EP2427687A2 - Verfahren zur speicherung von und speicher für technische gase - Google Patents

Verfahren zur speicherung von und speicher für technische gase

Info

Publication number
EP2427687A2
EP2427687A2 EP10726881A EP10726881A EP2427687A2 EP 2427687 A2 EP2427687 A2 EP 2427687A2 EP 10726881 A EP10726881 A EP 10726881A EP 10726881 A EP10726881 A EP 10726881A EP 2427687 A2 EP2427687 A2 EP 2427687A2
Authority
EP
European Patent Office
Prior art keywords
storage
gas
pressure
container
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10726881A
Other languages
English (en)
French (fr)
Inventor
Gunter Kaiser
Jürgen Klier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Luft und Kaeltetechnik Gemeinnuetzige GmbH
Original Assignee
Institut fuer Luft und Kaeltetechnik Gemeinnuetzige GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102010010108A external-priority patent/DE102010010108B4/de
Application filed by Institut fuer Luft und Kaeltetechnik Gemeinnuetzige GmbH filed Critical Institut fuer Luft und Kaeltetechnik Gemeinnuetzige GmbH
Publication of EP2427687A2 publication Critical patent/EP2427687A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0021Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0026Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof of one single metal or a rare earth metal; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0138Shape tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0166Shape complex divided in several chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0171Shape complex comprising a communication hole between chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0308Radiation shield
    • F17C2203/0312Radiation shield cooled by external means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0134Two or more vessels characterised by the presence of fluid connection between vessels
    • F17C2205/0142Two or more vessels characterised by the presence of fluid connection between vessels bundled in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0149Vessel mounted inside another one
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0115Single phase dense or supercritical, i.e. at high pressure and high density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0115Single phase dense or supercritical, i.e. at high pressure and high density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0339Heat exchange with the fluid by cooling using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0353Heat exchange with the fluid by cooling using another fluid using cryocooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0358Heat exchange with the fluid by cooling by expansion
    • F17C2227/036"Joule-Thompson" effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0376Localisation of heat exchange in or on a vessel in wall contact
    • F17C2227/0379Localisation of heat exchange in or on a vessel in wall contact inside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0376Localisation of heat exchange in or on a vessel in wall contact
    • F17C2227/0381Localisation of heat exchange in or on a vessel in wall contact integrated in the wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0376Localisation of heat exchange in or on a vessel in wall contact
    • F17C2227/0383Localisation of heat exchange in or on a vessel in wall contact outside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/021Avoiding over pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/027Making transfer independent of vessel orientation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/046Enhancing energy recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/065Fluid distribution for refuelling vehicle fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0139Fuel stations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0178Cars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0509"Dewar" vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0581Power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the invention relates to a process for the storage of industrial gases, which makes it possible to increase the density of stored under pressure technical gases without pressure increase significantly.
  • the store is suitable for the storage and transport of industrial gases in general, for the storage of technical fuel gases, such as. Hydrogen or natural gas, at service stations and for use as a fuel-gas vehicle tank.
  • natural gas has been used as fuel for automobiles for many years, and accordingly there is also a well-developed network of filling stations.
  • the natural gas is typically kept ready at a pressure of 200 bar; at this pressure, it has a density of about 155 kg / m 3 or a calorific value of about 6.25 MJ / I.
  • the energy density of compressed natural gas (200 bar) compared to other fossil fuels, such as gasoline with an energy density of 32 MJ / I or diesel fuel with an energy density of 36 MJ / I or regenerative fuels, such as bio-diesel with 32 MJ / I or bioethanol at 21 MJ / I, very low.
  • Liquefied Natural Gas has only about 1 / 600th of the volume of gaseous natural gas, very high storage densities can be achieved with the storage of LNG.
  • the natural gas must be cooled to about 110 K for liquefaction;
  • energy is required for its phase transformation from gaseous to. liquid.
  • the LNG due to the comparatively low storage temperature
  • the LNG must be constantly cooled with high refrigeration capacities in order to avoid vaporization of the LNG.
  • DE 25 36 993 C2 and US Pat. No. 6,672,077 B1 propose storing hydrogen at temperatures far below the ambient temperature in absorbent or nanostructured material.
  • EP 1 130 06 A1 and WO 00/01980 solutions are shown, in which hydrogen is also stored at low temperatures, but in addition by means of an adjuvant in the storing material quasi "encapsulated" is.
  • DE 103 92 240 T5 a solution is presented in which hydrogen is stored under increased pressure in an absorbent material.
  • WO 97/26082 A1 and WO 01/13032 A1 show hydrogen storage devices which have a special layer or film structure
  • US 2004/0250552 A1 proposes the use of a liquid storage material.
  • DE 10 2005 023 036 A1 shows a method for hydrogen storage in which hydrogen is stored in gaseous, cooled and compressed form under high pressure on a physically adsorbing material, in particular carbon powder.
  • the invention has for its object to find a method for storing industrial gases, which makes it possible to increase the density of stored under pressure technical gases, in particular natural gas and hydrogen, without pressure increase and with low energy use significantly.
  • the technical gas is stored in a storage container which, depending on the gas stored therein, has to withstand pressures of up to 1200 bar, above its critical pressure and above the critical temperature, or in the compressible phase range below the critical temperature.
  • the storage above the critical temperature is preferably used when the storage is carried out at pressures which are substantially greater than the critical pressure. At pressures that are only slightly above the critical pressure, the storage is preferably applied in the compressible phase range. Materials which are suitable for adsorption or absorption of the technical gas in appreciable amount, ie in a larger amount than in the case of virtually all materials occurring surface absorption or absorption, are not used.
  • the gas can advantageously be throttled when it is withdrawn from the storage container, the gas remaining in the container being removed by means of the exiting gas, whose temperature drops sharply during the relaxation due to the Joule-Thomson effect, is cooled.
