WO2014000307A1 - 数据传输方法、网元设备及通信系统 - Google Patents

数据传输方法、网元设备及通信系统 Download PDF

Info

Publication number
WO2014000307A1
WO2014000307A1 PCT/CN2012/077998 CN2012077998W WO2014000307A1 WO 2014000307 A1 WO2014000307 A1 WO 2014000307A1 CN 2012077998 W CN2012077998 W CN 2012077998W WO 2014000307 A1 WO2014000307 A1 WO 2014000307A1
Authority
WO
WIPO (PCT)
Prior art keywords
udp
bearer
encapsulated
user plane
protocol
Prior art date
Application number
PCT/CN2012/077998
Other languages
English (en)
French (fr)
Inventor
周军平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/077998 priority Critical patent/WO2014000307A1/zh
Priority to RU2015102933A priority patent/RU2606063C2/ru
Priority to CN201610035929.7A priority patent/CN105491686B/zh
Priority to JP2015518770A priority patent/JP5965061B2/ja
Priority to EP12879628.1A priority patent/EP2854473B1/en
Priority to CN201280000908.1A priority patent/CN102870490B/zh
Publication of WO2014000307A1 publication Critical patent/WO2014000307A1/zh
Priority to US14/579,519 priority patent/US9467535B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/06Transport layer protocols, e.g. TCP [Transport Control Protocol] over wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/78Architectures of resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • H04L69/164Adaptation or special uses of UDP protocol
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a data transmission method, a network element device, and a communication system. Background technique
  • IPv6 Internet Protocol Version 6, 6th Edition Internet Protocol
  • IPv4 Internet Protocol Version 4, 4th Edition Internet Protocol
  • IPv6 Packet Switch
  • SGSN Serving GPRS Support Node
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • RNC Radio Network Controller
  • the UDP checksum calculation includes the checksum calculation of the UDP header and the checksum calculation of the UDP load.
  • the checksum of UDP is calculated by the sender, and then verified by the receiver. If the receiver detects that the checksum is in error, the GTP packet will be discarded. In some cases, the cost of dropping this package is very large, especially for services such as voice or video that are relatively large. For the service with good error tolerance for voice or video, the UDP checksum calculation will significantly reduce the efficiency of data transmission. Summary of the invention Aspects of the present invention provide a data transmission method for improving the efficiency of data transmission.
  • a first aspect of the present invention provides a data transmission method, including:
  • the terminal encapsulates the user plane tunnel corresponding to the PDP context by using the UDP-Lite protocol.
  • the user plane tunnel of the bearer corresponding to the PDP context can be encapsulated by the UDP-Lite protocol, including:
  • a data transmission method including:
  • the receiving end determines, according to the QoS parameter, whether the user plane tunnel of the bearer corresponding to the PDP context can be encapsulated by using the UDP-Lite protocol;
  • the acknowledgment result information carried in the response message is encapsulated by the UDP-Lite protocol
  • the user plane tunnel of the bearer corresponding to the PDP context is encapsulated by the UDP-Lite protocol.
  • the user plane tunnel of the 7-bearing corresponding to the PDP context is encapsulated by the UDP-Lite protocol, specifically:
  • the user plane tunnel of the bearer corresponding to the PDP context is encapsulated into a data transmission protocol packet by using the UDP-Lite protocol, and the checksum coverage field field in the packet header of the data transmission protocol packet is set as a preset. value.
  • a third aspect of the present invention provides a data transmission method, including:
  • the bearer user plane tunnel is encapsulated by the UDP-Lite protocol.
  • the data transmission method as described above the determining, according to the quality of service parameter, whether the hosted user plane tunnel can be encapsulated by using a UDP-Lite protocol, including:
  • the bearer user plane tunnel can be encapsulated by using a UDP-Lite protocol.
  • a data transmission method including:
  • the response message carries the judgment result information, and the determination result information is the The receiving end determines, according to the QoS parameter, whether the user plane tunnel of the bearer can be encapsulated by using the UDP-Lite protocol;
  • the user plane tunnel of the bearer is encapsulated by using the UDP-Lite protocol.
  • the user plane tunnel of the bearer is encapsulated into a data transmission protocol packet by using a UDP-Lite protocol, and the checksum coverage field field in the packet header of the data transmission protocol packet is set to a pre- Set the value.
  • a data transmission method including:
  • the user plane tunnel is encapsulated.
  • the determining whether the user plane tunnel of the bearer can be encapsulated by using the UDP-Lite protocol according to the quality of service parameter of the bearer includes:
  • the UDP-Lite protocol is encapsulated.
  • a data transmission method including:
  • the user plane tunnel of the bearer is encapsulated into a data transmission protocol packet by using the UDP-Lite protocol, and the checksum coverage field field in the packet header of the data transmission protocol packet is set to a preset value.
  • a seventh aspect of the present invention provides a network element device, including:
  • a receiving unit configured to receive a PDP context creation or update message sent by the sender, where the create or update message carries a quality of service parameter
  • a determining unit configured to determine, according to the QoS parameter, whether the user plane tunnel of the bearer corresponding to the PDP context can be encapsulated by using a UDP-Lite protocol, and obtain a judgment result; and sending, for sending to the sending end Returning the response cancellation message carrying the judgment result information
  • the user plane tunnel of the bearer corresponding to the PDP context is encapsulated by the UDP-Lite protocol when the sending end is configured to be encapsulated by the UDP-Lite protocol.
  • the determining unit is configured to obtain the first threshold and the second threshold, and determine whether the error tolerance in the QoS parameter of the PDP context is greater than the first threshold and is lost. Whether the packet tolerance is greater than the second threshold, and if yes, the user plane tunnel that is determined to be the bearer corresponding to the PDP context can be encapsulated by the UDP-Lite protocol; otherwise, the judgment result is the PDP. The user plane tunnel of the bearer corresponding to the context cannot be encapsulated by the UDP-Lite protocol.
  • a network element device including:
  • a sending unit configured to send a PDP context creation or update message to the receiving end, where the creation or update message carries a quality of service parameter
  • a receiving unit configured to receive a creation or update response message returned by the receiving end, where the response message is returned by the receiving end according to the creation or update message, and the response message carries the judgment result information, where the determining The result information is that the receiving end determines, according to the QoS parameter, whether the user plane tunnel of the bearer corresponding to the PDP context can be encapsulated by using the UDP-Lite protocol;
  • the encapsulating unit is configured to encapsulate the user plane tunnel corresponding to the PDP context by using the UDP-Lite protocol when the judgment result information carried in the response message is encapsulated by the UDP-Lite protocol.
  • the network element device is configured to encapsulate, by using a UDP-Lite protocol, a user plane tunnel of the bearer corresponding to the PDP context as a data transmission protocol packet, and the data transmission protocol packet
  • the checksum coverage field in the header of the message is set to the default value.
  • a ninth aspect of the present invention provides a network element device, including:
  • a receiving unit configured to receive a create or update message of a bearer sent by the sender, where the create or update message carries a quality of service parameter of the bearer;
  • a determining unit configured to determine, according to the quality of service parameter, whether the user plane tunnel of the bearer can be encapsulated by using a UDP-Lite protocol, and obtain a judgment result;
  • a sending unit configured to return, to the sending end, a response that carries the information about the judgment result
  • the user plane tunnel of the bearer is encapsulated by the UDP-Lite protocol when the sending end receives the information about the judgment result carried in the response message to be encapsulated by the UDP-Lite protocol.
  • the determining unit is configured to obtain the first threshold and the second threshold, and determine whether the error tolerance in the quality of service parameter of the bearer is greater than the first threshold and the packet is lost. If the tolerance is greater than the second threshold, if yes, it is determined that the user plane tunnel of the bearer can be encapsulated by the UDP-Lite protocol; otherwise, the result of the judgment is that the user plane tunnel of the bearer cannot be Encapsulation by the UDP-Lite protocol.
  • a tenth aspect of the present invention provides a network element device, including:
  • a sending unit configured to send a bearer creation or update message to the receiving end, where the create or update message carries the quality of service parameter of the bearer
  • a receiving unit configured to receive a creation or update response message returned by the receiving end, where the response message is returned by the receiving end according to the creation or update message, and the response message carries the judgment result information, where the determining The result information is that the receiving end determines, according to the QoS parameter, whether the user plane tunnel of the bearer can be encapsulated by using the UDP-Lite protocol; and the encapsulating unit is configured to pass the judgment result information carried in the response message.
  • the user plane tunnel of the bearer is encapsulated by the UDP-Lite protocol.
  • the network element device where the encapsulating unit is configured to: when the response message carries the judgment result information to be encapsulated by the UDP-Lite protocol, the user plane of the bearer is tunneled through the UDP-Lite protocol.
  • the packet is encapsulated into a data transmission protocol packet, and the checksum coverage field field in the packet header of the data transmission protocol packet is set to a preset value.
  • An eleventh aspect of the present invention provides a network element device, including:
  • a determining unit configured to determine, according to the quality of service parameter of the bearer, whether the user plane tunnel of the bearer can be encapsulated by using a UDP-Lite protocol, and obtain a judgment result;
  • a sending unit configured to send, to the receiving end, an instruction message carrying the judgment result information, so that the sending end passes the UDP-Lite protocol when receiving the judgment result information to be encapsulated by the UDP-Lite protocol Encapsulating the user plane tunnel of the bearer.
  • the network element device the determining unit is specifically configured to acquire the first threshold and the second a threshold, and determining whether the error tolerance in the quality of service parameter of the bearer is greater than the first threshold and whether the packet loss tolerance is greater than the second threshold, and if yes, determining that the result is the bearer
  • the user plane tunnel can be encapsulated by the UDP-Lite protocol; otherwise, the user plane tunnel that is judged to be the bearer cannot be encapsulated by the UDP-Lite protocol.
  • a 12th aspect of the present invention provides a network element device, including:
  • a receiving unit configured to receive the command information sent by the sending end, where the command information carries the judgment result information, where the determining result information is that the sending end determines the bearer according to the quality of service parameter of the created or updated bearer Whether the user plane tunnel can be encapsulated by the UDP-Lite protocol;
  • a packaging unit configured to carry the judgment result information in the instruction information to pass
  • the user plane tunnel of the bearer is encapsulated by the UDP-Lite protocol.
  • the network element device is configured to encapsulate the user plane tunnel of the bearer into a data transmission protocol packet by using a UDP-Lite protocol, and send the packet of the data transmission protocol packet
  • the checksum coverage field in the field is set to the default value.
  • a communication system comprising at least one set of network element devices for data transmission, wherein the network element device uses the above-mentioned network element device.
  • the present invention determines whether the bearer is encapsulated by UDP-Lite by judging the quality of service parameters of the bearer.
  • the UDP-Lite encapsulation can be implemented by the technical solution provided by the present invention, and the PDP context activation or bearer is encapsulated by the UDP protocol in the prior art, which reduces the number of services that are more tolerant to voice and video.
  • the verification of the payload of the message significantly improves the efficiency of data transmission.
  • FIG. 1 is a schematic flowchart diagram of Embodiment 1 of a data transmission method according to the present invention
  • FIG. 2 is a schematic flowchart of Embodiment 2 of a data transmission method provided by the present invention
  • FIG. 3 is a schematic diagram of data transmission when a data transmission method provided by the present invention is used to implement creation or update of a secondary activation of a PDP context initiated by a 2G or 3G user side;
  • FIG. 4 is a schematic flowchart of Embodiment 3 of a data transmission method according to the present invention
  • FIG. 5 is a schematic flowchart of Embodiment 4 of a data transmission method provided by the present invention
  • FIG. 6 is a schematic diagram of implementing a data transmission method provided by the present invention to implement S4 SGSN networking.
  • FIG. 7 is a schematic diagram of data transmission when the data transmission method provided by the present invention is implemented to implement the update of the dedicated bearer by the user side of the S4 SGSN networking;
  • FIG. 8 is a schematic flowchart of Embodiment 5 of a data transmission method according to the present invention
  • FIG. 9 is a schematic flowchart of Embodiment 6 of a data transmission method provided by the present invention
  • FIG. 10 is a schematic diagram of applying the data transmission method provided by the present invention to implement S4 SGSN networking.
  • FIG. 11 is a schematic diagram of data transmission when the data transmission method provided by the present invention is used to implement the update of the dedicated bearer initiated by the network side of the S4 SGSN;
  • FIG. 12 is a schematic diagram of data transmission when an EPC user side initiates a dedicated bearer creation by applying the data transmission method provided by the present invention
  • FIG. 13 is a schematic diagram of data transmission when the data transmission method provided by the present invention is implemented to implement an exclusive load update of an E P C user side;
  • FIG. 14 is a schematic structural diagram of Embodiment 1 of a network element device according to the present invention.
  • FIG. 15 is a schematic structural diagram of Embodiment 2 of a network element device according to the present invention.
  • FIG. 16 is a schematic structural diagram of Embodiment 3 of a network element device according to the present invention.
  • FIG. 17 is a schematic structural diagram of Embodiment 4 of a network element device according to the present invention.
  • FIG. 18 is a schematic structural diagram of Embodiment 5 of a network element device according to the present invention.
  • FIG. 19 is a schematic structural diagram of Embodiment 6 of a network element device according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION First, several concepts related to embodiments of the present invention are explained.
  • UDP User Datagram Protocol, User Datagram Protocol.
  • UDP is a transport layer protocol that is typically applied to packet networks where user data is transmitted based on a single UDP packet.
  • UDP-Lite User Datagram Protocol Lite, Lightweight User Data Protocol.
  • the check range of the checksum field of the UDP-Lite protocol can be changed, and it is applicable to a service in which a voice or video class has a bit error rate greater than a threshold.
  • GTP GPRS Tunnelling Protocol GPRS tunneling protocol, which provides tunneling for the transmission of user data and signaling information between GSNs.
  • the GTP protocol is defined for the Gn and Gp interfaces of the GPRS network and is the GPRS tunneling protocol.
  • GTP-C GTP Control Plane
  • GTP-U Data Transport Protocol
  • GGSN Gateway GPRS Support Node
  • GTPU General Packet Radio Service (GPRS) User plane of GPRS Tunneling Protocol (GTPU), which can complete user data encapsulation or decapsulation.
  • GPRS General Packet Radio Service
  • GTPU GPRS Tunneling Protocol
  • FIG. 1 is a schematic flowchart diagram of Embodiment 1 of a data transmission method provided by the present invention. As shown in the figure, the data transmission method in the first embodiment includes:
  • Step 101 Receive a PDP (Packet Data Protocol) context creation or update message sent by the sending end, where the create or update message carries the PDN context activated Quality of Service (QoS) parameter.
  • PDP Packet Data Protocol
  • the receiving end receives the following creation or update message of the PDP sent by the sending end.
  • the receiving end may be a network element device, such as a GGSN, capable of returning a response message according to the created or updated message of the received PDP context to establish a GTP tunnel.
  • the sender is a network element device, such as an SGSN, that can send a PDP context creation or update message to establish a GTP tunnel.
  • the PDP context creation includes a one-time creation of a PDP context and a secondary creation of a PDP context.
  • Step 102 Determine, according to the QoS parameter, whether the user plane tunnel of the bearer corresponding to the PDP context can be encapsulated by using a UDP-Lite protocol, and return a response message carrying the judgment result information to the sending end, so that When the sending end receives the information that the judgment result is encapsulated by the UDP-Lite protocol, the sending end performs the UDP-Lite protocol on the The user plane tunnel of the bearer corresponding to the PDP context is encapsulated.
  • the receiving end determines, according to the QoS parameter, whether the PDP context is a service with high error tolerance. If yes, the PDP context can be encapsulated by using a UDP-Lite protocol.
  • the determining whether the PDP context is a service with a high error tolerance is specifically: first, acquiring a first threshold and a second threshold; and determining whether the error tolerance in the quality of service parameter of the PDP context is greater than Whether the first threshold and the packet loss tolerance are greater than the second threshold, if yes, the PDP context is a service with a high error tolerance, and the user plane tunnel corresponding to the PDP context can pass the UDP The -Lite protocol is encapsulated. Otherwise, the PDP context is not a service with high error tolerance.
  • the user plane tunnel corresponding to the PDP context cannot be encapsulated by the UDP-Lite protocol, and the UDP in the prior art can still be used.
  • the protocol is encapsulated.
  • the first threshold and the second threshold may be manually set.
  • the obtaining of the first threshold and the second threshold may be obtained by inputting in a manually controlled manner, or may be acquired from the storage area in a pre-stored storage area.
  • the purpose of the receiving end returning the response message to the sending end is to inform the receiving end whether to accept the creation or update request of the PDP context sent by the sending end, and if yes, establish the connection between the sending end and the receiving end.
  • GTP tunnel The transmitting end and the receiving end can transmit information through the GTP tunnel.
  • the determining result information carried in the response message is used to inform the sending end whether the user plane tunnel of the GTP tunnel corresponding to the PDP context of the sending end can be encapsulated by the UDP-Lite protocol, so that the sending end makes a result according to the notification.
  • the corresponding response that is, the user plane tunnel of the service with high tolerance for the error packet is encapsulated by the UDP-Lite protocol.
  • This embodiment is based on the existing 2G (second generation mobile phone communication technology) or 3G (third generation mobile phone communication technology) network data transmission method.
  • the QoS parameter of the PDP context it is determined whether the user plane tunnel of the bearer corresponding to the PDP context is encapsulated by using UDP-Lite.
  • UDP-Lite encapsulation can be implemented in the embodiments of the present invention, and the PDP context activation is encapsulated by the UDP protocol, which can significantly improve data transmission. effectiveness.
