EP1520104B1 - Propulseur plasmique a effet hall - Google Patents

Propulseur plasmique a effet hall Download PDF

Info

Publication number
EP1520104B1
EP1520104B1 EP03763933A EP03763933A EP1520104B1 EP 1520104 B1 EP1520104 B1 EP 1520104B1 EP 03763933 A EP03763933 A EP 03763933A EP 03763933 A EP03763933 A EP 03763933A EP 1520104 B1 EP1520104 B1 EP 1520104B1
Authority
EP
European Patent Office
Prior art keywords
permanent magnet
arms
plasma thruster
magnetic circuit
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03763933A
Other languages
German (de)
English (en)
Other versions
EP1520104A2 (fr
Inventor
Vladimir Cagan
Patrice Renaudin
Marcel Guyot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National dEtudes Spatiales CNES
Original Assignee
Centre National dEtudes Spatiales CNES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National dEtudes Spatiales CNES filed Critical Centre National dEtudes Spatiales CNES
Publication of EP1520104A2 publication Critical patent/EP1520104A2/fr
Application granted granted Critical
Publication of EP1520104B1 publication Critical patent/EP1520104B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/0062Electrostatic ion thrusters grid-less with an applied magnetic field
    • F03H1/0075Electrostatic ion thrusters grid-less with an applied magnetic field with an annular channel; Hall-effect thrusters with closed electron drift

