EP2427002B1 - Verfahren, vorrichtung und system zur übertragung von relaisdaten - Google Patents

Verfahren, vorrichtung und system zur übertragung von relaisdaten Download PDF

Info

Publication number
EP2427002B1
EP2427002B1 EP10769261.8A EP10769261A EP2427002B1 EP 2427002 B1 EP2427002 B1 EP 2427002B1 EP 10769261 A EP10769261 A EP 10769261A EP 2427002 B1 EP2427002 B1 EP 2427002B1
Authority
EP
European Patent Office
Prior art keywords
relay
radio access
access bearer
control signaling
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10769261.8A
Other languages
English (en)
French (fr)
Other versions
EP2427002A4 (de
EP2427002A1 (de
Inventor
Lifeng Han
Dapeng Li
Yada Huang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZTE Corp
Original Assignee
ZTE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43020302&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2427002(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ZTE Corp filed Critical ZTE Corp
Publication of EP2427002A1 publication Critical patent/EP2427002A1/de
Publication of EP2427002A4 publication Critical patent/EP2427002A4/de
Application granted granted Critical
Publication of EP2427002B1 publication Critical patent/EP2427002B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to communication field, and in particular to a method, a device and a system for transmitting relay data.
  • Fig.1 is a schematic diagram of the structure of a cellular wireless communication system in prior art.
  • the cellular wireless communication system mainly includes: a terminal (User Equipment, referred to as UE), an access network and a core network, wherein the terminal refers to various equipments which can communicate with the cellular wireless communication network, such as, mobile phone or notebook PC.
  • the Radio Access Network refers to the network composed of a base station, or the network composed of a base station and a base station controller, and is mainly responsible for access stratum service, such as radio resource management.
  • the core network is an anchor point of the user plane, and is mainly responsible for non-access stratum service, such as location update.
  • Each of the base stations can connect one or more core network (CN) nodes.
  • CN core network
  • the wireless coverage of a fixed base station network will be restricted due to some reasons, such as, the blocking that building structure creates for radio signal caused will result in a coverage loophole for the wireless network.
  • the communication quality of the UE at the cell edge area will be poorer, and error rate of wireless transmission will increase.
  • a wireless network node which is referred to as relay node/relay station, is introduced in the cellular wireless communication system.
  • the relay node (referred to as Relay below) has the function of relaying data and possible control information via a wireless link.
  • Fig.2 is a schematic diagram of a network architecture including the relay in prior art.
  • the UE directly served by a base station eNodeB, which can also be abbreviated to eNB
  • eNB base station
  • Relay UE the UE served by the Relay
  • a direct link refers to the wireless link between the base station and the UE, which includes an uplink/downlink (UL/DL) direct link
  • an access link refers to the wireless link between the Relay and the UE, which includes a DL/UL access link
  • a backhaul link refers to the wireless link between the base station and the Relay, which includes a DL/UL relay link.
  • the Relay to relay data, for example, amplifying directly the wireless signal received from a base station; or forwarding the correctly received data packet to the terminal after performing a corresponding process on the received data sent from the base station; or sending data to the terminal by the base station cooperating with the Relay, and also the Relay being used for relaying the data sent from the terminal to the base station.
  • Fig.3 is a schematic diagram of flat structure of in related art.
  • the IP (Internet Protocol)-based long term evolution (LTE) system consists of an E-UTRAN (Evolved Universal Terrestrial Radio Access Network), a CN node, and other support nodes, wherein the CN node includes a MME (Mobility Management Entity) and a S-GW (Serving Gateway), wherein the MME is responsible for control plane related tasks, such as mobility management, signaling processing in non-access stratum, and context management of mobility management for the UE; the S-GW is responsible for data transferring, retransmitting, and routing switching for the UE plane; the eNBs interconnect with each other via X2 interface in logic to support the mobility of the UE in the whole network, so as to ensure seamless switching of the UE; each eNB is connected to a SAE (System Architecture Evolution) core network via S 1 interface, that is to say, connected to MME via the control plane S1-MME
  • SAE System Architecture
  • Fig.4 is a schematic diagram of protocol stack of S1-MME interface in related art.
  • the network layer of S1-MME interface employs IP protocol
  • the transport layer above the network layer employs the SCTP protocol
  • the application layer in uppermost layer that is S1-AP protocol of the control plane
  • the layers below the network layer which employs IP-based S1-MME interface sequentially are the data link layer and the physical layer.
  • Fig.5 is a schematic diagram of protocol stack of S1-U interface in related art.
  • the User plane of GPRS (General Packet Radio Service) Tunneling Protocol (GTP-U)/User Datagram Protocol (UDP)/IP constitute transmission bearer for transmitting the user plane PDU (Protocol Data Unit) between the eNB and the S-GW.
  • the transmission bearer is identified by tunnel endpoint identifiers (TEID) of the GTP-U including the source side GTP-U TEID and the target side GTP-U TEID, and IP addresses including the source side IP address and the target side IP address, wherein the UDP port number is fixed as 2152; the GTP-U is a tunneling protocol for implementing the seamless transmission on the IPv4 and the IPv6.
  • TEID tunnel endpoint identifiers
  • Each transmission bearer is used to carry service data flows.
  • Each eNB performs the signaling and data transmission with the UE via a Uu interface (which is defined as the wireless interface between the UTRAN and the UE initially).
  • Fig. 6 and Fig. 7 illustrate protocol stack of the air interface between the eNB and L1, L2, L3 of the UE respectively from the control plane and the UE plane.
  • Fig.8 is a schematic diagram of the bearer structure of the LTE system in related art.
  • the LTE system can provide end-to-end service, and ensure quality of service(QoS) of the provided service through the parameters carried particularly.
  • the granularity ensured by the QoS level of the bearers of the Evolved Packet Core (EPC) and the E-UTRAN is EPS bearer/E-RAB (E-UTRAN Radio Access Bearer).
  • Data packet carried by the EPS bearer is transmitted between the S-GW and PDN gateway (P-GW) via S5/S8 bearer.
  • P-GW PDN gateway
  • the data packet of the E-RAB is transmitted between the eNodeB and the S-GW via S1 Bearer, and transmitted between the UE and the eNodeB via radio bearer (RB).
  • RB radio bearer
  • NORTEL "One Tunnel and GGSN Bearer Relay: SGSN User Plane", 3GPP DRAFT; S2-061619_USER_PLANE_FINAL,3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE; 650,ROUTE DES LUCIOLES;F-06921 SOPHIA-ANTIPOLIS CEDEX; FRANCE, vol. SA WG2, no. Shanghai, China; 20060508-20060512, 3 May 2006 (2006-05-03), XP050626759, [retrieved on 2006-05-03 ] provides respective technical solutions. However, the above mentioned problem still remains unsolved.
  • the present invention is provided in view of that there is no technical solution for a Relay node to relay data between a UE and a S-GW in existing LTE system.
  • the present invention intends to provide a solution for transmitting the relay data, so as to solve the above problem.
  • a method for transmitting relay data which is applied in a system comprising a relay node.
  • the method for transmitting the relay data in accordance with the present invention comprises: a relay radio access bearer service between a relay node and a relay Serving Gateway (S-GW) is borne by a relay radio access bearer to relay the radio access bearer services of terminals.