  • the storage of hydrogen takes place at a temperature above 33 K and at a pressure above 13 bar. Again, a storage in the compressible phase range at a temperature below 33 K in the same pressure range is possible.
  • the hydrogen is stored at a temperature of 33 to 100 K and above the critical pressure at 13 to 1200 bar.
  • a hydrogen density of 100 kg / m 3 can be achieved.
  • the storage density at the same pressure drops by only 12%, ie to 88 kg / m 3 .
  • storage densities above that of the liquid hydrogen and about three times the high pressure hydrogen at ambient temperature are achievable.
  • the storage tank for the technical gas consists of a thermally insulated, pressure-tight container with a closable opening for removal and filling.
  • the container is equipped with a refrigerating machine, which is mounted on the container so that it can deliver the cold produced by it to the natural gas in the container, and / or equipped with the throttled relaxing the leaking technical glass relaxation device, which in thermal Contact with the stored in the storage tank technical gas is.
  • the cold part / the cold finger of the chiller must be in thermal contact with the technical gas in the interior of the container.
  • the basic structure of the Speicherbefflel- ter 's thin-walled tubes (0.1 to 30 mm wall thickness) with small inner diameters (0.1 to 100 mm), which are thermally connected to each other and possibly with other structural elements of the memory , Due to the thin walls of the tubes, a good thermal connection of the technical gas stored in the tube bundles to the tubes and structural elements serving as heat storage is achieved.
  • the small inner diameters of the tubes make it possible, despite the comparatively low wall thicknesses, to achieve the required storage pressures of up to 1200 bar.
  • the expansion device which serves to reduce the release of technical gases during removal, consists either of at least one capillary larrohr or it is designed as at least one porous element which covers the at least one outlet opening for the technical gas (eg hydrogen).
  • technical gas eg hydrogen
  • a particularly good heat transfer between the exiting and in the Spei- rather remaining technical gas is achieved with an embodiment in which the basic structure of the storage container consists of thin-walled tube bundles, wherein the capillary tubes are integrated into the thin-walled tube bundles.
  • the storage container may additionally be equipped with at least one latent storage element, for which storage elements based on the Gibbs-Thomson effect are particularly suitable.
  • the memory can be used particularly advantageously in conjunction with natural gas or hydrogen as a motor vehicle tank.
  • the thermal insulation of the storage container is carried out as a multilayer vacuum superinsulation, which is equipped with actively cooled radiant screens.
  • the radiation screens can be thermally connected to the gas outlet, whereby the sensible heat of the escaping technical gas is used to cool the radiation shields.
  • FIG. 1 shows a memory, preferably for supercritical and transcritical natural gas, in a schematic representation
  • Fig. 2 the diagram of the temperature dependence of density and calorific value for natural gas at different pressures
  • 3 shows a memory, preferably for supercritical and transcritical hydrogen, in a schematic representation; 4 shows various embodiments of the expansion device.
  • the storage for natural gas consists of the container 1 and the refrigerating machine 2.
  • the container 1 has a closable by means of a valve 3 opening 4, which serves for filling with and for the removal of natural gas.
  • the container 1 is equipped with an insulation layer 5 designed either as a solid or vacuum insulation, which minimizes the heat transfer from the environment into the supercritical natural gas 6 in the reservoir.
  • the chiller 2 has a cooling capacity which is sufficient to compensate for the thermal losses and is either as a compression refrigeration cascade or as
  • the cold part 7 of the refrigerator 2 communicates with the interior 8 of the container 1 and thus with the supercritical natural gas 6 in thermal contact. It does not matter at which point of the container 1, the chiller 2 is arranged (up or down), since the supercritical natural gas 6 evenly fills the interior space 8 (no liquid phase).
  • the storage of natural gas at a pressure above the critical pressure (46 bar) and a temperature of 190 K results in an increase in the density of the stored supercritical natural gas.
  • the density of natural gas compared to that at ambient temperature (at 200 bar) from 155 kg / m 3 to 330 kg / m 3 , ie increased to 2.13 times become.
  • the volumetric energy density increases in the same ratio from 6.25 MJ / I to 13.3 MJ / I, which saves more than twice as much energy when the tank is used as a vehicle tank with the same tank volume and consequently increases the range of the vehicle.
  • the container 11 of the hydrogen storage (Fig. 3) consists of numerous, parallel arranged storage tubes 12, wherein one side of the tubes 12 with a Collecting device 13 is connected, which connects all tubes 12 with the hydrogen outlet 14.
  • the storage container 11 composed of the tube bundles is surrounded by a multilayer vacuum superinsulation 15, which is surrounded by radiation shields 16 for further improvement of the thermal insulation.
  • the radiation screens 16 are thermally connected to the hydrogen outlet line 14 so that the radiation screens 16 are actively cooled by the sensible heat of the exiting hydrogen.
  • the entire assembly is located in a Dewar vessel 17, which ensures a first thermal insulation against the comparatively high ambient temperature.
  • Fig. 4 are arranged from top to bottom, several embodiments of relaxation devices 18.
  • the capillary tubes 19 are arranged coaxially in the interior of the storage tubes 12. When hydrogen is withdrawn, the hydrogen remaining in the respective storage tube 12 is cooled directly through the capillary tube 19.
  • the cross sections of the storage tubes 12 are chosen so small with an inner diameter of about 1 mm that they simultaneously take over the function of the capillary 19, while in the third variant, the storage tubes 12 are spirally surrounded by the capillary tubes 18.
  • outlet openings of the storage tubes 12 are each covered with porous plugs 20, which serve as an alternative to the capillary tubes 19 for the throttled relaxation of the hydrogen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Speicherung von technischen Gasen, das es ermöglicht, die Dichte von unter Druck gelagerten technischen Gasen ohne Drucksteigerung wesentlich zu erhöhen. Der Speicher eignet sich besonders für den Einsatz als Tank von mit Brenngasen, wie z.B. Erdgas oder Wasserstoff, betriebenen Fahrzeugen. Gemäß dem Verfahren wird das technische Gas bei einer Temperatur nahe seines kritischen Punkts und einem Druck größer seines kritischen Drucks bis maximal 1200 bar gelagert. Der nach dem Verfahren arbeitende Speicher weist einen thermisch isolierten, druckdichten Behälter (1, 10) auf, der über eine verschließbare Öffnung (4) zur Entnahme und Befüllung verfügt, und für Innendrücke bis maximal 1200 bar ausgelegt ist. Das technische Gas wird mittels einer Kältemaschine (2) und/oder mittels einer dem gedrosselten Entspannen des austretenden technischen Gases dienenden Entspannungseinrichtung (18) gekühlt.

