EP2427687A2 - Verfahren zur speicherung von und speicher für technische gase - Google Patents
Verfahren zur speicherung von und speicher für technische gaseInfo
- Publication number
- EP2427687A2 EP2427687A2 EP10726881A EP10726881A EP2427687A2 EP 2427687 A2 EP2427687 A2 EP 2427687A2 EP 10726881 A EP10726881 A EP 10726881A EP 10726881 A EP10726881 A EP 10726881A EP 2427687 A2 EP2427687 A2 EP 2427687A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- storage
- gas
- pressure
- container
- bar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000007789 gas Substances 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 18
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 90
- 239000001257 hydrogen Substances 0.000 claims abstract description 43
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 43
- 239000003345 natural gas Substances 0.000 claims abstract description 43
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 40
- 238000011049 filling Methods 0.000 claims abstract description 5
- 238000009413 insulation Methods 0.000 claims description 8
- 230000005855 radiation Effects 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 5
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 3
- 239000000446 fuel Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000005057 refrigeration Methods 0.000 claims description 3
- 230000006870 function Effects 0.000 claims description 2
- 230000002040 relaxant effect Effects 0.000 claims description 2
- 239000003949 liquefied natural gas Substances 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 239000012071 phase Substances 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000002737 fuel gas Substances 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 239000011232 storage material Substances 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 1
- 239000003225 biodiesel Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000013526 supercooled liquid Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/08—Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
- C01B3/0021—Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
- C01B3/0026—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof of one single metal or a rare earth metal; Treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
- C01B3/0031—Intermetallic compounds; Metal alloys; Treatment thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/04—Vessels not under pressure with provision for thermal insulation by insulating layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C7/00—Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0138—Shape tubular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0147—Shape complex
- F17C2201/0166—Shape complex divided in several chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0147—Shape complex
- F17C2201/0171—Shape complex comprising a communication hole between chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/054—Size medium (>1 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/056—Small (<1 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0308—Radiation shield
- F17C2203/0312—Radiation shield cooled by external means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0391—Thermal insulations by vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0626—Multiple walls
- F17C2203/0629—Two walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0626—Multiple walls
- F17C2203/0631—Three or more walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/01—Mounting arrangements
- F17C2205/0123—Mounting arrangements characterised by number of vessels
- F17C2205/013—Two or more vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/01—Mounting arrangements
- F17C2205/0123—Mounting arrangements characterised by number of vessels
- F17C2205/013—Two or more vessels
- F17C2205/0134—Two or more vessels characterised by the presence of fluid connection between vessels
- F17C2205/0142—Two or more vessels characterised by the presence of fluid connection between vessels bundled in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/01—Mounting arrangements
- F17C2205/0123—Mounting arrangements characterised by number of vessels
- F17C2205/013—Two or more vessels
- F17C2205/0149—Vessel mounted inside another one
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/012—Hydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0107—Single phase
- F17C2223/0115—Single phase dense or supercritical, i.e. at high pressure and high density
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/036—Very high pressure (>80 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/01—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
- F17C2225/0107—Single phase
- F17C2225/0115—Single phase dense or supercritical, i.e. at high pressure and high density
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/01—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
- F17C2225/0107—Single phase
- F17C2225/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/01—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
- F17C2225/0146—Two-phase
- F17C2225/0153—Liquefied gas, e.g. LPG, GPL
- F17C2225/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/03—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
- F17C2225/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/03—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
- F17C2225/035—High pressure, i.e. between 10 and 80 bars
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0337—Heat exchange with the fluid by cooling
- F17C2227/0339—Heat exchange with the fluid by cooling using the same fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0337—Heat exchange with the fluid by cooling
- F17C2227/0341—Heat exchange with the fluid by cooling using another fluid