  • S-GW Serving Gateway
  • the method further comprises: the relay node or the relay S-GW multiplexes the radio access bearer services of a plurality of terminals to obtain the relay radio access bearer service to be borne.
  • the method further comprises: the relay S-GW receives the borne relay radio access bearer service, and demultiplexes the received relay radio access bearer service, to obtain the radio access bearer services of the multiple terminals.
  • the method further comprises: the relay node receives the borne relay radio access bearer service, and demultiplexes the received relay radio access bearer service, to obtain the radio access bearer services needed to be sent to the multiple terminals.
  • the above method further comprises one of the following: the relay node or the relay S-GW makes the user plane protocol address of tunneling protocol allocated to the radio bearer of the radio access bearer services, to be used as the identifier for multiplexing and/or demultiplexing; the relay node or the relay S-GW makes the identifier allocated to each radio access bearer to be used as the identifier for multiplexing and/or demultiplexing; and the relay node or the relay S-GW makes the tunnel endpoint identifier allocated to the radio bearer of the radio access bearer services to be used as the identifier for multiplexing and/or demultiplexing.
  • the relay radio access bearer is also configured to transmit the S1-AP control signaling of the terminal on the user plane or the control plane.
  • the step of the relay radio access bearer transmitting the S1-AP control signaling of the terminal on the user plane comprises: the relay node or the relay S-GW multiplexes the S1-AP control signaling of the multiple terminals according to respective S1-AP identifier, to obtain the relay radio access bearer service to be borne.
  • the step of relay radio access bearer transmitting the S1-AP control signaling of the terminal on the control plane comprises: the S1-AP control signaling of the terminals is transmitted via a control plane direct transfer message of the relay radio access bearer, wherein the S1-AP control signaling of the multiple terminals according to a S1-AP identifier multiplexed as a part of the control plane direct transfer message of the relay radio access bearer, so as to be transmitted; and in the case that the relay node performs the multiplex operation, a core network mobility management entity performs a demultiplex operation; or in the case that the core network MME performs the multiplex operation, the relay node performs a demultiplex operation.
  • a relay node there is provided a relay node.
  • the relay node comprises: a first receiving module, configured to receive radio access bearer services from terminals; a second receiving module, configured to receive the relay radio access bearer service from a core network; a multiplexing module, configured to multiplex the S1-AP control signaling and/or the radio access bearer services of the multiple terminals received by the first receiving module; a de-multiplexing module, configured to demultiplex the multiplexed S1-AP control signaling and/or the radio access bearer services received by the second receiving module; a first transmitting module, configured to transmit, via a relay radio access bearer, to the S-GW the radio access bearer services and/or the S1-AP control signaling multiplexed by the multiplexing module; a second transmitting module, configured to transmit via a control plane the S1-AP control signaling multiplexed by the multiplexing module; and a third transmitting module, configured to send, via an air interface, to the terminal the demultiplexed radio access bearer services of the terminal.
  • a relay serving gateway is provided.
  • the relay serving gateway comprises: a receiving module, configured to receive the multiplexed S1-AP control signaling and/or the radio access bearer services from the relay node; a de-multiplexing module, configured to demultiplex the S1-AP control signaling and/or the radio access bearer services which are multiplexed and received by the receiving module; a multiplexing module, configured to multiplex the S1-AP control signaling and/or the radio access bearer services from the core network; a transmitting module, configured to transmit, via a relay radio access bearer, to the relay node the radio access bearer services and/or the S1-AP control signaling multiplexed by the multiplexing module.
  • a mobility management network element is provided.
  • the mobility management network element comprises: a receiving module, configured to receive the multiplexed S1-AP control signaling from the relay node; a de-multiplexing module, configured to demultiplex the multiplexed S1-AP control signaling received by the receiving module; a multiplexing module, configured to multiplex the plurality of S1-AP control signalings; and a transmitting module, configured to transmit, via a control plane direct transfer message, to the relay node the S1-AP control signaling multiplexed by the multiplex module.
  • a system for transmitting the relay data is provided.
  • the system for transmitting the relay data comprises: a relay node and a serving gateway, and/or a mobility management network element, wherein the relay node comprises: a first receiving module, configured to receive a S1-AP control signaling and radio access bearer services from a terminal; a second receiving module, configured to receive a relay radio access bearer service from the core network; a multiplexing module, configured to multiplex the S1-AP control signaling and/or the radio access bearer services of the multiple terminals received by the first receiving module; a de-multiplexing module, configured to demultiplex the multiplexed S1-AP control signaling and/or the radio access bearer services received by the second receiving module; a first transmitting module, configured to transmit, via a relay radio access bearer, to the S-GW the radio access bearer services and/or the S1-AP control signaling multiplexed by the multiplexing module; a second transmitting module, configured to transmit via a control plane the S1-AP control signaling multiplex
  • the relay serving gateway comprises: a receiving module, configured to receive the multiplexed S1-AP control signaling and/or the radio access bearer services from the relay node; a de-multiplexing module, configured to demultiplex the S1-AP control signaling and/or the radio access bearer services which are multiplexed and received by the receiving module; a multiplexing module, configured to multiplex the S1-AP control signaling and/or the radio access bearer services from the core network; a transmitting module, configured to transmit, via a relay radio access bearer, to the relay node the radio access bearer services and/or the S1-AP control signaling multiplexed by the multiplexing module.
  • the mobility management network element comprises: a receiving module, configured to receive the multiplexed S1-AP control signaling from the relay node; a de-multiplexing module, configured to demultiplex the multiplexed S1-AP control signaling received by the receiving module; a multiplexing module, configured to multiplex the plurality of S1-AP control signalings; a transmitting module, configured to transmit, via a control plane direct transfer message, to the relay node the S1-AP control signaling multiplexed by the multiplexing module.
  • the present invention realizes that the relay radio access bearer service between the relay node and the serving gateway is carried by the relay radio access bearer, so that the relay node relays data between the UE and the S-GW, which meets requirements in the related art.
  • the present invention enables the Relay Node to relay data between the UE and the S-GW by modifying the bearer structure of the LTE system, i.e., bearing the relay radio access bearer service between the relay node and the serving gateway by the relay radio access bearer.
  • the method for transmitting the relay data includes: the relay radio access bearer service between the relay node and the serving gateway is carried by the relay radio access bearer.
  • Fig.9 is a network logical structure drawing of the LTE system into which the relay node is added.
  • the relay S-GW i.e., the relay serving gateway in the figure