Definitions

  • the invention lies in the field of plasma thrusters, in particular Hall effect.
  • Such engines may for example be used in space for example to maintain a satellite in geostationary orbit, or to transfer a satellite between two orbits, or to compensate for drag forces on satellites in low orbit, or again for missions requiring low thrust over very long times such as during an interplanetary mission.
  • thrusters are known and have already been described, for example in the patent US-A-6,281,622 , or in the patent US5,359,258 .
  • the figure 1 represents an axial section of an example of such a propellant
  • the figure 2 is a perspective view from the rear of said propeller example.
  • the thruster has substantially a form of revolution about an axis OO '.
  • the cutting plan of the figure 1 includes this axis OO '.
  • a forward or reverse downstream direction in the axial direction is indicated by arrows E substantially representing the direction of an electric field created by the combination of an annular anode 1 placed at the rear of an annular channel 3 and a cathode 2 placed substantially in front of the annular channel 3, outside thereof and adjacent thereto.
  • the arrangement of the cathode 2 thus allows to create with the anode 1 an electric field oriented substantially in the axial direction OO ', while being outside the jet propulsion.
  • this cathode is in general, as shown figure 2 , doubled by a second redundant cathode.
  • the annular anode 1 has an annular bottom placed concentrically with the annular channel 3. This bottom has passages, for example in the form of through holes for the passage of a gas that can be ionized, for example xenon.
  • the thruster comprises a magnetic circuit 40 of ferro-magnetic material consisting of a plate 4 perpendicular to the axis OO 'of the thruster, a central arm 41 having axis axis OO', two circular cylindrical poles 63 and 64 having as their axis OO axis and outer peripheral arms 42, arranged in a symmetry of revolution about the axis OO ', outside the annular channel 3.
  • the peripheral arms 42 can be 2, 3, 4 or moreover, or be constituted by a single annular arm.
  • the central arm 41 is finished at its Upstream end by a central magnetic pole 49, and each of the outer peripheral arms 42, is terminated at its upstream end by a magnetic pole 48
  • the magnetic poles 48 are constituted by plates substantially perpendicular to the axial direction OO '. They can, as described in column 5 lines 51-62 of the patent US 6,281,622 already cited, be inclined for example between - 15 and +15 degrees with respect to a plane perpendicular to the axis OO '.
  • a central coil 51 centered on the central arm 41, and peripheral coils 52 wound around the outer magnetic arms 42 can create magnetic field lines joining the central pole 49 to the peripheral poles 48 and the pole 63 to the pole 64.
  • the field magnetic in the annular channel is thus substantially perpendicular to the axis OO '.
  • This direction of the magnetic field in the annular channel 3 is materialized, figure 1 By means of arrows M.
  • the magnetic field lines are not all parallel to each other.
  • the annular channel 3 is physically delimited by inner and outer annular walls 61, 62 respectively, both centered on the axis OO '. These walls are made of a refractory material as resistant as possible to ablation.
  • Electrons emitted by the cathode 2 go towards the anode 1 from upstream to downstream of the annular channel 3. Part of these electrons are trapped in the annular channel 3 by the inter-polar magnetic field. Shocks between electrons and gas molecules contribute to ionize the gas introduced into the channel 3 through the anode 1. The mixture of ions and electrons then constitutes a self-maintained ionized plasma. The ions are ejected downstream under the effect of the electric field, thus creating a thrust of the engine directed upstream. The jet is electrically neutralized by electrons from the cathode 2.
  • the ejection speed of the ions is of the order of 5 times higher than the ejection speed that can be obtained with chemical thrusters. It follows that with a much smaller ejected mass, improved thrust efficiency can be achieved.
  • the supply of the reels for creating the magnetic field requires a power supply generally consisting of solar panels.
  • the invention aims at a plasma thruster having, for the same thrust, a reduced consumption of electric current and therefore a decreased mass of electrical generators, a reduced mass and bulk. magnetic circuit, increased reliability and finally a reduced production cost.
  • the magnetic field creation coils have a reduced number of coils wound in special high temperature wire.
  • This reduced number of wound turns has the following advantages. Losses by Joule effect are reduced, which As a result of the reduction of the booster heating, the reliability of the thruster is increased because the special high temperature wire is fragile.
  • the total mass of the magnetic field producing elements is reduced, because of the reduction in the number of turns and the correlative bulk of the magnetic circuit.
  • the cost of production is reduced because the high temperature special wire is expensive, and because the coils whose role is then limited to a simple adjustment of the value of the magnetic field are simplified.
  • the thruster is also lightened by reducing the mass of power supplies made possible by the decrease in power consumption.
  • the invention relates to a Hall effect plasma thruster having the features of claim 1.