  • FIG. 2 is a schematic flowchart diagram of Embodiment 2 of a data transmission method provided by the present invention. As shown in the figure, the data transmission method in the second embodiment includes:
  • Step 201 Send a PDP context creation or update message to the receiving end, where the create or update message carries a quality of service parameter.
  • the sending end sends a PDP context creation or update message to the receiving end.
  • the sender is SGSN.
  • the receiving end may be a GGSN, as shown in the example of FIG.
  • Step 202 Receive a creation or update response message returned by the receiving end, where the response message is returned by the receiving end according to the creation or update message, and the response message carries the judgment result information, and the determination result information And determining, by the receiving end, whether the user plane tunnel of the bearer corresponding to the PDP context can be encapsulated by using the UDP-Lite protocol according to the QoS parameter.
  • Step 203 If the judgment result information carried in the response message is encapsulated by the UDP-Lite protocol, the user plane tunnel corresponding to the PDP context is encapsulated by using the UDP-Lite protocol.
  • the sending end encapsulates the user plane tunnel of the bearer corresponding to the PDP context into a data transmission protocol packet by using the UDP-Lite protocol. (hereinafter referred to as GTPU packet), and set the checksum coverage field (hereinafter the Checksum Coverage) field in the header of the GTPU packet to a preset value.
  • GTPU packet data transmission protocol packet
  • Checksum Coverage the checksum coverage field
  • the UDP-Lite protocol uses the Length field of the UDP protocol to indicate its Checksum Coverage, so when the Checksum Coverage field of the UDP-Lite protocol is equal to the length of the entire UDP datagram (including the UDP header and payload), the UDP-Lite generates The package is exactly the same as the traditional UDP package. If the Checksum Coverage is 0, it means that the entire datagram encapsulated by the UDP-Lite protocol is verified. If Checksum
  • the preset value may be set to 8, that is, the checksum coverage value is 8, and only the first 8 bytes of the datagram are verified during the checksum calculation, that is, only The packet header of the GTPU packet encapsulated by the UDP-Lite protocol is checked, and the payload of the GTPU packet is not verified. This avoids the need for the datagram header and payload of the datagram encapsulated by the UDP protocol in the prior art. The problem of verification improves the efficiency of data transmission.
  • the data transmission method provided by the present invention is used to implement the 2G or 3G user side.
  • This application example is a secondary creation or update of the PDP context initiated by the user side.
  • the GGSN determines whether the user plane tunnel corresponding to the secondary created PDP context is encapsulated by the UDP-Lite according to the QoS parameter, and creates a PDP Context Response. Or the Update PDP Context Response message informs the SGSN device.
  • the specific implementation process is as follows. , including the following steps.
  • Step 1 1 The SGSN sends a Create PDP Context Request message to the GGSN to create a PDP context.
  • Step 1 12 The GGSN determines, according to the QoS parameter carried in the Create PDP Context Request message, whether the user plane tunnel corresponding to the secondary created PDP context to be created can be encapsulated by the UDP-Lite protocol, and Returning a Create PDP Context Response message carrying the judgment result to the SGSN.
  • the PDP context to be created is a service with high error tolerance, that is, the PDP created twice. If the error tolerance in the QoS parameter of the context is greater than the first threshold and the packet loss tolerance is greater than the second threshold, the user plane tunnel of the bearer corresponding to the secondary created PDP context can be encapsulated by using the UDP-Lite protocol.
  • the SGSN receives the Create PDP Context Response message returned by the GGSN, a GTP tunnel is established between the SGSN and the GGSN. The information exchanged between the SGSN and the GGSN may be carried in the GTP tunnel for transmission.
  • Step 1 13 If the judgment result carried in the Create PDP Context Response message is encapsulated by the UDP-Lite protocol, the SGSN encapsulates the user plane tunnel activated by the PDP context twice by using the UDP-Lite protocol. .
  • the SGSN encapsulates the user plane tunnel corresponding to the PDP context created by the secondary creation into a GTPU packet by using the UDP-Lite protocol, and sets the checksum coverage field field in the packet header of the GTPU packet to 8.
  • the transmitting end SGSN performs checksum calculation only on the packet header of the GTPU packet.
  • the GGSN After receiving the GTPU packet, the GGSN only verifies the checksum of the packet header, and eliminates the need to perform the GTPU packet load (ie, checksum coverage, checksum coverage field) field in the prior art. Check.
  • Step 121 The SGSN sends an Update PDP Context Request message to the GGSN to update the PDP context.
  • Step 122 The GGSN updates the PDP context according to the Update PDP Context Request message, and then determines, according to the QoS parameter carried in the Update PDP Context Request message, whether the user plane tunnel of the bearer corresponding to the PDP context to be updated can pass.
  • the UDP-Lite protocol encapsulates the Update PDP Context Response message carrying the judgment result to the SGSN.
  • the bearer corresponding to the PDP context can be encapsulated by the UDP-Lite protocol. Among them, the judgment of the service with high error tolerance can be realized by the above judgment process.
  • a GTP tunnel is established between the SGSN and the GGSN. The information exchanged between the SGSN and the GGSN may be carried in the GTP tunnel for transmission.
  • Step 123 If the result of the Update PDP Context Response message is UDP-Lite encapsulation, the SGSN encapsulates the user plane tunnel that is activated by the PDP context by using the UDP-Lite protocol, so as to be encapsulated.
  • the PDP context secondary activation bearer is transmitted within the established GTP tunnel.
  • the process of the SGSN encapsulating the user plane tunnel corresponding to the PDP context by using the UDP-Lite protocol is the same as that of the SGSN, and is not described here.
  • FIG. 4 is a schematic flowchart diagram of Embodiment 3 of a data transmission method provided by the present invention. As shown in the figure, the data transmission method in the third embodiment includes:
  • Step 301 Receive a create or update message of a bearer sent by the sending end, where the create or update message carries a quality of service parameter of the bearer.
  • the present embodiment is based on a 4G (fourth generation mobile phone communication technology) network, for example, a network in which the SGSN accesses the EPC network through the S4 interface (hereinafter referred to as an S4 SGSN network) or an EPC network.
  • Transmission method Specifically, the receiving end receives the sending The created or updated message of the bearer sent by the end.
  • the receiving end may be a network element device, such as an SGSN, that can send a bearer creation or update message to establish a GTP tunnel, or a network element device, such as an S-GW, that forwards the received bearer creation or update message.
  • the receiving end may specifically be a PDN (Public Data Network) gateway (hereinafter abbreviated as P-GW).
  • PDN Public Data Network gateway
  • Step 302 Determine, according to the QoS parameter, whether the user plane tunnel of the bearer can be encapsulated by using a UDP-Lite protocol, and return a response message carrying the judgment result information to the sending end, so that the sending end
  • the user plane tunnel of the bearer is encapsulated by the UDP-Lite protocol when the judgment result information carried in the response message is encapsulated by the UDP-Lite protocol.
  • the receiving end determines, according to the QoS parameter, whether the bearer is a service with high error tolerance, and if yes, the bearer can be encapsulated by using a UDP-Lite protocol.
  • the determining whether the bearer is a service with a high error tolerance is obtained by: obtaining a first threshold and a second threshold, and determining whether the error tolerance in the quality of service parameter of the bearer is greater than a first threshold Whether the packet loss tolerance is greater than the second threshold, if yes, the bearer is a service with high error tolerance, and the bearer user plane tunnel can be encapsulated by the UDP-Lite protocol, The bearer is not encapsulated by the UDP protocol in the prior art.
  • the bearer is not encapsulated by the UDP protocol.
  • the first threshold and the second threshold may be manually set.
  • the purpose of the response message returned by the receiving end to the sending end is to inform the receiving end whether to accept the creation or update request of the bearer sent by the sending end. If accepted, the sending end and the receiving end establish GTP tunnel.
  • the transmitting end and the receiving end can transmit information through the GTP tunnel.
  • the judgment result information carried in the response message is used to inform the sender whether the bearer user plane tunnel can be encapsulated by the UDP-Lite protocol, so that the sender responds according to the result of the notification, that is, User plane tunneling for services with high tolerance for errors
  • FIG. 5 a schematic flowchart of a fourth embodiment of a data transmission method provided by the present invention is shown.
  • the data transmission method in the fourth embodiment includes:
  • Step 401 Send a bearer creation or update message to the receiving end, where the create or update message carries the quality of service parameter of the bearer.
  • the sending end sends a bearer creation or update message to the receiving end.
  • the bearer includes a proprietary bearer and a default bearer.
  • the receiving end may be capable of sending a bearer creation or update message to establish
  • the network element device of the GTP tunnel such as the SGSN, or the network element device that forwards the received bearer to create or update the message, such as the S-GW.
  • the receiving end may specifically be a P-GW.
  • Step 402 Receive a creation or update response message returned by the receiving end, where the response message is returned by the receiving end according to the creation or update message, and the response message carries the judgment result information, and the determination result information And determining, by the receiving end, whether the bearer user plane tunnel can be encapsulated by using the UDP-Lite protocol according to the quality of service parameter.
  • Step 403 If the response message carries the judgment result information to be encapsulated by using the UDP-Lite protocol, the user plane tunnel of the bearer is encapsulated by using the UDP-Lite protocol.
  • the sender encapsulates the bearer user plane tunnel into a GTPU packet by using a UDP-Lite protocol, and the GTPU is encapsulated.
  • the (Checksum Coverage) field is set to the default value.
  • the selection of the preset value refer to related content involved in the foregoing embodiment, and details are not described herein again.
  • the third embodiment and the fourth embodiment are based on the data transmission method proposed by the user side to initiate a bearer creation or update message in the existing 4G network to establish a GTP tunnel.
  • the above embodiment determines whether the bearer is encapsulated by UDP-Lite by judging the quality of service parameters of the bearer.
  • UDP-Lite encapsulation can be implemented by using the technical solution provided by the present invention for the bearer that can be encapsulated by UDP-Lite, especially for services with high error tolerance for voice and video, and all bearers are compared with the prior art. They are all encapsulated by the UDP protocol, which can significantly improve the efficiency of data transmission.
  • the data transmission method provided by the present invention is used to implement data transmission when the user side initiates a bearer creation or update in the S4 SGSN network.
  • the P-GW determines whether to encapsulate the dedicated bearer through UDP-Lite according to the QoS parameter, and obtains a Bearer Request or Update Bearer Request.
  • the message informs the S-GW and the SGSN device.
  • the specific implementation process is as follows.
  • the S4 SGSN network user side initiates a data transmission diagram when a dedicated bearer is created.
  • Step 31 1. The SGSN initiates a Bearer Resource Command message requesting to create a dedicated bearer.
  • Step 312 The S-GW forwards the Bearer Resource Command message request initiated by the SGSN to the P-GW.
  • Step 313 P-GW, according to the QoS parameters carried in the Bearer Resource Command message, determine whether the user plane tunnel of the dedicated bearer to be created can be encapsulated by the UDP-Lite protocol, and return to the S-GW to carry the judgment. The result of the Create Bearer Request message.
  • Step 314 The S-GW determines, according to the judgment result carried in the Create Bearer Request message, whether to encapsulate the dedicated bearer by using the UDP-Lite protocol, and simultaneously forwards the received Create Bearer Request message to the SGSN. If the result of the Create Bearer Request message is encapsulated by the UDP-Lite protocol, the S-GW encapsulates the user plane tunnel of the dedicated bearer through the UDP-Lite protocol.
  • Step 315 The SGSN determines, according to the received judgment result carried in the Create Bearer Request message, whether to encapsulate the user plane tunnel of the dedicated bearer by using the UDP-Lite protocol, and return a response specific bearer setup message to the S-GW. If Create Bearer
  • the SGSN encapsulates the user plane tunnel of the dedicated bearer through the UDP-Lite protocol.
  • the SGSN In the DT (direct tunnel) mode, the SGSN also needs to forward the Create Bearer Request message to the Radio Network Controller (hereinafter referred to as RNC).
  • the RNC determines, according to the received judgment result carried in the Create Bearer Request message, whether to encapsulate the user plane tunnel of the dedicated bearer through the U-P-Link protocol. If the result of the Create Bearer Request message is encapsulated by the UDP-Lite protocol, the RNC encapsulates the user plane tunnel of the dedicated bearer through the UDP-Lite protocol.
  • Step 316 After receiving the response specific bearer setup message returned by the SGSN, the S-GW also returns a response dedicated bearer setup message to the P-GW.
  • the S4 SGSN network user side initiates a data transmission diagram when the private bearer is updated.
  • the method includes the following steps: Step 321: The SGSN initiates a Modify Bearer Command message requesting a dedicated bearer modification. Step 322: The S-GW forwards the Modify Bearer Command message sent from the SGSN to the P-GW.
  • Step 323 The P-GW determines, according to the QoS parameter carried in the received Modify Bearer Command message, whether the dedicated bearer to be updated can be encapsulated by the UDP-Lite protocol, and returns an Update Bearer Request carrying the judgment result to the S-GW. Message.
  • Step 324 The S-GW determines, according to the judgment result carried in the Update Bearer Request message, whether to encapsulate the dedicated bearer by using the UDP-Lite protocol, and simultaneously forwards the received Update Bearer Request message to the SGSN. If the result of the Update Bearer Request message is encapsulated by the UDP-Lite protocol, the S-GW encapsulates the user plane tunnel of the dedicated bearer through the UDP-Lite protocol.
  • Step 325 The SGSN determines, according to the received judgment result carried by the Update Bearer Request message, whether to encapsulate the user plane tunnel of the dedicated bearer by using the UDP-Lite protocol. If the result of the Update Bearer Request message is encapsulated by the UDP-Lite protocol, the SGSN encapsulates the user plane tunnel of the dedicated bearer through the UDP-Lite protocol.
  • the SGSN In the DT mode, the SGSN also needs to forward the Update Bearer Request message to the RNC.
  • the RNC determines whether the private bearer is encapsulated by the UDP-Lite protocol according to the judgment result carried in the Update Bearer Request message. If the result of the Update Bearer Request message is
  • the UDP-Lite protocol encapsulates the user plane tunnel of the dedicated bearer through the UDP-Lite protocol.
  • Step 326 After receiving the response specific bearer setup message returned by the SGSN, the S-GW also returns a response dedicated bearer setup message to the P-GW.
  • FIG. 8 is a schematic flowchart diagram of Embodiment 5 of a data transmission method provided by the present invention.
  • the data transmission method in the fifth embodiment is also based on the existing 4G network, such as the S4 SGSN networking or the EPC networking, and the data transmission method is implemented, including:
  • Step 501 Create or update a bearer, and determine, according to the quality of service parameter of the bearer, whether the user plane tunnel of the bearer can be encapsulated by using a UDP-Lite protocol.
  • the sender initiates the creation or update of the bearer.
  • the transmitting end may specifically be a P-GW.
  • the bearer includes a proprietary bearer and a default bearer.
  • the P-GW determines the quality of service parameters of the bearer If the error tolerance is greater than the first threshold and the packet tolerance is greater than the second threshold, if yes, the bearer user plane tunnel can be encapsulated by the UDP-Lite protocol; otherwise, the bearer user plane The tunnel cannot be encapsulated by the UDP-Lite protocol and can still be encapsulated using the UDP protocol in the prior art.
  • the first threshold and the second threshold are manually set.
  • Step 502 Send an instruction message carrying the judgment result information to the receiving end, so that the receiving end receives the judgment result information to be encapsulated by the UDP-Lite protocol, and uses the UDP-Lite protocol to The user plane tunnel of the bearer is encapsulated.
  • the sending end sends an instruction message carrying the judgment result information to the receiving end.
  • the receiving end may be an S-GW or an SGSN in the S4 SGSN networking. In the EPC networking, the receiving end may be an S-GW or an eNodeB.
  • FIG. 9 is a schematic flowchart diagram of Embodiment 6 of a data transmission method provided by the present invention. As shown in the figure, the data transmission method in the sixth embodiment includes:
  • Step 601 Receive instruction information sent by the sending end, where the command information carries the judgment result information, where the determining result information is that the sending end determines the user plane of the bearer according to the quality of service parameter of the created or updated bearer. Whether the tunnel can be encapsulated by the UDP-Lite protocol.
  • the receiving end receives the instruction information sent by the sending end. Said
  • Step 602 If the command information carries the judgment result information to be encapsulated by using the UDP-Lite protocol, the user plane tunnel of the bearer is encapsulated by using the UDP-Lite protocol.
  • the receiving end encapsulates the user plane tunnel of the bearer into a data transmission protocol packet by using a UDP-Lite protocol, and sets a checksum coverage field field in a packet header of the data transmission protocol packet. Is the default value.
  • the fifth embodiment and the sixth embodiment are based on the data transmission method proposed by the network side to initiate the establishment or update of the bearer in the existing 4G network to establish a GTP tunnel.
  • the foregoing embodiment determines whether the bearer is encapsulated by UDP-Lite by determining the quality of service parameters of the bearer.
  • UDP-Lite encapsulation can be implemented by using the technical solution provided by the present invention for the bearer that can be encapsulated by UDP-Lite, especially for services with high error tolerance for voice and video, and all bearers are compared with the prior art. They are all encapsulated by the UDP protocol, which can significantly improve the efficiency of data transmission. As shown in Figures 10 and 11, the data transmission side provided by the present invention is applied.
  • the method implements data transmission when the network side initiates a bearer creation or update under the S4 SGSN networking.
  • the creation or update of the private bearer initiated by the network side is determined by the P-GW according to the QoS parameters of the dedicated bearer, whether to encapsulate the proprietary bearer through the UDP-Lite protocol, and through the Create Bearer The Request or Update Bearer Request message informs the S-GW and the SGSN device.
  • the specific implementation process is as follows.
  • the S4 SGSN network side initiates a data transmission diagram when a dedicated bearer is created. Includes:
  • Step 51 When the P-GW creates a dedicated bearer, it is determined whether the user plane tunnel of the dedicated bearer can be encapsulated by the UDP-Lite protocol according to the QoS parameter of the dedicated bearer, and is returned to the S-GW to carry the judgment. The result of the Create Bearer Request message.