  • the relay MME interacts with the base station via the S1-MME interface
  • the relay G-SW can be a logical network element in terms of function, which can be realized on the S-GW, or can act as a separate network element between the eNB and the S-GW.
  • the relay MME can be a logical network element in terms of function, which can be realized on the MME, or can act as a separate network element between the eNB and the MME.
  • the interface between the relay node (the Relay in the figure) and the donor eNB (i.e., the eNB in the figure) employs the existing air interface, i.e., the interface between the Macro UE and the donor eNB, so the Relay node can access to the donor-eNB as a common UE.
  • E-RAB (i.e., the above relay radio access bearer), which is the bearer connecting the Relay Node and the S-GW, is transmitted by the radio bearer (Relay) (abbreviated to RB) of the air interface between the Relay Node and the Donor eNB, and the S1 bearer (Relay) between the Donor eNB and the S-GW.
  • Relay radio bearer
  • RB radio bearer
  • Each E-RAB of the UE which is used to connect the UE and the core network, is transmitted by the Radio Bearer (UE) between the UE and the Relay Node, and the Relay Bearer (UE) between the Relay Node and the core network.
  • UE Radio Bearer
  • UE Relay Bearer
  • the Relay Bearers (UEs) of a plurality of UEs are transmitted by above E-RAB (Relay).
  • the relay node Before the relay radio access bearer service is borne, the relay node multiplexes the radio access bearer services from the plurality of terminals to obtain the relay radio access bearer services to be borne. Then, after the relay radio access bearer service is transmitted to the serving gateway, the serving gateway demultiplexes the received relay radio access bearer service. That is to say, the radio bearers (UEs) of the plurality of UEs can be borne by one E-RAB (Relay), moreover, one E-RAB (Relay) can bear S5/S8 bearers (UEs) corresponding to the plurality of radio bearers (UEs).
  • E-RAB Relay
  • UEs S5/S8 bearers
  • Fig.11 shows a protocol stack of the user plane after the relay bearer (UE) being added.
  • the relay S-GW concept is incorporated into the protocol stack, and the relay S-GW can be a logical network element in terms of function, and can be realized on the S-GW or serve as a separate network element between the eNB and the S-GW.
  • E-RAB Relay
  • Figs.12 and 13 show two types of protocol stacks of the control plane after the relay bearers (UEs) being added, wherein:
  • the S1-AP control signalings of the all UEs subordinated to the relay node interact between the relay node and the relay MME via the relay AP (Relay Application Protocol) layer, that is, the S1-AP control signaling of the UE is transmitted via the Relay AP PDU of the relay node, wherein, the relay AP layer of the relay node is mainly used to realize the function of multiplexing and demultiplexing the S1-AP control signaling of the UE; the relay AP layer of the relay MME is mainly used to realize multiplexing and demultiplexing the S1-AP control signaling of the UE, and forwarding the S1-AP control signaling according to the S1-AP control signaling identifier (i.e., S1-AP id).
  • the S1-AP control signaling identifier i.e., S1-AP id
  • the relay AP PDU is regarded as the NAS (Non Access Stratum) PDU of the relay Node being transmitted between the relay node and the relay MME.
  • the method can also be regarded as that the S1-AP control signaling of the UE is transmitted via the direct transfer message.
  • the relay radio access bearer service between the relay node and the serving gateway is borne by the relay radio access bearer, which realizes the process of relaying data between the UE and the S-GW via the Relay, the function of relay in the air, enhancement in network coverage and increase in network throughput.
  • the E-RABs of the plurality of UEs subordinated to the relay node are transmitted between the relay node and the S-GW via the E-RAB (Relay).
  • the radio bearer (UE) of one UE subordinated to the relay node corresponds to one relay bearer (UE), and corresponds to one S5/S8 bearer (UE) on the relay S-GW.
  • the radio bearers (UEs) of a plurality of UEs may be borne by one E-RAB (relay), and one E-RAB (relay) may bear S5/S8 bearers (UEs) corresponding to the plurality of radio bearers (UEs).
  • the following three multiplex identifiers can be selected to perform multiplex operation on the E-RABs of the plurality of terminals: (1) the GTP-U address allocated to the radio bearer of the E-RAB for being used as the multiplex identifier; (2) the identifier allocated to each radio access bearer for being used as the demultiplex identifier; (3) the TEID for being used as the multiplex identifier. Accordingly, the demultiplex operation is performed in the relay S-GW with the same multiplex identifier.
  • Example 1 the virtual GTP-U address being used as the multiplex identifier.
  • Fig.14 is a schematic diagram for multiplexing virtual GTP-U address in the method for transmitting the relay data according to embodiments of the present invention.
  • the process of establishing the user plane services of each UE in the relay node is the same as the process of the macro UE, in which the virtual GTP-U tunnel address allocated to each service RB of each UE in the relay node corresponds to the GTP-U tunnel address allocated by the MME.
  • the existing S1 process can be retained without changes.
  • the user plane PDU of each service of different UEs is identified by the TEID and the transport layer address in the E-RAB (relay), and the multiplex and demultiplex function are accomplished by the relay bearer layers of the relay node and the relay S-GW.
  • the user plane PDU of the E-RAB (Relay) is generated by the relay node, and transmitted to the Donor-eNB via the air interface.
  • the transmission in S1 employs the GTP-U address of the E-RAB (Relay), that is, the GTP-U tunnel is employed for the transmission from the donor node to the relay S-GW.
  • the relay S-GW After the relay S-GW receives the user plane PDU of the E-RAB (Relay), demultiplex is performed via the head identifier (i.e., GTP-U address) to obtain the user plane PDU of each service, then the user plane PDUs of these services are sent to the opposite end of corresponding GTP-U tunnel.
  • the transmission process that the UE data of the relay node is transmitted from the relay node to the S-GW is completed, in which the relay node serves as a airborne relay.
  • the downlink data processing it is similar to the uplink data processing, wherein the multiplex and demultiplex functions are implemented by the relay S-GW and the relay node respectively.
  • the virtual GTP-U address is used as the multiplex identifier, so the head overhead is increased by (20+4) bytes, wherein, the transport layer address accounts for 20 bytes, while the TEID accounts for 4 bytes.
  • the relay node can establish 256 E-RABs (Relay) at most.
  • the mapping relationship from the relay bearer (UE) of such a UE to the E-RAB (Relay) can be generated by the Relay node or the Relay S-GW according to a certain regulation based on the QoS requirement of each service, and the opposite end is informed with the mapping relationship.
  • Example 2 the identifier of each RAB of the UE being used as the multiplex identifier.
  • Fig.15 is a schematic diagram for multiplexing each RAB identifier in the method for transmitting the relay data according to an embodiment of the present invention.
  • the multiplexed head identifier is allocated by the relay node or the relay G-SW, the process of establishing the user plane service of each UE in the relay node is the same as the process of the Macro UE, but the GTP-U tunnel address is no longer allocated to each service RB of each UE, and only one E-RAB identifier is required.
  • the mapping relationship from the E-RAB of the UE to the E-RAB (relay) id is generated by the Relay node or the Relay S-GW according to a certain regulation based on the QoS requirement of each service, and the opposite end is informed with the mapping relationship.
  • Example 3 the TEID being used as the multiplex identifier.
  • the method for multiplexing the TEID is used so as to not alter existing service process and save head overhead, and the multiplexed head overhead is 4 bytes.
