EP0813223B1 - Dispositif pour engendrer un champ magnétique et source ecr comportant ce dispositif - Google Patents

Dispositif pour engendrer un champ magnétique et source ecr comportant ce dispositif Download PDF

Info

Publication number
EP0813223B1
EP0813223B1 EP19970401294 EP97401294A EP0813223B1 EP 0813223 B1 EP0813223 B1 EP 0813223B1 EP 19970401294 EP19970401294 EP 19970401294 EP 97401294 A EP97401294 A EP 97401294A EP 0813223 B1 EP0813223 B1 EP 0813223B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
axial
field
systems
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19970401294
Other languages
German (de)
English (en)
Other versions
EP0813223A1 (fr
Inventor
Jean-Yves Pacquet
Renan Leroy
Nathalie Lecesne
Pascal Sortais
Antonio Villari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Commissariat a lEnergie Atomique CEA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP0813223A1 publication Critical patent/EP0813223A1/fr
Application granted granted Critical
Publication of EP0813223B1 publication Critical patent/EP0813223B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field

Definitions

  • the invention relates to the field of devices magnetic, to create a magnetic field, particular for application to an ECR source (source with Electronic Cyclotronic Resonance). Of such sources are used to produce ions, for example radioactive ions.
  • ECR source source with Electronic Cyclotronic Resonance
  • the process implemented works to produce radioactive ions with a such source is to bomb a thick target with a beam of high energy heavy ions.
  • the heavy ion beam stops in the target and produces elements by fragmentation thereof, or of the projectile.
  • the target is heated to a temperature very high, around 2000 ° C, in order to reduce the output time of the elements created. These latter then broadcast to an ECR source in which they are ionized, in order to be accelerated by a cyclotron.
  • Magnets 2, 4 are provided, arranged in symmetrically about an axis AA 'which crosses a zone 6, or plasma confinement zone.
  • a high frequency injection line 8 coaxial, east aligned along axis AA '. Ions are extracted by an opening 10, also with axial symmetry AA ′, for example using extraction electrodes arranged near orifice 10.
  • the device illustrated in FIG. 2 schematically represents a target-source assembly, called "Nanomafira; this assembly is described in the Communication by P. Sortais et al.” Developments of compact permanent magnets ECRIS “, 12th International Workshop on ECR Ion Sources, April 25-27, 1995, Riken, Japan.
  • a set of magnets 12, 14, 16 is placed around a plasma confinement zone 18.
  • a target 20 is placed, at the end of a line 22 d high frequency, radial or coaxial injection.
  • Means 24 are also provided to be able to direct a primary beam 26 towards the target 20: thus, the place of production of the species (interaction zone between the beam 26 and the target 20) is located close to the plasma confinement zone 18.
  • This type of device makes it possible to efficiently produce condensable elements, in particular radioactive elements.
  • the magnetized zones arranged in a cone of 150 ° around the beam axis 26 , and the apex of which can be approximately located in the target 20 undergo, within a few hours of operation, effects of rapid demagnetization, due to the energy neutrons emitted by the interaction of the primary beam with the target.
  • any modification of the structures is very delicate, because the ECR sources are intended to be coupled to generators ion or particle beams, and possibly to means of studying the ions produced: the environment of these structures is therefore very restrictive.
  • the coaxial structure chosen makes it possible to obtain a compact device, near which a target can be arranged: thus, problems related to transport of elements via a tube are avoided.
  • such a structure makes it possible to direct a primary beam of particles, towards a target, without the magnetic elements being exposed to neutrons induced by the primary beam.
  • this structure makes it possible to minimize the sets to change after long-term operation: all the magnetic elements being distributed coaxially, and nested one inside the other, a translation of one of the elements in relation to the others is possible, which allows to clear this element for have access to it.
  • the structure according to the invention is revealed all the more advantageous, in an ECR source, that the spatial and space constraints are extremely critical in this type of source.
  • the system is dimensioned so that the ratio L 1 / L, where L is the length of the set of magnetic elements with multipolar structure and where L1 is the length of the device, measured parallel to the axis of common symmetry, is less than 1.5.
  • One (or more) insulating element (s), coaxial (coaxial) to N magnetic systems and the set of magnetic means with structure multipolar, can also be provided in the device: all the insulating elements of the devices known according to the prior art have a geometry which depends on the geometry of the source, and this results insulators of fairly complex shape. As part of the present invention, the insulator (or insulators) is (are) on the contrary very simple form, since it (s) has (s) an axial symmetry.
  • Such device provides a B field structure at minimum.
  • the interior system can have a single magnetic system, allowing establish an axial field gradient at one end of the outermost system.
  • the interior system can have two magnetic subsystems, allowing establish an axial field gradient for each of the two ends of the outermost system.
  • the invention also relates to an ECR source.
  • an ECR source comprising a device for generating a field magnetic, as described above, the volume interior or magnetic medium with multipolar structure defining a plasma containment, and means for placing a target, preferably at a of the ends of the multipole structure.
  • Such a device also comprises means to inject a primary beam towards a target, allowing the injection of the primary beam along the axis common to the N magnetic systems and magnetic means with multipolar structure.
  • the invention also relates to a method of production of radioactive ions using a ECR source as described above.
  • Such a process allows the production of ions, including comprised of condensable or unstable elements: indeed, the ECR source does not require any tube to transport the elements.
  • An axial component is superimposed on the radial component of the magnetic field.
  • This axial component is obtained using a set A 1 , ... A N of coaxial magnetic systems and nested one inside the other.
  • Each system A i has an axial symmetry around the axis MM ', which is therefore common to all of the N magnetic systems making it possible to obtain the axial component of the magnetic field, but also to the multipolar system 32.
  • the resulting axial magnetic field B a is the sum of the magnetic fields obtained with each of the elements A i .
  • all of the systems magnetic is configured to achieve a magnetic field B having a structure "to minimum ".
  • the magnetic field is then constituted by the superposition of the component radial multipolar, which has an amplitude minimal in the central part of the cavity, and a axial magnetic field with symmetry of revolution, having a gradient along the axis MM ', the field resulting magnetic is set so that it exists in the cavity at least one ply 35 completely closed, and having no contact with walls of the cavity, sheet on which the condition of electronic cyclotron resonance is satisfied, so as to obtain an ionization of the gas passing through it.
  • FIG. 4 presents a device according to the invention, comprising a multipole structure 32 intended to generate the radial component of the field, and a set of two systems A 1 , A 2 making it possible to generate the axial component of the magnetic field in the manner described above.