  • Step 512 The S-GW determines, according to the judgment result carried in the Create Bearer Request message, whether to encapsulate the user plane tunnel of the dedicated bearer by using the UDP-Lite protocol, and simultaneously forwards the received Create Bearer Request message to the Said SGSN. If the result of the Create Bearer Request message is encapsulated by the UDP-Lite protocol, the S-GW encapsulates the user plane tunnel of the dedicated bearer through the UDP-Lite protocol.
  • Step 513 The SGSN determines, according to the received judgment result carried in the Create Bearer Request message, whether to encapsulate the user plane tunnel of the dedicated bearer by using the UDP-Lite protocol, and return a response specific bearer setup message to the S-GW. If the result of the Create Bearer Request message is encapsulated by the UDP-Lite protocol, the SGSN encapsulates the user plane tunnel of the dedicated bearer through the UDP-Lite protocol.
  • the SGSN In the DT mode, the SGSN also needs to forward the Create Bearer Request message to the RNC.
  • the RNC determines whether the private bearer is encapsulated by the UDP-Lite protocol according to the judgment result carried in the Create Bearer Request message. If the result of the Create Bearer Request message is
  • the UDP-Lite protocol encapsulates the user plane tunnel of the dedicated bearer through the UDP-Lite protocol.
  • Step 514 After receiving the response specific bearer setup message returned by the SGSN, the S-GW also returns a response dedicated bearer setup message to the P-GW.
  • the data transmission when the network side of the S4 SGSN network initiates the update of the private bearer Transfer the schematic include:
  • Step 521 When the P-GW updates the dedicated bearer, determine whether the user plane tunnel of the dedicated bearer is encapsulated by the UDP-Lite protocol according to the QoS parameter of the dedicated bearer, and returns a judgment result to the S-GW. Update Bearer Request message.
  • Step 522 The S-GW determines, according to the judgment result carried in the Update Bearer Request message, whether to encapsulate the user plane tunnel of the dedicated bearer by using the UDP-Lite protocol, and simultaneously forwards the received Update Bearer Request message to the Said SGSN. If the result of the Update Bearer Request message is encapsulated by the UDP-Lite protocol, the S-GW encapsulates the user plane tunnel of the dedicated bearer through the UDP-Lite protocol.
  • Step 523 The SGSN determines, according to the received judgment result carried in the Update Bearer Request message, whether to encapsulate the user plane tunnel of the dedicated bearer by using the UDP-Lite protocol, and return a response specific bearer setup message to the S-GW. If the result of the Update Bearer Request message is encapsulated by the UDP-Lite protocol, the SGSN encapsulates the user plane tunnel of the dedicated bearer through the UDP-Lite protocol.
  • the SGSN In the DT mode, the SGSN also needs to forward the Update Bearer Request message to the RNC.
  • the RNC determines whether the user plane tunnel of the dedicated bearer is encapsulated by the UDP-Lite protocol according to the judgment result carried in the Update Bearer Request message. If the result of the Update Bearer Request message is encapsulated by the UDP-Lite protocol, the RNC encapsulates the user plane tunnel of the private bearer through the UDP-Lite protocol.
  • Step 524 After receiving the response specific bearer update message returned by the SGSN, the S-GW also returns a response specific bearer update message to the P-GW.
  • the data transmission method provided by the present invention is used to implement data transmission when the network side initiates a bearer creation or update under the EPC networking.
  • the private bearer initiated or updated by the network side determines whether the GTPU packet is encapsulated by the UDP-Lite according to the QoS parameters of the dedicated bearer, and the Create Bearer Request or The Update Bearer Request message informs the S-GW, MME and eNodeB.
  • the specific implementation process is as follows.
  • the EPC user side initiates a data transmission diagram when a dedicated bearer is created.
  • the data transmission method includes: Step 531: When the P-GW creates a dedicated bearer, determine whether the private bearer can pass the UDP-Lite according to the QoS parameter of the dedicated bearer. The protocol is encapsulated, and a Create Bearer Request message carrying the judgment result is returned to the S-GW.
  • Step 532 The S-GW processes the dedicated bearer establishment, and according to the Create Bearer
  • the judgment result carried in the Request message determines whether the dedicated bearer is encapsulated by the UDP-Lite protocol, and the received Create Bearer Request message is forwarded to the MME. If the result of the Create Bearer Request message is encapsulated by the UDP-Lite protocol, the S-GW encapsulates the user plane tunnel of the dedicated bearer through the UDP-Lite protocol.
  • Step 533 The MME processes the dedicated bearer establishment, and forwards the received Create Bearer Request message to the eNodeB.
  • Step 534 The eNodeB processes the dedicated bearer setup, and determines, according to the judgment result carried in the Create Bearer Request message, whether to encapsulate the user plane tunnel of the dedicated bearer by using the UDP-Lite protocol, and returns a response specific bearer setup message to the MME. . If the result of the Create Bearer Request message is encapsulated by the UDP-Lite protocol, the MME-JeNodeB encapsulates the user plane tunnel of the dedicated bearer through the UDP-Lite protocol.
  • Step 535 After receiving the response dedicated bearer setup message returned by the eNodeB, the MME also returns a response specific bearer setup message to the S-GW.
  • Step 536 After receiving the response specific bearer setup message returned by the MME, the S-GW also returns a response dedicated bearer setup message to the P-GW.
  • the EPC user side initiates a data transmission diagram in the case of a dedicated bearer update.
  • the data transmission method includes:
  • Step 541 When the P-GW updates the dedicated bearer, it is determined whether the private bearer is encapsulated by the UDP-Lite protocol according to the QoS parameter of the dedicated bearer, and returns an Update Bearer Request carrying the judgment result to the S-GW. Message.
  • Step 542 The S-GW processes the dedicated bearer establishment, and determines, according to the judgment result carried in the Update Bearer Request message, whether to encapsulate the dedicated bearer by using the UDP-Lite protocol, and forwards the received Update Bearer Request message. To the MME. If the result of the Update Bearer Request message is UDP-Lite The protocol is encapsulated, and the S-GW encapsulates the user plane tunnel of the dedicated bearer through the UDP-Lite protocol.
  • Step 543 The MME processes the dedicated bearer update, and forwards the received Update Bearer Request message to the eNodeB.
  • Step 544 the eNodeB processes the proprietary bearer update, and according to the Update Bearer
  • the judgment result carried in the Request message determines whether the private bearer is encapsulated by the UDP-Lite protocol, and returns a response specific bearer setup message to the MME. If the result of the Update Bearer Request message is encapsulated by the UDP-Lite protocol, the eNodeB encapsulates the user plane tunnel of the dedicated bearer through the UDP-Lite protocol.
  • Step 545 After receiving the response dedicated bearer setup message returned by the eNodeB, the MME also returns a response specific bearer setup message to the S-GW.
  • Step 546 After receiving the response specific bearer setup message returned by the MME, the S-GW also returns a response dedicated bearer setup message to the P-GW.
  • FIG. 14 is a schematic structural diagram of Embodiment 1 of a network element device provided by the present invention.
  • the network element device includes: a receiving unit 1, a determining unit 2, and a transmitting unit 3.
  • the receiving unit 1 is configured to receive a creation or update message of a PDP context sent by the sender, where the create or update message carries a quality of service parameter.
  • the determining unit 2 is configured to determine, according to the QoS parameter, whether the user plane tunnel of the bearer corresponding to the PDP context can be encapsulated by using a UDP-Lite protocol, and obtain a determination result.
  • the sending unit 3 is configured to return, to the sending end, a response message carrying the judgment result information, so that the sending end passes the UDP-Lite protocol when receiving the judgment result information.
  • the UDP-Lite protocol encapsulates the bearer user plane tunnel corresponding to the PDP context.
  • the network element device in this embodiment may be a GGSN.
  • the determining unit in the foregoing embodiment is specifically configured to obtain the first threshold and the second threshold, and determine whether the error tolerance in the QoS parameter of the PDP context is greater than the first threshold and packet loss tolerance If the degree is greater than the second threshold, if yes, it is determined that the user plane tunnel of the bearer corresponding to the PDP context can be encapsulated by the UDP-Lite protocol; otherwise, the judgment result is that the PDP context corresponds to The bearer user plane tunnel cannot be encapsulated by the UDP-Lite protocol.
  • This embodiment is a network element device proposed based on an existing 2G or 3G network.
  • the network element device determines whether the user plane tunnel of the bearer corresponding to the PDP context can be encapsulated by UDP-Lite by determining the QoS parameter of the PDP context.
  • this embodiment can output a judgment result of whether the PDP context activation can be encapsulated by UDP-Lite.
  • all PDP contexts are encapsulated by the UDP protocol compared with the prior art, which can significantly improve the efficiency of data transmission.
  • FIG. 15 is a schematic structural diagram of Embodiment 2 of a network element device provided by the present invention.
  • the network element device includes: a sending unit 6, a receiving unit 4, and a packaging unit 5.
  • the sending unit 6 is configured to send a PDP context creation or update message to the receiving end, where the create or update message carries the PDN context quality of service parameter.
  • the receiving unit 4 is configured to receive a creation or update response message returned by the receiving end, where the response message is returned by the receiving end according to the creation or update message, and the response message carries the judgment result information.
  • the determining result information is a result of the receiving end determining, according to the QoS parameter, whether the user plane tunnel of the bearer corresponding to the PDP context can be encapsulated by the UDP-Lite protocol.
  • the encapsulating unit 5 is configured to encapsulate the user plane tunnel of the bearer corresponding to the PDP context by using the UDP-Lite protocol when the response message carries the judgment result information to be encapsulated by the UDP-Lite protocol.
  • the network element device described in the second embodiment may be specifically an SGSN.
  • the encapsulating unit in this embodiment may be specifically configured to encapsulate, by using a UDP-Lite protocol, a user plane tunnel of the bearer corresponding to the PDP context into a data transmission protocol packet, and the packet of the data transmission protocol packet is in a packet header.
  • the checksum coverage field is set to the default value.
  • the second embodiment is a network element device proposed based on an existing 2G or 3G network.
  • the network element device determines whether the user plane tunnel of the bearer corresponding to the PDP context is encapsulated by using UDP-Lite by using the received judgment result carried in the response information.
  • the network element device of the second embodiment can implement the UDP-Lite protocol encapsulation. Compared with the prior art, all PDP context activations are encapsulated by the UDP protocol, which can significantly improve the efficiency of data transmission.
  • FIG. 16 is a schematic structural diagram of Embodiment 3 of a network element device provided by the present invention.
  • the network element device includes: a receiving unit 12, a determining unit 13, and a transmitting unit 14.
  • the receiving unit 12 is configured to receive a create or update message of a bearer sent by the sender, where the create or update message carries the quality of service parameter of the bearer.
  • the determining unit 13 is configured to determine, according to the quality of service parameter, whether the user plane tunnel of the bearer can pass
  • the UDP-Lite protocol is encapsulated to obtain the judgment result.
  • the sending unit 14 is configured to return a response message carrying the judgment result information to the sending end, so that the sending end receives the judgment result information carried in the response message as UDP-Lite
  • the bearer user plane tunnel is encapsulated by the UDP-Lite protocol.
  • the network element device in this embodiment may be a P-GW.
  • the determining unit in the foregoing embodiment is specifically configured to obtain the first threshold and the second threshold, and determine whether the error tolerance in the quality of service parameter of the bearer is greater than the first threshold and the packet tolerance is Whether it is greater than the second threshold, if yes, the user plane tunnel that is determined to be the bearer can be encapsulated by the UDP-Lite protocol; otherwise, the result is that the user plane tunnel of the bearer cannot pass the UDP. -Lite protocol for encapsulation.
  • the third embodiment is a network element device proposed based on an existing 4G network, such as an S4 SGSN network or an EPC networking.
  • the network element device in this embodiment determines whether the user plane tunnel of the bearer can be encapsulated by UDP-Lite by determining the quality of service parameters of the bearer. For some services that can be encapsulated by UDP-Lite, especially those services with high error tolerance for voice and video, this embodiment can output a judgment result of whether the bearer can be encapsulated by UDP-Lite. In order to enable the receiving network element device to respond accordingly according to the judgment result, all bearers are encapsulated by the UDP protocol compared with the prior art, which can significantly improve the efficiency of data transmission.
  • the network element device includes: a sending unit 15, a receiving unit 16, and a packaging unit 17.
  • the sending unit 15 is configured to send a bearer creation or update message to the receiving end, where the create or update message carries the quality of service parameter of the bearer.
  • the receiving unit 16 is configured to receive a creation or update response message returned by the receiving end, where the response message is returned by the receiving end according to the creation or update message, and the response message carries the judgment result information.
  • the judgment result information is a result that the receiving end determines whether the user plane tunnel of the bearer can be encapsulated by the UDP-Lite protocol according to the quality of service parameter.
  • the packaging unit 17 is configured to The information carrying the judgment result information can be encapsulated by the UDP-Lite protocol, and then
  • the UDP-Lite protocol encapsulates the user plane tunnel of the bearer.
  • the encapsulating unit is configured to encapsulate the user plane of the bearer into a data transmission protocol report by using a UDP-Lite protocol when the response message carries the judgment result information to be encapsulated by the UDP-Lite protocol. And setting a checksum coverage field in the header of the data transmission protocol packet to a preset value.
  • the fourth embodiment is a network element device proposed based on an existing 4G network, such as an S4 SGSN network or an EPC networking.
  • the network element device in the fourth embodiment determines whether the user plane tunnel of the bearer is encapsulated by UDP-Lite by using the judgment result carried in the received response information.
  • the network element device can be implemented by the network element device in the fourth embodiment.
  • the encapsulation of the UDP-Lite protocol encapsulates all bearers through the UDP protocol compared with the prior art, which can significantly improve the efficiency of data transmission.
  • the network element device includes a creating or updating unit 18, a determining unit 19 or a transmitting unit 20.
  • the create or update unit 18 is used to create or update a bearer.
  • the determining unit 19 is configured to determine, according to the quality of service parameter of the bearer, whether the user plane tunnel of the bearer can be encapsulated by using a UDP-Lite protocol, and obtain a determination result.
  • the sending unit 20 is configured to send, to the receiving end, an instruction message carrying the judgment result information, so that the sending end passes the UDP when receiving the judgment result information to be encapsulated by the UDP-Lite protocol.
  • the Lite protocol encapsulates the user plane tunnel of the bearer.
  • the determining unit in the foregoing embodiment is specifically configured to obtain the first threshold and the second threshold, and determine whether the error tolerance in the quality of service parameter of the bearer is greater than a first threshold and whether packet loss tolerance is If the value is greater than the second threshold, if yes, it is determined that the user plane tunnel of the bearer can be encapsulated by the UDP-Lite protocol; otherwise, the result is that the user plane tunnel of the bearer cannot pass the UDP-Lite protocol. Package.
  • the fifth embodiment is a network element device proposed based on an existing 4G network, such as an S4 SGSN network or an EPC networking.
  • the network element device in this embodiment determines whether the user plane tunnel of the bearer can be encapsulated by UDP-Lite by determining the quality of service parameters of the bearer when the bearer is created or updated. For some can be encapsulated by UDP-Lite
  • the service in particular, the service that is more tolerant to the error packet, such as voice and video, may output the judgment result of whether the bearer can be encapsulated by UDP-Lite, so that the receiving network element device according to the The judgment result responds accordingly.
  • all bearers are encapsulated by the UDP protocol, which can significantly improve the efficiency of data transmission.
  • FIG. 19 is a schematic structural diagram of Embodiment 6 of a network element device provided by the present invention.
  • the network element device includes: a receiving unit 21 and a packaging unit 22.
  • the receiving unit 21 is configured to receive the command information sent by the sending end, where the command information carries the judgment result information, where the determining result information is determined by the sending end according to the quality of service parameter of the created or updated bearer. Whether the carried user plane tunnel can be encapsulated by the UDP-Lite protocol.
  • the encapsulating unit 22 is configured to encapsulate the bearer user plane tunnel by using the UDP-Lite protocol when the command information carries the judgment result information to be encapsulated by the UDP-Lite protocol.
  • the encapsulating unit in the foregoing embodiment is specifically configured to encapsulate the user plane tunnel of the bearer into a data transmission protocol packet by using a UDP-Lite protocol, and in the packet header of the data transmission protocol packet
  • the checksum coverage field is set to a preset value. For the selection of the preset value, reference may be made to related content involved in the foregoing data transmission embodiment, and details are not described herein again.
  • the sixth embodiment is a network element device proposed based on an existing 4G network, such as an S4 SGSN network or an EPC networking.
  • the network element device of the sixth embodiment determines whether the user plane tunnel of the bearer is encapsulated by UDP-Lite by using the judgment result carried in the received command message.
  • the network element device can be implemented by the network element device in the sixth embodiment.
  • the encapsulation of the UDP-Lite protocol encapsulates all bearers through the UDP protocol compared with the prior art, which can significantly improve the efficiency of data transmission.
  • the present invention provides an embodiment of a communication system.
  • the communication system includes at least one set of network element devices for data transmission.
  • the set of network element devices includes at least two of the network element devices.
  • the network element device of the first embodiment and the second embodiment is specifically shown in FIG. 3 .
  • the set of network element devices may also be the network element devices described in Embodiment 3 and Embodiment 4, specifically as shown in the examples in FIGS. 6 and 7.
  • the set of network element devices may also be the network element devices in the foregoing fifth embodiment and the sixth embodiment, as shown in specific examples in FIGS. 10, 11, 12 and 13. It will be understood by those of ordinary skill in the art that the drawings are only a schematic representation of one embodiment, and the modules or processes in the drawings are not necessarily required to practice the invention.
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the embodiment, or may be correspondingly changed in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into a plurality of sub-modules.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the above-described method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Communication Control (AREA)