  • part of the arms of the magnetic circuit comprises a permanent magnet and another part of the arms of the magnetic circuit does not include permanent magnets.
  • all the arms of the magnetic circuit comprise a permanent magnet.
  • the magnetic circuit comprises an inductive coil it is wrapped around an arm having no permanent magnet.
  • No inductor coil is housed around the arms of the magnetic circuit having a permanent magnet.
  • circuits differ from the prior art in that one or more arms of the circuit comprise permanent magnets, for example rare earth elements.
  • This feature makes it possible to reduce the number of turns of the induction coils, possibly to suppress these coils or a part of these coils.
  • the reduction in the size of the coils that results from this modification makes it possible to reduce the transverse dimension of the magnetic circuit since the thickness of the coils to be housed can be reduced. It also reduces the axial dimension which is often determined by the number of turns to be housed around the central arm. It thus becomes possible to limit the axial length of the thruster to the minimum length of the ionization chamber.
  • an upstream plate 4 made of a soft magnetic material, placed perpendicularly to an axis OO 'of the circuit 40.
  • This plate is completed by a central arm 41 of cylindrical shape having as its axis the axis OO', by circular cylindrical poles 63 and 64 having axis axis OO ', arranged on either side of an annular channel 3 and by peripheral arms 42, 42' disposed in a symmetry of revolution about the axis OO 'outside the ring channel 3.
  • peripheral arms 42 there are four peripheral arms 42.
  • the number of arms can be different. He may in particular be greater than 4, as shown figure 5 A and B where this number is 8, due to the decrease in size resulting from the suppression or reduction of the size of the induction coils.
  • Each of the arms 41, 42 is terminated in its upstream part by a magnetic pole referenced 49 for the pole of the central arm 41 and 48 for each of the poles of the peripheral arms 42.
  • Each pole 49, 48 terminating an arm 41, 42 respectively, is arranged perpendicularly to the axis of said arm. The angle of inclination of the poles may be different as described in connection with the description of the prior art.
  • At least one of the arms comprises a permanent magnet constituting part of the axial length of the arm.
  • the arms comprising a permanent magnet carry the reference 41 'when it comes to the central arm and 42' when it is a peripheral arm.
  • the permanent magnet is referenced 54 when it is incorporated in a peripheral arm 42 'and 55 when incorporated in the central arm 41'.
  • all the peripheral arms 42 'thus consist of the downstream upstream of a downstream portion 43 of soft magnetic material in contact with the downstream plate 4, a rare earth magnet 54, an upstream portion 45 in soft magnetic material, this upstream portion 45 carrying the magnetic pole 48. It can be seen that a central portion of the arm adjacent to the downstream portion 43 and to the upstream portion 45 is constituted by said permanent magnet 54.
  • the central arm 41 is entirely of soft magnetic material.
  • a central coil 51 made as in the prior art by a special high temperature wire, comprising a metal sheath around a central conductor, allows adjustment of the inter-polar magnetic field. In this configuration no peripheral induction coil is arranged around the peripheral arms 42 '.
  • the peripheral arms 42 'each comprise a permanent magnet 54, and the central arm 41 is made solely of magnetic material, an inductor coil 51 being housed around said central arm 41.
  • peripheral arms 42 are made entirely of soft magnetic material.
  • An induction coil 52 is arranged around each of the arms 42.
  • the central arm 41 ' has a downstream portion 44 of soft magnetic material, a permanent magnet rare earth 55, and an upstream portion 46 of soft magnetic material, this upstream portion 46 carrying the magnetic pole 49.
  • the central arm 41 comprises a permanent magnet 55
  • the peripheral arms 42 are made only of material magnetic and an inductor coil 52 is housed around each of said peripheral arms 42.
  • Each of the arms 41 'or 42' comprising a permanent magnet 55, 54, respectively, comprises a peripheral jacket 47, external to said arm, of non-magnetic metal.
  • This sleeve 47 can mechanically hold together, for example by clamping, the downstream portions 43, 44, upstream 45, 46 and the magnet 54, 55 together forming an arm 42 '41' respectively.
  • the magnet 54, 55 is held in contact with the downstream portions 43, 44 and upstream 45, 46 respectively.
  • peripheral arms 42 ' which comprise, as in the embodiment described in connection with the Figures 3 A and B permanent magnets 54.
  • the central arm 41 ' has a downstream portion 44 of soft magnetic material, a permanent magnet rare earth 55, and an upstream portion 46 of soft magnetic material, this upstream portion 46 carrying the magnetic pole 49 A liner 47 provides mechanical cohesion of the parts together forming an arm 42 'or 41' and ensures that the magnetic core portions 43, 45 and the permanent magnet 54 are held coaxial.
  • the central arm 41 ' comprises a permanent magnet 55, and all the peripheral arms 42' comprise a permanent magnet 54.
  • the power of the magnets is adjusted so that the magnetic field has its optimum value in the expected range of operating temperature of the thruster.
  • the power of the magnets is further adjusted so that the number of turns is minimal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma Technology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)