  • Closed surfaces, of magnetic equimodules 36, 38 are obtained inside the confinement zone 34.
  • an HF electromagnetic field is injected into this zone. 34 by means not shown in FIGS. 3 and 4.
  • the internal layer 36 corresponds to the resonant layer (the electronic cyclotron frequency is equal to the frequency of the electromagnetic field); the external ply 38 corresponds to a closed surface of magnetic equimodule having no contact with the walls of the cavity 34.
  • each level of the magnetic system A i will be able to configure each level of the magnetic system A i , so as to obtain a desired, predetermined configuration of axial field.
  • the zones or surfaces S 1 , S 2 defined by the ends of the multipolar structure 32, as well as their vicinity, are available to be able to have in the immediate vicinity of the plasma, or the plasma confinement zone, an assembly constituted by a target 42, with its heating and cooling systems, its diagnostic means (for example thermocouple), its mechanical holding, dismantling and intervention devices, its reflectors, ... etc.
  • This arrangement is therefore much more flexible to use than the devices of the prior art, which often required an installation of the target at a distance from the confinement zone 34 such that means of transport or transit of the species produced had to be provided.
  • this structure is compatible with a positioning of a high energy incident beam 44 along the axis MM ', directed towards the target 42.
  • such a device can be dimensioned so that the internal diameter ⁇ of the multipolar system 32 and the total length L of the magnetic device are in a ratio ⁇ / L of between 0.1 and 0.8 .
  • a ratio ⁇ / L of between 0.1 and 0.8 .
  • the structure of magnetic devices according to the invention is compatible with the introduction of an insulating element also having an axial symmetry with respect to the axis MM '.
  • this isolation element can be introduced at several levels, for example in the zone 46 outside the magnetic system A 1 or in the zone 48 between the system A 1 and the system A 2 or in the zone 50 comprised between the system A 2 and the multipolar system 32.
  • isolation can be done at different diameters: between the multipoles and the axial system, or between the components of the axial system; it is also possible to make insulations on several diameters, which makes it possible to withstand higher voltages.
  • the insulating elements are generally made of PVC or Bakelite.
  • FIG. 5A represents a device according to the invention, comprising a multipole element 32 as described above, and two systems A 1 , A 2 for producing the axial field.
  • the outermost system, A 1 makes it possible to establish an average axial field.
  • the interior system A 2 comprises a single magnetic subsystem, making it possible to establish an axial field gradient at one end of the exterior system A 1 .
  • FIG. 5B represents the evolution, along the axis MM 'of the radial component obtained by A 1 (mean field: curve I 5 ), of the gradient induced by the subsystem A 2 (modulation, curve II 5 ), and of the resulting axial field (curve III 5 ).
  • the resulting axial field has a mirror ratio B f / B min greater than 1.1: this criterion clearly establishes that a minimum field structure is obtained.
  • FIG. 6A represents another structure of a device according to the invention, with multipolar system 32 around an axis MM ', and two systems A 1 , A 2 for producing the axial field.
  • the system A2 is broken down into two subsystems A 21 and A 22 , each of these subsystems making it possible to establish, at one end of the external system A 1 , an axial field gradient.
  • the polarities of these elements are represented in FIG. 6A by arrows.
  • the curves I 6 , II 6 , III 6 represent, in FIG. 6B, the respective evolution of the mean field, of the modulation fields, and of the resulting total field.
  • the mirror ratio is greater than or equal to 1.1, this results in a minimum structure.
  • FIG. 7A represents another structure with two levels of magnetic systems A 1 and A 2 for producing the axial component of the magnetic field.
  • FIG. 7B shows the evolution, along the axis MM ′, of the mean axial field (obtained using the system A 1 : curve I 7 ), of the axial modulation field (obtained by the combined action of the subsystems A 21 , A 22 : curve II 7 ; curve II ′ 7 represents the axial field resulting from the action of the system A 2 ), and from the total resulting axial field (curve III 7 ).
  • a minimum field structure is obtained (the criterion being the obtaining of a mirror ratio B f / B min greater than or equal to 1.1).
  • FIG. 8A A fourth embodiment of a device, with two levels of magnetic systems for obtaining the axial component of the field, is shown in FIG. 8A.
  • the difference again lies in the magnetization of the subsystem A 22 .
  • the mean axial field obtained by the system A 1 evolves as illustrated by the curve I 8 in FIG. 8B.
  • the curves II 8 represent the evolution of the axial modulation field, the curve II ' 8 representing the evolution of the component of the axial field resulting from the system A 2 .
  • Curve III8 represents the axial evolution of the total resulting axial field. Again, we can clearly see that a minimum structure has been obtained (B f / B min greater than or equal to 1.1).
  • FIG. 9 represents an example of an ECR source using a magnetic structure according to the invention.
  • the multipole element 32 an external system A 1 of cylindrical coils allowing to establish an average axial field in the zone 34 of confinement of a plasma 35.
  • a second level of means magnetic A 2 (in fact, composed of two permanent cylindrical magnets A 21 and A 22 ) allows to establish the gradients necessary for the modulation of the axial field, inside the confinement zone 34.
  • a target 42, and its heating means, are arranged near one end of the multipolar system 32.
  • Means 52 allow lateral injection of high frequency radiation into the confinement zone 34.
  • the device of Figure 9 further comprises means 54 allowing the cooling of the target and its environment, a passage 56 for the connection of a thermocouple, itself located nearby of the target, and a current arrival 58 for the target heating.
  • FIG. 9 also includes an insulating cylinder 60, placed between the two systems A 1 and A 2 for the production of the axial component of the magnetic field.
  • the target 42 is bombarded by an incident ion beam 44 whose direction is aligned on the common axis of the magnetic device A 1 -A 2 .
  • the plasma ions are extracted through the same opening, using extraction electrodes 62.
  • the fact of position the target 42 near one of the ends of the multipolar system 32 allows the bomb with an incident ion beam at high energy 44 flowing through the extraction system everything maintaining the structures, sensitive to neutrons, producing the magnetic field at higher angles 90 ° to the axis MM '.
  • the device according to the invention for producing a field magnetic, does not prohibit, if necessary, placing a target far from the source.
  • the evolution, along the axis MM ', of the various components of the magnetic field obtained with the device illustrated in FIG. 9, is represented in FIG. 10.
  • the curve I represents the evolution of the component due to the system A 1 alone (this system consists of a coil supplied at 700 amps)
  • curve II represents the evolution of the axial component due to the system A 2 alone (system consisting of magnets A 21 and A 22 ).
  • Curve III represents the axial field resulting from the contribution of each of the systems A 1 and A 2 . This curve III shows again, that a minimum field structure is well obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Particle Accelerators (AREA)

