) выполняют индукционную катушку (51).
9. Плазменный реактивный двигатель по п.1, отличающийся тем, что центральная стойка (41') содержит постоянный магнит (55), тем, что периферийные стойки (42) выполняют только из магнитного материала, и тем, что вокруг каждой из упомянутых периферийных стоек (42) выполняют индукционную катушку (52).
10. Плазменный реактивный двигатель по п.1, отличающийся тем, что центральная стойка (41') содержит постоянный магнит (55), и тем, что все периферийные стойки (42') содержат постоянный магнит (54).
RU2005103228/06A 2002-07-09 2003-07-07 Плазменный реактивный двигатель с гальваномагнитным эффектом холла RU2319040C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/08612 2002-07-09
FR0208612A FR2842261A1 (fr) 2002-07-09 2002-07-09 Propulseur plasmique a effet hall

Publications (2)

Publication Number Publication Date
RU2005103228A RU2005103228A (ru) 2005-10-27
RU2319040C2 true RU2319040C2 (ru) 2008-03-10

Family

ID=29763672

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005103228/06A RU2319040C2 (ru) 2002-07-09 2003-07-07 Плазменный реактивный двигатель с гальваномагнитным эффектом холла

Country Status (9)

Country Link
US (1) US7543441B2 (ru)
EP (1) EP1520104B1 (ru)
AT (1) ATE394596T1 (ru)
AU (1) AU2003263268A1 (ru)
DE (1) DE60320795D1 (ru)
ES (1) ES2306893T3 (ru)
FR (1) FR2842261A1 (ru)
RU (1) RU2319040C2 (ru)
WO (1) WO2004007957A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2527267C2 (ru) * 2009-05-20 2014-08-27 Снекма Плазменный реактивный двигатель на основе эффекта холла

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7624566B1 (en) * 2005-01-18 2009-12-01 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Magnetic circuit for hall effect plasma accelerator
FR2919755B1 (fr) 2007-08-02 2017-05-05 Centre Nat De La Rech Scient (C N R S ) Dispositif d'ejection d'electrons a effet hall
US20100146931A1 (en) * 2008-11-26 2010-06-17 Lyon Bradley King Method and apparatus for improving efficiency of a hall effect thruster
CN102575543B (zh) * 2009-10-09 2014-10-29 丰田自动车株式会社 内燃机的排气净化装置
US8468794B1 (en) * 2010-01-15 2013-06-25 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Electric propulsion apparatus
CN104033346B (zh) * 2014-06-25 2016-08-24 哈尔滨工业大学 一种具有通道磁场引导结构的多级会切磁场等离子体推力器
CN105156290A (zh) * 2015-07-13 2015-12-16 兰州空间技术物理研究所 一种新型三环混合电推力器
CN105003408B (zh) * 2015-07-16 2018-05-08 兰州空间技术物理研究所 一种离子与霍尔混合型电推力器
FR3053784B1 (fr) * 2016-07-07 2020-01-17 Airbus Defence And Space Sas Procedes de determination et de regulation de la temperature d’un propulseur electrique
CN109779865B (zh) * 2019-03-14 2024-04-19 南华大学 永磁霍尔推力器点火装置
CN110594115B (zh) * 2019-10-17 2020-12-11 大连理工大学 一种无放电阴极的环型离子推力器
CN113202706A (zh) * 2021-04-25 2021-08-03 上海宇航系统工程研究所 一种用于geo轨道卫星的霍尔电推进系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463408A3 (en) * 1990-06-22 1992-07-08 Hauzer Techno Coating Europe Bv Plasma accelerator with closed electron drift
US5359258A (en) * 1991-11-04 1994-10-25 Fakel Enterprise Plasma accelerator with closed electron drift
US5646476A (en) * 1994-12-30 1997-07-08 Electric Propulsion Laboratory, Inc. Channel ion source
US5763989A (en) * 1995-03-16 1998-06-09 Front Range Fakel, Inc. Closed drift ion source with improved magnetic field
RU2084085C1 (ru) * 1995-07-14 1997-07-10 Центральный научно-исследовательский институт машиностроения Ускоритель с замкнутым дрейфом электронов
RU2092983C1 (ru) * 1996-04-01 1997-10-10 Исследовательский центр им.М.В.Келдыша Плазменный ускоритель
FR2743191B1 (fr) * 1995-12-29 1998-03-27 Europ Propulsion Source d'ions a derive fermee d'electrons
FR2782884B1 (fr) * 1998-08-25 2000-11-24 Snecma Propulseur a plasma a derive fermee d'electrons adapte a de fortes charges thermiques

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2527267C2 (ru) * 2009-05-20 2014-08-27 Снекма Плазменный реактивный двигатель на основе эффекта холла

Also Published As

Publication number Publication date
US20060010851A1 (en) 2006-01-19
WO2004007957A3 (fr) 2004-05-13
WO2004007957A2 (fr) 2004-01-22
EP1520104A2 (fr) 2005-04-06
FR2842261A1 (fr) 2004-01-16
RU2005103228A (ru) 2005-10-27
ATE394596T1 (de) 2008-05-15
DE60320795D1 (de) 2008-06-19
ES2306893T3 (es) 2008-11-16
EP1520104B1 (fr) 2008-05-07
AU2003263268A1 (en) 2004-02-02
US7543441B2 (en) 2009-06-09

Similar Documents

Publication Publication Date Title
US5475354A (en) Plasma accelerator of short length with closed electron drift
RU2319040C2 (ru) Плазменный реактивный двигатель с гальваномагнитным эффектом холла
EP0800196B1 (en) A hall effect plasma accelerator
US10269526B2 (en) Hall current plasma source having a center-mounted cathode or a surface-mounted cathode
US7164227B2 (en) Hall effect thruster with anode having magnetic field barrier
CA2142607A1 (en) A plasma accelerator of short length with closed electron drift
RU2344577C2 (ru) Плазменный ускоритель с закрытым дрейфом электронов
US9297368B1 (en) Multi-thruster propulsion apparatus
CN107313910B (zh) 一种霍尔推力器用阳极磁屏一体化结构
RU2510543C2 (ru) Устройство выброса ионов на эффекте холла
JPH05240143A (ja) クローズド電子ドリフトを備えたプラズマ加速器
CN111622912A (zh) 一种调节导磁柱霍尔推力器磁分界面形态的磁路设计方法
US20170159648A1 (en) External Discharge Hall Thruster
JP2007071055A (ja) 磁場集中構造を有する磁気回路を備えたホールスラスタ
EP2082133B1 (en) Low-power hall thruster
WO1997037517A2 (en) A hall effect plasma accelerator
US7808353B1 (en) Coil system for plasmoid thruster
EP1538333B1 (en) Multichannel hall effect thruster
CN113404658B (zh) 一种自中和射频离子推力器
EP2414674B1 (en) Plasma thrusters
CN115681052B (zh) 霍尔推力器、具有其的设备及其使用方法
WO2018112184A1 (en) High-efficiency ion discharge method and apparatus
JP2002504968A (ja) ホール効果プラズマスラスター
JPS62174575A (ja) 電子衝撃型イオン・スラスタ

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130708