Description

    DOMAINE TECHNIQUE
  • L'invention se situe dans le domaine des propulseurs plasmiques en particulier à effet Hall.
  • De tels moteurs peuvent par exemple être utilisés dans l'espace par exemple pour maintenir un satellite en orbite géostationnaire, ou pour opérer un transfert d'un satellite entre deux orbites, ou pour compenser des forces de traînée sur des satellites en orbite basse, ou encore pour les missions nécessitant des poussée faibles sur des temps très longs comme lors d'une mission interplanétaire.
  • ETAT DE LA TECHNIQUE ANTERIEURE
  • De tels propulseurs sont connus et ont déjà fait l'objet de descriptions, par exemple dans le brevet US-A 6,281,622 , ou encore dans le brevet US 5,359,258 .
  • La structure détaillée de tels propulseurs est décrite dans ces deux documents. Il sera utilisé ci-après en liaison avec les figures 1 et 2 un schéma simplifié d'une telle structure. Ce schéma est destiné plus particulièrement à donner des explications sur le fonctionnement d'un tel propulseur.
  • La figure 1 représente une coupe axiale d'un exemple d'un tel propulseur, et la figure 2 représente une vue en perspective vue de l'arrière dudit exemple de propulseur.
  • Le propulseur présente sensiblement une forme de révolution autour d'un axe OO'. Le plan de coupe de la figure 1 comporte cet axe OO'. Une direction arrière avant ou aval amont dans la direction axiale est matérialisée par des flèches E représentant sensiblement la direction d'un champ électrique créé par l'association d'une anode annulaire 1 placée à l'arrière d'un canal annulaire 3 et d'une cathode 2 placée sensiblement à l'avant du canal annulaire 3, à l'extérieur de celui-ci et de façon adjacente à celui-ci. La disposition de la cathode 2 permet ainsi de créer avec l'anode 1 un champ électrique orienté sensiblement selon la direction axiale OO', tout en étant en dehors du jet de propulsion. Pour des raisons de fiabilité, cette cathode est en général, comme représenté figure 2, doublée par une seconde cathode redondante. L'anode annulaire 1 présente un fond annulaire placé concentriquement au canal annulaire 3. Ce fond comporte des passages, par exemple sous forme de trous traversants permettant le passage d'un gaz qui peut être ionisé, par exemple du xénon.
  • Le propulseur comporte un circuit magnétique 40 en matériaux ferro magnétique constitué par une plaque 4 perpendiculaire à l'axe OO' du propulseur, un bras central 41 ayant pour axe l'axe OO', deux pôles cylindriques circulaires 63 et 64 ayant pour axe l'axe OO' et des bras périphériques extérieurs 42, disposés selon une symétrie de révolution autour de l'axe OO', à l'extérieur du canal annulaire 3. Les bras périphériques 42, peuvent être au nombre de 2, 3, 4 ou d'avantage, ou encore être constitués par un bras annulaire unique. Le bras central 41 est terminé à son extrémité amont par un pôle magnétique central 49, et chacun des bras périphériques extérieurs 42, est terminé à son extrémité amont par un pôle magnétique 48 Les pôles magnétiques 48 sont constitués par des plaques sensiblement perpendiculaires à la direction axiale OO'. Ils peuvent, comme décrit colonne 5 lignes 51-62 du brevet US 6,281,622 déjà cité, être inclinés par exemple entre - 15 et +15 degrés par rapport à un plan perpendiculaire à l'axe OO'. Une bobine centrale 51 centrée sur le bras central 41, et des bobines périphériques 52 enroulées autour des bras magnétiques extérieurs 42 permettent de créer des lignes de champ magnétique joignant le pôle central 49 aux pôles périphériques 48 et le pôle 63 au pôle 64. Le champ magnétique dans le canal annulaire est ainsi sensiblement perpendiculaire à l'axe OO'. Cette direction du champ magnétique dans le canal annulaire 3 est matérialisée, figure 1, par des flèches M. Naturellement, de façon connue, dans le canal annulaire les lignes de champ magnétique ne sont pas toutes parallèles entre elles. Le canal annulaire 3 est matériellement délimité par des parois annulaires interne et externe 61, 62 respectivement, centrées toutes deux sur l'axe OO'. Ces parois sont constituées par un matériau réfractaire aussi résistant que possible à l'ablation.
  • Le modèle théorique de fonctionnement d'un tel propulseur n'est pas encore parfaitement maîtrisé. Il est cependant admis que le fonctionnement peut sensiblement être expliqué comme suit. Des électrons émis par la cathode 2, se dirigent vers l'anode 1 de l'amont vers l'aval du canal annulaire 3. Une partie de ces électrons est piégée dans le canal annulaire 3 par le champ magnétique inter polaire. Les chocs entre électrons et molécules gazeuses contribuent à ioniser le gaz introduit dans le canal 3 au travers de l'anode 1. Le mélange d'ions et d'électrons constitue alors un plasma ionisé auto entretenu. Les ions sont éjectés vers l'aval sous l'effet du champ électrique, créant ainsi une poussée du moteur dirigée vers l'amont. Le jet est électriquement neutralisée par des électrons provenant de la cathode 2.
  • La vitesse d'éjection des ions est de l'ordre de 5 fois supérieure à la vitesse d'éjection que l'on peut obtenir avec des propulseurs chimiques. Il s'en suit qu'avec une masse éjectée bien moindre on peut obtenir une efficacité de poussée améliorée.
  • L'alimentation des bobines de création du champ magnétique nécessite une alimentation électrique constituée en général à partir de panneaux solaires.