Abstract

本发明实施例提供一种数据传输方法、网元设备及通信系统。所述方法包括:接收发送端发送的PDP上下文的创建或更新消息,所述创建或更新消息携带有PDP上下文的服务质量参数;根据服务质量参数判断PDP上下文对应的承载的用户面隧道是否能通过UDP-Lite协议进行封装,并向发送端返回携带有判断结果信息的响应消息,以使发送端在接收到判断结果信息为能通过UDP-Lite协议进行封装时,通过UDP-Lite协议对PDP上下文对应的承载的用户面隧道进行封装。本发明实施例提供的技术方案可将一些错包容忍度高的业务封装为UDP-Lite协议的报文,较现有技术,减少了对报文的载荷的校验,显著地提高数据传输的效率。

Description

数据传输方法、 网元设备及通信系统 技术领域 本发明涉及无线通信技术, 尤其涉及一种数据传输方法、 网元设备及 通信系统。 背景技术
IPv6 ( Internet Protocol Version 6, 第六版互联网协议 )技术已曰渐 成熟, 应用也越来越多。 同时, 由于可分配的 IPv4 ( Internet Protocol Version 4, 第四版互联网协议)地址日益紧张, 移动宽带网络支持向 IPv6 的演进势在必行。
当移动宽带网络的 PS ( Packet Switch , 分组交换)域核心网演进到 IPv6之后, 例如 SGSN ( Serving GPRS Support Node, 业务通用分组无 线服务技术支持节点) 与 S-GW ( Serving Gateway, 服务网关)之间的 数据传输接口、 MME ( Mobility Management Entity, 移动性管理实体) 与 SGSN 之间的数据传输接口、 S-GW 与 RNC ( Radio Network Controller, 无线网络控制器) 之间的数据传输接口、 S-GW 与 eNodeB ( Evolved Node B, 演进型基站 )之间的数据传输接口等都支持 IPv6传 输之后, GTP ( GPRS Tunneling Protocol, 通用分组无线服务技术隧道协 议) 就要承载在 IPv6的 UDP ( User Datagram Protocol , 用户数据报协 议)之上, 所有的控制面和用户面上的 GTP报文都必须计算校验和。 而 UDP的校验和计算包括 UDP头的校验和计算和 UDP负荷的校验和计算。 UDP的校验和由发送端计算, 然后由接收端验证,如果接收端检测到校验 和有差错, GTP报文就要被丟弃。 在某些情况下, 丟掉这个包的代价是非 常大的, 尤其是那些包比较大的语音或视频等业务。 而对于语音或视频等 对错包容忍度比较好的业务进行上述 UDP的校验和计算, 会显著降低数 据传输的效率。 发明内容 本发明的多个方面提供一种数据传输方法, 用以提高数据传输的效 率。
本发明的第一个方面, 提供一种数据传输方法, 包括:
接收发送端发送的 PDP上下文的创建或更新消息, 所述创建或更新 消息携带有服务质量参数;
根据所述服务质量参数, 判断所述 PDP上下文对应的承载的用户面 隧道是否能通过 UDP-Lite协议进行封装, 并向所述发送端返回携带有判 断结果信息的响应消息, 以使所述发送端在接收到所述判断结果信息为能 通过 UDP-Lite协议进行封装时, 通过 UDP-Lite协议对所述 PDP上下文 对应的 7|载的用户面隧道进行封装。
如上所述的数据传输方法, 所述根据所述服务质量参数, 判断所述
PDP上下文对应的承载的用户面隧道是否能通过 UDP-Lite协议进行封 装, 包括:
获取第一阈值和第二阈值;
判断所述 PDP上下文的服务质量参数中的误码容忍度是否大于所述 第一阈值且丟包容忍度是否大于所述第二阈值, 若均是, 所述 PDP上下 文对应的承载的用户面隧道能通过 UDP-Lite协议进行封装。
本发明的第二个方面, 提供一种数据传输方法, 包括:
向接收端发送 PDP上下文的创建或更新消息, 所述创建或更新消息 携带有服务质量参数;
接收所述接收端返回的创建或更新响应消息, 所述响应消息为所述接 收端根据所述创建或更新消息返回的, 所述响应消息携带有判断结果信 息, 所述判断结果信息为所述接收端根据所述服务质量参数, 判断 PDP 上下文对应的承载的用户面隧道是否能通过 UDP-Lite协议进行封装的结 果;
若所述响应消息携带的判断结果信息为能通过 UDP-Lite协议进行封 装, 则通过 UDP-Lite协议对所述 PDP上下文对应的承载的用户面隧道进 行封装。
如上所述的数据传输方法, 所述通过 UDP-Lite协议对所述 PDP上下 文对应的 7|载的用户面隧道进行封装, 具体为: 通过 UDP-Lite协议将所述 PDP上下文对应的承载的用户面隧道封装 为数据传输协议报文, 并将所述数据传输协议报文的报文头中的校验和覆 盖域字段设置为预设值。
本发明的第三个方面, 提供一种数据传输方法, 包括:
接收发送端发送的承载的创建或更新消息, 所述创建或更新消息携带 所述承载的服务质量参数;
根据所述服务质量参数, 判断所述承载的用户面隧道是否能通过 UDP-Lite协议进行封装,并向所述发送端返回携带有判断结果信息的响应 消息, 以使所述发送端在接收到所述响应消息携带的判断结果信息为能通 过 UDP-Lite协议进行封装时,通过 UDP-Lite协议对所述承载的用户面隧 道进行封装。
如上所述的数据传输方法, 所述根据所述服务质量参数, 判断所述承 载的用户面隧道是否能通过 UDP-Lite协议进行封装, 包括:
获取第一阈值和第二阈值;
判断所述承载的服务质量参数中的误码容忍度是否大于第一阈值且 丟包容忍度是否大于第二阈值, 若均是, 所述承载的用户面隧道能通过 UDP-Lite协议进行封装。
本发明的第四个方面, 提供一种数据传输方法, 包括:
向接收端发送承载的创建或更新消息, 所述创建或更新消息携带有所 述承载的服务质量参数;
接收所述接收端返回的创建或更新响应消息, 所述响应消息为所述接 收端根据所述创建或更新消息返回的, 所述响应消息携带有判断结果信 息, 所述判断结果信息为所述接收端根据所述服务质量参数, 判断承载的 用户面隧道是否能通过 UDP-Lite协议进行封装的结果;
若所述响应消息携带的判断结果信息为能通过 UDP-Lite协议进行封 装, 则通过 UDP-Lite协议对所述承载的用户面隧道进行封装。
如上所述的数据传输方法, 所述通过 UDP-Lite协议对所述承载进行 封装, 具体为:
通过 UDP-Lite协议将所述承载的用户面隧道封装为数据传输协议报 文, 并将所述数据传输协议报文的报文头中的校验和覆盖域字段设置为预 设值。
本发明的第五个方面, 提供一种数据传输方法, 包括:
创建或更新承载, 并根据所述承载的服务质量参数判断所述承载的用 户面隧道是否能通过 UDP-Lite协议进行封装;
向所述接收端发送携带有判断结果信息的指令消息, 以使所述接收端 在接收到所述判断结果信息为能通过 UDP-Lite协议进行封装时, 通过 UDP-Lite协议对所述承载的用户面隧道进行封装。
如上所述的数据传输方法, 所述根据所述承载的服务质量参数判断所 述承载的用户面隧道是否能通过 UDP-Lite协议进行封装, 包括:
获取第一阈值和第二阈值;
判断所述承载的服务质量参数中的误码容忍度是否大于第一阈值且 丟包容忍度是否大于第二阈值, 若均是, 所述承载的用户面隧道能通过
UDP-Lite协议进行封装。
本发明的第六个方面, 提供一种数据传输方法, 包括:
接收发送端发送的指令信息, 所述指令信息携带有判断结果信息, 所 述判断结果信息为所述发送端根据创建或更新的承载的服务质量参数, 判 断出所述承载的用户面隧道是否能通过 UDP-Lite协议进行封装的结果; 若所述指令信息携带的判断结果信息为能通过 UDP-Lite协议进行封 装, 则通过 UDP-Lite协议对所述承载的用户面隧道进行封装。
如上所述的数据传输方法, 所述通过 UDP-Lite协议对所述承载的用 户面隧道进行封装, 具体为:
通过 UDP-Lite协议将所述承载的用户面隧道封装为数据传输协议报 文, 并将所述数据传输协议报文的报文头中的校验和覆盖域字段设置为预 设值。
本发明的第七个方面, 提供一种网元设备, 包括:
接收单元, 用于接收发送端发送的 PDP上下文的创建或更新消息, 所述创建或更新消息携带有服务质量参数;
判断单元, 用于根据所述服务质量参数, 判断所述 PDP上下文对应 的承载的用户面隧道是否能通过 U DP-Lite协议进行封装,得出判断结果; 发送单元, 用于向所述发送端返回携带有所述判断结果信息的响应消 息, 以使所述发送端在接收到所述判断结果信息为能通过 UDP-Lite协议 进行封装时,通过 UDP-Lite协议对所述 PDP上下文对应的承载的用户面 隧道进行封装。
如上所述的网元设备, 所述判断单元, 具体用于获取第一阈值和第 二阈值, 并判断所述 PDP上下文的服务质量参数中的误码容忍度是否大 于所述第一阈值且丟包容忍度是否大于所述第二阈值, 若均是, 得出判断 结果为所述 PDP上下文对应的承载的用户面隧道能通过 UDP-Lite协议进 行封装; 否则, 得出判断结果为所述 PDP上下文对应的承载的用户面隧 道不能通过 UDP-Lite协议进行封装。
本发明的第八个方面, 提供一种网元设备, 包括:
发送单元, 用于向接收端发送 PDP上下文的创建或更新消息, 所述 创建或更新消息携带有服务质量参数;
接收单元, 用于接收所述接收端返回的创建或更新响应消息, 所述响 应消息为所述接收端根据所述创建或更新消息返回的, 所述响应消息携带 有判断结果信息, 所述判断结果信息为所述接收端根据所述服务质量参 数,判断 PDP上下文对应的承载的用户面隧道是否能通过 UDP-Lite协议 进行封装的结果;
封装单元, 用于在所述响应消息携带的判断结果信息为能通过 UDP-Lite协议进行封装时, 则通过 UDP-Lite协议对所述 PDP上下文对 应的 7|载的用户面隧道进行封装。
如上所述的网元设备, 所述封装单元, 具体用于通过 UDP-Lite协议 将所述 PDP上下文对应的承载的用户面隧道封装为数据传输协议报文, 并将所述数据传输协议报文的报文头中的校验和覆盖域字段设置为预设 值。
本发明的第九个方面, 提供一种网元设备, 包括:
接收单元, 用于接收发送端发送的承载的创建或更新消息, 所述创建 或更新消息携带所述承载的服务质量参数;
判断单元, 用于根据所述服务质量参数, 判断所述承载的用户面隧道 是否能通过 UDP-Lite协议进行封装, 得出判断结果;
发送单元, 用于向所述发送端返回携带有所述判断结果信息的响应消 息, 以使所述发送端在接收到所述响应消息携带的所述判断结果信息为能 通过 UDP-Lite协议进行封装时,通过 UDP-Lite协议对所述承载的用户面 隧道进行封装。
如上所述的网元设备, 所述判断单元, 具体用于获取第一阈值和第二 阈值, 并判断所述承载的服务质量参数中的误码容忍度是否大于所述第一 阈值且丟包容忍度是否大于所述第二阈值, 若均是, 得出判断结果为所述 承载的用户面隧道能通过 UDP-Lite协议进行封装; 否则, 得出判断结果 为所述承载的用户面隧道不能通过 UDP-Lite协议进行封装。
本发明的第十个方面, 提供一种网元设备, 包括:
发送单元, 用于向接收端发送承载的创建或更新消息, 所述创建或更 新消息携带有所述承载的服务质量参数;
接收单元, 用于接收所述接收端返回的创建或更新响应消息, 所述响 应消息为所述接收端根据所述创建或更新消息返回的, 所述响应消息携带 有判断结果信息, 所述判断结果信息为所述接收端根据所述服务质量参 数, 判断承载的用户面隧道是否能通过 UDP-Lite协议进行封装的结果; 封装单元, 用于在所述响应消息携带的判断结果信息为能通过
UDP-Lite协议进行封装时, 则通过 UDP-Lite协议对所述承载的用户面隧 道进行封装。
如上所述的网元设备, 所述封装单元, 具体用于在所述响应消息携带 有判断结果信息为能通过 UDP-Lite协议进行封装时,通过 UDP-Lite协议 将所述承载的用户面隧道封装为数据传输协议报文, 并将所述数据传输协 议报文的报文头中的校验和覆盖域字段设置为预设值。
本发明的第十一个方面, 提供一种网元设备, 包括:
创建或更新单元, 用于创建或更新承载;
判断单元, 用于根据所述承载的服务质量参数判断所述承载的用户面 隧道是否能通过 UDP-Lite协议进行封装, 得出判断结果;
发送单元, 用于向所述接收端发送携带有判断结果信息的指令消息, 以使所述发送端在接收到所述判断结果信息为能通过 UDP-Lite协议进行 封装时, 通过 UDP-Lite协议对所述承载的用户面隧道进行封装。
如上所述的网元设备, 所述判断单元, 具体用于获取第一阈值和第二 阈值, 并判断所述承载的服务质量参数中的误码容忍度是否大于所述第一 阈值且丟包容忍度是否大于所述第二阈值, 若均是, 得出判断结果为所述 承载的用户面隧道能通过 UDP-Lite协议进行封装; 否则, 得出判断结果 为所述承载的用户面隧道不能通过 UDP-Lite协议进行封装。
本发明的第十二个方面, 提供一种网元设备, 包括:
接收单元, 用于接收发送端发送的指令信息, 所述指令信息携带有判 断结果信息, 所述判断结果信息为所述发送端根据创建或更新的承载的服 务质量参数, 判断出所述承载的用户面隧道是否能通过 UDP-Lite协议进 行封装的结果;
封装单元, 用于在所述指令信息携带有判断结果信息为能通过
UDP-Lite协议进行封装时, 通过 UDP-Lite协议对所述承载的用户面隧道 进行封装。
如上所述的网元设备, 所述封装单元, 具体用于通过 UDP-Lite协议 将所述承载的用户面隧道封装为数据传输协议报文, 并将所述数据传输协 议报文的报文头中的校验和覆盖域字段设置为预设值。
本发明的第十三个方面, 提供一种通信系统, 包括至少一组用于数据 传输的网元设备, 所述网元设备釆用上述的网元设备。
由上述技术方案可知, 本发明通过对承载的服务质量参数进行判断, 来确定是否将所述承载通过 UDP-Lite进行封装。 对于那些语音和视频等 对错包容忍度比较高的业务,通过本发明提供的技术方案可实现 UDP-Lite 封装, 较现有技术将所有 PDP上下文激活或承载均通过 UDP协议封装, 减少了对报文的载荷的校验, 显著地提高了数据传输的效率。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明提供的数据传输方法实施例一的流程示意图;
图 2为本发明提供的数据传输方法实施例二的流程示意图; 图 3为应用本发明提供的数据传输方法实现 2G或 3G用户侧发起 P D P上下文二次激活的创建或更新时的数据传输示意图;
图 4为本发明提供的数据传输方法实施例三的流程示意图; 图 5为本发明提供的数据传输方法实施例四的流程示意图; 图 6为应用本发明提供的数据传输方法实现 S4 SGSN组网用户侧发 起专有承载的创建时的数据传输示意图;
图 7为应用本发明提供的数据传输方法实现 S4 SGSN组网用户侧发 起专有承载的更新时的数据传输示意图;
图 8为本发明提供的数据传输方法实施例五的流程示意图; 图 9为本发明提供的数据传输方法实施例六的流程示意图; 图 10为应用本发明提供的数据传输方法实现 S4 SGSN组网网络侧 发起专有承载的创建时的数据传输示意图;