Description

Verfahren zur Speicherung von und Speicher für technische Gase
Die Erfindung betrifft ein Verfahren zur Speicherung von technischen Gasen, das es ermöglicht, die Dichte von unter Druck gelagerten technischen Gasen ohne Druck- Steigerung wesentlich zu erhöhen. Der Speicher eignet sich für die Lagerung und für Transporte von technischen Gasen im Allgemeinen, für die Speicherung von technischen Brenngasen, wie z.B. Wasserstoff oder Erdgas, an Tankstellen und für den Einsatz als Tank von mit Brenngasen betriebenen Fahrzeugen.
Die effektive Speicherung der technischen Gase Erdgas und Wasserstoff ist von großer wirtschaftlicher Relevanz , da beide Brenngase direkt zum Antrieb von Kraftfahrzeugen eingesetzt werden können.
So wird Erdgas bereits seit Jahren als Treibstoff für Kraftfahrzeuge benutzt und ent- sprechend gibt es auch ein gut ausgebautes Tankstellennetz. Das Erdgas wird typischerweise bei einem Druck von 200 bar bereit gehalten; bei diesem Druck hat es eine Dichte von ca. 155 kg/m3 bzw. einen Heizwert von ca. 6.25 MJ/I. Damit ist die Energiedichte von komprimiertem Erdgas (200 bar) im Vergleich zu anderen fossilen Kraftstoffen, wie z.B. Benzin mit einer Energiedichte von 32 MJ/I oder Dieselkraftstoff mit einer Energiedichte von 36 MJ/I oder regenerativen Kraftstoffen, wie z.B. Bio- Diesel mit 32 MJ/I oder Bioethanol mit 21 MJ/I, sehr gering.
Eine Erhöhung der Energiedichte des Erdgases ist zwar prinzipiell durch eine Erhöhung des Speicherdrucks möglich, die technischen und insbesondere die sicherheits- technischen Anforderungen an die eingesetzten Druckbehälter nehmen bei Drücken über 200 bar jedoch unverhältnismäßig zu, wodurch eine solche Lagerung nicht mehr wirtschaftlich ist.
Weiterhin ist bekannt, das Erdgas in flüssiger Form zu speichern. Da flüssiges Erd- gas (LNG - Liquified Natural Gas) nur etwa ein 1/600stel des Volumens von gasförmigem Erdgas hat, sind mit der Speicherung von LNG sehr hohe Speicherdichten erreichbar. Allerdings muss das Erdgas zur Verflüssigung auf ca. 110 K abgekühlt werden; zudem benötigt man Energie für dessen Phasenumwandlung von gasförmig zu. flüssig. Hinzu kommt, dass aufgrund der vergleichsweise tiefen Lagertemperatu- ren, auch wenn sich das LNG in thermisch gut isolierten Behältern befindet, das LNG ständig mit hohen Kälteleistungen gekühlt werden muss, wenn ein Verdampfen des LNG vermieden werden soll.
Die Speicherung von Erdgas in Form von LNG wird zurzeit in größerem Maßstab nur bei LNG-Tankschiffen (siehe DE 10 2006 056 821 A1) eingesetzt. Obwohl die Speicher der Tankschiffe ein wesentlich besseres Verhältnis von Volumen zur Oberfläche haben als z.B. die Tanks von Kraftfahrzeugen, geht dennoch beim Transport des Erdgases ungefähr ein Viertel der transportierten Energie verloren, da das Erdgas zuerst verflüssigt und während der Fahrt gekühlt werden muss bzw. ein Teil des Erdgases während der Fahrt verdampft. Für einen Einsatz in Kraftfahrzeugen ist diese Methode jedoch völlig ungeeignet, da das LNG ständig, also auch in Zeiten, in denen das Kraftfahrzeug nicht bewegt wird, auf 110 K gekühlt werden muss.
Des Weiteren sind aus der Patentliteratur (CN 2389281 Y, US 5,709,203 A, US 5,582,016 A, CA 2, 113,774 A1, EP 0 670 452 A1, US 6,089,226 A, US 6,513,521 B1) Lösungen bekannt, bei denen eine Flüssig-Erdgas-Speicherung bei Drücken im überkritischen Bereich als unterkühlte Flüssigkeit angewandt, und folglich die Verdampfung des flüssigen Erdgases unterbunden wird. Hierdurch kann gegenüber der oben beschriebenen LNG-Speicherung zwar die während der Lagerung erforderliche Energie etwas gesenkt werden, jedoch muss auch hier eine große Energiemenge für die Phasenumwandlung des Erdgases von der gasförmigen in die flüssige Phase aufgebracht werden.
Mit Wasserstoff betriebene Fahrzeuge werden zwar, im Gegensatz zu den mit Erdgas betriebenen, zurzeit nur in geringem Umfang eingesetzt, jedoch ist zu erwarten, dass sie in Zukunft an Bedeutung gewinnen, da unter Einsatz von Energie vergleichsweise einfach Wasserstoff (Wasserelektrolyse) gewonnen werden kann.
Bekannte Methoden zur Speicherung von Wasserstoff sind erstens die Speicherung bei Umgebungstemperatur unter Hochdruck, zweitens die Speicherung als Flüssigwasserstoff im Verdampfungsgleichgewicht bei tiefen Temperaturen und drittens Ad- bzw. Absorption von Wasserstoff an bzw. in Festkörpern, wie z.B. Metallhydriden oder Graphit. Mit allen drei Methoden können bislang nur unzureichende volumetrische Speicherdichten erzielt werden. So beträgt die Speicherdichte des Wasserstoffs bei Umgebungstemperatur und einem Druck von 700 bar lediglich 39 kg/m3; flüssiger Wasser- stoff (am kritischen Punkt) hat sogar nur eine Dichte von 31 kg/m3. Bei der festkörpergebundenen Speicherung von Wasserstoff sind die Speicherdichten üblicherweise wesentlich geringer.