  • Le document US-A-5 838 120 décrit un propulseur plasmique comprenant les caractéristiques du préambule de la revendication 1.
  • Le document US-A-5 763 989 divulgue un propulseur plasmique à canal annulaire. Le circuit magnétique de ce propulseur est constitué d'aimants permanents.
  • EXPOSÉ DE L'INVENTION
  • Par rapport à l'état de la technique qui vient d'être décrit, l'invention vise un propulseur plasmique ayant pour une même poussée, une consommation réduite de courant électrique et donc une masse diminuée de générateurs électriques, une masse et un encombrement diminués du circuit magnétique, une fiabilité accrue et enfin un coût de production réduit.
  • Selon l'invention les bobines de création de champ magnétique ont un nombre réduit de spires bobinées en fil spécial haute température. Ce nombre réduit de spires bobinées entraîne les avantages ci-après. Les pertes par effet Joule sont réduites, ce qui a pour conséquence une réduction de l'échauffement du propulseur, la fiabilité du propulseur est augmentée car le fil spécial haute température est fragile. La masse totale des éléments producteurs de champ magnétique est diminuée, du fait de la réduction du nombre de spires et de l'encombrement corrélatif du circuit magnétique. Le coût de production est diminué car le fil spécial haute température est onéreux, et parce que les bobines dont le rôle se limite alors à un simple ajustement de la valeur du champ magnétique sont simplifiées. Enfin le propulseur est allégé également par la réduction de la masse des alimentations électriques rendue possible par la diminution de la consommation du courant.
  • A toute ces fins l'invention est relative à un propulseur plasmique à effet Hall présentant les caractéristiques de la revendication 1.
  • Dans un mode de réalisation une partie des bras du circuit magnétique comporte un aimant permanent et une autre partie des bras du circuit magnétique ne comporte pas d'aimants permanents.
  • Dans un autre mode de réalisation, tous les bras du circuit magnétique comportent un aimant permanent.
  • Lorsque le circuit magnétique comporte une bobine inductrice celle ci est enroulée autour d'un bras ne comportant pas d'aimant permanent.
  • Aucune bobine inductrice n'est logée autour des bras du circuit magnétique comportant un aimant permanent.
  • BRÈVE DESCRIPTION DES DESSINS
  • Des modes de réalisation de l'invention seront maintenant décrits à titre d'exemple non limitatifs, en conjonction avec les dessins annexés.
    • Les figures 1 et 2 déjà commentées représentent respectivement une coupe axiale, et une vue en perspective vue de l'arrière d'un exemple de réalisation d'un propulseur plasmique selon l'art antérieur.
    • La figure 3A représente une coupe axiale d'un premier exemple de circuit magnétique d'un propulseur plasmique selon l'invention, coupe effectuée selon la ligne CD de la figure 3B.
    • La figure 3B représente une coupe transversale du premier exemple de circuit magnétique d'un propulseur plasmique selon l'invention, coupe effectuée selon la ligne AB de la figure 3A.
    • La figure 4A représente une coupe axiale d'un second exemple de circuit magnétique d'un propulseur plasmique selon l'invention, coupe effectuée selon la ligne CD de la figure 4B.
    • La figure 4B représente une coupe transversale du second exemple de circuit magnétique d'un propulseur plasmique selon l'invention, coupe effectuée selon la ligne AB de la figure 4A.
    • La figure 5A représente une coupe axiale d'un troisième exemple de circuit magnétique d'un propulseur plasmique selon l'invention, coupe effectuée selon la ligne CD de la figure 5B.
    • La figure 5B représente une coupe transversale du troisième exemple de circuit magnétique d'un propulseur plasmique selon l'invention, coupe effectuée selon la ligne AB de la figure 5A.
    EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
  • Dans les modes de réalisation qui vont être décrits ci-après, seul le circuit magnétique d'un propulseur selon l'invention est décrit. Ces circuits assurent les mêmes fonctions que les circuits magnétiques connus et sont disposés de façon similaire.
  • Ces circuits diffèrent de l'art antérieur par le fait que un ou plusieurs bras du circuit comportent des aimants permanents, par exemple en terres rares. Cette caractéristique permet de réduire le nombre de spires des bobines d'induction, éventuellement jusqu'à supprimer ces bobines ou une partie de ces bobines. La diminution de l'encombrement des bobines qui résulte de cette modification permet de réduire la dimension transversale du circuit magnétique puisque l'épaisseur des bobines à loger peut être réduite. Elle permet également de diminuer la dimension axiale qui est souvent déterminée en fonction du nombre de spires à loger autour du bras central. Il devient ainsi possible de limiter la longueur axiale du propulseur à la longueur minimale de la chambre d'ionisation.