图 1 1为应用本发明提供的数据传输方法实现 S4 SGSN组网网络侧 发起专有承载的更新时的数据传输示意图;
图 12为应用本发明提供的数据传输方法实现 EPC用户侧发起专有承 载创建时的数据传输示意图;
图 13为应用本发明提供的数据传输方法实现 E P C用户侧发起专有承 载更新时的数据传输示意图;
图 14为本发明提供的网元设备实施例一的结构示意图;
图 15为本发明提供的网元设备实施例二的结构示意图;
图 16为本发明提供的网元设备实施例三的结构示意图;
图 17为本发明提供的网元设备实施例四的结构示意图;
图 18为本发明提供的网元设备实施例五的结构示意图;
图 19为本发明提供的网元设备实施例六的结构示意图。 具体实施方式 首先, 对本发明实施例涉及的几个概念进行解释。
UDP: User Datagram Protocol , 用户数据报协议。 UDP是一种传输 层协议, 一般应用于分组网络, 用户的数据基于单个 UDP分组传输。
UDP-Lite: User Datagram Protocol Lite, 轻量级用户数据艮协议。 UDP-Lite协议的校验和字段的校验范围是可以变化的,其适用于语音或视 频类对误码率大于阈值的业务。
GTP: GPRS Tunnelling Protocol GPRS隧道协议, 为 GSN之间的 用户数据和信令信息的传输提供隧道。 GTP协议是为 GPRS网络的 Gn 和 Gp接口而定义的, 是 GPRS隧道协议。 包括 GTP控制平面 (简称 GTP-C )和数据传输(简称 GTP-U )协议,允许多种协议的数据报在 UMTS 或 GPRS骨干网上的 SGSN之间, SGSN和网关 GPRS支持节点
( Gateway GPRS Support Node, 以下简称 GGSN )之间传输。
GTPU: 通用无线分组业务 ( General Packet Radio Service, GPRS ) 隧道协议用户面部分( User plane of GPRS Tunneling Protocol, GTPU ) , 可以完成用户数据加封装或解封装。 为使本发明实施例的目的、 技术方案 和优点更加清楚, 下面将结合本发明实施例中的附图, 对本发明实施例中 的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部 分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技 术人员在没有作出创造性劳动前提下所获得的所有其他实施例, 都属于本 发明保护的范围。
如图 1所示, 本发明提供的数据传输方法实施例一的流程示意图。 如 图中所示, 本实施例一所述数据传输方法, 包括:
步骤 101、 接收发送端发送的 PDP ( Packet Data Protocol, 分组数 据协议 )上下文的创建或更新消息, 所述创建或更新消息携带有所述 PDP 上下文激活的服务质量 (Quality of Service, 以下简称 QoS ) 参数。
其中, 接收端接收发送端发送的 PDP下文的创建或更新消息。 所述 接收端可以是能够依据接收到的 PDP上下文的创建或更新消息返回响应 消息以建立 GTP隧道的网元设备, 如 GGSN。 所述发送端为可发送 PDP 上下文的创建或更新消息以建立 GTP隧道的网元设备, 如 SGSN。 所述 PDP上下文创建包括 PDP上下文的一次创建和 PDP上下文的二次创建。
步骤 102、 根据所述服务质量参数, 判断所述 PDP上下文对应的承 载的用户面隧道是否能通过 UDP-Lite协议进行封装, 并向所述发送端返 回携带有判断结果信息的响应消息, 以使所述发送端在接收到所述判断结 果信息为能通过 UDP-Lite协议进行封装时, 通过 UDP-Lite协议对所述 PDP上下文对应的承载的用户面隧道进行封装。
具体地, 接收端根据所述 QoS参数, 判断所述 PDP上下文是否为错 包容忍度高的业务, 若是, 则所述 PDP上下文能通过 UDP-Lite协议进行 封装。 其中, 判断所述 PDP上下文是否为错包容忍度高的业务, 可具体 通过: 首先, 获取第一阈值和第二阈值; 然后判断所述 PDP上下文的服 务质量参数中的误码容忍度是否大于所述第一阈值且丟包容忍度是否大 于所述第二阈值, 若均是, 则所述 PDP上下文为错包容忍度高的业务, 所述 PDP上下文对应的承载的用户面隧道能通过 UDP-Lite协议进行封 装, 否则, 所述 PDP上下文不是错包容忍度高的业务, 所述 PDP上下文 对应的承载的用户面隧道不能通过 UDP-Lite协议进行封装, 可仍然使用 现有技术中的 UDP协议进行封装。 其中, 所述第一阈值和所述第二阈值 可人为设定。 所述第一阈值与所述第二阈值的获取可釆用人工控制的方式 进行输入来获取, 也可预存在存储区中从所述存储区中获取。 接收端向所 述发送端返回所述响应消息的目的是为了告知接收端是否接受所述发送 端发送的 PDP上下文的创建或更新请求, 若接受, 则所述发送端和接收 端之间就建立了 GTP隧道。 所述发送端与所述接收端可通过该 GTP隧道 进行信息的传输。 所述响应消息中携带的所述判断结果信息是为了告知所 述发送端所述 PDP上下文对应的 GTP隧道的用户面隧道是否可通过 UDP-Lite协议进行封装, 以使发送端根据告知的结果作出相应的响应, 即 对错包容忍度高的业务的用户面隧道进行 UDP-Lite协议封装。
本实施例是基于现有 2G (第二代手机通信技术)或 3G (第三代手机通 信技术) 网络提出的数据传输方法。 本实施例通过对 PDP上下文的服务 质量参数进行判断, 来确定是否将所述 PDP上下文对应的承载的用户面 隧道通过 UDP-Lite进行封装。 对于那些语音和视频等对错包容忍度比较 高的业务, 通过本发明实施例可实现 UDP-Lite封装, 较现有技术将所有 PDP上下文激活均通过 UDP协议封装, 能显著地提高数据传输的效率。
如图 2所示, 本发明提供的数据传输方法实施例二的流程示意图。 如 图中所示, 本实施例二所述数据传输方法, 包括:
步骤 201、 向接收端发送 PDP上下文的创建或更新消息, 所述创建 或更新消息携带有服务质量参数。 其中, 发送端向接收端发送 PDP上下文的创建或更新消息。 所述发 送端为以是 SGSN。 所述接收端可以是 GGSN , 如图 3所示的实例。
步骤 202、 接收所述接收端返回的创建或更新响应消息, 所述响应消 息为所述接收端根据所述创建或更新消息返回的, 所述响应消息携带有判 断结果信息, 所述判断结果信息为所述接收端根据所述服务质量参数, 判 断 PDP上下文对应的承载的用户面隧道是否能通过 UDP-Lite协议进行封 装的结果。
步骤 203、 若所述响应消息携带的判断结果信息为能通过 UDP-Lite 协议进行封装, 则通过 UDP-Lite协议对所述 PDP上下文对应的承载的用 户面隧道进行封装。
具体地, 若所述响应消息携带的判断结果信息为能通过 UDP-Lite协 议进行封装, 则发送端通过 UDP-Lite协议将所述 PDP上下文对应的承载 的用户面隧道封装为数据传输协议报文(以下简称 GTPU报文 ) , 并将所 述 GTPU报文的报文头中的校验和覆盖域(以下 Checksum Coverage ) 字段设置为预设值。 这里需要说明是: 在 UDP-Lite协议中, 一个数据报 文到底需不需要对其进行校验, 或者是校验多少位可由用户控制。 并且 UDP-Lite协议就是用 UDP协议的 Length字段来表示其 Checksum Coverage的, 所以当 UDP-Lite协议的 Checksum Coverage字段等于整 个 UDP数据报(包括 UDP头和载荷) 的长度时, UDP-Lite产生的包也 就和传统的 UDP包一模一样。 若 Checksum Coverage为 0, 表示对整个 通过 UDP-Lite协议进行封装的数据报进行校验。 若 Checksum
Coverage>=8, 表示对通过 UDP-Lite协议进行封装的数据报的前
Checksum Coverage个字节进行校险。 Checksum Coverage取除上述的 值之外的值是非法的。 本实施例中, 所述预设值可以是设定为 8, 即所述 Checksum Coverage取值为 8, 在校验和计算时只对数据报的前 8个字 节进行校验, 即只对通过 UDP-Lite协议封装的 GTPU报文的报文头进行 校验, 不对 GTPU报文的载荷进行校验, 避免了现有技术中通过 UDP协 议封装的数据报需要对数据报的报头和载荷同时校验的问题, 提高了数据 的传输效率。
如图 3所示, 应用本发明提供的数据传输方法实现 2G或 3G用户侧 发起 PDP上下文二次创建或更新时的数据传输的示意图。 本应用实例为 用户侧发起的 PDP上下文二次创建或更新, 由 GGSN根据 QoS参数判 断是否通过 UDP-Lite来封装该二次创建的 PDP上下文对应的承载的用户 面隧道, 并通过 Create PDP Context Response或 Update PDP Context Response消息告知 SGSN设备。 具体实现过程如下述内容。 , 包括下述 步骤。
对于用户侧发起的 PDP上下文的二次创建, 包括:
步骤 1 1 1、 SGSN向所述 GGSN发送 Create PDP Context Request 消息创建 PDP上下文。
步骤 1 12、 所述 GGSN根据所述 Create PDP Context Request消息 携带的 QoS参数, 判断待创建的所述二次创建的 PDP上下文对应的承载 的用户面隧道是否能通过 UDP-Lite协议进行封装, 并向所述 SGSN返回 携带有判断结果的 Create PDP Context Response消息。
其中, 若所述 GGSN根据所述 Create PDP Context Response消息 中携带的 QoS参数, 判断出待创建的所述二次创建的 PDP上下文为错包 容忍度高的业务, 即所述二次创建的 PDP上下文的服务质量参数中的误 码容忍度大于第一阈值且丟包容忍度大于第二阈值, 则所述二次创建的 PDP上下文对应的承载的用户面隧道能通过 UDP-Lite协议进行封装。 当 所述 SGSN接收到所述 GGSN返回的 Create PDP Context Response消 息后, 所述 SGSN和所述 GGSN之间就建立起了 GTP隧道。 所述 SGSN 和所述 GGSN之间交互的信息均可承载在该 GTP隧道内进行传输。
步骤 1 13、若所述 Create PDP Context Response消息中携带的判断 结果为能通过 UDP-Lite协议进行封装, 则所述 SGSN通过 UDP-Lite协 议对所述 PDP上下文二次激活的用户面隧道进行封装。
具体地, SGSN通过 UDP-Lite协议将二次创建的 PDP上下文对应 的用户面隧道封装为 GTPU报文, 并将所述 GTPU报文的报文头中的校 验和覆盖域字段设置为 8。 发送端 SGSN在向 GGSN发送所述 GTPU报 文时, 只对 GTPU报文的报文头进行校验和计算。 GGSN在接收所述 GTPU报文后也只对报文头的校验和进行验证, 免去了现有技术中还需要 对 GTPU报文负荷 (即 Checksum Coverage, 校验和覆盖域) 字段进行 校验。
对于用户侧发起的 PDP上下文的更新, 包括:
步骤 121、 SGSN向所述 GGSN发送 Update PDP Context Request 消息更新 PDP上下文。
步骤 122、所述 GGSN根据所述 Update PDP Context Request消息 更新 PDP上下文,然后根据所述 Update PDP Context Request消息携带 的 QoS参数, 判断待更新的所述 PDP上下文对应的承载的用户面隧道是 否能通过 UDP-Lite协议进行封装, 并向所述 SGSN反馈携带有判断结果 的 Update PDP Context Response消息。
同样地, 若所述 GGSN根据所述 Create PDP Context Response消 息中携带的 QoS参数, 判断出待更新的所述 PDP上下文二次激活为错包 容忍度高的业务, 则所述 P D P上下文对应的承载的用户面隧道能通过 UDP-Lite协议进行封装。其中,错包容忍度高的业务的判断可釆用上述的 判断过程来实现。 当所述 SGSN接收到所述 GGSN返回的 Update PDP Context Response消息后, 所述 SGSN和所述 GGSN之间就建立起了 GTP隧道。所述 SGSN和所述 GGSN之间交互的信息均可承载在该 GTP 隧道内进行传输。
步骤 123、 若所述 Update PDP Context Response消息中携带的判 断结果为能通过 UDP-Lite封装,则 SGSN通过 UDP-Lite协议对所述 PDP 上下文二次激活的用户面隧道进行封装, 以使得被封装的所述 PDP上下 文二次激活承载在已建立的 GTP隧道内进行传输。
其中, SGSN通过 UDP-Lite协议封装所述 PDP上下文对应的承载的 用户面隧道的过程同上, 此处不再赘述。
如图 4所示, 本发明提供的数据传输方法实施例三的流程示意图。 如 图中所示, 本实施例三所述数据传输方法, 包括:
步骤 301、 接收发送端发送的承载的创建或更新消息, 所述创建或更 新消息携带所述承载的服务质量参数。
其中, 本实施例是基于 4G (第四代手机通信技术)网络, 例如 SGSN 通过 S4接口接入到 EPC网络的组网方式的组网(以下简称 S4 SGSN组 网) 或 EPC网络, 实现的数据传输方法。 具体地, 接收端接收所述发送 端发送的承载的创建或更新消息。 所述接收端可以是可发送承载创建或更 新消息以建立 GTP隧道的网元设备, 如 SGSN; 或者是转发接收到的承 载创建或更新消息的网元设备, 如 S-GW。 所述接收端具体可以是 PDN ( Public Data Network, 公用数据网) 网关(以下简写 P-GW ) 。 其中所 述承载包括专有承载和缺省承载。
步骤 302、 根据所述服务质量参数, 判断所述承载的用户面隧道是否 能通过 UDP-Lite协议进行封装, 并向所述发送端返回携带有判断结果信 息的响应消息, 以使所述发送端在接收到所述响应消息携带的判断结果信 息为能通过 UDP-Lite协议进行封装时,通过 UDP-Lite协议对所述承载的 用户面隧道进行封装。
具体地, 接收端根据所述 QoS参数, 判断所述承载是否为错包容忍 度高的业务, 若是, 则所述承载能通过 UDP-Lite协议进行封装。 其中, 判断所述承载是否为错包容忍度高的业务, 可具体通过: 获取第一阈值和 第二阈值, 并判断所述承载的服务质量参数中的误码容忍度是否大于第一 阈值且丟包容忍度是否大于第二阈值, 若均是, 则所述承载为错包容忍度 高的业务, 所述承载的用户面隧道能通过 UDP-Lite协议进行封装, 否贝' J , 所述承载不是错包容忍度高的业务, 所述承载的用户面隧道不能通过 UDP-Lite协议进行封装, 可仍然使用现有技术中的 UDP协议进行封装。 所述第一阈值和所述第二阈值可人为设定。 接收端向所述发送端返回的所 述响应消息的目的是为了告知接收端是否接受所述发送端发送的承载的 创建或更新请求, 若接受, 则所述发送端和接收端之间就建立了 GTP隧 道。 所述发送端与所述接收端可通过该 GTP隧道进行信息的传输。 所述 响应消息中携带的所述判断结果信息是为了告知所述发送端所述承载的 用户面隧道是否可通过 UDP-Lite协议进行封装, 以使发送端根据告知的 结果作出相应的响应, 即对错包容忍度高的业务的用户面隧道进行