Description

Domaine technique et art antérieur
L'invention concerne le domaine des dispositifs magnétiques, pour créer un champ magnétique, en particulier en vue d'une application à une source ECR (source à Résonance Cyclotronique Electronique). De telles sources sont utilisées pour produire des ions, par exemple des ions radioactifs.
D'une manière générale, le procédé mis en oeuvre pour produire des ions radioactifs avec une telle source consiste à bombarder une cible épaisse avec un faisceau d'ions lourds de haute énergie. Le faisceau d'ions lourds s'arrête dans la cible et produit des éléments par fragmentation de celle-ci, ou du projectile. La cible est chauffée à une température très élevée, d'environ 2000°C, afin de diminuer les temps de sortie des éléments créés. Ces derniers diffusent ensuite vers une source ECR dans laquelle ils sont ionisés, afin d'être accélérés par un cyclotron.
Dans certaines structures, la cible est éloignée du plasma d'une source ECR de quelques dizaines de centimètres. Le transport des éléments produits par impact du faisceau d'ions sur la cible est assuré par un tube reliant celle-ci à la source ECR. Les éléments diffusent depuis la cible vers la source par l'intermédiaire de ce tube.
Ce transfert entre la cible et la source pose problème pour les éléments condensables ainsi que pour ceux dont la durée de vie est très courte (par exemple pour ceux dont la période est de l'ordre de quelques millisecondes).
La figure 1 représente une source ECR connue, encore appelée ECR4.
Ce type de dispositif comporte la combinaison, dans une cavité hyperfréquence, d'un champ électromagnétique de haute fréquence et d'un champ magnétique. L'amplitude du champ magnétique est choisie de façon à ce que la fréquence cyclotronique électronique qui y est associée, soit égale à la fréquence du champ électromagnétique : cette condition permet une forte ionisation des atomes neutres, puisque les électrons émis sont fortement accélérés du fait de la résonance cyclotronique électronique.
Des aimants 2, 4 sont prévus, disposés de manière symétrique par rapport à un axe AA' qui traverse une zone 6, ou zone de confinement plasma. Une ligne d'injection haute fréquence 8, coaxiale, est alignée selon l'axe AA'. L'extraction des ions se fait par une ouverture 10, également à symétrie axiale AA', par exemple à l'aide d'électrodes d'extraction disposées à proximité de l'orifice 10.
On voit que, dans ce type de dispositif, la place disponible est occupée d'une part par les aimants 2, 4 et d'autre part par la ligne d'injection coaxiale 8. La cible doit donc être disposée à distance, et les espèces produites doivent être transportées depuis cette cible vers la zone de confinement 6. En outre, dans ce type de dispositif, l'environnement (aimant ou bobine) a une durée de vie limitée, lorsqu'il est exposé à un flux de neutrons ou de particules chargées.
Le dispositif illustré sur la figure 2 représente schématiquement un ensemble cible-source, dénommé "Nanomafira ; cet ensemble est décrit dans la Communication de P. Sortais et al. "Developments of compact permanent magnets ECRIS", 12th International Workshop on ECR Ion Sources, April 25-27, 1995, Riken, Japon. Un ensemble d'aimants 12, 14, 16 est disposé autour d'une zone 18 de confinement du plasma. Une cible 20 est disposée, à l'extrémité d'une ligne 22 d'injection haute fréquence, radiale ou coaxiale. Des moyens 24 sont par ailleurs prévus pour pouvoir diriger un faisceau primaire 26 en direction de la cible 20 : ainsi, le lieu de production des espèces (zone d'interaction entre le faisceau 26 et la cible 20) se trouve rapproché de la zone 18 de confinement du plasma. Ce type de dispositif permet de produire efficacement des éléments condensables, notamment radioactifs. Cependant, les zones aimantées disposées dans un cône de 150° autour de l'axe du faisceau 26, et dont le sommet peut être approximativement situé dans la cible 20, subissent, en quelques heures de fonctionnement, des effets de démagnétisation rapide, dus aux neutrons énergétiques émis par l'interaction du faisceau primaire avec la cible. Les zones du cône les plus proches de l'axe du faisceau 26 sont les plus touchées par ces effets (sur la figure 2, c'est la zone comprise dans le cône d'ouverture 21=60°). Au fur et à mesure que l'on s'éloigne de l'axe du faisceau 26, les effets de démagnétisation s'atténuent, et ils ne se font plus sentir en dehors du cône d'ouverture 22=150°.
De plus, dans toutes ces structures, l'accès au volume confiné (volume 6 de la figure 1 ou volume 18 de la figure 2) est extrêmement difficile. Lorsque des éléments sont à changer, après un fonctionnement de longue durée, le démontage de l'ensemble est difficile.
Enfin, toute modification des structures existantes est très délicate, car les sources ECR sont destinées à être couplées à des générateurs de faisceaux d'ions ou de particules, et éventuellement à des moyens d'étude des ions produits : l'environnement de ces structures est donc très contraignant.
Exposé de l'invention
Il se pose donc le problème de trouver une structure magnétique, notamment pour source ECR, à proximité de laquelle on puisse disposer une cible, et dont les éléments magnétiques ne soient pas exposés à des effets de démagnétisation. En outre, une telle structure doit permettre un accès aisé au volume confiné.
A cette fin, l'invention a pour objet un dispositif pour engendrer un champ magnétique B comportant :
  • un ensemble de N(N≥2) systèmes magnétiques, à symétrie axiale, pour former un champ magnétique axial (Ba), ces N systèmes étant coaxiaux et emboítés les uns dans les autres,
  • un ensemble de moyens magnétiques à structure multipolaire permettant d'obtenir un champ magnétique radial B rad, cet ensemble de moyens magnétiques étant disposé à l'intérieur des N systèmes magnétiques et étant coaxial à ceux-ci.
La structure coaxiale retenue permet d'obtenir un dispositif compact, à proximité duquel une cible peut être disposée : ainsi, les problèmes liés au transport d'éléments par l'intermédiaire d'un tube sont évités. De plus, une telle structure permet de diriger un faisceau primaire de particules, en direction d'une cible, sans que les éléments magnétiques soient exposés aux neutrons induits par le faisceau primaire. Enfin, cette structure permet de minimiser les ensembles à changer après un fonctionnement de longue durée : l'ensemble des éléments magnétiques étant réparti coaxialement, et emboítés les uns dans les autres, une translation d'un des éléments par rapport aux autres est possible, ce qui permet de dégager cet élément pour y avoir accès.