  • Fig. 16 is a schematic diagram for multiplexing the TEID in the method for transmitting the relay data according to an embodiment of the present invention.
  • the S-GW can forward data based on the TEID.
  • the processing of the uplink data and the downlink data reference can be made to related description in the example 1, which will not be described herein for simplicity.
  • Example 4 the S1-AP control signaling of the control plane of the UE is transmitted on the control plane of the Relay Node.
  • the S1-AP control signalings of all UEs subordinated to the Relay Node interact between the Relay Node and the Relay S-GW via the E-RAB (Relay), i.e., the S1-AP control signalings of the UEs are transmitted via the bearer of the user plane of the Relay Node.
  • E-RAB Relay
  • the Relay Node For the processing of the uplink S1-AP control signaling: the Relay Node generates the S1-AP control signaling of the UE subordinated to which, and the S1-AP control signaling is multiplexed into the user plane PDU of the E-RAB (Relay) via the S1-AP control signaling identifier (i.e., S1-AP id), and transmitted to the Donor-eNB via the air interface.
  • the transmission at S 1 also needs the GTP-U address of the E-RAB (Relay), i.e., through GTP-U tunnel manner from the Donor-eNB to the Relay S-GW.
  • the demultiplex operation is performed via the S1-AP id to obtain the S1-AP control signaling of each UE, which is then sent to a corresponding MME.
  • the Relay S-GW For the initial direct transfer message, since the S1-AP id has not been allocated yet, it is required for the Relay S-GW to unpack the direct transfer message, which is sent to the corresponding MME according to the MMEC (MME code) therein.
  • the processing of the downlink S1-AP control signaling it is similar to the processing of the uplink S1-AP control signaling, wherein the multiplex and demultiplex functions are implemented by the relay S-GW and the relay node respectively.
  • the Relay Node or the Relay S-GW generates the mapping relationship between the S1-AP id of the UE and the E-RAB (Relay) id, and informs the opposite end.
  • the S1-AP control signalings of all UEs can be mapped into the same E-RAB (Relay).
  • Example 5 the S1-AP control signaling of the control plane of the UE being transmitted on the control plane of the Relay Node.
  • the S1-AP control signalings of all UEs subordinated to the Relay Node interact between the Relay Node and the Relay MME via the control plane (Relay AP), i.e., the S1-AP control signaling of the UE is transmitted by the Relay AP of the Relay Node.
  • the Relay MME can be a logical network element in terms of function, which can be realized on a MME, or act as a separate network element between the eNB and the MME.
  • the S1-AP control signalings of all UEs subordinated to the Relay AP of the Relay Node is multiplexed into the Relay AP PDU via the UE S1-AP id, and transmitted to the Donor-eNB via the air interface, then the Relay AP PDU is sent to the Relay MME by the Donor-eNB via the S1-AP.
  • the demultiplex operation is performed via the S1-AP id to obtain the S1-AP control signaling of each UE, which is then sent to the corresponding MME.
  • the Relay MME For the initial direct transfer message, since the S1-AP id has not been allocated yet, it is required for the Relay MME to unpack the direct transfer message, which is sent to the corresponding MME according to the MMEC (MME code) therein.
  • the multiplex and demultiplex functions are implemented respectively by the Relay MME and the Relay AP of the Relay Node.
  • a relay node Preferably, the relay node is used to implement the function of the Relay Node in the method embodiment.
  • Fig. 17 is a block diagram of the relay node.
  • the relay node comprises: a first reception module 1, a multiplexing module 2, a first transmitting module 3 and a second transmitting module 4, a second receiving module 5, a de-multiplexing module 6 and a third transmitting module 7, wherein the first receiving module 1 is configured to receive the radio access bearer service of the terminal and the S1-AP control signaling; the multiplexing module 2, which is connected to the receiving module 1, is configured to multiplex the radio access bearer service and/or the S1-AP control signalings of a plurality of terminals received by the receiving module 1; and preferably, the multiplexing module is configured to perform the three multiplex operations in the method embodiment; the first transmitting module 3, which is connected to the multiplexing module 2, is configured to transmit the radio access bearer service and
  • the multiplexed data is transmitted to the S-GW via the relay radio access bearer by the first transmission module and the second transmission module respectively, so as to realize the function of relay in the air.
  • a relay S-GW according to an embodiment of the present invention, preferably, the relay S-GW is used to implement the function of the Relay S-GW in the method embodiment.
  • Fig. 18 is a block diagram of the S-GW. As shown in Fig.
  • the S-GW comprises: a receiving module 181, a de-multiplexing module 182, a multiplexing module 3 and a transmitting module 184, wherein, the receiving module 181 is configured to receive the multiplexed S1-AP control signaling and the radio access bearer service from the relay node; the de-multiplexing module 182, which is connected to the reception module 181, is configured to demultiplex the multiplexed S1-AP control signaling and the radio access bearer services received by the receiving module; the multiplexing module 3 is configured to multiplex the S1-AP control signaling and the radio access bearer services needed to be sent to the relay node from the CN, and to generate the relay radio access bearer services; the transmitting module 184, which is connected to the multiplexing module 3, which is configured to transmit the radio access bearer services and/or the S1-AP control signaling multiplexed by the multiplexing module via the relay radio access bearer to the relay node.
  • a mobility management network element preferably, the mobility management network element is used to implement the function of the Relay MME in the method embodiment.
  • Fig. 19 is a block diagram of the mobility management network element, as shown in Fig.
  • the mobility management network element includes: a receiving module 181, a de-multiplexing module 182, multiplexing module 3, and a transmitting module 184, wherein, the receiving module 181 is configured to receive the multiplexed S1-AP control signaling from the relay node; the demultiplexing module 182, which is connected to the receiving module 181, which is configured to demultiplex the multiplexed S1-AP control signaling received by the receiving module 181 to obtain the S1-AP control signaling of each UE; the multiplexing module 3 is configured to perform a multiplex operation on the S1-AP control signalings of a plurality of UEs; the transmitting module 184, which is connected to the multiplexing module 3, is configured to transmit, via a control plane direct transfer message, to the relay node the S1-AP control signaling multiplexed by the multiplexing module.
  • a system for transmitting relay data which comprises the relay node in the device embodiment 1 and the relay S-GW in the device embodiment 2, and/or the mobility management network element in device embodiment 3.
  • the function of relay in the air is realized, which is backwards compatible with R8 eNB, thus eNBs of whole networks can support a Relay Node, and support a mobile Relay Node or a nomad Relay Node completely, so as to achieve the function of relay in the air, and enhance network coverage and increase network throughput.
  • modules and steps of the present invention can be implemented with general computation devices integrated together or allocated in the network formed by a plurality of computation devices, alternatively implemented with program codes executable by computation devices, which can be stored in memory devices for execution by the computation devices, or implemented with ICs, or several modules or steps can be implemented with a single IC.
  • the present invention is not limited to any particular hardware and software combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Small-Scale Networks (AREA)