Eine Ausnahme bildet die Speicherung von Wasserstoff an Graphit-Nanotubes, mit der in Laborversuchen Speicherdichten von bis zu 75% der Kohlenstoffdichte erreicht wurden. Allerdings ist die Be- und Entladung sehr zeitaufwendig, da sie 4 bis 24 Stunden dauert; zudem ist sie nicht vollständig reversibel. In den Versuchen wurden lediglich 4 bis 5 befriedigende Ladezyklen erreicht. Danach nimmt, da der adsorbierte Wasserstoff dem Kohlenstoff nicht mehr vollständig entnommen werden kann, die nutzbare Speicherdichte rapide ab. Bei wesentlich mehr Lade-/Entlade-Zyklen sind schätzungsweise nur noch 0,5 bis 1 % der Kohlenstoffdichte nutzbar.
Neuere Entwicklungen zielen insbesondere auf die Verbesserung der Speicherdichten von Speichern, die auf dem Prinzip der Ad- beziehungsweise Absorption von Wasserstoff an bzw. in anderen Materialien beruhen.
So wird in DE 25 36 993 C2 und US 6,672,077 B1 vorgeschlagen, Wasserstoff bei Temperaturen weit unterhalb der Umgebungstemperatur in absorbierendem bzw. nanostrukturiertem Material einzulagern. In EP 1 130 06 A1 und WO 00/01980 wer- den Lösung aufgezeigt, bei denen Wasserstoff ebenfalls bei tiefen Temperaturen eingelagert, jedoch zusätzlich mittels eines Hilfsstoffes im speichernden Material quasi "eingekapselt" wird. In DE 103 92 240 T5 wird hingegen eine Lösung vorgestellt, bei der Wasserstoff unter erhöhtem Druck in einem absorbierenden Material gespeichert wird.
In WO 97/26082 A1 und WO 01/13032 A1 werden Wasserstoffspeicher gezeigt, die eine spezielle Schicht- bzw. Folienstruktur besitzen, und in US 2004/0250552 A1 wird der Einsatz eines flüssigen Speichermaterials vorgeschlagen. Schließlich wird in DE 10 2005 023 036 A1 ein Verfahren zur Wasserstoffspeiche- rung gezeigt, bei dem Wasserstoff in gasförmiger, gekühlter und komprimierter Form unter Hochdruck an einem physikalisch adsorbierenden Material, insbesondere Kohlenstoffpulver, gespeichert wird.
Mit diesen Lösungen kann zwar eine gewisse Erhöhung der volumetrischen Energiedichten der Wasserstoffspeicher erzielt werden, beim Einsatz von nanostrukturiertem Kohlenstoff bzw. von Kohlenstoffpulver als Speichermaterial tritt jedoch nach wie vor das Problem auf, dass eingelagerter Wasserstoff nur sehr langsam und/oder nicht vollständig aus dem Speicher entnommen werden kann und/oder die maximale
Speicherkapazität stark abnimmt mit der Zahl der Beladezyklen, wohingegen bei den Lösungen, die andere Speichermaterialien einsetzen, nur wesentlich geringere volu- metrische Energiedichten erreicht werden können, als solche von fossilen Brennstoffen.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Speicherung von technischen Gasen zu finden, das es ermöglicht, die Dichte von unter Druck gelagerten technischen Gasen, insbesondere von Erdgas und Wasserstoff, ohne Drucksteigerung und mit geringem Energieeinsatz signifikant zu erhöhen.
Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale der Ansprüche 1 und 7 gelöst. Weitere vorteilhafte Ausführungen ergeben sich aus den Ansprüchen 2 bis 6 sowie 8 bis 16.
Nach Maßgabe der Erfindung wird das technische Gas in einem Speicherbehälter, der abhängig vom darin gelagerten Gas Drücken bis 1200 bar standhalten muss, oberhalb seines kritischen Druckes und oberhalb der kritischen Temperatur, bzw. im kompressiblen Phasenbereich unterhalb der kritischen Temperatur gelagert.
Die Lagerung oberhalb der kritischen Temperatur wird dabei vorzugsweise dann angewendet, wenn die Lagerung bei Drücken erfolgt, welche wesentlich größer als der kritische Druck sind. Bei Drücken, die nur unwesentlich über dem kritischen Druck liegen, wird vorzugsweise die Lagerung im kompressiblen Phasenbereich angewandt. Materialien, die geeignet sind das technische Gas in merklicher Menge, d.h. in größerer Menge als bei der bei praktisch allen Materialien auftretenden Oberflächenabsorption bzw. -absorption, zu ad- oder zu absorbieren, kommen dabei nicht zum Einsatz.
In der untenstehenden Tabelle sind exemplarisch die kritischen Temperaturen und kritischen Drücke von Gasen aufgeführt, die vorteilhaft mit dem erfindungsgemäßen Verfahren gespeichert werden können.
Die Eigenschaften von Erdgas, das zu circa 95 % aus Methan besteht, entsprechen weitgehend denen des reinen Methans.
Bei technischen Gasen, die bei der Lagertemperatur und möglichst auch bei weit darüber liegenden Temperaturen einen positiven Joule-Thomson-Koeffizienten aufweisen, kann das Gas vorteilhafterweise bei der Entnahme aus dem Speicherbehälter gedrosselt entspannt werden, wobei das im Behälter verbleibende Gas mittels des austretenden Gases, dessen Temperatur während der Entspannung aufgrund des Joule-Thomson-Effekts stark absinkt, gekühlt wird.
Es ist vorgesehen, Erdgas bei einer Temperatur oberhalb von 190 K und einem Druck oberhalb von 46 bar zu lagern. Weiterhin ist die Lagerung von Erdgas im kom- pressiblen Phasenbereich bei einer Temperatur unterhalb von 190 K im gleichen Druckbereich vorteilhaft möglich. Weiterhin vorteilhaft ist auch die Lagerung des Erdgases bei einem Druck oberhalb des kritischen Drucks bei 46 bar bis ca. 200 bar und einer Temperatur von 180 bis 190 K, d.h. unterhalb der kritischen Temperatur. Die Dichte des Erdgases beträgt dann ca. 330 kg/m3, d.h., gegenüber der Speicherung bei Umgebungstemperatur (unter 200 bar), bei der die Dichte des gespeicherten Erdgases lediglich 155 kg/m3 beträgt, wird die Speicherdichte auf etwa das Doppelte erhöht.