La structure selon l'invention se révèle d'autant plus avantageuse, dans une source ECR, que les contraintes spatiales et d'encombrement sont extrêmement critiques dans ce type de source.
De préférence, le système est dimensionné de façon à ce que le rapport L1/L, où L est la longueur de l'ensemble des éléments magnétiques à structure multipolaire et où L1 est la longueur du dispositif, mesuré parallèlement à l'axe de symétrie commun, est inférieur à 1,5.
Ainsi, on obtient un système compact, offrant une grande ouverture aux éléments produits à partir d'une cible disposée à proximité du dispositif selon l'invention.
Un (ou plusieurs) élément(s) isolant(s), coaxial (coaxiaux) aux N systèmes magnétiques et à l'ensemble de moyens magnétiques à structure multipolaire, peu(ven)t en outre être prévu(s) dans le dispositif : tous les éléments isolants des dispositifs connus selon l'art antérieur ont une géométrie qui dépend de la géométrie de la source, et il en résulte des isolants de forme assez complexe. Dans le cadre de la présente invention, l'isolant (ou les isolants) est (sont) au contraire de forme très simple, puisqu'il(s) présente(nt) une symétrie axiale.
L'ensemble de N systèmes magnétiques pour former un champ magnétique axial peut être réduit à 2(N=2) systèmes magnétiques, le système le plus extérieur définissant un champ axial moyen, tandis que le système intérieur permet d'établir localement au moins un gradient de ce champ axial moyen. Un tel dispositif permet d'obtenir une structure de champ B à minimum.
En particulier, le système intérieur peut comporter un seul système magnétique, permettant d'établir un gradient de champ axial, à une extrémité du système le plus extérieur.
Selon une variante, le système intérieur peut comporter deux sous-systèmes magnétiques, permettant d'établir un gradient de champ axial à chacune des deux extrémités du système le plus extérieur.
L'invention concerne également une source ECR comportant un dispositif pour engendrer un champ magnétique, tel que décrit ci-dessus, le volume intérieur ou moyen magnétique à structure multipolaire définissant une enceinte de confinement pour plasma, et des moyens pour disposer une cible, de préférence à une des extrémités de la structure multipolaire.
Un tel dispositif comporte en outre des moyens pour injecter un faisceau primaire en direction d'une cible, permettant l'injection du faisceau primaire selon l'axe commun aux N systèmes magnétiques et aux moyens magnétiques à structure multipolaire.
L'invention concerne également un procédé de production d'ions radioactifs mettant en oeuvre une source ECR telle que décrite ci-dessus.
Un tel procédé permet la production d'ions, y compris d'éléments condensables ou instables : en effet, la source ECR ne nécessite alors aucun tube pour assurer le transport des éléments.
Brève description des figures
De toute façon, les caractéristiques et avantages de l'invention apparaítront mieux à la lumière de la description qui va suivre. Cette description porte sur les exemples de réalisation, donnés à titre explicatif et non limitatif, en se référant à des dessins annexés sur lesquels :
  • les figures 1 et 2, déjà décrites, représentent des sources ECR selon l'art antérieur,
  • la figure 3 représente schématiquement une structure d'aimants pour un système magnétique selon l'invention,
  • la figure 4 représente schématiquement un système d'aimants, avec deux sous-systèmes pour former un champ axial, conformément à l'invention,
  • les figures 5A et 5B représentent respectivement un premier mode de réalisation d'un dispositif avec deux sous-systèmes pour le champ axial, et les variations, le long de l'axe, des champs magnétiques obtenus,
  • les figures 6A et 6B représentent respectivement un autre mode de réalisation d'un dispositif avec deux sous-systèmes pour former le champ axial, et les valeurs des champs magnétiques le long de l'axe,
  • les figures 7A et 7B représentent un autre mode de réalisation d'un dispositif avec deux sous-systèmes pour former le champ axial, et les champs magnétiques résultant le long de l'axe,
  • les figures 8A et 8B représentent un autre mode de réalisation d'un dispositif avec deux sous-systèmes pour former le champ axial, et les variations des champs magnétiques le long de l'axe,
  • la figure 9 représente un prototype de source réalisé avec une structure magnétique selon l'invention,
  • la figure 10 représente la variation des champs magnétiques, le long de l'axe, dans le cas d'un prototype de source réalisé avec une structure magnétique selon l'invention.
Exposé détaillé de modes de réalisation de l'invention
La figure 3 représente schématiquement un dispositif selon l'invention, comportant un système multipolaire 32, permettant d'engendrer un champ magnétique à symétrie radiale, autour d'un axe MM' d'une zone de confinement 34. Le système multipolaire 32 peut être par exemple du type de celui décrit dans le document de R. Geller intitulé "Micromafios, source d'ions multichargée basée sur la résonance cyclotronique des électrons", paru dans "Revue de physique appliquée", vol. 15, n°5, MAI 1980, page 995-1005. Ce peut être également une structure multipolaire du type décrite dans la demande de brevet européen (CEA) EP-138 642.
A la composante radiale du champ magnétique se superpose une composante axiale. Cette composante axiale est obtenue à l'aide d'un ensemble A1,...AN de systèmes magnétiques coaxiaux et emboítés les uns dans les autres. Chaque système Ai possède une symétrie axiale autour de l'axe MM', qui est donc commun à l'ensemble des N systèmes magnétiques permettant d'obtenir la composante axiale du champ magnétique, mais aussi au système multipolaire 32.
Le champ magnétique axial Ba résultant est la somme des champs magnétiques obtenus avec chacun des éléments Ai.