Claims (12)

  1. Verfahren zur Übertragung von Relaisdaten, welches in einem System eingesetzt wird, das einen Relaisknoten umfasst, dadurch gekennzeichnet, dass das Verfahren Folgendes umfasst:
    Übermitteln eines Relaisfunkzugang-Grunddienstes zwischen einem Relaisknoten und einem Relais-Serving-Gateway (S-GW) durch einen Relaisfunkzugangsträger zur Weiterleitung der Funkzugang-Grunddienste von Anschlüssen.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass vor dem Übermitteln des Relaisfunkzugang-Grunddienstes das Verfahren ferner Folgendes umfasst:
    der Relaisknoten oder das Relais-S-GW multiplexiert die Funkzugang-Grunddienste von mehreren Anschlüssen, um den zu übermittelnden Relaisfunkzugang-Grunddienst zu erhalten.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass nach dem Multiplexieren der Funkzugang-Grunddienste von mehreren Anschlüssen durch den Relaisknoten und dem Übermitteln des Relaisfunkzugang-Grunddienstes durch den Relaisfunkzugangsträger das Verfahren ferner Folgendes umfasst:
    das Relais-S-GW empfängt den übermittelten Relaisfunkzugang-Grunddienst und demultiplexiert den empfangenen Relaisfunkzugang-Grunddienst, um die Funkzugang-Grunddienste der mehreren Anschlüsse zu erhalten.
  4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass nach dem Multiplexieren der Funkzugang-Grunddienste, die an die mehreren Anschlüsse gesendet werden müssen, durch das Relais-S-GW und dem Übermitteln des Relaisfunkzugang-Grunddienstes durch den Relaisfunkzugangsträger das Verfahren ferner Folgendes umfasst:
    der Relaisknoten empfängt den übermittelten Relaisfunkzugang-Grunddienst und demultiplexiert den empfangenen Relaisfunkzugang-Grunddienst, um die Funkzugang-Grunddienste zu erhalten, die an die mehreren Anschlüsse gesendet werden müssen.
  5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass es ferner eines der Folgenden umfasst:
    der Relaisknoten oder das Relais-S-GW erstellt die Benutzerebenen-Protokolladresse des Tunnelprotokolls, das dem Funkträger der Funkzugang-Grunddienste zugeordnet ist, die als Identifikator für das Multiplexieren und/oder Demultiplexieren zu verwenden ist;
    der Relaisknoten oder das Relais-S-GW erstellt den Identifikator, der jedem Funkzugangsträger zugeordnet ist, der als Identifikator für das Multiplexieren und/oder Demultiplexieren zu verwenden ist; und
    der Relaisknoten oder das Relais-S-GW erstellt den Tunnelendpunkt-Identifikator, der dem Funkträger der Funkzugang-Grunddienste zugeordnet ist, der als Identifikator für das Multiplexieren und/oder Demultiplexieren zu verwenden ist.
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Relaisfunkzugangsträger ferner dafür ausgelegt ist, die S1-AP-Steuermeldung des Anschlusses auf der Benutzerebene oder der Steuerebene zu übertragen.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Schritt des Übertragens der S1-AP-Steuermeldung des Anschlusses auf der Benutzerebene durch den Relaisfunkzugangsträger Folgendes umfasst:
    der Relaisknoten oder das Relais-S-GW multiplexiert die S1-AP-Steuermeldung der mehreren Anschlüsse gemäß dem jeweiligen S1-AP-Identifikator, um den zu übermittelnden Relaisfunkzugang-Grunddienst zu erhalten.
  8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Schritt des Übertragens der S1-AP-Steuermeldung des Anschlusses auf der Steuerebene durch den Relaisfunkzugangsträger Folgendes umfasst:
    die S1-AP-Steuermeldung der Anschlüsse wird über eine Steuerebenen-Direktübertragungsnachricht des Relaisfunkzugangsträgers übertragen, wobei die S1-AP-Steuermeldung der mehreren Anschlüsse gemäß einem S1-AP-Identifikator als ein Teil der Steuerebenen-Direktübertragungsnachricht des Relaisfunkzugangsträgers multiplexiert wird, um übertragen zu werden; und
    in dem Fall, in dem der Relaisknoten den Multiplexiervorgang ausführt, eine Kernnetz-Mobilitätsverwaltungsentität einen Demultiplexiervorgang ausführt; oder in dem Fall, in dem die Kernnetz-Mobilitätsverwaltungsentität den Multiplexiervorgang ausführt, der Relaisknoten einen Demultiplexiervorgang ausführt.
  9. Relaisknoten, dadurch gekennzeichnet, dass er Folgendes umfasst:
    ein erstes Empfängermodul (1), das dafür ausgelegt ist, Funkzugang-Grunddienste von einem Anschluss zu empfangen;
    ein zweites Empfängermodul (5), das dafür ausgelegt ist, Relaisfunkzugang-Grunddienste von dem Kernnetz zu empfangen;
    ein Multiplexiermodul (2), das dafür ausgelegt ist, die S1-AP-Steuermeldung und/oder die Funkzugang-Grunddienste der mehreren Anschlüsse, die von dem ersten Empfängermodul (1) empfangen wurden, zu multiplexieren;
    ein Demultiplexiermodul (6), das dafür ausgelegt ist, die multiplexierte S1-AP-Steuermeldung und/oder die Funkzugang-Grunddienste, die von dem zweiten Empfängermodul (5) empfangen wurden, zu demultiplexieren;
    ein erstes Übertragungsmodul (3), das dafür ausgelegt ist, die Funkzugang-Grunddienste und/oder die S1-AP-Steuermeldung, die von dem Multiplexiermodul (2) multiplexiert wurden, über einen Relaisfunkzugangsträger an das S-GW zu übertragen;
    ein zweites Übertragungsmodul (4), das dafür ausgelegt ist, über eine Steuerebene die von dem Multiplexiermodul (2) multiplexierte S1-AP-Steuermeldung zu übertragen; und