  • Chacun des modes de réalisation de circuit magnétique 40 décrit en liaison avec les figures 3, 4 et 5A et B comporte comme dans l'art antérieur décrit en liaison avec les figures 1 et 2, une plaque amont 4, en matériau magnétique doux, placée perpendiculairement à un axe OO' du circuit 40. Cette plaque est complétée par un bras central 41 de forme cylindrique ayant pour axe l'axe OO', par des pôles cylindriques circulaires 63 et 64 ayant pour axe l'axe OO', disposés de part et d'autre d'un canal annulaire 3 et par des bras périphériques 42, 42' disposés selon une symétrie de révolution autour de l'axe OO' à l'extérieur du canal annulaire 3. Sur les figures 3A et B et 4 A et B il y a quatre bras périphériques 42. Naturellement le nombre de bras peut être différent. Il pourra en particulier être supérieur à 4, comme représenté figure 5 A et B où ce nombre est de 8, en raison de la diminution d'encombrement résultant de la suppression ou de la réduction de la taille des bobines d'induction.
  • Chacun des bras 41, 42 est terminé dans sa partie amont par un pôle magnétique référencé 49 pour le pôle du bras central 41 et 48 pour chacun des pôles des bras périphériques 42. Chaque pôles 49, 48 terminant un bras 41, 42 respectivement, est disposé perpendiculairement à l'axe dudit bras. L'angle d'inclinaison des pôles peut être différent comme décrit en liaison avec la description de l'art antérieur.
  • L'accroissement du nombre de bras périphériques distincts apporte une amélioration de la symétrie circulaire du champ magnétique, entre le pôle central 49 et les pôles périphériques 48.
  • Contrairement à l'art antérieur décrit, au moins l'un des bras comporte un aimant permanent constituant une partie de la longueur axiale du bras. Les bras comportant un aimant permanent portent la référence 41' lorsqu'il s'agit du bras central et 42' lorsqu'il s'agit d'un bras périphérique. Dans les figures 3, 4, 5 A et B l'aimant permanent est référencé 54 lorsqu'il est incorporé à un bras périphérique 42' et 55 lorsqu'il est incorporé au bras central 41'.
  • Dans l'exemple représenté figures 3 A et B, tous les bras périphériques 42' sont ainsi constitués de l'aval vers l'amont d'une partie aval 43 en matériau magnétique doux en contact avec la plaque aval 4, d'un aimant en terre rare 54, d'une partie amont 45 en matériau magnétique doux, cette partie amont 45 portant le pôle magnétique 48. On voit qu'une partie centrale du bras adjacente à la partie aval 43 et à la partie amont 45 est constituée par ledit aimant permanent 54.
  • Dans l'exemple représenté figure 3 A et B le bras central 41 est entièrement en matériau magnétique doux. Une bobine centrale 51 réalisée comme dans l'art antérieur par un fil spécial haute température, comportant une gaine métallique autour d'un conducteur central, permet un ajustement du champ magnétique inter polaire. Dans cette configuration aucune bobine périphérique d'induction n'est disposée autour des bras périphériques 42'.
  • Ainsi dans ce premier exemple de réalisation, les bras périphériques 42' comportent chacun un aimant permanent 54, et le bras central 41 est réalisé uniquement en matériau magnétique, une bobine inductrice 51 étant logée autour dudit bras central 41.
  • Dans l'exemple représenté figures 4 A et B, tous les bras périphériques 42 sont constitués entièrement en matériau magnétique doux. Une bobine d'induction 52 est disposée autour de chacun des bras 42. Par contre le bras central 41' comporte une partie aval 44 en matériau magnétique doux, un aimant permanent en terre rare 55, et une partie amont 46 en matériau magnétique doux, cette partie amont 46 portant le pôle magnétique 49.
  • Dans cette configuration aucune bobine centrale d'induction n'est disposée autour du bras central 41.
  • Dans ce second mode de réalisation, le bras central 41' comporte un aimant permanent 55, les bras périphériques 42 sont réalisés uniquement en matériau magnétique et une bobine inductrice 52 est logée autour de chacun desdits bras périphériques 42.
  • Chacun des bras 41' ou 42' comportant un aimant permanent 55, 54 respectivement, comporte une chemise périphérique 47, extérieure au dit bras, en métal non magnétique. Cette chemise 47 permet de tenir mécaniquement assemblés, par exemple par serrage, les parties aval 43, 44, amont 45, 46 ainsi que l'aimant 54, 55 constituant ensemble un bras 42' 41' respectivement. L'aimant 54, 55 est maintenu au contact des parties aval 43, 44 et amont 45, 46 respectivement.
  • Dans l'exemple représenté figures 5 A et B, il y a 8 bras périphériques 42' qui comportent comme dans le mode de réalisation décrit en liaison avec les figures 3 A et B des aimants permanents 54. De même, le bras central 41' comporte une partie aval 44 en matériau magnétique doux, un aimant permanent en terre rare 55, et une partie amont 46 en matériau magnétique doux, cette partie amont 46 portant le pôle magnétique 49. Une chemise 47 assure la cohésion mécanique des parties constituant ensemble un bras 42' ou 41' et assure que les parties de noyau magnétique 43, 45 et l'aimant permanent 54 sont maintenus coaxiaux.
  • Dans cette configuration aucune bobine centrale d'induction n'est disposée autour du bras central 41' ni autour des bras périphériques 42' comportant un aimant permanent 54.
  • Dans cette troisième configuration, le bras central 41' comporte un aimant permanent 55, et tous les bras périphériques 42' comportent un aimant permanent 54.
  • Dans toutes les configurations de l'invention, la puissance des aimants est ajustée de façon à ce que le champ magnétique ait sa valeur optimale dans la gamme envisagée de température de fonctionnement du propulseur.
  • Dans le cas des configurations comportant des bobines 51 et/ou 52, la puissance des aimants est de plus ajustée de façon à ce que le nombre de spire soit minimal.