Systeme mit einem Maximaldruck von 200 bar sind kostengünstig erhältlich (die gängigen Gasflaschen sowie die daran angeschlossenen Systeme haben üblicherweise einen Maximaldruck von 200 bar) und außerdem sind die Sicherheitsanforderungen geringer als die für mit höheren Drücken arbeitende Systeme. Für das Abkühlen des Erdgases wird wesentlich weniger Energie benötigt als bei der Speicherung des Erdgases als LNG, da erstens das Erdgas weit weniger abgekühlt und zweitens auch keine Kondensationsenergie abgeführt werden muss.
Die Lagerung von Wasserstoff erfolgt bei einer Temperatur oberhalb von 33 K und bei einem Druck oberhalb von 13 bar. Auch hier ist eine Lagerung im kompressiblen Phasenbereich bei einer Temperatur unterhalb von 33 K im gleichen Druckbereich möglich.
Bevorzugt wird der Wasserstoff bei einer Temperatur von 33 bis 100 K und oberhalb des kritischen Drucks bei 13 bis 1200 bar gespeichert. Exemplarisch kann bei 850 bar und einer Temperatur von 33 K eine Wasserstoffdichte von 100 kg/m3 erreicht werden. Bei einer Erwärmung auf 70 K sinkt die Speicherdichte bei gleichem Druck um lediglich 12 %, d.h. auf 88 kg/m3, ab. Somit sind Speicherdichten, die über der des Flüssigwasserstoffs und ungefähr bei dem dreifachen des Hochdruckwasserstoffs bei Umgebungstemperatur liegen, erreichbar.
Da dieses Speicherprinzip von Wasserstoff Erwärmungen von 33 K auf 100 K ohne wesentliche Veränderungen des Speicherdrucks toleriert, ist es, hochwertige Speicherbehälter vorausgesetzt, bei regelmäßiger Wasserstoffentnahme durch Ausnutzung des Joule-Thomson-Effekts möglich, den Speicher für Wasserstoff ohne zusätzliche kryogene Kühlung zu betreiben. Weiterhin ist es aber auch vorgesehen, das technische Gas bei längeren Zeiten ohne Entnahme mittels eines Kryokühlers geringfügig, d.h. abhängig von der Temperaturregelung bis 5 K, unterhalb der maximal zulässigen Speichertemperatur zu halten.
Der Speicher für das technische Gas besteht aus einem thermisch isolierten, druckdichten Behälter, der über eine verschließbare Öffnung zur Entnahme und Befüllung verfügt. Erfindungsgemäß ist der Behälter mit einer Kältemaschine ausgestattet, die derart am Behälter angebracht ist, dass sie die von ihr erzeugte Kälte an das Erdgas im Behälter abgeben kann, und/oder mit einer dem gedrosselten Entspannen des austretenden technischen Glases dienenden Entspannungseinrichtung ausgestattet, die in thermischem Kontakt mit dem im Speicherbehälter gelagerten technischen Gas steht.
Als Kältemaschinen sind je nach Temperaturbereich insbesondere Stirlingkühler, Kompressionskältemaschinen oder Gemisch-Joule-Thomson-Kühler einsetzbar. Um eine Übertragung der von den Kältemaschinen erzeugten Kälte an das technische
Gas im Tank zu ermöglichen, muss das Kaltteil/der Kühlfinger der Kältemaschine mit dem technischen Gas im Innenraum des Behälters in thermischem Kontakt stehen.
Da sich im Behälter nur eine Phase ausbildet, ist es unerheblich, an welcher Stelle das Kaltteil/der Kühlfinger in den Behälter geführt ist.
In einer vorteilhaften Ausführungsform besteht die Grundstruktur des Speicherbehäl- ter's aus dünnwandigen Rohren (0,1 bis 30 mm Wandstärke) mit kleinen Innendurchmessern (0,1 bis 100 mm), die thermisch miteinander und ggf. mit weiteren Strukturelementen des Speichers verbunden sind. Durch die dünnen Wände der Rohre wird eine gute thermische Anbindung des in den Rohrbündeln gespeicherten technischen Gases an die als Wärmespeicher dienenden Rohre und Strukturelemente erreicht. Die kleinen Innendurchmesser der Rohre ermöglichen es, trotz der vergleichsweise geringen Wandstärken, die erforderlichen Speicherdrücke bis 1200 bar zu realisieren.
Die Entspannungseinrichtung, die zur gedrosselten Entspannung der technischen Gase während ihrer Entnahme dient, besteht entweder aus mindestens einem Kapil- larrohr oder sie ist als mindestens ein poröses Element ausgeführt, das die mindestens eine Austrittsöffnung für das technische Gas (z.B. Wasserstoff) bedeckt.
Ein besonders guter Wärmeübertrag zwischen dem austretenden und dem im Spei- eher verbleibenden technischen Gas wird mit einer Ausführungsform erreicht, bei der die Grundstruktur des Speicherbehälters aus dünnwandigen Rohrbündeln besteht , wobei die Kapillarrohre in die dünnwandigen Rohrbündel integriert sind.
Zur weiteren Erhöhung der Wärmekapazität kann der Speicherbehälter zusätzlich mit mindestens einem Latentspeicherelement ausgestattet sein, wofür auf dem Gibbs- Thomson-Effekt basierende Speicherelemente besonders geeignet sind.
Der Speicher kann besonders vorteilhaft in Verbindung mit Erdgas bzw. Wasserstoff als Kraftfahrzeugtank eingesetzt werden.