    ein drittes Übertragungsmodul (7), das dafür ausgelegt ist, die demultiplexierten Funkzugang-Grunddienste der Anschlüsse über eine Luftschnittstelle an den Anschluss zu übertragen.
  10. Relais-Serving-Gateway (S-GW), dadurch gekennzeichnet, dass es Folgendes umfasst:
    ein Empfängermodul (181), das dafür ausgelegt ist, die multiplexierte S1-AP-Steuermeldung und/oder die Funkzugang-Grunddienste von dem Relaisknoten zu empfangen;
    ein Demultiplexiermodul (182), das dafür ausgelegt ist, die S1-AP-Steuermeldung und/oder die Funkzugang-Grunddienste, die von dem Empfängermodul (181) multiplexiert und empfangen wurden, zu demultiplexieren;
    ein Multiplexiermodul (183), das dafür ausgelegt ist, die S1-AP-Steuermeldung und/oder die Funkzugang-Grunddienste von dem Kernnetz zu multiplexieren; und
    ein Übertragungsmodul (184), das dafür ausgelegt ist, die Funkzugang-Grunddienste und/oder die S1-AP-Steuermeldung, die von dem Multiplexiermodul (182) multiplexiert wurden, über einen Relaisfunkzugangsträger an den Relaisknoten zu übertragen.
  11. Mobilitätsverwaltungs-Netzelement, dadurch gekennzeichnet, dass es Folgendes umfasst:
    ein Empfängermodul (191), das dafür ausgelegt ist, die multiplexierte S1-AP-Steuermeldung von dem Relaisknoten zu empfangen;
    ein Demultiplexiermodul (192), das dafür ausgelegt ist, die von dem Empfängermodul (191) empfangene multiplexierte S1-AP-Steuermeldung zu demultiplexieren;
    ein Multiplexiermodul (193), das dafür ausgelegt ist, die mehreren S1-AP-Steuermeldungen zu multiplexieren; und
    ein Übertragungsmodul (194), das dafür ausgelegt ist, die von dem Multiplexiermodul (193) multiplexierte S1-AP-Steuermeldung über eine Steuerebenen-Direktübertragungsnachricht an den Relaisknoten zu senden.
  12. System zum Übertragen der Relaisdaten, dadurch gekennzeichnet, dass es Folgendes umfasst:
    einen Relaisknoten und ein Serving Gateway (S-GW) und/oder ein Mobilitätsverwaltungs-Netzelement, wobei der Relaisknoten Folgendes umfasst:
    ein erstes Empfängermodul (1), das dafür ausgelegt ist, eine S1-AP-Steuermeldung und Funkzugang-Grunddienste von Anschlüssen zu empfangen;
    ein zweites Empfängermodul (5), das dafür ausgelegt ist, einen Relaisfunkzugang-Grunddienst von dem Kernnetz zu empfangen;
    ein Multiplexiermodul (2), das dafür ausgelegt ist, die S1-AP-Steuermeldung und/oder die Funkzugang-Grunddienste der mehreren Anschlüsse, die von dem ersten Empfängermodul (1) empfangen wurden, zu multiplexieren;
    ein Demultiplexiermodul (6), das dafür ausgelegt ist, die multiplexierte S1-AP-Steuermeldung und/oder die Funkzugang-Grunddienste, die von dem zweiten Empfängermodul (5) empfangen wurden, zu demultiplexieren;
    ein erstes Übertragungsmodul (3), das dafür ausgelegt ist, die Funkzugang-Grunddienste und/oder die S1-AP-Steuermeldung, die von dem Multiplexiermodul (2) multiplexiert wurden, über einen Relaisfunkzugangsträger an das S-GW zu übertragen;
    ein zweites Übertragungsmodul (4), das dafür ausgelegt ist, die von dem Multiplexiermodul (2) multiplexierte S1-AP-Steuermeldung über eine Steuerebene zu übertragen; und
    ein drittes Übertragungsmodul (7), das dafür ausgelegt ist, die demultiplexierten Funkzugang-Grunddienste der Anschlüsse über eine Luftschnittstelle an den Anschluss zu senden,
    wobei das Relais-S-GW Folgendes umfasst:
    ein Empfängermodul (181), das dafür ausgelegt ist, die multiplexierte S1-AP-Steuermeldung und/oder die Funkzugang-Grunddienste von dem Relaisknoten zu empfangen;
    ein Demultiplexiermodul (182), das dafür ausgelegt ist, die S1-AP-Steuermeldung und/oder die Funkzugang-Grunddienste, die von dem Empfängermodul (181) multiplexiert und empfangen wurden, zu demultiplexieren;
    ein Multiplexiermodul (183), das dafür ausgelegt ist, die S1-AP-Steuermeldung und/oder die Funkzugang-Grunddienste von dem Kernnetz zu multiplexieren; und
    ein Übertragungsmodul (184), das dafür ausgelegt ist, die Funkzugang-Grunddienste und/oder die S1-AP-Steuermeldung, die von dem Multiplexiermodul multiplexiert wurden, über den Relaisfunkzugangsträger an den Relaisknoten zu übertragen,
    wobei das Mobilitätsverwaltung-Netzelement Folgendes umfasst:
    ein Empfängermodul (181), das dafür ausgelegt ist, die multiplexierte S1-AP-Steuermeldung von dem Relaisknoten zu empfangen;
    ein Demultiplexiermodul (182), das dafür ausgelegt ist, die von dem Empfängermodul (181) empfangene multiplexierte S1-AP-Steuermeldung zu demultiplexieren;
    ein Multiplexiermodul (183), das dafür ausgelegt ist, mehrere S1-AP-Steuermeldungen zu multiplexieren; und
    ein Übertragungsmodul (184), das dafür ausgelegt ist, die von dem Multiplexiermodul multiplexierte S1-AP-Steuermeldung über eine Steuerebenen-Direktübertragungsnachricht an den Relaisknoten zu senden.
EP10769261.8A 2009-04-28 2010-04-20 Verfahren, vorrichtung und system zur übertragung von relaisdaten Active EP2427002B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910137248.1A CN101877860B (zh) 2009-04-28 2009-04-28 中继节点、服务网关、中继数据的传输方法及系统
PCT/CN2010/071941 WO2010124572A1 (zh) 2009-04-28 2010-04-20 中继数据的传输方法、装置及系统