De préférence, l'ensemble des systèmes magnétiques est configuré de manière à réaliser un champ magnétique B présentant une structure "à minimum". En d'autres termes, le champ magnétique est alors constitué par la superposition de la composante radiale multipolaire, qui présente une amplitude minimale dans la partie centrale de la cavité, et d'un champ magnétique axial à symétrie de révolution, présentant un gradient suivant l'axe MM', le champ magnétique résultant est réglé de façon à ce qu'il existe dans la cavité au moins une nappe 35 complètement fermée, et n'ayant aucun contact avec les parois de la cavité, nappe sur laquelle la condition de résonance cyclotronique électronique est satisfaite, de manière à obtenir une ionisation du gaz la traversant.
La figure 4 présente un dispositif selon l'invention, comportant une structure multipolaire 32 destinée à engendrer la composante radiale du champ, et un ensemble de deux systèmes A1, A2 permettant d'engendrer la composante axiale du champ magnétique de la manière décrite ci-dessus. Des surfaces fermées, d'équimodules magnétiques 36, 38 sont obtenues à l'intérieur de la zone de confinement 34. Pour la création d'ions, à l'aide d'une source ECR, un champ électromagnétique HF est injecté dans cette zone 34 par des moyens non représentés sur les figures 3 et 4. La nappe interne 36 correspond à la nappe résonnante (la fréquence cyclotronique électronique est égale à la fréquence du champ électromagnétique) ; la nappe externe 38 correspond à une surface fermée d'équimodule magnétique n'ayant aucun contact avec les parois de la cavité 34.
Comme on peut le voir sur la figure 3, chacun des systèmes Ai, contribuant à la composante axiale du champ magnétique, peut être composé de ni sous-systèmes magnétiques Ai1,... Ain. Ces sous-systèmes magnétiques ne sont pas nécessairement juxtaposés : c'est le cas du système A2 (sous-systèmes A21 et A22) de la figure 3.
L'homme du métier saura configurer chaque niveau du système magnétique Ai, de manière à obtenir une configuration souhaitée, prédéterminée, de champ axial.
Les systèmes décrits ci-dessus, en liaison avec les figures 3 et 4 présentent de nombreux avantages.
Tout d'abord, la disposition des différents éléments, coaxiaux et mécaniquement emboítés les uns dans les autres, permet, en cas de défaillance de l'un de ceux-ci, d'effectuer une simple translation dudit élément (mouvement symbolisé par la flèche 40 pour le système An-1 de la figure 3) pour réparer cet élément ou le remplacer par un autre élément.
De plus, l'accès au volume confiné 34 est libre : les zones ou surfaces S1, S2 définies par les extrémités de la structure multipolaire 32, ainsi que leur voisinage, sont disponibles pour pouvoir disposer à proximité immédiate du plasma, ou de la zone de confinement du plasma, un ensemble constitué par une cible 42, avec ses systèmes de chauffage et de refroidissement, ses moyens de diagnostic (par exemple thermocouple), ses dispositifs mécaniques de tenue, de démontage et d'intervention, ses réflecteurs, ... etc. Cette disposition est donc beaucoup plus souple d'utilisation que les dispositifs de l'art antérieur, qui nécessitaient souvent une installation de la cible à une distance de la zone de confinement 34 telle que des moyens de transport ou de transit des espèces produites devaient être prévus. Au contraire, dans le dispositif selon l'invention, le fait de pouvoir installer une cible à proximité d'une des extrémités S1, S2 de la structure multipolaire permet de produire efficacement des espèces radioactives ou condensables, dont les durées de vies sont très faibles (de l'ordre de la milliseconde).
Enfin, cette structure est compatible avec un positionnement d'un faisceau incident haute énergie 44 selon l'axe MM', dirigé en direction de la cible 42. Aucun élément magnétique ne se trouve dans le champ d'un cône 45 d'angle au sommet 3=150°, et dont le sommet se situe approximativement sur la cible 42 : par conséquent aucun élément magnétique ne risque d'être démagnétisé du fait de l'influence du flux de neutrons ou de particules chargé 44, de haute énergie.
Comme illustré sur la figure 4, un tel dispositif peut être dimensionné de manière à ce que le diamètre intérieur  du système multipolaire 32 et la longueur totale L du dispositif magnétique soient dans un rapport /L compris entre 0,1 et 0,8. Une telle géométrie permet, lorsqu'une cible 42 est positionnée à proximité d'une extrémité S2 du système multipolaire 32, d'exposer immédiatement les éléments produits à partir de la cible à un plasma vu sous une largeur importante, pour un volume de plasma déterminé. La production d'espèces ionisées s'en trouve améliorée.
De préférence, les différents ensembles constituant la structure magnétique selon l'invention se présentent comme des cylindres coaxiaux, emboítés les uns dans les autres ; ceci a pour effet de les rendre indépendants mécaniquement, mais aussi électriquement.
Il est souvent nécessaire de procéder à un isolement haute tension de la source. La structure de dispositifs magnétiques selon l'invention est compatible avec l'introduction d'un élément d'isolement ayant, lui aussi, une symétrie axiale par rapport à l'axe MM'. Comme illustré sur la figure 4, cet élément d'isolement peut être introduit à plusieurs niveaux, par exemple dans la zone 46 extérieure au système magnétique A1 ou dans la zone 48 comprise entre le système A1 et le système A2 ou dans la zone 50 comprise entre le système A2 et le système multipolaire 32. D'une manière générale, l'isolement peut se faire à différents diamètres : entre les multipôles et le système axial, ou entre les composants du système axial ; on peut encore réaliser des isolements sur plusieurs diamètres, ce qui permet de tenir des tensions plus élevées. Les éléments isolants sont en général en PVC ou en Bakélite.
La figure 5A représente un dispositif selon l'invention, comportant un élément multipolaire 32 tel que décrit ci-dessus, et deux systèmes A1, A2 pour produire le champ axial. Le système le plus extérieur, A1, permet d'établir un champ axial moyen. Le système intérieur A2 comporte un seul sous-système magnétique, permettant d'établir un gradient de champ axial à une extrémité du système extérieur A1. La figure 5B représente l'évolution, selon l'axe MM' de la composante radiale obtenue par A1 (champ moyen : courbe I5), du gradient induit par le sous-système A2 (modulation, courbe II5), et du champ axial résultant (courbe III5). Le champ axial résultant présente un rapport miroir Bf/Bmin supérieur à 1,1 : ce critère permet bien d'établir qu'on obtient une structure de champ à minimum.