Claims (9)

  1. Propulseur plasmique à effet Hall ayant un axe longitudinal OO' sensiblement parallèle à une direction de propulsion définissant une partie amont et une partie avale, et comportant :
    - un canal annulaire (3) principal d'ionisation et d'accélération réalisé en matériau réfractaire entouré par deux pôles magnétiques cylindriques circulaires (63, 64) le canal annulaire (3) étant ouvert à son extrémité amont,
    - une anode (1) annulaire distributrice de gaz recevant du gaz de conduits de distribution et pourvue de passages pour laisser ce gaz entrer dans le canal annulaire (3), ladite anode (1) annulaire étant placée à l'intérieur du canal (3) dans une partie aval de ce canal (3),
    - au moins une cathode (2) creusé disposée en dehors du canal annulaire (3), de façon adjacente à celui ci,
    - un circuit magnétique (40) comportant des extrémités polaires amont (49, 48) pour créer un champ magnétique radial dans une partie amont du canal annulaire (3) entre ces parties polaires (49, 48), ce circuit (40) étant constitué par une plaque aval (4), de laquelle jaillissent vers l'amont parallèlement à l'axe OO', un bras central (41), situé au centre du canal annulaire (3), deux pôles cylindriques (63, 64) circulaires de part et d'autre du canal annulaire (3) et des bras périphériques (42) situés à l'extérieur du canal annulaire (3) et adjacents à celui- ci, l'un au moins des bras (42', 41') du circuit magnétique (40) comportant un aimant permanent (54, 55),
    caractérisé en ce que chaque bras (41', 42') du circuit magnétique (40) comportant un aimant permanent (55, 54) est constitué par une partie aval (43, 44) en contact avec la plaque aval (4), une partie amont (45, 46) portant un pôle magnétique (49, 48) et une partie centrale adjacente à la partie aval (43, 44) et à la partie amont (45, 46) constituée par ledit aimant permanent (55, 54).
  2. Propulseur plasmique selon la revendication 1, caractérisé en ce que une partie des bras (41', 42') du circuit magnétique (40) comporte un aimant permanent (55, 54) et en ce que une autre partie des bras (41, 42) du circuit magnétique (40) ne comporte pas d'aimants permanents.
  3. Propulseur plasmique selon la revendication 1, caractérisé en ce que une chemise (47) est présente sur chaque bras (41', 42') du circuit magnétique (40) comportant un aimant permanent (55, 54).
  4. Propulseur plasmique selon l'une des revendications 1 à 3, caractérisé en ce que une bobine inductrice (51, 52) est enroulée autour de bras (42, 41) ne comportant pas d'aimants permanents.
  5. Propulseur plasmique selon l'une des revendications 1 à 4, caractérisé en ce que aucune bobine inductrice n'est logée autour des bras (41', 42') du circuit magnétique (40) comportant un aimant permanent (55, 54).
  6. Propulseur plasmique selon l'une des revendications 1 à 4, caractérisé en ce que les bras périphériques (42, 42') sont disposés selon une symétrie de révolution autour de l'axe OO'.
  7. Propulseur plasmique selon la revendication 1, caractérisé en ce que les bras périphériques (42') comportent chacun un aimant permanent (54), en ce que le bras central (41) est réalisé uniquement en matériau magnétique et en ce que une bobine inductrice (51) est logée autour dudit bras central (41).
  8. Propulseur plasmique selon la revendication 1, caractérisé en ce que le bras central (41') comporte un aimant permanent (55), en ce que les bras périphériques (42) sont réalisés uniquement en matériau magnétique et en ce que une bobine inductrice (52) est logée autour de chacun desdits bras périphériques (42).
  9. Propulseur plasmique selon la revendication 1, caractérisé en ce que le bras central (41') comporte un aimant permanent (55), en ce que tous les bras périphériques (42') comportent un aimant permanent (54).
EP03763933A 2002-07-09 2003-07-07 Propulseur plasmique a effet hall Expired - Lifetime EP1520104B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0208612A FR2842261A1 (fr) 2002-07-09 2002-07-09 Propulseur plasmique a effet hall
FR0208612 2002-07-09
PCT/FR2003/002100 WO2004007957A2 (fr) 2002-07-09 2003-07-07 Propulseur plasmique a effet hall

Publications (2)

Publication Number Publication Date
EP1520104A2 EP1520104A2 (fr) 2005-04-06
EP1520104B1 true EP1520104B1 (fr) 2008-05-07

Family

ID=29763672

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03763933A Expired - Lifetime EP1520104B1 (fr) 2002-07-09 2003-07-07 Propulseur plasmique a effet hall

Country Status (9)