Insbesondere für die Speicherung von technischen Gasen mit sehr niedrigen Verdampfungstemperaturen, wie z.B. Wasserstoff oder Helium, ist es vorgesehen, die thermische Isolierung des Speicherbehälters als Multilagen-Vakuum-Superisolation auszuführen, die mit aktiv gekühlten Strahlungsschirmen ausgestattet ist. Zur aktiven Kühlung können die Strahlungsschirme thermisch mit dem Gasauslass verbunden sein, wodurch die fühlbare Wärme des austretenden technischen Gases zur Kühlung der Strahlungsschirme genutzt wird.
Die Erfindung wird nachfolgend anhand mehrerer Ausführungsbeispiele näher erläu- tert; hierzu zeigen:
Fig. 1 : einen Speicher, vorzugsweise für über- und transkritisches Erdgas, in schematischer Darstellung;
Fig. 2: das Diagramm der Temperaturabhängigkeit von Dichte und Heizwert für Erdgas bei unterschiedlichen Drücken;
Fig. 3: einen Speicher, vorzugsweise für über- und transkritischen Wasserstoff, in schematischer Darstellung; Fig. 4: verschiedene Ausführungsformen der Entspannungseinrichtung.
Wie aus Fig. 1 ersichtlich, besteht der Speicher für Erdgas aus dem Behälter 1 und der Kältemaschine 2.
Der Behälter 1 weist eine mittels eines Ventils 3 verschließbare Öffnung 4 auf, die zur Befüllung mit und zur Entnahme von Erdgas dient. Der Behälter 1 ist mit einer entweder als Feststoff- oder Vakuumisolierung ausgeführten Isolationsschicht 5 ausgestattet, die den Wärmeübertrag von der Umgebung in das überkritsche Erdgas 6 im Speicher minimiert.
Die Kältemaschine 2 hat eine Kühlleistung die zur Kompensation der thermischen Verluste ausreichend ist und ist entweder als Kompressionskälte-Kaskade oder als
Gemisch-Joule-Thomson-Kühler ausgeführt. Das Kaltteil 7 der Kältemaschine 2 steht mit dem Innenraum 8 des Behälters 1 und damit mit dem überkritischen Erdgas 6 im thermischen Kontakt. Dabei spielt es keine Rolle, an welcher Stelle des Behälters 1 die Kältemaschine 2 angeordnet (oben oder unten) ist, da das überkritische Erdgas 6 den Innenraum 8 gleichmäßig ausfüllt (keine flüssige Phase).
Wie aus Fig. 2 ersichtlich, erfolgt bei der Speicherung von Erdgas bei einem Druck oberhalb des kritischen Drucks (46 bar) und einer Temperatur von 190 K ein Anstieg der Dichte des gespeicherten überkritischen Erdgases. Infolgedessen kann bei ei- nem Druck von 200 bar und einer Temperatur von 190 K die Dichte von Erdgas gegenüber derjenigen bei Umgebungstemperatur (bei 200 bar) von 155 kg/m3 auf 330 kg/m3, also auf das 2,13 fache gesteigert werden. Die volumetrische Energiedichte steigt im gleichen Verhältnis von 6.25 MJ/I auf 13.3 MJ/I, wodurch sich beim Einsatz des Speichers als Fahrzeugtank bei gleichem Tankvolumen mehr als das Doppelte an Energie speichern und entsprechend die Reichweite des Fahrzeugs erhöhen lässt.
Der Behälter 11 des Wasserstoffspeichers (Fig. 3) besteht aus zahlreichen, parallel angeordneten Speicherrohren 12, wobei jeweils eine Seite der Rohre 12 mit einer Sammeleinrichtung 13 verbunden ist, die alle Rohre 12 mit der Wasserstoff- Auslassleitung 14 verbindet.
Der aus den Rohrbündeln zusammengesetzte Speicherbehälter 11 ist von einer MuI- tilagen-Vakuum-Superisolation 15 umgeben, die zur weiteren Verbesserung der thermischen Isolierung mit Strahlungsschirmen 16 umgeben ist. Die Strahlungsschirme 16 sind thermisch mit der Auslassleitung 14 für den Wasserstoff verbunden, sodass die Strahlungsschirme 16 über die fühlbare Wärme des austretenden Wasserstoffs aktiv gekühlt werden. Die gesamte Anordnung befindet sich in einem Dewar-Gefäß 17, das eine erste thermische Isolierung gegenüber der vergleichsweise hohen Umgebungstemperatur sicherstellt.
In Fig. 4 sind von oben nach unten angeordnet mehrere Ausführungsvarianten von Entspannungseinrichtungen 18 dargestellt.
Bei der ersten Variante sind die Kapillarrohre 19 koaxial im Innern der Speicherrohre 12 angeordnet. Bei der Entnahme von Wasserstoff wird so der im jeweiligen Speicherrohr 12 verbleibende Wasserstoff direkt durch das Kapillarrohr 19 gekühlt.
Bei der zweiten Variante sind die Querschnitte der Speicherrohre 12 mit einem Innendurchmesser von ca. 1 mm so klein gewählt, dass sie gleichzeitig auch die Funktion der Kapillarrohre 19 übernehmen, während bei der dritten Variante die Speicherrohre 12 spiralförmig von den Kapillarrohren 18 umgeben sind.
Bei der vierten Variante sind die Austrittsöffnungen der Speicherrohre 12 jeweils mit porösen Stopfen 20, die alternativ zu den Kapillarrohren 19 zur gedrosselten Entspannung des Wasserstoffs dienen, bedeckt. Liste der verwendeten Bezugszeichen
I Speicherbehälter (vorzugsweise für Erdgas) 2 Kältemaschine
3 Ventil
4 Öffnung
5 Isolation
6 trans- oder überkritisches Erdgas 7 Kaltteil der Kältemaschine
8 Innenraum des Behälters
I 1 Speicherbehälter (vorzugsweise für Wasserstoff) 12 Speicherrohr 13 Sammeleinrichtung
14 Auslassleitung
15 Multilagen-Vakuum-Superisolation
16 Strahlungsschirm
17 Dewar-Gefäß 18 Entspannungseinrichtung
19 Kapillarrohr
20 poröses Element / poröser Stopfen