- F17C2227/0353—Heat exchange with the fluid by cooling using another fluid using cryocooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0337—Heat exchange with the fluid by cooling
- F17C2227/0358—Heat exchange with the fluid by cooling by expansion
- F17C2227/036—"Joule-Thompson" effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0367—Localisation of heat exchange
- F17C2227/0369—Localisation of heat exchange in or on a vessel
- F17C2227/0376—Localisation of heat exchange in or on a vessel in wall contact
- F17C2227/0379—Localisation of heat exchange in or on a vessel in wall contact inside the vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0367—Localisation of heat exchange
- F17C2227/0369—Localisation of heat exchange in or on a vessel
- F17C2227/0376—Localisation of heat exchange in or on a vessel in wall contact
- F17C2227/0381—Localisation of heat exchange in or on a vessel in wall contact integrated in the wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0367—Localisation of heat exchange
- F17C2227/0369—Localisation of heat exchange in or on a vessel
- F17C2227/0376—Localisation of heat exchange in or on a vessel in wall contact
- F17C2227/0383—Localisation of heat exchange in or on a vessel in wall contact outside the vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/02—Improving properties related to fluid or fluid transfer
- F17C2260/021—Avoiding over pressurising
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/02—Improving properties related to fluid or fluid transfer
- F17C2260/027—Making transfer independent of vessel orientation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/04—Reducing risks and environmental impact
- F17C2260/046—Enhancing energy recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/06—Fluid distribution
- F17C2265/065—Fluid distribution for refuelling vehicle fuel tanks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/06—Fluid distribution
- F17C2265/066—Fluid distribution for feeding engines for propulsion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0134—Applications for fluid transport or storage placed above the ground
- F17C2270/0139—Fuel stations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0165—Applications for fluid transport or storage on the road
- F17C2270/0168—Applications for fluid transport or storage on the road by vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0165—Applications for fluid transport or storage on the road
- F17C2270/0168—Applications for fluid transport or storage on the road by vehicles
- F17C2270/0178—Cars
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0165—Applications for fluid transport or storage on the road
- F17C2270/0184—Fuel cells
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/05—Applications for industrial use
- F17C2270/0509—"Dewar" vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/05—Applications for industrial use
- F17C2270/0581—Power plants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Definitions
- the invention relates to a process for the storage of industrial gases, which makes it possible to increase the density of stored under pressure technical gases without pressure increase significantly.
- the store is suitable for the storage and transport of industrial gases in general, for the storage of technical fuel gases, such as. Hydrogen or natural gas, at service stations and for use as a fuel-gas vehicle tank.
- natural gas has been used as fuel for automobiles for many years, and accordingly there is also a well-developed network of filling stations.
- the natural gas is typically kept ready at a pressure of 200 bar; at this pressure, it has a density of about 155 kg / m 3 or a calorific value of about 6.25 MJ / I.
- the energy density of compressed natural gas (200 bar) compared to other fossil fuels, such as gasoline with an energy density of 32 MJ / I or diesel fuel with an energy density of 36 MJ / I or regenerative fuels, such as bio-diesel with 32 MJ / I or bioethanol at 21 MJ / I, very low.
- Liquefied Natural Gas has only about 1 / 600th of the volume of gaseous natural gas, very high storage densities can be achieved with the storage of LNG.
- the natural gas must be cooled to about 110 K for liquefaction;
- energy is required for its phase transformation from gaseous to. liquid.
- the LNG due to the comparatively low storage temperature
- the LNG must be constantly cooled with high refrigeration capacities in order to avoid vaporization of the LNG.
- DE 25 36 993 C2 and US Pat. No. 6,672,077 B1 propose storing hydrogen at temperatures far below the ambient temperature in absorbent or nanostructured material.
- EP 1 130 06 A1 and WO 00/01980 solutions are shown, in which hydrogen is also stored at low temperatures, but in addition by means of an adjuvant in the storing material quasi "encapsulated" is.
- DE 103 92 240 T5 a solution is presented in which hydrogen is stored under increased pressure in an absorbent material.
- WO 97/26082 A1 and WO 01/13032 A1 show hydrogen storage devices which have a special layer or film structure
- US 2004/0250552 A1 proposes the use of a liquid storage material.
- DE 10 2005 023 036 A1 shows a method for hydrogen storage in which hydrogen is stored in gaseous, cooled and compressed form under high pressure on a physically adsorbing material, in particular carbon powder.
- the invention has for its object to find a method for storing industrial gases, which makes it possible to increase the density of stored under pressure technical gases, in particular natural gas and hydrogen, without pressure increase and with low energy use significantly.
- the technical gas is stored in a storage container which, depending on the gas stored therein, has to withstand pressures of up to 1200 bar, above its critical pressure and above the critical temperature, or in the compressible phase range below the critical temperature.