UDP-Lite协议封装。
如图 5所示, 本发明提供的数据传输方法实施例四的流程示意图。 如 图中所示, 本实施例四所述数据传输方法, 包括:
步骤 401、 向接收端发送承载的创建或更新消息, 所述创建或更新消 息携带有所述承载的服务质量参数。 其中, 发送端向接收端发送承载的创建或更新消息。 所述承载包括专 有承载和缺省承载。 所述接收端可以是可发送承载创建或更新消息以建立
GTP隧道的网元设备,如 SGSN; 或者是转发接收到的承载创建或更新消 息的网元设备, 如 S-GW。 所述接收端具体可以是 P-GW。
步骤 402、 接收所述接收端返回的创建或更新响应消息, 所述响应消 息为所述接收端根据所述创建或更新消息返回的, 所述响应消息携带有判 断结果信息, 所述判断结果信息为所述接收端根据所述服务质量参数, 判 断承载的用户面隧道是否能通过 UDP-Lite协议进行封装的结果。
步骤 403、 若所述响应消息携带有判断结果信息为能通过 UDP-Lite 协议进行封装, 则通过 UDP-Lite协议对所述承载的用户面隧道进行封装。
具体地, 若所述响应消息携带的判断结果信息为能通过 UDP-Lite协 议进行封装, 则发送端通过 UDP-Lite协议将所述承载的用户面隧道封装 为 GTPU报文, 并将所述 GTPU报文的报文头中的校验和覆盖域
( Checksum Coverage )字段设置为预设值。其中预设值的选定可参照上 述实施例中所涉及的相关内容, 此处不再赘述。
上述实施例三和实施例四是基于现有的 4G网络中用户侧发起承载的 创建或更新消息以建立 GTP隧道所提出的数据传输方法。 上述实施例通 过对承载的服务质量参数进行判断,来确定是否将所述承载通过 UDP-Lite 进行封装。 对于一些可以通过 UDP-Lite进行封装的承载, 尤其是那些语 音和视频等对错包容忍度比较高的业务, 通过本发明提供的技术方案可实 现 UDP-Lite封装, 较现有技术将所有承载均通过 UDP协议封装, 能显著 地提高数据传输的效率。
如图 6和 7所示, 应用本发明提供的数据传输方法实现 S4 SGSN组 网下用户侧发起承载的创建或更新时的数据传输示意图。 如图所示, 对于 S4 SGSN组网下用户侧发起的专有承载的创建或更新, 由 P-GW根据 QoS参数判断是否通过 UDP-Lite封装专有承载, 并通过 Create Bearer Request或 Update Bearer Request消息告知 S-GW和 SGSN设备。 具 体实现过程如下述内容。
如图 6所示, S4 SGSN组网用户侧发起专有承载的创建时的数据传 输示意图。 包括: 步骤 31 1、 SGSN发起 Bearer Resource Command消息请求创建专 有承载。
步骤 312、 S-GW将接收自所述 SGSN发起的 Bearer Resource Command消息请求转发至 P-GW。
步一像 313、 P-GW才艮据 Bearer Resource Command消息携带的 QoS 参数, 判断待创建的专有承载的用户面隧道是否能通过 UDP-Lite协议进 行封装,并向 S-GW返回携带有判断结果的 Create Bearer Request消息。
步骤 314、 S-GW根据 Create Bearer Request消息携带的判断结果 决定是否通过 UDP-Lite协议对专有承载进行封装, 并同时将接收到的所 述 Create Bearer Request消息转发至所述 SGSN。 若 Create Bearer Request消息携带的判断结果为能通过 UDP-Lite协议进行封装,则 S-GW 通过 UDP-Lite协议对所述专有承载的用户面隧道进行封装。
步骤 315、 SGSN 根据接收的所述 Create Bearer Request消息携带 的判断结果决定是否通过 UDP-Lite协议对专有承载的用户面隧道进行封 装, 并向所述 S-GW返回应答专有承载建立消息。 若 Create Bearer
Request消息携带的判断结果为能通过 UDP-Lite协议进行封装,则 SGSN 通过 UDP-Lite协议对所述专有承载的用户面隧道进行封装。
这里需要注意的是: 若是 DT ( direct tunnel , 直接隧道)模式, SGSN 还需要将所述 Create Bearer Request消息转发至无线网络控制器 (以下 简称 RNC ) 。 RNC根据接收的所述 Create Bearer Request消息携带的 判断结果决定是否通过 U D P-L ite协议对专有承载的用户面隧道进行封装。 若 Create Bearer Request消息携带的判断结果为能通过 UDP-Lite协议 进行封装,则 RNC通过 UDP-Lite协议对所述专有承载的用户面隧道进行 封装。
步骤 316、 S-GW在接收到所述 SGSN返回的应答专有承载建立消息 后, 同样向 P-GW返回应答专有承载建立消息。
如图 7所示, S4 SGSN组网用户侧发起专有承载的更新时的数据传 输示意图。 对于 S4 SGSN组网下用户侧发起的专有承载更新, 包括: 步骤 321、 SGSN发起 Modify Bearer Command消息请求专有承载 修改。 步骤 322、 S-GW将接收自所述 SGSN发起 Modify Bearer Command 消息转发至 P-GW。
步骤 323、 P-GW根据接收的所述 Modify Bearer Command消息携 带的 QoS参数, 判断待更新的专有承载是否能通过 UDP-Lite协议封装, 并向 S-GW返回携带有判断结果的 Update Bearer Request消息。
步骤 324、 S-GW根据所述 Update Bearer Request消息携带的判断 结果决定是否通过 UDP-Lite协议对专有承载进行封装, 并同时将接收到 的所述 Update Bearer Request消息转发至所述 SGSN。若 Update Bearer Request消息携带的判断结果为能通过 UDP-Lite协议进行封装,则 S-GW 通过 UDP-Lite协议对所述专有承载的用户面隧道进行封装。
步骤 325、 SGSN根据接收的所述 Update Bearer Request消息携带 的判断结果决定是否通过 UDP-Lite协议对专有承载的用户面隧道进行封 装。 若 Update Bearer Request消息携带的判断结果为能通过 UDP-Lite 协议进行封装, 则 SGSN通过 UDP-Lite协议对所述专有承载的用户面隧 道进行封装。
这里需要注意的是: 若是 DT模式, SGSN还需要将所述 Update Bearer Request消息转发至 RNC。 RNC才艮据接^的所述 Update Bearer Request消息携带的判断结果决定是否通过 UDP-Lite协议对专有承载进 行封装。 若 Update Bearer Request消息携带的判断结果为能通过
UDP-Lite协议进行封装, 则 RNC通过 UDP-Lite协议对所述专有承载的 用户面隧道进行封装。
步骤 326、 S-GW在接收到所述 SGSN返回的应答专有承载建立消息 后, 同样向 P-GW返回应答专有承载建立消息。
如图 8所示, 本发明提供的数据传输方法实施例五的流程示意图。 如 图中所示, 本实施例五所述数据传输方法也是基于现有 4G网络, 例如 S4 SGSN组网或 EPC组网, 实现的数据传输方法, 包括:
步骤 501、 创建或更新承载, 并根据所述承载的服务质量参数判断所 述承载的用户面隧道是否能通过 UDP-Lite协议进行封装。
具体地,发送端发起承载的创建或更新。所述发送端具体可以 P-GW。 所述承载包括专有承载和缺省承载。 P-GW判断所述承载的服务质量参数 中的误码容忍度是否大于第一阈值且丟包容忍度是否大于第二阈值, 若均 是, 所述承载的用户面隧道能通过 UDP-Lite协议进行封装; 否则, 所述 承载的用户面隧道不能通过 UDP-Lite协议进行封装, 可仍然使用现有技 术中的 UDP协议进行封装。 其中所述第一阈值与所述第二阈值可人为设 定。
步骤 502、 向所述接收端发送携带有判断结果信息的指令消息, 以使 所述接收端在接收到所述判断结果信息为能通过 UDP-Lite协议进行封装 时, 通过 UDP-Lite协议对所述承载的用户面隧道进行封装。
具体地, 发送端向所述接收端发送携带有判断结果信息的指令消息。 其中, 在 S4 SGSN组网中, 所述接收端可以是 S-GW或 SGSN。 在 EPC 组网中, 所述接收端可以是 S-GW或 eNodeB。
如图 9所示, 本发明提供的数据传输方法实施例六的流程示意图。 如 图中所示, 本实施例六所述数据传输方法, 包括:
步骤 601、 接收发送端发送的指令信息, 所述指令信息携带有判断结 果信息, 所述判断结果信息为所述发送端根据创建或更新的承载的服务质 量参数, 判断出所述承载的用户面隧道是否能通过 UDP-Lite协议进行封 装的结果。
具体地, 接收端接收发送端发送的指令信息。 所述
步骤 602、 若所述指令信息携带有判断结果信息为能通过 UDP-Lite 协议进行封装, 则通过 UDP-Lite协议对所述承载的用户面隧道进行封装。
具体地, 所述接收端通过 UDP-Lite协议将所述承载的用户面隧道封 装为数据传输协议报文, 并将所述数据传输协议报文的报文头中的校验和 覆盖域字段设置为预设值。
上述实施例五和实施例六是基于现有的 4G网络中网络侧发起承载的 创建或更新以建立 GTP隧道所提出的数据传输方法。 上述实施例通过对 承载的服务质量参数进行判断, 来确定是否将所述承载通过 UDP-Lite进 行封装。 对于一些可以通过 UDP-Lite进行封装的承载, 尤其是那些语音 和视频等对错包容忍度比较高的业务, 通过本发明提供的技术方案可实现 UDP-Lite封装, 较现有技术将所有承载均通过 UDP协议封装, 能显著地 提高数据传输的效率。 如图 10和 1 1所示, 应用本发明提供的数据传输方 法实现 S4 SGSN组网下网络侧发起承载的创建或更新时的数据传输示意 图。 如图所示, 对于 S4 SGSN组网, 网络侧发起的专有承载的创建或更 新,由 P-GW根据专有承载的 QoS参数判断是否通过 UDP-Lite协议封装 专有承载, 并通过 Create Bearer Request或 Update Bearer Request消 息告知 S-GW和 SGSN设备。 具体实现过程如下述内容。
如图 10所示, S4 SGSN组网网络侧发起专有承载的创建时的数据传 输示意图。 包括:
步骤 51 1、 P-GW创建专有承载时,根据所述专有承载的 QoS参数判 断所述专有承载的用户面隧道是否能通过 UDP-Lite协议封装,并向 S-GW 返回携带有判断结果的 Create Bearer Request消息。
步骤 512、 S-GW根据所述 Create Bearer Request消息携带的判断 结果决定是否通过 UDP-Lite协议封装所述专有承载的用户面隧道, 并同 时将接收到的所述 Create Bearer Request消息转发至所述 SGSN。 若 Create Bearer Request消息携带的判断结果为能通过 UDP-Lite协议进行 封装, 则 S-GW通过 UDP-Lite协议对所述专有承载的用户面隧道进行封 装。
步骤 513、 SGSN 根据接收的所述 Create Bearer Request消息携带 的判断结果决定是否通过 UDP-Lite协议对专有承载的用户面隧道进行封 装, 并向所述 S-GW返回应答专有承载建立消息。 若 Create Bearer Request消息携带的判断结果为能通过 UDP-Lite协议进行封装,则 SGSN 通过 UDP-Lite协议对所述专有承载的用户面隧道进行封装。
这里需要注意的是: 若是 DT模式, SGSN还需要将所述 Create Bearer Request消息转发至 RNC。 RNC才艮据接^的所述 Create Bearer Request消息携带的判断结果决定是否通过 UDP-Lite协议对专有承载进 行封装。 若 Create Bearer Request消息携带的判断结果为能通过
UDP-Lite协议进行封装, 则 RNC通过 UDP-Lite协议对所述专有承载的 用户面隧道进行封装。
步骤 514、 S-GW在接收到所述 SGSN返回的应答专有承载建立消息 后, 同样向 P-GW返回应答专有承载建立消息。
如图 1 1所示, S4 SGSN组网网络侧发起专有承载的更新时的数据传 输示意图。 包括:
步骤 521、 P-GW更新专有承载时,根据所述专有承载的 QoS参数判 断所述专有承载的用户面隧道是否能通过 UDP-Lite协议封装,并向 S-GW 返回携带有判断结果的 Update Bearer Request消息。
步骤 522、 S-GW根据所述 Update Bearer Request消息携带的判断 结果决定是否通过 UDP-Lite协议封装所述专有承载的用户面隧道, 并同 时将接收到的所述 Update Bearer Request消息转发至所述 SGSN。 若 Update Bearer Request消息携带的判断结果为能通过 UDP-Lite协议进 行封装, 则 S-GW通过 UDP-Lite协议对所述专有承载的用户面隧道进行 封装。
步骤 523、 SGSN根据接收的所述 Update Bearer Request消息携带 的判断结果决定是否通过 UDP-Lite协议对专有承载的用户面隧道进行封 装, 并向所述 S-GW返回应答专有承载建立消息。 若 Update Bearer Request消息携带的判断结果为能通过 UDP-Lite协议进行封装,则 SGSN 通过 UDP-Lite协议对所述专有承载的用户面隧道进行封装。
这里需要注意的是: 若是 DT模式, SGSN还需要将所述 Update Bearer Request消息转发至 RNC。 RNC才艮据接^的所述 Update Bearer Request消息携带的判断结果决定是否通过 UDP-Lite协议对专有承载的 用户面隧道进行封装。 若 Update Bearer Request消息携带的判断结果为 能通过 UDP-Lite协议进行封装, 则 RNC通过 UDP-Lite协议对所述专有 承载的用户面隧道进行封装。
步骤 524、 S-GW在接收到所述 SGSN返回的应答专有承载更新消息 后, 同样向 P-GW返回应答专有承载更新消息。
如图如图 12和 13所示, 应用本发明提供的数据传输方法实现 EPC 组网下网络侧发起承载的创建或更新时的数据传输示意图。 如图所示, 对 于 EPC组网, 网络侧发起的专有承载创建或更新, 由 P-GW根据专有承 载的 QoS参数判断是否通过 UDP-Lite来封装 GTPU报文,并通过 Create Bearer Request或 Update Bearer Request消息告知 S-GW, MME和 eNodeB。 具体实现过程如下述内容。