Claims

Patentansprüche
1. Verfahren zur Speicherung von technischen Gasen in einem thermisch isolier- ten Speicherbehälter, dadurch gekennzeichnet, dass das technische Gas bei einer Temperatur nahe seines kritischen Punkts und oberhalb seines kritischen Drucks bis zu einem Druck von 1200 bar gelagert wird, ohne Einsatz von Materialien, die geeignet sind^das technische Gas zu ad- oder zu absorbieren.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das technische Gas bei der Entnahme aus dem Speicherbehälter (1 , 10) gedrosselt entspannt wird, wobei das im Behälter (1 , 10) verbleibende technische Gas mittels des austretenden technischen Gases, dessen Temperatur während der Entspan- nung aufgrund des Joule-Thomson-Effekts bei gedrosselter Entspannung absinkt, gekühlt wird.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, dass das technische Gas bei längeren Zeiten ohne Entnahme mittels eines Kryokühlers bis 5 K unterhalb der maximal zulässigen Speichertemperatur gehalten wird.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass als technisches Gas Wasserstoff verwendet und dieser bei einer Temperatur von 33 bis 100 K und oberhalb des kritischen Drucks bei 13 bis 1200 bar gespeichert wird.
5. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass als technisches Gas Erdgas verwendet und dieses oberhalb der kritischen Temperatur bei 190 bis 220 K und oberhalb des kritischen Drucks bei 46 bar bis 300 bar gespeichert wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Erdgas im kompressiblen Flüssigkeitsbereich bei einer Temperatur von 180 bis 190 K und einem Druck oberhalb des kritischen Drucks bei 46 bar bis ca. 200 bar gespeichert wird.
7. Speicher für ein technisches Gas, arbeitend nach dem Verfahren nach An- spruch 1, mit einem thermisch isolierten, druckdichten Behälter (1 , 10), der über eine verschließbare Öffnung (4) zur Entnahme und Befüllung verfügt, dadurch gekennzeichnet, dass der Behälter (1, 10) für Innendrücke bis maximal 1200 bar ausgelegt ist und mit einer Kältemaschine (2), die derart am Behälter (1 , 10) angebracht ist, dass sie die von ihr erzeugte Kälte an das Erd- gas im Behälter (1 , 10) abgeben kann, und/oder mit einer dem gedrosselten
Entspannen des austretenden technischen Glases dienenden Entspannungseinrichtung (18) ausgestattet ist, die in thermischem Kontakt mit dem im Speicherbehälter (1, 10) gelagerten technischen Gas steht.
8. Speicher nach Anspruch 7, dadurch gekennzeichnet, dass als Kältemaschine
(2) eine Kompressionskälte-Kaskade eingesetzt ist.
9. Speicher nach Anspruch 7, dadurch gekennzeichnet, dass als Kältemaschine (2) ein Gemisch-Joule-Thomson-Kühler eingesetzt ist.
10. Speicher nach Anspruch 7, dadurch gekennzeichnet, dass als Kältemaschine (2) ein Stirling-Kühler eingesetzt ist.
11. Speicher nach Anspruch 7 bis 10, dadurch gekennzeichnet, dass sich der Speicherbehälter (1, 10) aus Rohrbündeln zusammensetzt, wobei die einzelnen Rohre (12) Innendurchmesser von 0,1 bis 100 mm und Wandstärken von 0,1 bis 30 mm aufweisen .
12. Speicher nach Anspruch 7 bis 11 , dadurch gekennzeichnet, dass der Spei- cherbehälter (1 , 10) mit mindestens einem auf dem Gibbs-Thomson-Effekt basierenden Latentspeicherelement ausgestattet ist.
13. Speicher nach Anspruch 7 bis 12, dadurch gekennzeichnet, dass die thermische Isolierung (5, 15) des Speicherbehälters eine Multilagen-Vakuum- Superisolation ist.
5 14. Speicher nach Anspruch 7 bis 13, dadurch gekennzeichnet, dass die thermische Isolierung (5, 15) mit aktiv gekühlten Strahlungsschirmen (16) ausgestattet ist und/oder die Strahlungsschirme (16) zur Kühlung mit Hilfe der fühlbaren Wärme des technischen Gases thermisch mit der Gasauslassleitung (14) verbunden sind.
0
15. Speicher nach Anspruch 7 bis 14, dadurch gekennzeichnet, dass die Entspannungseinrichtung (18) mindestens ein poröses Element (20) umfasst oder mindestens ein Kapillarrohr (19) aufweist, das entweder in die dünnwandigen Rohre (12) des Speicherbehälters (1 , 10) integriert ist oder bei der gedrossel-
[5 ten Entspannung des technischen Glases die Funktion des Speicherrohrs (12) übernimmt.
16. Speicher nach Anspruch 7 bis 15, dadurch gekennzeichnet, dass dieser mit einem Kryokühler ausgestattet ist, der mittels einer Brennstoffzelle mit Elekt-0 roenergie versorgt ist.
EP10726881A 2009-05-06 2010-05-05 Verfahren zur speicherung von und speicher für technische gase Withdrawn EP2427687A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009020138A DE102009020138B3 (de) 2009-05-06 2009-05-06 Verfahren zur Speicherung von Wasserstoff und Speicher für Wasserstoff
DE102010010108A DE102010010108B4 (de) 2010-02-23 2010-03-04 Verfahren zur Speicherung von und Speicher für Erdgas
PCT/DE2010/000537 WO2010127671A2 (de) 2009-05-06 2010-05-05 Verfahren zur speicherung von und speicher für technische gase

Publications (1)

Publication Number Publication Date
EP2427687A2 true EP2427687A2 (de) 2012-03-14

Family

ID=43028787

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10726881A Withdrawn EP2427687A2 (de) 2009-05-06 2010-05-05 Verfahren zur speicherung von und speicher für technische gase

Country Status (3)

Country Link
EP (1) EP2427687A2 (de)
DE (1) DE102009020138B3 (de)
WO (1) WO2010127671A2 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010010108B4 (de) * 2010-02-23 2012-01-26 Institut für Luft- und Kältetechnik gGmbH Verfahren zur Speicherung von und Speicher für Erdgas
DE102013002829A1 (de) * 2013-02-19 2014-08-21 Linde Aktiengesellschaft Speicherung von Gasen, insbesondere von Erdgas
FR3006742B1 (fr) * 2013-06-05 2016-08-05 Air Liquide Dispositif et procede de remplissage d'un reservoir
KR101865210B1 (ko) * 2013-06-21 2018-06-07 카와사키 주코교 카부시키 카이샤 액화 가스 저장 탱크 및 액화 가스 운반선
FR3028305A1 (fr) * 2014-11-10 2016-05-13 Gaztransport Et Technigaz Dispositif et procede de refroidissement d'un gaz liquefie
FR3041061B1 (fr) 2015-09-15 2019-05-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Reservoir de stockage de fluide liquefie
EP3992519A1 (de) * 2020-10-29 2022-05-04 Linde Kryotechnik AG Verfahren und vorrichtung zur versorgung mit einem kryogenen gas wie wasserstoff
EP4431790A1 (de) * 2023-03-17 2024-09-18 Maximator Gmbh Verfahren und anlage zum betanken eines wasserstofftanks