- the storage above the critical temperature is preferably used when the storage is carried out at pressures which are substantially greater than the critical pressure. At pressures that are only slightly above the critical pressure, the storage is preferably applied in the compressible phase range. Materials which are suitable for adsorption or absorption of the technical gas in appreciable amount, ie in a larger amount than in the case of virtually all materials occurring surface absorption or absorption, are not used.
- the gas can advantageously be throttled when it is withdrawn from the storage container, the gas remaining in the container being removed by means of the exiting gas, whose temperature drops sharply during the relaxation due to the Joule-Thomson effect, is cooled.
- the storage of hydrogen takes place at a temperature above 33 K and at a pressure above 13 bar. Again, a storage in the compressible phase range at a temperature below 33 K in the same pressure range is possible.
- the hydrogen is stored at a temperature of 33 to 100 K and above the critical pressure at 13 to 1200 bar.
- a hydrogen density of 100 kg / m 3 can be achieved.
- the storage density at the same pressure drops by only 12%, ie to 88 kg / m 3 .
- storage densities above that of the liquid hydrogen and about three times the high pressure hydrogen at ambient temperature are achievable.
- the storage tank for the technical gas consists of a thermally insulated, pressure-tight container with a closable opening for removal and filling.
- the container is equipped with a refrigerating machine, which is mounted on the container so that it can deliver the cold produced by it to the natural gas in the container, and / or equipped with the throttled relaxing the leaking technical glass relaxation device, which in thermal Contact with the stored in the storage tank technical gas is.
- the cold part / the cold finger of the chiller must be in thermal contact with the technical gas in the interior of the container.
- the basic structure of the Speicherbefflel- ter 's thin-walled tubes (0.1 to 30 mm wall thickness) with small inner diameters (0.1 to 100 mm), which are thermally connected to each other and possibly with other structural elements of the memory , Due to the thin walls of the tubes, a good thermal connection of the technical gas stored in the tube bundles to the tubes and structural elements serving as heat storage is achieved.
- the small inner diameters of the tubes make it possible, despite the comparatively low wall thicknesses, to achieve the required storage pressures of up to 1200 bar.
- the expansion device which serves to reduce the release of technical gases during removal, consists either of at least one capillary larrohr or it is designed as at least one porous element which covers the at least one outlet opening for the technical gas (eg hydrogen).
- technical gas eg hydrogen
- a particularly good heat transfer between the exiting and in the Spei- rather remaining technical gas is achieved with an embodiment in which the basic structure of the storage container consists of thin-walled tube bundles, wherein the capillary tubes are integrated into the thin-walled tube bundles.
- the storage container may additionally be equipped with at least one latent storage element, for which storage elements based on the Gibbs-Thomson effect are particularly suitable.
- the memory can be used particularly advantageously in conjunction with natural gas or hydrogen as a motor vehicle tank.
- the thermal insulation of the storage container is carried out as a multilayer vacuum superinsulation, which is equipped with actively cooled radiant screens.
- the radiation screens can be thermally connected to the gas outlet, whereby the sensible heat of the escaping technical gas is used to cool the radiation shields.
- FIG. 1 shows a memory, preferably for supercritical and transcritical natural gas, in a schematic representation
- Fig. 2 the diagram of the temperature dependence of density and calorific value for natural gas at different pressures
- 3 shows a memory, preferably for supercritical and transcritical hydrogen, in a schematic representation; 4 shows various embodiments of the expansion device.
- the storage for natural gas consists of the container 1 and the refrigerating machine 2.
- the container 1 has a closable by means of a valve 3 opening 4, which serves for filling with and for the removal of natural gas.
- the container 1 is equipped with an insulation layer 5 designed either as a solid or vacuum insulation, which minimizes the heat transfer from the environment into the supercritical natural gas 6 in the reservoir.
- the chiller 2 has a cooling capacity which is sufficient to compensate for the thermal losses and is either as a compression refrigeration cascade or as
- the cold part 7 of the refrigerator 2 communicates with the interior 8 of the container 1 and thus with the supercritical natural gas 6 in thermal contact. It does not matter at which point of the container 1, the chiller 2 is arranged (up or down), since the supercritical natural gas 6 evenly fills the interior space 8 (no liquid phase).
- the storage of natural gas at a pressure above the critical pressure (46 bar) and a temperature of 190 K results in an increase in the density of the stored supercritical natural gas.