Publications (3)

Publication Number Publication Date
EP2427002A1 EP2427002A1 (de) 2012-03-07
EP2427002A4 EP2427002A4 (de) 2013-11-20
EP2427002B1 true EP2427002B1 (de) 2015-02-18

Family

ID=43020302

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10769261.8A Active EP2427002B1 (de) 2009-04-28 2010-04-20 Verfahren, vorrichtung und system zur übertragung von relaisdaten

Country Status (4)

Country Link
US (1) US9077430B2 (de)
EP (1) EP2427002B1 (de)
CN (1) CN101877860B (de)
WO (1) WO2010124572A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104969653A (zh) * 2013-04-07 2015-10-07 华为技术有限公司 无线回程链路的建立方法和设备
TWI695607B (zh) * 2017-12-27 2020-06-01 大陸商電信科學技術研究院有限公司 一種通過無線回程網路傳輸資料的方法和設備

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100260126A1 (en) 2009-04-13 2010-10-14 Qualcomm Incorporated Split-cell relay packet routing
CN107371154B (zh) * 2011-09-29 2021-06-01 北京三星通信技术研究有限公司 一种实现mdt测量匿名汇报的方法
CN102740283B (zh) * 2012-06-20 2015-02-04 北京傲天动联技术股份有限公司 Lte系统中的网关设备及其数据分流方法
WO2014000307A1 (zh) 2012-06-30 2014-01-03 华为技术有限公司 数据传输方法、网元设备及通信系统
US9386618B2 (en) * 2012-08-03 2016-07-05 Futurewei Technologies, Inc. System and method to support multiple radio access technology relays with a unified backhaul transport network
CN111405666B (zh) 2012-08-03 2024-06-07 北京三星通信技术研究有限公司 一种rn支持多种无线接入系统的方法
CN103945559B (zh) * 2013-01-18 2019-02-15 中兴通讯股份有限公司 网络接入系统及方法
WO2014182229A1 (en) * 2013-05-10 2014-11-13 Telefonaktiebolaget L M Ericsson (Publ) Bearer configuration signaling
US9877155B1 (en) * 2013-11-11 2018-01-23 Numerex Corp. System and method for employing base stations to track mobile devices
WO2015089457A1 (en) * 2013-12-13 2015-06-18 M87, Inc. Methods and systems of secure connections for joining hybrid cellular and non-cellular networks
US9538563B2 (en) * 2014-10-13 2017-01-03 At&T Intellectual Property I, L.P. System and methods for managing a user data path
KR102301818B1 (ko) * 2015-03-12 2021-09-15 삼성전자 주식회사 무선 통신 시스템에서 상향링크 커버리지 제어 방법 및 장치
US10148340B1 (en) * 2016-03-30 2018-12-04 Sprint Communications Company L.P. Multi-core communication system to serve wireless relays and user equipment
CN108886692A (zh) * 2016-03-31 2018-11-23 富士通株式会社 无线通信系统、无线设备、中继节点以及基站
CN108141895B (zh) * 2016-03-31 2021-02-12 华为技术有限公司 用户设备ue接入网络的方法、网络设备及第一ue
CN108617011B (zh) * 2016-12-20 2020-10-13 普天信息技术有限公司 一种基于长期演进系统中继节点的数据传输方法和系统
US20190394816A1 (en) * 2017-02-22 2019-12-26 Lg Electronics Inc. Method for transmitting and receiving data through relay in wireless communication system and apparatus therefor
US10631346B2 (en) * 2017-08-08 2020-04-21 Qualcomm Incorporated Communicating remote and local data in a wireless fronthaul
CN108347752A (zh) * 2018-02-07 2018-07-31 北京佰才邦技术有限公司 数据传输方法及网络设备
CN110366206A (zh) * 2018-03-26 2019-10-22 华为技术有限公司 一种信息传输方法和装置
CN110351747B (zh) * 2018-04-04 2024-03-01 北京三星通信技术研究有限公司 用于配置中继节点的方法和设备
US11239898B1 (en) * 2019-11-19 2022-02-01 T-Mobile Innovations Llc Relaying data to multiple access points
CN114390633B (zh) * 2020-10-16 2024-05-14 中国移动通信有限公司研究院 一种信号中继传输方法、装置、设备及可读存储介质