La figure 6A représente une autre structure d'un dispositif selon l'invention, avec système multipolaire 32 autour d'un axe MM', et deux systèmes A1, A2 pour produire le champ axial. Le système A2 se décompose en deux sous-systèmes A21 et A22, chacun de ces sous-systèmes permettant d'établir, à une extrémité du système extérieur A1, un gradient de champ axial. Les polarités de ces éléments sont représentées sur la figure 6A par des flèches. Les courbes I6, II6, III6 représentent, sur la figure 6B, l'évolution respective du champ moyen, des champs de modulation, et du champ total résultant. Là encore, le rapport miroir est supérieur ou égal à 1,1, il en résulte bien une structure à minimum.
La figure 7A représente une autre structure avec deux niveaux de systèmes magnétiques A1 et A2 pour produire la composante axiale du champ magnétique. La différence entre le dispositif de cette figure et celui de la figure 6A réside dans la polarité du sous-système A22. La figure 7B montre l'évolution, le long de l'axe MM', du champ axial moyen (obtenu à l'aide du système A1 : courbe I7), du champ axial de modulation (obtenu par l'action combinée des sous-systèmes A21, A22 : courbe II7 ; la courbe II'7 représente le champ axial résultant de l'action du système A2), et du champ axial résultant total (courbe III7). Là encore, on obtient bien une structure de champ à minimum (le critère étant l'obtention d'un rapport miroir Bf/Bmin supérieur ou égal à 1,1).
Un quatrième mode de réalisation d'un dispositif, avec deux niveaux de systèmes magnétiques pour l'obtention de la composante axiale du champ, est représenté sur la figure 8A. Par rapport aux structures des figures 6A et 7A, la différence réside, là encore, dans la magnétisation du sous-système A22. Le long de l'axe MM', le champ axial moyen obtenu par le système A1 évolue comme illustré par la courbe I8 de la figure 8B. Les courbes II8 représentent l'évolution du champ axial de modulation, la courbe II'8 représentant l'évolution de la composante du champ axial résultant du système A2. La courbe III8 représente l'évolution axiale du champ axial résultant total. Là encore, on constate bien l'obtention d'une structure à minimum (Bf/Bmin supérieur ou égal à 1,1).
Pour les quatre modes de réalisation illustrés sur les figures 5A à 8A, le système A1 peut être constitué par une bobine, les systèmes de modulation (A2, A22, A21) étant constitués par des aimants permanents ou des bobines.
Les divers modes de réalisation exposés en liaison avec les figures 3 à 8A sont, dans le cas d'une source ECR, combinés à des moyens pour injecter un rayonnement HF dans la zone de confinement 32, à des moyens pour disposer une cible, à des moyens pour injecter un faisceau primaire en direction de la position d'une cible et à des moyens pour extraire des ions d'un plasma formé dans la zone de confinement.
La figure 9 représente un exemple de source ECR mettant en oeuvre une structure magnétique selon l'invention. Sur cette figure, on reconnaít la présence de l'élément multipolaire 32, d'un système extérieur A1 de bobines cylindriques permettant d'établir un champ axial moyen dans la zone 34 de confinement d'un plasma 35. Un deuxième niveau de moyens magnétiques A2 (en fait, composé de deux aimants permanents cylindriques A21 et A22) permet d'établir les gradients nécessaires à la modulation du champ axial, à l'intérieur de la zone de confinement 34. Une cible 42, et ses moyens de chauffage, sont disposés à proximité d'une extrémité du système multipolaire 32. Des moyens 52 permettent une injection latérale de rayonnement haute fréquence dans la zone de confinement 34. Br représente la valeur de la composante radiale du champ magnétique à l'intérieur de la zone 34, et on s'arrange de préférence pour que la fréquence f du champ électromagnétique HF injectée dans cette zone satisfasse à la condition de résonance cyclotronique électronique : Br=f.2πm/e (où m est la masse de l'électron et e sa charge). Une telle condition permet une forte ionisation des atomes dans la zone de confinement 34 : en effet, les électrons émis sont alors fortement accélérés du fait de la résonance cyclotronique électronique.
Le dispositif de la figure 9 comporte en outre des moyens 54 permettant le refroidissement de la cible et de son environnement, un passage 56 pour la connexion d'un thermocouple, lui-même situé à proximité de la cible, et une arrivée 58 de courant pour le chauffage de la cible.
La structure de la figure 9 comporte également un cylindre isolant 60, disposé entre les deux systèmes A1 et A2 pour la production de la composante axiale du champ magnétique.
La cible 42 est bombardée par faisceau d'ions incident 44 dont la direction est alignée sur l'axe commun du dispositif magnétique A1-A2. L'extraction des ions du plasma se fait par la même ouverture, à l'aide d'électrodes d'extraction 62.
Comme déjà expliqué ci-dessus, le fait de positionner la cible 42 à proximité d'une des extrémités du système multipolaire 32 permet de la bombarder avec un faisceau d'ions incident à haute énergie 44 qui traverse le système d'extraction, tout en maintenant les structures, sensibles aux neutrons, produisant le champ magnétique, à des angles supérieurs à 90° par rapport à l'axe MM'. Bien entendu, le dispositif selon l'invention, pour produire un champ magnétique, n'interdit pas, si nécessaire, de placer une cible loin de la source.
L'évolution, le long de l'axe MM', des différentes composantes du champ magnétique obtenues avec le dispositif illustré sur la figure 9, est représentée sur la figure 10. La courbe I représente l'évolution de la composante due au système A1 seul (ce système est constitué d'une bobine alimentée à 700 ampères), la courbe II représente l'évolution de la composante axiale due au système A2 seul (système constitué d'aimants A21 et A22). La courbe III représente le champ axial résultant de la contribution de chacun des systèmes A1 et A2. Cette courbe III permet de constater, là encore, qu'une structure de champ à minimum est bien obtenue.