如图 12所示, EPC用户侧发起专有承载创建时的数据传输示意图。 对于网络侧发起的专有承载创建, 所述数据传输方法包括: 步骤 531、 P-GW创建专有承载时,根据所述专有承载的 QoS参数判 断所述专有承载是否能通过 UDP-Lite协议封装, 并向 S-GW返回携带有 判断结果的 Create Bearer Request消息。
步骤 532、 S-GW处理专有承载建立, 并根据所述 Create Bearer
Request消息携带的判断结果决定是否通过 UDP-Lite协议封装所述专有 承载, 同时将接收到的所述 Create Bearer Request消息转发至所述 MME。若 Create Bearer Request消息携带的判断结果为能通过 UDP-Lite 协议进行封装, 则 S-GW通过 UDP-Lite协议对所述专有承载的用户面隧 道进行封装。
步骤 533、 MME处理专有承载建立, 同时将接收到的所述 Create Bearer Request消息转发至所述 eNodeB。
步骤 534、 eNodeB处理专有承载建立, 并根据所述 Create Bearer Request消息携带的判断结果决定是否通过 UDP-Lite协议封装所述专有 承载的用户面隧道, 并向 MME返回应答专有承载建立消息。 若 Create Bearer Request消息携带的判断结果为能通过 UDP-Lite协议进行封装, 贝' J eNodeB通过 UDP-Lite协议对所述专有承载的用户面隧道进行封装。
步骤 535、 MME在接收到所述 eNodeB返回的应答专有承载建立消 息后, 同样向 S-GW返回应答专有承载建立消息。
步骤 536、 S-GW在接收到所述 MME返回的应答专有承载建立消息 后, 同样向 P-GW返回应答专有承载建立消息。
如图 13所示, EPC用户侧发起专有承载更新情况下的数据传输示意 图。 对于网络侧发起的专有承载更新, 所述数据传输方法, 包括:
步骤 541、 P-GW更新专有承载时,根据所述专有承载的 QoS参数判 断所述专有承载是否能通过 UDP-Lite协议封装, 并向 S-GW返回携带有 判断结果的 Update Bearer Request消息。
步骤 542、 S-GW处理专有承载建立, 并根据所述 Update Bearer Request消息携带的判断结果决定是否通过 UDP-Lite协议封装所述专有 承载, 同时将接收到的所述 Update Bearer Request消息转发至所述 MME。若 Update Bearer Request消息携带的判断结果为能通过 UDP-Lite 协议进行封装, 则 S-GW通过 UDP-Lite协议对所述专有承载的用户面隧 道进行封装。
步骤 543、 MME处理专有承载更新, 同时将接收到的所述 Update Bearer Request消息转发至所述 eNodeB。
步骤 544、 eNodeB处理专有承载更新, 并根据所述 Update Bearer
Request消息携带的判断结果决定是否通过 UDP-Lite协议封装所述专有 承载,并向 MME返回应答专有承载建立消息。若 Update Bearer Request 消息携带的判断结果为能通过 UDP-Lite协议进行封装, 则 eNodeB通过 UDP-Lite协议对所述专有承载的用户面隧道进行封装。
步骤 545、 MME在接收到所述 eNodeB返回的应答专有承载建立消 息后, 同样向 S-GW返回应答专有承载建立消息。
步骤 546、 S-GW在接收到所述 MME返回的应答专有承载建立消息 后, 同样向 P-GW返回应答专有承载建立消息。
如图 14所示, 本发明提供的网元设备实施例一的结构示意图。 如图 中所述, 所述网元设备包括: 接收单元 1、 判断单元 2和发送单元 3。 其 中, 所述接收单元 1用于接收发送端发送的 PDP上下文的创建或更新消 息, 所述创建或更新消息携带有服务质量参数。 判断单元 2用于根据所述 服务质量参数, 判断所述 PDP上下文对应的承载的用户面隧道是否能通 过 UDP-Lite协议进行封装, 得出判断结果。 所述发送单元 3用于向所述 发送端返回携带有所述判断结果信息的响应消息, 以使所述发送端在接收 到所述判断结果信息为能通过 UDP-Lite协议进行封装时, 通过 UDP-Lite 协议对所述 PDP上下文对应的承载的用户面隧道进行封装。 本实施例所 述网元设备可以是 GGSN。
进一步地, 上述实施例中所述判断单元具体用于获取第一阈值和第二 阈值, 并判断所述 PDP上下文的服务质量参数中的误码容忍度是否大于 所述第一阈值且丟包容忍度是否大于所述第二阈值, 若均是, 得出判断结 果为所述 PDP上下文对应的承载的用户面隧道能通过 UDP-Lite协议进行 封装; 否则, 得出判断结果为所述 PDP上下文对应的承载的用户面隧道 不能通过 UDP-Lite协议进行封装。
本实施例是基于现有 2G或 3G网络提出的网元设备。 本实施例所述 网元设备通过对 PDP上下文的服务质量参数进行判断, 来确定是否将所 述 PDP上下文对应的承载的用户面隧道是否能通过 UDP-Lite进行封装。 对于一些可以通过 UDP-Lite进行封装的 PDP上下文,尤其是那些语音和 视频等对错包容忍度比较高的业务, 本实施例可以输出 PDP上下文激活 的是否能通过 UDP-Lite进行封装的判断结果, 以使接收端网元设备根据 所述判断结果作出相应地响应, 较现有技术将所有 PDP上下文均通过 UDP协议封装, 能显著地提高数据传输的效率。
如图 15所示, 本发明提供的网元设备实施例二的结构示意图。 如图 中所述, 所述网元设备包括: 发送单元 6、 接收单元 4和封装单元 5。 其 中, 所述发送单元 6用于向接收端发送 PDP上下文的创建或更新消息, 所述创建或更新消息携带有所述 PDP上下文的服务质量参数。 所述接收 单元 4用于接收所述接收端返回的创建或更新响应消息, 所述响应消息为 所述接收端根据所述创建或更新消息返回的, 所述响应消息携带有判断结 果信息, 所述判断结果信息为所述接收端根据所述服务质量参数, 判断 PDP上下文对应的承载的用户面隧道是否能通过 UDP-Lite协议进行封装 的结果。 所述封装单元 5用于在所述响应消息携带有判断结果信息为能通 过 UDP-Lite协议进行封装时, 则通过 UDP-Lite协议对所述 PDP上下文 对应的承载的用户面隧道进行封装。
本实施例二中所述的网元设备可具体是 SGSN。 本实施例所述封装单 元可具体用于通过 UDP-Lite协议将所述 PDP上下文对应的承载的用户面 隧道封装为数据传输协议报文, 并将所述数据传输协议报文的报文头中的 校验和覆盖域字段设置为预设值。
本实施例二是基于现有 2G或 3G网络提出的网元设备。 本实施例二 所述网元设备通过接收到的响应信息携带的判断结果, 来确定是否将所述 PDP上下文对应的承载的用户面隧道通过 UDP-Lite进行封装。 对于一些 可以通过 UDP-Lite进行封装的 PDP上下文激活,尤其是那些语音和视频 等对错包容忍度比较高的业务, 通过本实施例二所述网元设备可实现 UDP-Lite协议的封装, 较现有技术将所有 PDP上下文激活均通过 UDP 协议封装, 能显著地提高数据传输的效率。
如图 16所示, 本发明提供的网元设备的实施例三的结构示意图。 如 图中所示,所述网元设备包括:接收单元 12、判断单元 13和发送单元 14。 其中, 所述接收单元 12用于接收发送端发送的承载的创建或更新消息, 所述创建或更新消息携带所述承载的服务质量参数。 所述判断单元 13用 于根据所述服务质量参数, 判断所述承载的用户面隧道是否能通过
UDP-Lite协议进行封装, 得出判断结果。 所述发送单元 14用于向所述发 送端返回携带有所述判断结果信息的响应消息, 以使所述发送端在接收到 所述响应消息携带的所述判断结果信息为能通过 UDP-Lite协议进行封装 时, 通过 UDP-Lite协议对所述承载的用户面隧道进行封装。 本实施例中 所述网元设备可以是 P-GW。
进一步地, 上述实施例中所述判断单元具体用于获取第一阈值和第二 阈值, 并判断所述承载的服务质量参数中的误码容忍度是否大于所述第一 阈值且丟包容忍度是否大于所述第二阈值, 若均是, 得出判断结果为所述 承载的用户面隧道能通过 UDP-Lite协议进行封装; 否则, 得出判断结果 为所述承载的用户面隧道不能通过 UDP-Lite协议进行封装。
本实施例三是基于现有 4G网络, 例如 S4 SGSN组网或 EPC组网, 提出的网元设备。 本实施例所述网元设备通过对承载的服务质量参数进行 判断, 来确定是否将所述承载的用户面隧道是否能通过 UDP-Lite进行封 装。 对于一些可以通过 UDP-Lite进行封装的承载, 尤其是那些语音和视 频等对错包容忍度比较高的业务, 本实施例可以输出所述承载的是否能通 过 UDP-Lite进行封装的判断结果, 以使接收端网元设备根据所述判断结 果作出相应地响应, 较现有技术将所有承载均通过 UDP协议封装, 能显 著地提高数据传输的效率。
如图 17中所示, 本发明提供的网元设备实施例四的结构示意图。 所 述网元设备包括: 发送单元 15、 接收单元 16和封装单元 17。 其中, 所述 发送单元 15用于向接收端发送承载的创建或更新消息, 所述创建或更新 消息携带有所述承载的服务质量参数。 所述接收单元 16用于接收所述接 收端返回的创建或更新响应消息, 所述响应消息为所述接收端根据所述创 建或更新消息返回的, 所述响应消息携带有判断结果信息, 所述判断结果 信息为所述接收端根据所述服务质量参数, 判断承载的用户面隧道是否能 通过 UDP-Lite协议进行封装的结果。所述封装单元 17用于在所述响应消 息携带有判断结果信息为能通过 UDP-Lite协议进行封装, 则通过
UDP-Lite协议对所述承载的用户面隧道进行封装。
进一步地, 所述封装单元具体用于在所述响应消息携带有判断结果信 息为能通过 UDP-Lite协议进行封装时,通过 UDP-Lite协议将所述承载的 用户面隧道封装为数据传输协议报文, 并将所述数据传输协议报文的报文 头中的校验和覆盖域字段设置为预设值。
本实施例四是基于现有 4G网络, 例如 S4 SGSN组网或 EPC组网, 提出的网元设备。 本实施例四所述网元设备通过接收到的响应信息携带的 判断结果, 来确定是否将所述承载的用户面隧道通过 UDP-Lite进行封装。 对于一些可以通过 UDP-Lite进行封装的承载, 尤其是那些语音和视频等 对错包容忍度比较高的业务, 通过本实施例四所述网元设备可实现
UDP-Lite协议的封装, 较现有技术将所有承载均通过 UDP协议封装, 能 显著地提高数据传输的效率。
如图 18中所示, 本发明提供的网元设备实施例五的结构示意图。 如 图中所示, 所述网元设备包括创建或更新单元 18、 判断单元 19或发送单 元 20。 所述创建或更新单元 18用于创建或更新承载。 所述判断单元 19 用于根据所述承载的服务质量参数判断所述承载的用户面隧道是否能通 过 UDP-Lite协议进行封装, 得出判断结果。 所述发送单元 20用于向所述 接收端发送携带有判断结果信息的指令消息, 以使所述发送端在接收到所 述判断结果信息为能通过 UDP-Lite协议进行封装时,通过 UDP-Lite协议 对所述承载的用户面隧道进行封装。
进一步地, 上述实施例中所述的判断单元具体用于获取第一阈值和第 二阈值, 并判断所述承载的服务质量参数中的误码容忍度是否大于第一阈 值且丟包容忍度是否大于第二阈值, 若均是, 得出判断结果为所述承载的 用户面隧道能通过 UDP-Lite协议进行封装; 否则, 得出判断结果为所述 承载的用户面隧道不能通过 UDP-Lite协议进行封装。
本实施例五是基于现有 4G网络, 例如 S4 SGSN组网或 EPC组网, 提出的网元设备。 本实施例所述网元设备通过在创建或更新承载时, 同时 对承载的服务质量参数进行判断, 来确定是否将所述承载的用户面隧道是 否能通过 UDP-Lite进行封装。对于一些可以通过 UDP-Lite进行封装的承 载, 尤其是那些语音和视频等对错包容忍度比较高的业务, 本实施例可以 输出所述承载的是否能通过 UDP-Lite进行封装的判断结果, 以使接收端 网元设备根据所述判断结果作出相应地响应, 较现有技术将所有承载均通 过 UDP协议封装, 能显著地提高数据传输的效率。
如图 19所示, 本发明提供的网元设备的实施例六的结构示意图。 如 图中所示, 所述网元设备包括: 接收单元 21和封装单元 22。 其中, 所述 接收单元 21用于接收发送端发送的指令信息, 所述指令信息携带有判断 结果信息, 所述判断结果信息为所述发送端根据创建或更新的承载的服务 质量参数, 判断出所述承载的用户面隧道是否能通过 UDP-Lite协议进行 封装的结果。 所述封装单元 22用于在所述指令信息携带有判断结果信息 为能通过 UDP-Lite协议进行封装时,通过 UDP-Lite协议对所述承载的用 户面隧道进行封装。
进一步地, 上述实施例中所述封装单元具体用于通过 UDP-Lite协议 将所述承载的用户面隧道封装为数据传输协议报文, 并将所述数据传输协 议报文的报文头中的校验和覆盖域字段设置为预设值。 该预设值的选取可 参照上述数据传输实施例中所涉及到的相关内容, 此处不再赘述。
本实施例六是基于现有 4G网络, 例如 S4 SGSN组网或 EPC组网, 提出的网元设备。 本实施例六所述网元设备通过接收到的指令消息携带的 判断结果, 来确定是否将所述承载的用户面隧道通过 UDP-Lite进行封装。 对于一些可以通过 UDP-Lite进行封装的承载, 尤其是那些语音和视频等 对错包容忍度比较高的业务, 通过本实施例六所述网元设备可实现
UDP-Lite协议的封装, 较现有技术将所有承载均通过 UDP协议封装, 能 显著地提高数据传输的效率。
本发明提供一种通信系统实施例。 所述通信系统包括至少一组用于数 据传输的网元设备。 所述的一组网元设备包括至少两个所述网元设备。 其 中, 所述一组网元设备可以是上述实施例一和实施例二所述的网元设备, 具体如图 3所示的实例。 所述的一组网元设备还可以是上述实施例三和实 施例四所述的网元设备, 具体如图 6和 7所示的实例。 所述的一组网元设 备还可以是上述实施例五和实施例六所述的网元设备, 具体如图 10、 1 1、 12和 13所示的实例。 本领域普通技术人员可以理解: 附图只是一个实施例的示意图, 附图中 的模块或流程并不一定是实施本发明所必须的。
本领域普通技术人员可以理解: 实施例中的装置中的模块可以按照实施 例描述分布于实施例的装置中, 也可以进行相应变化位于不同于本实施例的 一个或多个装置中。 上述实施例的模块可以合并为一个模块, 也可以进一步 拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分 步骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算 机可读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的步 骤; 而前述的存储介质包括: ROM、 RAM , 磁碟或者光盘等各种可以存 储程序代码的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范 围。