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7006508B2 (en) * 2000-04-07 2006-02-28 Motorola, Inc. Communication network with a collection gateway and method for providing surveillance services
US7380022B2 (en) * 2001-12-28 2008-05-27 Motorola, Inc. Method and apparatus for transmitting wired data voice over IP data and wireless data through a common IP core network
JP3926799B2 (ja) * 2002-03-29 2007-06-06 三菱電機株式会社 無線ネットワークシステム及び無線通信制御方法
US20050213580A1 (en) * 2004-03-24 2005-09-29 Georg Mayer System and method for enforcing policies directed to session-mode messaging
US20070070959A1 (en) * 2005-09-23 2007-03-29 Almeroth Kevin C Infrastructure mesh networks
CN1964225B (zh) 2005-11-11 2013-03-13 上海贝尔阿尔卡特股份有限公司 一种无线接入控制方法、中继站和基站
JP5181472B2 (ja) * 2006-04-21 2013-04-10 日本電気株式会社 通信制御方法
US8023426B2 (en) * 2007-03-01 2011-09-20 Thomson Licensing Method to select access point and relay node in multi-hop wireless networking
CN103024840B (zh) * 2007-08-09 2015-08-05 华为技术有限公司 数据转发的方法和演进基站
FI20075631A0 (fi) * 2007-09-10 2007-09-10 Nokia Siemens Networks Oy Menetelmä, radiojärjestelmä ja tukiasema
WO2009049683A1 (en) * 2007-10-19 2009-04-23 Nokia Corporation A relay, and a related method
JP5088091B2 (ja) * 2007-10-29 2012-12-05 富士通株式会社 基地局装置、通信方法及び移動通信システム
FI20070995A0 (fi) * 2007-12-19 2007-12-19 Nokia Siemens Networks Oy Verkkosolmujen skaalautuva käyttöönotto
JP5144804B2 (ja) * 2008-04-30 2013-02-13 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Lteにおけるセルフバックホーリング
CN101383775B (zh) * 2008-10-10 2011-05-18 北京邮电大学 在ofdm协同/中继系统中多业务混合传输的实现方法
US8964781B2 (en) * 2008-11-05 2015-02-24 Qualcomm Incorporated Relays in a multihop heterogeneous UMTS wireless communication system
TWI385976B (zh) * 2009-01-19 2013-02-11 Univ Nat Taiwan Science Tech 允入控制器及其方法與其多躍式無線骨幹網路系統
CN101656983B (zh) * 2009-08-27 2012-02-15 新邮通信设备有限公司 长期演进增强技术中Un接口承载复用的方法
CN101651950A (zh) 2009-09-09 2010-02-17 新邮通信设备有限公司 一种长期演进网络中的业务实现方法、设备及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104969653A (zh) * 2013-04-07 2015-10-07 华为技术有限公司 无线回程链路的建立方法和设备
CN104969653B (zh) * 2013-04-07 2019-07-26 华为技术有限公司 无线回程链路的建立方法和设备
TWI695607B (zh) * 2017-12-27 2020-06-01 大陸商電信科學技術研究院有限公司 一種通過無線回程網路傳輸資料的方法和設備

Also Published As

Publication number Publication date
EP2427002A4 (de) 2013-11-20
WO2010124572A1 (zh) 2010-11-04
US9077430B2 (en) 2015-07-07
CN101877860A (zh) 2010-11-03
US20120039240A1 (en) 2012-02-16
CN101877860B (zh) 2016-01-20
EP2427002A1 (de) 2012-03-07

Similar Documents

Publication Publication Date Title
EP2427002B1 (de) Verfahren, vorrichtung und system zur übertragung von relaisdaten
JP6662477B2 (ja) 最適化されたue中継
US10015832B2 (en) System and method for communications in communications systems with relay nodes
US20200351749A1 (en) Method and apparatus for transmitting data to a network node in a wireless communication system
EP2056638B1 (de) Basisstationsvorrichtung, Kommunikationsverfahren und mobiles Kommunikationssystem
US9380637B2 (en) Relay communication system supporting multiple hops and access method thereof
US9191856B2 (en) Network system, offload device, and offload traffic control method
CN112997576B (zh) Iab系统中的ipv6地址管理
US20120140700A1 (en) Handover Method Based on Mobile Relay and Mobile Wireless Relay System
CN101730032A (zh) 一种实现数据前转的方法和一种施主基站
KR20230091856A (ko) 도너 간 모빌리티를 위한 방법 및 장치
WO2010124641A1 (zh) 一种长期演进系统及其数据传输方法
WO2011023101A1 (zh) 一种无线连接的gtp-u实体间传输数据的方法和装置
EP2369892A1 (de) Verbesserte Verwendung von Funkschnittstellenressourcen für drahtlose Relais
US20220225209A1 (en) Data packet transmission method and apparatus
CN101932037B (zh) 保证业务承载传输时延的方法与装置
WO2011020413A1 (zh) 一种应用于无线中继的传输系统及传输方法
WO2020042986A1 (zh) 一种多跳数据传输方法及装置
WO2023010364A1 (zh) 集成的接入和回传的通信装置以及方法
WO2018084080A1 (ja) 基地局、ゲートウェイ、装置、方法、プログラム及び記録媒体
WO2021005456A1 (en) Remapping of bearers in iab networks
CN103957567A (zh) 保证业务承载传输时延的方法与装置
RU2803196C1 (ru) Способ передачи пакета данных и устройство
US20170041838A1 (en) Communication system, base station device, and method
JP2024513004A (ja) 情報送受信方法、データ送信方法及び装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20131021

RIC1 Information provided on ipc code assigned before grant

Ipc: H04B 7/26 20060101ALI20131015BHEP

Ipc: H04W 72/04 20090101ALI20131015BHEP

Ipc: H04W 52/46 20090101AFI20131015BHEP

Ipc: H04B 7/155 20060101ALI20131015BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140903

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 711086

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010022336

Country of ref document: DE

Effective date: 20150402

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150218

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 711086

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150218

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150518

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150618

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150519

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602010022336

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150420

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26 Opposition filed

Opponent name: HUAWEI TECHNOLOGIES CO., LTD.

Effective date: 20151118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150420

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100420

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 602010022336

Country of ref document: DE

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

27O Opposition rejected

Effective date: 20171202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240229

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240308

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240306

Year of fee payment: 15