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1245998B (de) * 1963-09-06 1967-08-03 Arthur D. Little, Inc., Cambridge, Mass. (V. St. A.) Einrichtung zum Verflüssigen von Gasen wie Helium
US3422632A (en) * 1966-06-03 1969-01-21 Air Prod & Chem Cryogenic refrigeration system
JPS59123678A (ja) 1982-12-29 1984-07-17 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション 印刷アクチユエ−タ
US5458784A (en) * 1990-10-23 1995-10-17 Catalytic Materials Limited Removal of contaminants from aqueous and gaseous streams using graphic filaments
US5382797A (en) * 1990-12-21 1995-01-17 Santa Barbara Research Center Fast cooldown cryostat for large infrared focal plane arrays
CH683368A5 (de) * 1991-06-26 1994-02-28 Linde Ag Verfahren und Vorrichtung zum Transport und Verteilen von Helium.
US5582016A (en) 1992-05-07 1996-12-10 Aerospace Design & Development, Inc. Conditioning and loading apparatus and method for gas storage at cryogenic temperature and supercritical pressure
US5709203A (en) 1992-05-07 1998-01-20 Aerospace Design And Development, Inc. Self contained, cryogenic mixed gas single phase storage and delivery system and method for body cooling, gas conditioning and utilization
US6089226A (en) 1996-11-22 2000-07-18 Aerospace Design & Development, Inc. Self contained, cryogenic mixed gas single phase storage and delivery
CA2113774A1 (en) * 1994-01-19 1995-07-20 Harold L. Gier Loading, storage and delivery apparatus and method for fluid at cryogenic temperature
BR9911824A (pt) * 1998-07-03 2001-03-27 Toyota Motor Co Ltd Método e sistema de armazenamento de gás, e material de oclusão para gás
CA2391845A1 (en) * 1999-08-11 2001-02-22 Roy Edward Mcalister Gas storage on an adsorbent with exfoliated laminae
IL132035A0 (en) * 1999-09-23 2001-03-19 Israel State Infrared detector
CN2389281Y (zh) 1999-10-08 2000-07-26 朱立 天然气等超临界压力深冷液化气体贮运罐装置
US6581409B2 (en) * 2001-05-04 2003-06-24 Bechtel Bwxt Idaho, Llc Apparatus for the liquefaction of natural gas and methods related to same
US6672077B1 (en) * 2001-12-11 2004-01-06 Nanomix, Inc. Hydrogen storage in nanostructure with physisorption
JP4078522B2 (ja) * 2002-01-31 2008-04-23 Jfeスチール株式会社 ハイブリッド型水素貯蔵容器および容器への水素貯蔵方法
US7191602B2 (en) * 2003-06-16 2007-03-20 The Regents Of The University Of California Storage of H2 by absorption and/or mixture within a fluid medium
DE102004004379A1 (de) * 2004-01-29 2005-08-11 Bayerische Motoren Werke Ag Kryotankanlage, insbesondere für ein Kraftfahrzeug
US7165408B2 (en) * 2004-02-19 2007-01-23 General Motors Corporation Method of operating a cryogenic liquid gas storage tank
US7305836B2 (en) * 2004-05-19 2007-12-11 Eden Innovations Ltd. Cryogenic container and superconductivity magnetic energy storage (SMES) system
DE102005023036B4 (de) * 2005-05-13 2007-05-31 Deutsches Zentrum für Luft- und Raumfahrt e.V. Wasserstoffspeicher und Verfahren zur Wasserstoffspeicherung
DE102006019993B3 (de) * 2006-04-26 2007-12-27 Daimlerchrysler Ag Druckgasspeicher, insbesondere für Wasserstoff
DE102006056821B4 (de) 2006-12-01 2010-09-30 Institut für Luft- und Kältetechnik gGmbH Thermisches Isolationssystem, insbesondere für LNG-Tankschiffe und Verfahren zu dessen Herstellung
EP2160539B1 (de) * 2007-03-02 2017-05-03 Enersea Transport LLC Vorrichtung und verfahren zum füllen und entleeren von behältern mit verdichteten fluiden
US20090019886A1 (en) * 2007-07-20 2009-01-22 Inspired Technologies, Inc. Method and Apparatus for liquefaction of a Gas
FR2933475B1 (fr) * 2008-07-04 2010-08-27 Snecma Systeme de stockage de liquide cryogenique pour engin spatial
DE102008053463A1 (de) * 2008-10-28 2010-05-12 Linde Aktiengesellschaft Speicherung von komprimierten Medien

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2010127671A2 *

Also Published As

Publication number Publication date
DE102009020138B3 (de) 2010-12-02
WO2010127671A3 (de) 2010-12-29
WO2010127671A4 (de) 2011-02-17
WO2010127671A2 (de) 2010-11-11

Similar Documents

Publication Publication Date Title
EP2427687A2 (de) Verfahren zur speicherung von und speicher für technische gase
EP3027955B1 (de) Tank
DE102008003610B4 (de) Gasspeichersystem basierend auf Gasadsorption an Materialien mit hoher Oberfläche
DE102010020476B4 (de) Verwendung einer Vorrichtung zum Speichern, Umfüllen und/oder Transportieren von tiefkalt verflüssigtem brennbarem Gas in einem Fahrzeug
EP1779025B1 (de) Speicherbehälter für kryogene medien
EP1330620B1 (de) Speicherbehälter für kryogene medien
DE102006025656B4 (de) Vorrichtung zur Kraftstoffspeicherung und -förderung von kryogenem Kraftstoff
DE102006019993B3 (de) Druckgasspeicher, insbesondere für Wasserstoff
DE102005028199A1 (de) Speicherbehälter für kyrogene Medien
EP2132476A2 (de) Verfahren zum befüllen eines für ein kryogenes speichermedium, insbesondere wasserstoff, vorgesehenen druckspeichers
EP1364152B1 (de) Verfahren und vorrichtung zum befüllen von druckbehältern mit tiefsiedenden permanenten gasen oder gasgemischen
DE10021681C2 (de) Energiespeichersystem, insbesondere System zum Speichern von Wasserstoff
DE102007023821B4 (de) Verfahren zum Befüllen eines kryogenen Wasserstoff vorgesehenen Speicherbehälters insbesondere eines Kraftfahrzeugs
DE102007011742A1 (de) Verfahren zum Befüllen eines für ein tiefkaltes Speichermedium, insbesondere Wasserstoff, vorgesehenen Druckspeichers
DE102005023036B4 (de) Wasserstoffspeicher und Verfahren zur Wasserstoffspeicherung
DE102016006121A1 (de) Verfahren und Wärmeaustauscher zur Rückgewinnung von Kälte bei der Regasifizierung tiefkalter Flüssigkeiten
WO2008000103A1 (de) Strassentransportfähige anlage zum verflüssigen und zwischenspeichern von erdgas und betanken von fahrzeugen damit
EP1828592A1 (de) Kraftstoffversorgungseinrichtung f]r ein mit wasserstoff betreibbares kraftfahrzeug
DE102007057979B4 (de) Verfahren zum Befüllen eines Speicherbehälters mit kryogenem Wasserstoff
DE102010010108B4 (de) Verfahren zur Speicherung von und Speicher für Erdgas
DE102008043927A1 (de) Vorrichtung zur Speicherung eines Gases sowie Verfahren zur Entnahme eines Gases aus einem Sorptionsspeicher
DE102015209028A1 (de) Kryogenes Druckbehältersystem
DE102014209919A1 (de) Kryodruckbehälter
DE102017217347A1 (de) Druckbehältersystem und Verfahren zum Zuführen von Brennstoff aus einem Druckbehältersystem
DE10330308A1 (de) Speichersystem für kryogene Medien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111109

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KLIER, JUERGEN DR.

Inventor name: KAISER, GUNTER

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120830

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20190417