Claims

权 利 要求 书
1、 一种数据传输方法, 其特征在于, 包括:
接收发送端发送的 PDP上下文的创建或更新消息, 所述创建或更新 消息携带有服务质量参数;
根据所述服务质量参数, 判断所述 PDP上下文对应的承载的用户面 隧道是否能通过 UDP-Lite协议进行封装, 并向所述发送端返回携带有判 断结果信息的响应消息, 以使所述发送端在接收到所述判断结果信息为能 通过 UDP-Lite协议进行封装时, 通过 UDP-Lite协议对所述 PDP上下文 对应的承载的用户面隧道进行封装。
2、 根据权利要求 1所述的数据传输方法, 其特征在于, 所述根据所 述服务质量参数, 判断所述 PDP上下文对应的承载的用户面隧道是否能 通过 UDP-Lite协议进行封装, 包括:
获取第一阈值和第二阈值;
判断所述 PDP上下文的服务质量参数中的误码容忍度是否大于所述 第一阈值且丟包容忍度是否大于所述第二阈值, 若均是, 所述 PDP上下 文对应的承载的用户面隧道能通过 UDP-Lite协议进行封装。
3、 一种数据传输方法, 其特征在于, 包括:
向接收端发送 PDP上下文的创建或更新消息, 所述创建或更新消息 携带有所述 PDP上下文的服务质量参数;
接收所述接收端返回的创建或更新响应消息, 所述响应消息为所述接 收端根据所述创建或更新消息返回的, 所述响应消息携带有判断结果信 息, 所述判断结果信息为所述接收端根据所述服务质量参数, 判断 PDP 上下文对应的承载的用户面隧道是否能通过 UDP-Lite协议进行封装的结 果;
若所述响应消息携带的判断结果信息为能通过 UDP-Lite协议进行封 装, 则通过 UDP-Lite协议对所述 PDP上下文对应的承载的用户面隧道进 行封装。
4、 根据权利要求 3所述的数据传输方法, 其特征在于, 所述通过 UDP-Lite协议对所述 PDP上下文对应的承载的用户面隧道进行封装, 具 体为: 通过 UDP-Lite协议将所述 PDP上下文对应的承载的用户面隧道封装 为数据传输协议报文, 并将所述数据传输协议报文的报文头中的校验和覆 盖域字段设置为预设值。
5、 一种数据传输方法, 其特征在于, 包括:
接收发送端发送的承载的创建或更新消息, 所述创建或更新消息携带 有服务质量参数;
根据所述服务质量参数, 判断所述承载的用户面隧道是否能通过 UDP-Lite协议进行封装,并向所述发送端返回携带有判断结果信息的响应 消息, 以使所述发送端在接收到所述响应消息携带的判断结果信息为能通 过 UDP-Lite协议进行封装时,通过 UDP-Lite协议对所述承载的用户面隧 道进行封装。
6、 根据权利要求 5所述的数据传输方法, 其特征在于, 所述根据所 述服务质量参数, 判断所述承载的用户面隧道是否能通过 UDP-Lite协议 进行封装, 包括:
获取第一阈值和第二阈值;
判断所述承载的服务质量参数中的误码容忍度是否大于所述第一阈 值且丟包容忍度是否大于所述第二阈值, 若均是, 所述承载的用户面隧道 能通过 UDP-Lite协议进行封装。
7、 一种数据传输方法, 其特征在于, 包括:
向接收端发送承载的创建或更新消息, 所述创建或更新消息携带有所 述承载的服务质量参数;
接收所述接收端返回的创建或更新响应消息, 所述响应消息为所述接 收端根据所述创建或更新消息返回的, 所述响应消息携带有判断结果信 息, 所述判断结果信息为所述接收端根据所述服务质量参数, 判断承载的 用户面隧道是否能通过 UDP-Lite协议进行封装的结果;
若所述响应消息携带的判断结果信息为能通过 UDP-Lite协议进行封 装, 则通过 UDP-Lite协议对所述承载的用户面隧道进行封装。
8、 根据权利要求 7所述的数据传输方法, 其特征在于, 所述通过 UDP-Lite协议对所述承载的用户面隧道进行封装, 具体为:
通过 UDP-Lite协议将所述承载的用户面隧道封装为数据传输协议报 文, 并将所述数据传输协议报文的报文头中的校验和覆盖域字段设置为预 设值。
9、 一种数据传输方法, 其特征在于, 包括:
创建或更新承载, 并根据所述承载的服务质量参数判断所述承载的用 户面隧道是否能通过 UDP-Lite协议进行封装;
向所述接收端发送携带有判断结果信息的指令消息, 以使所述接收端 在接收到所述判断结果信息为能通过 UDP-Lite协议进行封装时, 通过 UDP-Lite协议对所述承载的用户面隧道进行封装。
10、 根据权利要求 9所述的数据传输方法, 其特征在于, 所述根据所 述承载的服务质量参数判断所述承载的用户面隧道是否能通过 UDP-Lite 协议进行封装, 包括:
获取第一阈值和第二阈值;
判断所述承载的服务质量参数中的误码容忍度是否大于所述第一阈 值且丟包容忍度是否大于所述第二阈值, 若均是, 所述承载的用户面隧道 能通过 UDP-Lite协议进行封装。
1 1、 一种数据传输方法, 其特征在于, 包括:
接收发送端发送的指令信息, 所述指令信息携带有判断结果信息, 所 述判断结果信息为所述发送端根据创建或更新的承载的服务质量参数, 判 断出所述承载的用户面隧道是否能通过 UDP-Lite协议进行封装的结果; 若所述指令信息携带的判断结果信息为能通过 UDP-Lite协议进行封 装, 则通过 UDP-Lite协议对所述承载的用户面隧道进行封装。
12、 根据权利要求 1 1所述的数据传输方法, 其特征在于, 所述通过 UDP-Lite协议对所述承载的用户面隧道进行封装, 具体为:
通过 UDP-Lite协议将所述承载的用户面隧道封装为数据传输协议报 文, 并将所述数据传输协议报文的报文头中的校验和覆盖域字段设置为预 设值。
13、 一种网元设备, 其特征在于, 包括:
接收单元, 用于接收发送端发送的 PDP上下文的创建或更新消息, 所述创建或更新消息携带有所述 PDP上下文的服务质量参数;
判断单元, 用于根据所述服务质量参数, 判断所述 PDP上下文对应 的承载的用户面隧道是否能通过 U DP-Lite协议进行封装, 得出判断结果; 发送单元, 用于向所述发送端返回携带有所述判断结果信息的响应消 息, 以使所述发送端在接收到所述判断结果信息为能通过 UDP-Lite协议 进行封装时,通过 UDP-Lite协议对所述 PDP上下文对应的承载的用户面 隧道进行封装。
14、 根据权利要求 13所述的网元设备, 其特征在于,
所述判断单元, 具体用于获取第一阈值和第二阈值, 并判断所述 PDP 上下文的服务质量参数中的误码容忍度是否大于所述第一阈值且丟包容 忍度是否大于所述第二阈值, 若均是, 得出判断结果为所述 PDP上下文 对应的承载的用户面隧道能通过 UDP-Lite协议进行封装。
15、 一种网元设备, 其特征在于, 包括:
发送单元, 用于向接收端发送 PDP上下文的创建或更新消息, 所述 创建或更新消息携带有所述 PDP上下文的服务质量参数;
接收单元, 用于接收所述接收端返回的创建或更新响应消息, 所述响 应消息为所述接收端根据所述创建或更新消息返回的, 所述响应消息携带 有判断结果信息, 所述判断结果信息为所述接收端根据所述服务质量参 数,判断 PDP上下文对应的承载的用户面隧道是否能通过 UDP-Lite协议 进行封装的结果;
封装单元, 用于在所述响应消息携带的判断结果信息为能通过
UDP-Lite协议进行封装时, 通过 UDP-Lite协议对所述 PDP上下文对应 的承载的用户面隧道进行封装。
16、 根据权利要求 15所述的网元设备, 其特征在于,
所述封装单元, 具体用于在所述响应消息携带的判断结果信息为能通 过 UDP-Lite协议进行封装时, 通过 UDP-Lite协议将所述 PDP上下文对 应的承载的用户面隧道封装为数据传输协议报文, 并将所述数据传输协议 报文的报文头中的校验和覆盖域字段设置为预设值。
17、 一种网元设备, 其特征在于, 包括:
接收单元, 用于接收发送端发送的承载的创建或更新消息, 所述创建 或更新消息携带所述承载的服务质量参数;
判断单元, 用于根据所述服务质量参数, 判断所述承载的用户面隧道 是否能通过 UDP-Lite协议进行封装, 得出判断结果;
发送单元, 用于向所述发送端返回携带有所述判断结果信息的响应消 息, 以使所述发送端在接收到所述响应消息携带的所述判断结果信息为能 通过 UDP-Lite协议进行封装时,通过 UDP-Lite协议对所述承载的用户面 隧道进行封装。
18、 根据权利要求 17所述的网元设备, 其特征在于,
所述判断单元, 具体用于获取第一阈值和第二阈值, 并判断所述承载 的服务质量参数中的误码容忍度是否大于所述第一阈值且丟包容忍度是 否大于所述第二阈值, 若均是, 得出判断结果为所述承载的用户面隧道能 通过 UDP-Lite协议进行封装; 否则, 得出判断结果为所述承载的用户面 隧道不能通过 UDP-Lite协议进行封装。
19、 一种网元设备, 其特征在于, 包括:
发送单元, 用于向接收端发送承载的创建或更新消息, 所述创建或更 新消息携带有所述承载的服务质量参数;
接收单元, 用于接收所述接收端返回的创建或更新响应消息, 所述响 应消息为所述接收端根据所述创建或更新消息返回的, 所述响应消息携带 有判断结果信息, 所述判断结果信息为所述接收端根据所述服务质量参 数, 判断承载的用户面隧道是否能通过 UDP-Lite协议进行封装的结果; 封装单元, 用于在所述响应消息携带的判断结果信息为能通过 UDP-Lite协议进行封装时, 通过 UDP-Lite协议对所述承载的用户面隧道 进行封装。
20、 根据权利要求 19所述的网元设备, 其特征在于,
所述封装单元, 具体用于在所述响应消息携带有判断结果信息为能通 过 UDP-Lite协议进行封装时,通过 UDP-Lite协议将所述承载的用户面隧 道封装为数据传输协议报文, 并将所述数据传输协议报文的报文头中的校 验和覆盖域字段设置为预设值。
21、 一种网元设备, 其特征在于, 包括:
创建或更新单元, 用于创建或更新承载;
判断单元, 用于根据所述承载的服务质量参数判断所述承载的用户面 隧道是否能通过 UDP-Lite协议进行封装, 得出判断结果; 发送单元, 用于向所述接收端发送携带有判断结果信息的指令消息, 以使所述发送端在接收到所述判断结果信息为能通过 UDP-Lite协议进行 封装时, 通过 UDP-Lite协议对所述承载的用户面隧道进行封装。
22、 根据权利要求 21所述的网元设备, 其特征在于,
所述判断单元, 具体用于获取第一阈值和第二阈值, 并判断所述承载 的服务质量参数中的误码容忍度是否大于所述第一阈值且丟包容忍度是 否大于所述第二阈值, 若均是, 得出判断结果为所述承载的用户面隧道能 通过 UDP-Lite协议进行封装; 否则, 得出判断结果为所述承载的用户面 隧道不能通过 UDP-Lite协议进行封装。
23、 一种网元设备, 其特征在于, 包括:
接收单元, 用于接收发送端发送的指令信息, 所述指令信息携带有判 断结果信息, 所述判断结果信息为所述发送端根据创建或更新的承载的服 务质量参数, 判断出所述承载的用户面隧道是否能通过 UDP-Lite协议进 行封装的结果;
封装单元, 用于在所述指令信息携带的判断结果信息为能通过
UDP-Lite协议进行封装时, 通过 UDP-Lite协议对所述承载的用户面隧道 进行封装。
24、 根据权利要求 23所述的网元设备, 其特征在于,
所述封装单元, 具体用于在所述指令信息携带的判断结果信息为能通 过 UDP-Lite协议进行封装时,通过 UDP-Lite协议将所述承载的用户面隧 道封装为数据传输协议报文, 并将所述数据传输协议报文的报文头中的校 验和覆盖域字段设置为预设值。
25、 一种通信系统, 其特征在于, 包括: 包括至少一组用于数据传输 的网元设备;所述的一组网元设备为上述权利要求 13或 14所述的网元设 备和上述权利要求 15或 16所述的网元设备; 或者, 所述的一组网元设备 为上述权利要求 17或 18所述的网元设备和上述权利要求 19或 20所述 的网元设备; 或者, 所述的一组网元设备为上述权利要求 21或 22所述的 第三网元设备和上述权利要求 23或 24所述的第四网元设备。
PCT/CN2012/077998 2012-06-30 2012-06-30 数据传输方法、网元设备及通信系统 WO2014000307A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2012/077998 WO2014000307A1 (zh) 2012-06-30 2012-06-30 数据传输方法、网元设备及通信系统
RU2015102933A RU2606063C2 (ru) 2012-06-30 2012-06-30 Способ передачи данных, сетевое устройство и система связи
CN201610035929.7A CN105491686B (zh) 2012-06-30 2012-06-30 数据传输方法、网元设备及通信系统
JP2015518770A JP5965061B2 (ja) 2012-06-30 2012-06-30 データ伝送方法、ネットワーク要素デバイスおよび通信システム
EP12879628.1A EP2854473B1 (en) 2012-06-30 2012-06-30 Data transmission method, network element device and communication system
CN201280000908.1A CN102870490B (zh) 2012-06-30 2012-06-30 数据传输方法、网元设备及通信系统
US14/579,519 US9467535B2 (en) 2012-06-30 2014-12-22 Data transmission method, network element device and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/077998 WO2014000307A1 (zh) 2012-06-30 2012-06-30 数据传输方法、网元设备及通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/579,519 Continuation US9467535B2 (en) 2012-06-30 2014-12-22 Data transmission method, network element device and communication system

Publications (1)

Publication Number Publication Date
WO2014000307A1 true WO2014000307A1 (zh) 2014-01-03

Family

ID=47447787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077998 WO2014000307A1 (zh) 2012-06-30 2012-06-30 数据传输方法、网元设备及通信系统

Country Status (6)

Country Link
US (1) US9467535B2 (zh)
EP (1) EP2854473B1 (zh)
JP (1) JP5965061B2 (zh)
CN (2) CN102870490B (zh)
RU (1) RU2606063C2 (zh)
WO (1) WO2014000307A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102870490B (zh) * 2012-06-30 2016-01-13 华为技术有限公司 数据传输方法、网元设备及通信系统
CN105120200A (zh) * 2015-09-02 2015-12-02 山东省计算中心(国家超级计算济南中心) 基于定制light-udp协议的物联网医疗系统的视频通信方法
SG11201803446SA (en) * 2015-10-28 2018-05-30 Huawei Tech Co Ltd Bearer processing method and system and related apparatus
CN110012458A (zh) * 2018-01-04 2019-07-12 中兴通讯股份有限公司 一种协商ip地址类型的方法及装置
CN110912859B (zh) 2018-09-17 2021-12-14 华为技术有限公司 发送报文的方法、接收报文的方法及网络设备
CN112073285B (zh) * 2019-06-10 2022-04-22 华为技术有限公司 一种误码通告的方法及相关设备
CN112953752B (zh) * 2019-12-11 2023-01-13 中盈优创资讯科技有限公司 一种基于单设备网元的通用控制方法及系统
TWI776270B (zh) * 2020-11-05 2022-09-01 財團法人資訊工業策進會 基於隧道協定的中繼節點與封包封裝方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1608359A (zh) * 2001-11-23 2005-04-20 诺基亚公司 Ims业务的无线电承载业务
CN1860713A (zh) * 2003-09-30 2006-11-08 皇家飞利浦电子股份有限公司 用于通过分组交换网络进行实时传输的媒体分组结构
CN101072183A (zh) * 2007-06-11 2007-11-14 华为技术有限公司 数据流的服务质量保证方法和装置
CN101461143A (zh) * 2007-02-28 2009-06-17 华为技术有限公司 无线通信系统中的数据分组传输方法
US7778242B1 (en) * 2001-11-27 2010-08-17 Alcatel Lucent Protecting content of a packet containing speech data using unequal error protection

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4454072B2 (ja) * 1999-08-03 2010-04-21 富士通株式会社 IP通信ネットワークシステム及びQoS保証装置
JP3526032B2 (ja) * 2000-11-08 2004-05-10 日本電気株式会社 モバイルネットワーク及びipパケットの転送方法
JP3873678B2 (ja) * 2001-07-19 2007-01-24 日本電気株式会社 ビデオパケット伝送装置及びビデオパケット伝送方法
EP1503548A1 (en) * 2003-08-01 2005-02-02 fg microtec GmbH Distributed Quality of Service Management System
US8804765B2 (en) 2005-06-21 2014-08-12 Optis Wireless Technology, Llc Dynamic robust header compression
US20070104224A1 (en) * 2005-11-04 2007-05-10 Conner Keith F Differentiated quality of service transport protocols
CN100531137C (zh) * 2006-08-25 2009-08-19 中兴通讯股份有限公司 移动通信系统组播业务中建立控制面隧道的方法
TWI328373B (en) * 2006-11-08 2010-08-01 Ind Tech Res Inst Method and system for guaranteeing qos between different radio networks
US8345604B2 (en) * 2007-06-07 2013-01-01 Qualcomm Incorporated Effectuating establishment of internet protocol security tunnels for utilization in a wireless communication environment
CN101877915B (zh) 2009-04-28 2014-07-02 中兴通讯股份有限公司 一种长期演进系统中继站的数据传输方法和系统
CN101877860B (zh) 2009-04-28 2016-01-20 中兴通讯股份有限公司 中继节点、服务网关、中继数据的传输方法及系统
CN102870490B (zh) * 2012-06-30 2016-01-13 华为技术有限公司 数据传输方法、网元设备及通信系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1608359A (zh) * 2001-11-23 2005-04-20 诺基亚公司 Ims业务的无线电承载业务
US7778242B1 (en) * 2001-11-27 2010-08-17 Alcatel Lucent Protecting content of a packet containing speech data using unequal error protection
CN1860713A (zh) * 2003-09-30 2006-11-08 皇家飞利浦电子股份有限公司 用于通过分组交换网络进行实时传输的媒体分组结构
CN101461143A (zh) * 2007-02-28 2009-06-17 华为技术有限公司 无线通信系统中的数据分组传输方法
CN101072183A (zh) * 2007-06-11 2007-11-14 华为技术有限公司 数据流的服务质量保证方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2854473A4 *

Also Published As

Publication number Publication date
EP2854473A4 (en) 2015-09-09
CN105491686B (zh) 2019-05-28
JP5965061B2 (ja) 2016-08-03
US9467535B2 (en) 2016-10-11
JP2015526954A (ja) 2015-09-10
CN102870490A (zh) 2013-01-09
EP2854473A1 (en) 2015-04-01
RU2015102933A (ru) 2016-08-20
RU2606063C2 (ru) 2017-01-10
US20150110133A1 (en) 2015-04-23
CN105491686A (zh) 2016-04-13
EP2854473B1 (en) 2017-09-27
CN102870490B (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
US10966222B2 (en) Method, device, and system for processing reflective QoS characteristics
WO2014000307A1 (zh) 数据传输方法、网元设备及通信系统
JP5680633B2 (ja) バックホールヘッダ圧縮
US10660008B2 (en) Data transmission system, method, and apparatus
JP5684901B2 (ja) シングルブロックパケットアクセス手続きにおけるプロトコルオーバーヘッドの低減
WO2019214729A1 (zh) 数据处理的方法和设备
TW201735715A (zh) 用於中繼傳輸的方法和裝置以及中繼終端設備
CN101931946B (zh) 演进的分组系统中的终端的多接入方法及系统
WO2014127515A1 (zh) 业务提供系统、方法、移动边缘应用服务器及支持节点
JP7066838B2 (ja) データ処理方法およびデータ処理装置ならびにコンピュータ記憶媒体
WO2011023124A1 (zh) 网络中继场景下的头压缩方法及装置
WO2011018002A1 (zh) 一种传输承载的中继方法、装置和通信系统
US9723519B2 (en) Protocol processing method applied when control is decoupled from forwarding, control plane device, and forwarding plane device
WO2009056061A1 (fr) Procédé, système et dispositif pour transmettre un datagramme de protocole de tunnellisation de service général de radiocommunication par paquets
WO2014000520A1 (zh) 一种策略控制的方法、装置和系统
WO2012126291A1 (zh) 一种数据路由方法及系统
EP3021555A1 (en) Message processing method and device
WO2014036728A1 (zh) 一种空口传输方法及相关设备、系统
JP5768138B2 (ja) 通信デバイスとターゲットネットワーク内の宛先デバイスとの間のコネクションにおける中間ノードでパケットに対するアクションを実行する方法および装置
WO2014205819A1 (zh) 一种建立链路的方法、节点及装置
WO2016154831A1 (zh) 一种实现传输控制协议tcp传输的方法及装置
WO2011009353A1 (zh) 建立ip分流连接的实现方法和系统
WO2021155739A1 (zh) 接入层ip包的处理方法、装置及设备
WO2014032542A9 (zh) 多连接建立的方法及系统
WO2022033251A1 (zh) 数据传输方法及设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000908.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879628

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012879628

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012879628

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015518770

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015102933

Country of ref document: RU

Kind code of ref document: A