Claims (12)

  1. Dispositif pour engendrer un champ magnétique B comportant :
    un ensemble de N, N≥2, systèmes magnétiques (A1, ..., AN), à symétrie axiale, pour former un champ magnétique axial (Ba), ces N systèmes étant coaxiaux et emboítés les uns dans les autres,
    un ensemble de moyens magnétiques (32) à structure multipolaire permettant d'obtenir un champ magnétique radial (B rad), cet ensemble de moyens magnétiques étant disposé à l'intérieur des N systèmes magnétiques et étant coaxial à ceux-ci.
  2. Dispositif selon la revendication 1, le champ B ayant une structure à minimum.
  3. Dispositif selon l'une des revendications 1 ou 2, le rapport L1/L, où L est la longueur de l'ensemble des moyens magnétiques à structure multipolaire (32) et où L1 est la longueur du dispositif, mesuré parallèlement à l'axe de symétrie commun (MM'), étant inférieur à 1,5.
  4. Dispositif selon l'une des revendications 1 à 3, comportant en outre un ou plusieurs isolants (60) coaxiaux aux N systèmes magnétiques (A1, ...AN) et à l'ensemble de moyens magnétiques (32) à structure multipolaire.
  5. Dispositif pour engendrer un champ magnétique, selon l'une des revendications 1 à 4, comportant 2, N=2, systèmes magnétiques à symétrie axiale (A1, A2), pour former un champ magnétique axial, le système le plus extérieur (A1) définissant un champ axial moyen, le système intérieur (A2) permettant d'établir localement au moins un gradient de ce champ axial.
  6. Dispositif selon la revendication 5, le système intérieur (A2) comportant un seul système magnétique permettant d'établir un gradient de champ axial, à une extrémité du système (A1) le plus extérieur.
  7. Dispositif selon la revendication 5, le système intérieur (A2) comportant deux sous-systèmes magnétiques (A21, A22) permettant d'établir un gradient de champ axial à chacune des deux extrémités du système (A1) le plus extérieur.
  8. Source ECR comportant un dispositif selon l'une des revendications 1 à 7, le volume intérieur aux moyens magnétiques à structure multipolaire définissant une enceinte de confinement pour plasma (34) et des moyens pour disposer une cible (42).
  9. Source ECR selon la revendication 8, les moyens pour disposer une cible permettant de positionner celle-ci à une des extrémités (S1, S2) de la structure multipolaire (32).
  10. Source ECR selon la revendication 8, des moyens étant prévus pour injecter un faisceau primaire (44) en direction de la position d'une cible (42), selon l'axe commun aux N systèmes magnétiques (A1,..., AN) et aux moyens magnétiques (32) à structure multipolaire.
  11. Procédé de production d'ions mettant en oeuvre une source ECR selon l'une des revendications 8 à 10.
  12. Procédé selon la revendication 11, les ions produits étant des ions radioactifs.
EP19970401294 1996-06-11 1997-06-09 Dispositif pour engendrer un champ magnétique et source ecr comportant ce dispositif Expired - Lifetime EP0813223B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9607228A FR2749703B1 (fr) 1996-06-11 1996-06-11 Dispositif pour engendrer un champ magnetique et source ecr comportant ce dispositif
FR9607228 1996-06-11