- the density of natural gas compared to that at ambient temperature (at 200 bar) from 155 kg / m 3 to 330 kg / m 3 , ie increased to 2.13 times become.
- the volumetric energy density increases in the same ratio from 6.25 MJ / I to 13.3 MJ / I, which saves more than twice as much energy when the tank is used as a vehicle tank with the same tank volume and consequently increases the range of the vehicle.
- the container 11 of the hydrogen storage (Fig. 3) consists of numerous, parallel arranged storage tubes 12, wherein one side of the tubes 12 with a Collecting device 13 is connected, which connects all tubes 12 with the hydrogen outlet 14.
- the storage container 11 composed of the tube bundles is surrounded by a multilayer vacuum superinsulation 15, which is surrounded by radiation shields 16 for further improvement of the thermal insulation.
- the radiation screens 16 are thermally connected to the hydrogen outlet line 14 so that the radiation screens 16 are actively cooled by the sensible heat of the exiting hydrogen.
- the entire assembly is located in a Dewar vessel 17, which ensures a first thermal insulation against the comparatively high ambient temperature.
- Fig. 4 are arranged from top to bottom, several embodiments of relaxation devices 18.
- the capillary tubes 19 are arranged coaxially in the interior of the storage tubes 12. When hydrogen is withdrawn, the hydrogen remaining in the respective storage tube 12 is cooled directly through the capillary tube 19.
- the cross sections of the storage tubes 12 are chosen so small with an inner diameter of about 1 mm that they simultaneously take over the function of the capillary 19, while in the third variant, the storage tubes 12 are spirally surrounded by the capillary tubes 18.
- outlet openings of the storage tubes 12 are each covered with porous plugs 20, which serve as an alternative to the capillary tubes 19 for the throttled relaxation of the hydrogen.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009020138A DE102009020138B3 (de) | 2009-05-06 | 2009-05-06 | Verfahren zur Speicherung von Wasserstoff und Speicher für Wasserstoff |
DE102010010108A DE102010010108B4 (de) | 2010-02-23 | 2010-03-04 | Verfahren zur Speicherung von und Speicher für Erdgas |
PCT/DE2010/000537 WO2010127671A2 (de) | 2009-05-06 | 2010-05-05 | Verfahren zur speicherung von und speicher für technische gase |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2427687A2 true EP2427687A2 (de) | 2012-03-14 |
Family
ID=43028787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10726881A Withdrawn EP2427687A2 (de) | 2009-05-06 | 2010-05-05 | Verfahren zur speicherung von und speicher für technische gase |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2427687A2 (de) |
DE (1) | DE102009020138B3 (de) |
WO (1) | WO2010127671A2 (de) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010010108B4 (de) * | 2010-02-23 | 2012-01-26 | Institut für Luft- und Kältetechnik gGmbH | Verfahren zur Speicherung von und Speicher für Erdgas |
DE102013002829A1 (de) * | 2013-02-19 | 2014-08-21 | Linde Aktiengesellschaft | Speicherung von Gasen, insbesondere von Erdgas |
FR3006742B1 (fr) * | 2013-06-05 | 2016-08-05 | Air Liquide | Dispositif et procede de remplissage d'un reservoir |
KR101865210B1 (ko) * | 2013-06-21 | 2018-06-07 | 카와사키 주코교 카부시키 카이샤 | 액화 가스 저장 탱크 및 액화 가스 운반선 |
FR3028305A1 (fr) * | 2014-11-10 | 2016-05-13 | Gaztransport Et Technigaz | Dispositif et procede de refroidissement d'un gaz liquefie |
FR3041061B1 (fr) | 2015-09-15 | 2019-05-10 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Reservoir de stockage de fluide liquefie |
EP3992519A1 (de) * | 2020-10-29 | 2022-05-04 | Linde Kryotechnik AG | Verfahren und vorrichtung zur versorgung mit einem kryogenen gas wie wasserstoff |