Country Link
US (1) US7543441B2 (fr)
EP (1) EP1520104B1 (fr)
AT (1) ATE394596T1 (fr)
AU (1) AU2003263268A1 (fr)
DE (1) DE60320795D1 (fr)
ES (1) ES2306893T3 (fr)
FR (1) FR2842261A1 (fr)
RU (1) RU2319040C2 (fr)
WO (1) WO2004007957A2 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7624566B1 (en) * 2005-01-18 2009-12-01 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Magnetic circuit for hall effect plasma accelerator
FR2919755B1 (fr) 2007-08-02 2017-05-05 Centre Nat De La Rech Scient (C N R S ) Dispositif d'ejection d'electrons a effet hall
US20100146931A1 (en) * 2008-11-26 2010-06-17 Lyon Bradley King Method and apparatus for improving efficiency of a hall effect thruster
FR2945842B1 (fr) * 2009-05-20 2011-07-01 Snecma Propulseur a plasma a effet hall.
US20120180462A1 (en) * 2009-10-09 2012-07-19 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US8468794B1 (en) * 2010-01-15 2013-06-25 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Electric propulsion apparatus
CN104033346B (zh) * 2014-06-25 2016-08-24 哈尔滨工业大学 一种具有通道磁场引导结构的多级会切磁场等离子体推力器
CN105156290A (zh) * 2015-07-13 2015-12-16 兰州空间技术物理研究所 一种新型三环混合电推力器
CN105003408B (zh) * 2015-07-16 2018-05-08 兰州空间技术物理研究所 一种离子与霍尔混合型电推力器
FR3053784B1 (fr) * 2016-07-07 2020-01-17 Airbus Defence And Space Sas Procedes de determination et de regulation de la temperature d’un propulseur electrique
CN109779865B (zh) * 2019-03-14 2024-04-19 南华大学 永磁霍尔推力器点火装置
CN110594115B (zh) * 2019-10-17 2020-12-11 大连理工大学 一种无放电阴极的环型离子推力器
CN113202706A (zh) * 2021-04-25 2021-08-03 上海宇航系统工程研究所 一种用于geo轨道卫星的霍尔电推进系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463408A3 (en) * 1990-06-22 1992-07-08 Hauzer Techno Coating Europe Bv Plasma accelerator with closed electron drift
US5359258A (en) * 1991-11-04 1994-10-25 Fakel Enterprise Plasma accelerator with closed electron drift
US5646476A (en) * 1994-12-30 1997-07-08 Electric Propulsion Laboratory, Inc. Channel ion source
US5763989A (en) * 1995-03-16 1998-06-09 Front Range Fakel, Inc. Closed drift ion source with improved magnetic field
RU2084085C1 (ru) * 1995-07-14 1997-07-10 Центральный научно-исследовательский институт машиностроения Ускоритель с замкнутым дрейфом электронов
RU2092983C1 (ru) * 1996-04-01 1997-10-10 Исследовательский центр им.М.В.Келдыша Плазменный ускоритель
FR2743191B1 (fr) * 1995-12-29 1998-03-27 Europ Propulsion Source d'ions a derive fermee d'electrons
FR2782884B1 (fr) * 1998-08-25 2000-11-24 Snecma Propulseur a plasma a derive fermee d'electrons adapte a de fortes charges thermiques

Also Published As

Publication number Publication date
WO2004007957A3 (fr) 2004-05-13
ATE394596T1 (de) 2008-05-15
US20060010851A1 (en) 2006-01-19
EP1520104A2 (fr) 2005-04-06
DE60320795D1 (de) 2008-06-19
WO2004007957A2 (fr) 2004-01-22
FR2842261A1 (fr) 2004-01-16
RU2319040C2 (ru) 2008-03-10
US7543441B2 (en) 2009-06-09
RU2005103228A (ru) 2005-10-27
AU2003263268A1 (en) 2004-02-02
ES2306893T3 (es) 2008-11-16

Similar Documents

Publication Publication Date Title
EP1520104B1 (fr) Propulseur plasmique a effet hall
EP0650557B1 (fr) Moteur a plasma a derive fermee d'electrons
EP0982976B1 (fr) Propulseur à plasma à dérive fermée d'électrons adapté à de fortes charges thermiques
EP0662195B1 (fr) Moteur a plasma de longueur reduite a derive fermee d'electrons
EP3146205B1 (fr) Moteur pour engin spatial, et engin spatial comprenant un tel moteur
EP2812571B1 (fr) Propulseur a effet hall
EP2478219B1 (fr) Propulseur plasmique a effet hall
EP2179435B1 (fr) Dispositif d'ejection d'ions a effet hall
EP0914560B1 (fr) PROPULSEUR A PLASMA avec DISPOSITIF DE CONCENTRATION DE FAISCEAU D'IONS
EP1496727B1 (fr) Accélérateur à plasma à dérive fermée d'électrons
EP2433002A1 (fr) Propulseur a plasma a effet hall
EP3320208B1 (fr) Propulseur a effet hall exploitable en haute altitude
EP2710714B1 (fr) Turbine génératrice de courant électrique
EP3526472A1 (fr) Propulseur ionique à décharge plasma externe
EP3250822B1 (fr) Propulseur à effet hall et engin spatial comprenant un tel propulseur
WO2021233909A1 (fr) Circuit magnetique de creation d'un champ magnetique dans un canal annulaire principal d'ionisation et d'acceleration de propulseur plasmique a effet hall
EP0813223B1 (fr) Dispositif pour engendrer un champ magnétique et source ecr comportant ce dispositif
EP4127468A1 (fr) Bobinage inducteur pour moteur a plasma stationnaire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050104

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20061004

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60320795

Country of ref document: DE

Date of ref document: 20080619

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2306893

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080807

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

26N No opposition filed

Effective date: 20090210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081108

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080808

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120629

Year of fee payment: 10

Ref country code: IE

Payment date: 20120629

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120723

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120816

Year of fee payment: 10

Ref country code: IT

Payment date: 20120718

Year of fee payment: 10

Ref country code: DE

Payment date: 20120713

Year of fee payment: 10

Ref country code: ES

Payment date: 20120726

Year of fee payment: 10

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130707

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60320795

Country of ref document: DE

Effective date: 20140201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130707

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130708