Publications (2)

Publication Number Publication Date
EP0813223A1 EP0813223A1 (fr) 1997-12-17
EP0813223B1 true EP0813223B1 (fr) 2002-04-10

Family

ID=9492934

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19970401294 Expired - Lifetime EP0813223B1 (fr) 1996-06-11 1997-06-09 Dispositif pour engendrer un champ magnétique et source ecr comportant ce dispositif

Country Status (3)

Country Link
EP (1) EP0813223B1 (fr)
DE (1) DE69711764T2 (fr)
FR (1) FR2749703B1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19933762C2 (de) * 1999-07-19 2002-10-17 Juergen Andrae Gepulste magnetische Öffnung von Elektronen-Zyklotron-Resonanz-Jonenquellen zur Erzeugung kurzer, stromstarker Pulse hoch geladener Ionen oder von Elektronen
DE10306936B3 (de) * 2003-02-19 2004-06-24 Gesellschaft für Schwerionenforschung mbH Multi-Mode-Metall-Ionenquelle mit der Struktur einer Hohlkathoden-Sputter-Ionenquelle mit radialer Ionenextraktion
FR2947378A1 (fr) 2009-06-29 2010-12-31 Quertech Ingenierie Systeme magnetique formant des surfaces iso modules fermees a partir de structures magnetiques de type "cusp" et sources d'ions de type rce mettant en oeuvre un tel systeme

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2551302B1 (fr) * 1983-08-30 1986-03-14 Commissariat Energie Atomique Structure ferromagnetique d'une source d'ions creee par des aimants permanents et des solenoides

Also Published As

Publication number Publication date
DE69711764T2 (de) 2002-11-14
DE69711764D1 (de) 2002-05-16
EP0813223A1 (fr) 1997-12-17
FR2749703B1 (fr) 1998-07-24
FR2749703A1 (fr) 1997-12-12

Similar Documents

Publication Publication Date Title
EP0650557B1 (fr) Moteur a plasma a derive fermee d'electrons
EP2798209B1 (fr) Propulseur plasmique et procede de generation d'une poussee propulsive plasmique
EP1496727B1 (fr) Accélérateur à plasma à dérive fermée d'électrons
EP0662195B1 (fr) Moteur a plasma de longueur reduite a derive fermee d'electrons
EP1488443B1 (fr) Dispositif de confinement d'un plasma dans un volume
EP0711100A1 (fr) Dispositif de production d'un plasma permettant une dissociation entre les zones de propagation et d'absorption des micro-ondes
WO1998053201A1 (fr) Dispositif de concentration de faisceau d'ions pour propulseur a plasma et propulseur a plasma equipe d'un tel dispositif
EP2873306B1 (fr) Applicateur micro-onde coaxial pour la production de plasma
WO2008009559A9 (fr) Dispositif et procédé de production et/ou de confinement d'un plasma
EP0184475A1 (fr) Procédé et dispositif d'allumage d'une source d'ions hyperfréquence
EP0813223B1 (fr) Dispositif pour engendrer un champ magnétique et source ecr comportant ce dispositif
EP0946961B1 (fr) Systeme magnetique, en particulier pour les sources ecr, permettant la creation de surfaces fermees d'equimodule b de forme et de dimensions quelconques
FR2969371A1 (fr) Dispositif generateur d’ions a resonance cyclotronique electronique
EP0499514B1 (fr) Dispositif convertisseur de modes et diviseur de puissance pour tube hyperfréquence, et tube hyperfréquence comprenant un tel dispositif
EP0532411B1 (fr) Source d'ions à résonance cyclotronique électronique et à injection coaxiale d'ondes électromagnétiques
EP2311061B1 (fr) Dispositif générateur d'ions à résonance cyclotronique électronique
FR2680275A1 (fr) Source d'ions a resonance cyclotronique electronique de type guide d'ondes.
FR2647593A1 (fr) Piege a ions de faible energie
WO2017115023A1 (fr) Système de génération de faisceau plasma à dérive d'électrons fermée et propulseur comprenant un tel système
EP1272015A1 (fr) Dispositif pour la production d'ions de charges positives variables et à résonance cyclotronique
EP1080613A1 (fr) Dispositif destine a creer un champ magnetique a l'interieur d'une enceinte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB IT NL

17P Request for examination filed

Effective date: 19980602

AKX Designation fees paid

Free format text: BE DE GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): BE DE GB IT NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010529

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB IT NL

REF Corresponds to:

Ref document number: 69711764

Country of ref document: DE

Date of ref document: 20020516

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020705

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160512

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160617

Year of fee payment: 20

Ref country code: DE

Payment date: 20160616

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20160620

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160616

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69711764

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20170608

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170608