EP4431790A1 (de) * | 2023-03-17 | 2024-09-18 | Maximator Gmbh | Verfahren und anlage zum betanken eines wasserstofftanks |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1245998B (de) * | 1963-09-06 | 1967-08-03 | Arthur D. Little, Inc., Cambridge, Mass. (V. St. A.) | Einrichtung zum Verflüssigen von Gasen wie Helium |
US3422632A (en) * | 1966-06-03 | 1969-01-21 | Air Prod & Chem | Cryogenic refrigeration system |
JPS59123678A (ja) | 1982-12-29 | 1984-07-17 | インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション | 印刷アクチユエ−タ |
US5458784A (en) * | 1990-10-23 | 1995-10-17 | Catalytic Materials Limited | Removal of contaminants from aqueous and gaseous streams using graphic filaments |
US5382797A (en) * | 1990-12-21 | 1995-01-17 | Santa Barbara Research Center | Fast cooldown cryostat for large infrared focal plane arrays |
CH683368A5 (de) * | 1991-06-26 | 1994-02-28 | Linde Ag | Verfahren und Vorrichtung zum Transport und Verteilen von Helium. |
US5582016A (en) | 1992-05-07 | 1996-12-10 | Aerospace Design & Development, Inc. | Conditioning and loading apparatus and method for gas storage at cryogenic temperature and supercritical pressure |
US5709203A (en) | 1992-05-07 | 1998-01-20 | Aerospace Design And Development, Inc. | Self contained, cryogenic mixed gas single phase storage and delivery system and method for body cooling, gas conditioning and utilization |
US6089226A (en) | 1996-11-22 | 2000-07-18 | Aerospace Design & Development, Inc. | Self contained, cryogenic mixed gas single phase storage and delivery |
CA2113774A1 (en) * | 1994-01-19 | 1995-07-20 | Harold L. Gier | Loading, storage and delivery apparatus and method for fluid at cryogenic temperature |
BR9911824A (pt) * | 1998-07-03 | 2001-03-27 | Toyota Motor Co Ltd | Método e sistema de armazenamento de gás, e material de oclusão para gás |
CA2391845A1 (en) * | 1999-08-11 | 2001-02-22 | Roy Edward Mcalister | Gas storage on an adsorbent with exfoliated laminae |
IL132035A0 (en) * | 1999-09-23 | 2001-03-19 | Israel State | Infrared detector |
CN2389281Y (zh) | 1999-10-08 | 2000-07-26 | 朱立 | 天然气等超临界压力深冷液化气体贮运罐装置 |
US6581409B2 (en) * | 2001-05-04 | 2003-06-24 | Bechtel Bwxt Idaho, Llc | Apparatus for the liquefaction of natural gas and methods related to same |
US6672077B1 (en) * | 2001-12-11 | 2004-01-06 | Nanomix, Inc. | Hydrogen storage in nanostructure with physisorption |
JP4078522B2 (ja) * | 2002-01-31 | 2008-04-23 | Jfeスチール株式会社 | ハイブリッド型水素貯蔵容器および容器への水素貯蔵方法 |
US7191602B2 (en) * | 2003-06-16 | 2007-03-20 | The Regents Of The University Of California | Storage of H2 by absorption and/or mixture within a fluid medium |
DE102004004379A1 (de) * | 2004-01-29 | 2005-08-11 | Bayerische Motoren Werke Ag | Kryotankanlage, insbesondere für ein Kraftfahrzeug |
US7165408B2 (en) * | 2004-02-19 | 2007-01-23 | General Motors Corporation | Method of operating a cryogenic liquid gas storage tank |
US7305836B2 (en) * | 2004-05-19 | 2007-12-11 | Eden Innovations Ltd. | Cryogenic container and superconductivity magnetic energy storage (SMES) system |
DE102005023036B4 (de) * | 2005-05-13 | 2007-05-31 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Wasserstoffspeicher und Verfahren zur Wasserstoffspeicherung |
DE102006019993B3 (de) * | 2006-04-26 | 2007-12-27 | Daimlerchrysler Ag | Druckgasspeicher, insbesondere für Wasserstoff |
DE102006056821B4 (de) | 2006-12-01 | 2010-09-30 | Institut für Luft- und Kältetechnik gGmbH | Thermisches Isolationssystem, insbesondere für LNG-Tankschiffe und Verfahren zu dessen Herstellung |
EP2160539B1 (de) * | 2007-03-02 | 2017-05-03 | Enersea Transport LLC | Vorrichtung und verfahren zum füllen und entleeren von behältern mit verdichteten fluiden |
US20090019886A1 (en) * | 2007-07-20 | 2009-01-22 | Inspired Technologies, Inc. | Method and Apparatus for liquefaction of a Gas |
FR2933475B1 (fr) * | 2008-07-04 | 2010-08-27 | Snecma | Systeme de stockage de liquide cryogenique pour engin spatial |
DE102008053463A1 (de) * | 2008-10-28 | 2010-05-12 | Linde Aktiengesellschaft | Speicherung von komprimierten Medien |
-
2009
- 2009-05-06 DE DE102009020138A patent/DE102009020138B3/de active Active
-
2010
- 2010-05-05 WO PCT/DE2010/000537 patent/WO2010127671A2/de active Application Filing
- 2010-05-05 EP EP10726881A patent/EP2427687A2/de not_active Withdrawn
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2010127671A2 * |
Also Published As
Publication number | Publication date |
---|---|
DE102009020138B3 (de) | 2010-12-02 |
WO2010127671A3 (de) | 2010-12-29 |
WO2010127671A4 (de) | 2011-02-17 |
WO2010127671A2 (de) | 2010-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2427687A2 (de) | Verfahren zur speicherung von und speicher für technische gase | |
EP3027955B1 (de) | Tank | |
DE102008003610B4 (de) | Gasspeichersystem basierend auf Gasadsorption an Materialien mit hoher Oberfläche | |
DE102010020476B4 (de) | Verwendung einer Vorrichtung zum Speichern, Umfüllen und/oder Transportieren von tiefkalt verflüssigtem brennbarem Gas in einem Fahrzeug | |
EP1779025B1 (de) | Speicherbehälter für kryogene medien | |
EP1330620B1 (de) | Speicherbehälter für kryogene medien | |
DE102006025656B4 (de) | Vorrichtung zur Kraftstoffspeicherung und -förderung von kryogenem Kraftstoff | |
DE102006019993B3 (de) | Druckgasspeicher, insbesondere für Wasserstoff | |
DE102005028199A1 (de) | Speicherbehälter für kyrogene Medien | |
EP2132476A2 (de) | Verfahren zum befüllen eines für ein kryogenes speichermedium, insbesondere wasserstoff, vorgesehenen druckspeichers | |
EP1364152B1 (de) | Verfahren und vorrichtung zum befüllen von druckbehältern mit tiefsiedenden permanenten gasen oder gasgemischen | |
DE10021681C2 (de) | Energiespeichersystem, insbesondere System zum Speichern von Wasserstoff | |
DE102007023821B4 (de) | Verfahren zum Befüllen eines kryogenen Wasserstoff vorgesehenen Speicherbehälters insbesondere eines Kraftfahrzeugs | |
DE102007011742A1 (de) | Verfahren zum Befüllen eines für ein tiefkaltes Speichermedium, insbesondere Wasserstoff, vorgesehenen Druckspeichers | |
DE102005023036B4 (de) | Wasserstoffspeicher und Verfahren zur Wasserstoffspeicherung | |
DE102016006121A1 (de) | Verfahren und Wärmeaustauscher zur Rückgewinnung von Kälte bei der Regasifizierung tiefkalter Flüssigkeiten | |
WO2008000103A1 (de) | Strassentransportfähige anlage zum verflüssigen und zwischenspeichern von erdgas und betanken von fahrzeugen damit | |
EP1828592A1 (de) | Kraftstoffversorgungseinrichtung f]r ein mit wasserstoff betreibbares kraftfahrzeug | |
DE102007057979B4 (de) | Verfahren zum Befüllen eines Speicherbehälters mit kryogenem Wasserstoff | |
DE102010010108B4 (de) | Verfahren zur Speicherung von und Speicher für Erdgas | |
DE102008043927A1 (de) | Vorrichtung zur Speicherung eines Gases sowie Verfahren zur Entnahme eines Gases aus einem Sorptionsspeicher | |
DE102015209028A1 (de) | Kryogenes Druckbehältersystem | |
DE102014209919A1 (de) | Kryodruckbehälter | |
DE102017217347A1 (de) | Druckbehältersystem und Verfahren zum Zuführen von Brennstoff aus einem Druckbehältersystem | |
DE10330308A1 (de) | Speichersystem für kryogene Medien |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20111109 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KLIER, JUERGEN DR. Inventor name: KAISER, GUNTER |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20120830 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20190417 |