WO2011009353A1 - 建立ip分流连接的实现方法和系统 - Google Patents

建立ip分流连接的实现方法和系统 Download PDF

Info

Publication number
WO2011009353A1
WO2011009353A1 PCT/CN2010/073965 CN2010073965W WO2011009353A1 WO 2011009353 A1 WO2011009353 A1 WO 2011009353A1 CN 2010073965 W CN2010073965 W CN 2010073965W WO 2011009353 A1 WO2011009353 A1 WO 2011009353A1
Authority
WO
WIPO (PCT)
Prior art keywords
access gateway
network element
tunnel information
side network
local
Prior art date
Application number
PCT/CN2010/073965
Other languages
English (en)
French (fr)
Inventor
周娜
霍玉臻
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011009353A1 publication Critical patent/WO2011009353A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Definitions

  • the present invention relates to the field of mobile communications, and in particular to a method and system for implementing an Internet Protocol (IP) offload connection.
  • IP Internet Protocol
  • the 3rd Generation Partnership Project (3GPP) evolved Evolved Packet System is an Evolved Universal Terrestrial Radio Access Network (E- UTRAN), Mobility Management Entity (MME), Serving Gateway (S-GW), Packet Data Network Gateway (P-GW or PDN GW), home subscribers Server (Home Subscriber Server, abbreviated as HSS), 3GPP's Authentication and Authorization and Accounting (AAA) server, Policy and Charging Rules Function (PCRF) entity and The other support nodes are composed.
  • 3GPP 3rd Generation Partnership Project
  • EPS Evolved Packet System
  • E- UTRAN Evolved Universal Terrestrial Radio Access Network
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • P-GW or PDN GW Packet Data Network Gateway
  • HSS Home Subscriber Server
  • 3GPP's Authentication and Authorization and Accounting (AAA) server Policy and Charging Rules Function (PCRF) entity and
  • PCRF Policy and Charging Rules Function
  • the MME is responsible for control planes such as mobility management, processing of non-access stratum signaling, and management of user mobility management context
  • - GW is an access gateway device connected to E-UTRAN, which forwards data between E-UTRAN and P-GW, and is responsible for buffering paging waiting data
  • P-GW is EPS and packet data network (Packet Data)
  • PDN packet data network
  • PCRF policy and charging rule function entity, which receives the interface Rx and the carrier network protocol (Internet) Protocol, abbreviated as IP)
  • IP carrier network protocol
  • the gateway device in the network through the Gx/Gxa/Gxc interface, and is responsible for initiating the establishment of the IP bearer and ensuring the quality of service of the service data.
  • QoS Quality of service
  • charge control charge control
  • the home base station is a small, low-power base station deployed in indoor places such as homes and offices. Its main function is to provide users with higher service rates and lower the cost of using high-speed services, while making up for existing distributed cells. Insufficient coverage of wireless communication systems.
  • the advantage of a home base station is Affordable, convenient, low power output, plug and play, etc.
  • the home base station can be directly connected to the core network, as shown in FIG. 1 , and can also access the core network through the logical network element of the home base station gateway, as shown in FIG. 2 , wherein the main functions of the home base station gateway are: verifying the home base station Security, handling the registration of the home base station, performing operation and maintenance management on the home base station, configuring and controlling the home base station according to the operator's requirements, and exchanging data of the core network and the home base station.
  • the access gateway may be an S-GW (Serving Gateway), a P-GW (Packet Data Network Gateway), a SGSN (Serving GPRS (General Packet Radio Service) support node, Serving GPRS Support Node), GGSN (Gateway GPRS Support Node, Gateway GPRS Support Node).
  • the local access gateway may be an L-SGW (Local SGW, Local SGW), a local L-PGW (Local PGW, Local PGW), a V-SGW (Virtual SGW, Virtual SGW), a V-PGW (Virtual PGW, Virtual PGW). .
  • the local access gateway may be set up or divided with the wireless side network element, or may be set up or separated from the home base station gateway.
  • the mobile communication system can also support IP offloading, enabling local access to other IP devices or the Internet in the home network.
  • IP offloading enabling local access to other IP devices or the Internet in the home network.
  • the addition of the local access gateway provides strong support for IP offloading technology.
  • the gateway can be combined with the wireless side network element.
  • FIG. 3 is a flowchart of a process for establishing an IP offload connection when a user initially accesses on the basis of the system shown in FIG. 1 of the prior art, including the following steps:
  • Step 301 The user establishes an RRC (Radio Resource Control) connection as a bearer of signaling messages or service data before performing communication;
  • RRC Radio Resource Control
  • Step 302 The user sends an Initialization NAS (Non-Access-Stratume, Non-Access Layer) message to perform an attach operation.
  • Initialization NAS Non-Access-Stratume, Non-Access Layer
  • Step 303 The wireless side network element sends an initial user message to the mobility management apparatus, and forwards the NAS message to the mobility management apparatus.
  • Step 304 The mobility management device starts the authentication and the security process, and authenticates the user.
  • Step 305 The mobility management device uses an APN (Access Point Name) or a local access identifier (the identifiers may be in the message in step 303). Carrying in) found that local IP needs to be established Connecting, and sending a session establishment request message to the S-GW;
  • APN Access Point Name
  • a local access identifier the identifiers may be in the message in step 303.
  • Step 306 after receiving the message sent by the mobility management device, the S-GW sends a session establishment request message to the L-PGW;
  • Step 307 The L-PGW returns a session establishment response to the S-GW.
  • Step 308 The S-GW sends a session establishment response to the mobility management apparatus.
  • Step 309 The mobility management apparatus initiates an initial context setup request to the radio side network element.
  • Step 310 Perform an RRC connection configuration process.
  • Step 311 The wireless side network element returns an initial context establishment response to the mobility management apparatus.
  • Step 312 The terminal sends a direct transmission message to the wireless side network element, including the attachment completion information.
  • Step 313 The wireless side network element sends the mobility management apparatus to the mobility management apparatus. Attachment completion message;
  • Step 314 The mobility management apparatus sends a bearer update request to the S-GW, and carries the radio side network element address and the tunnel identifier of the radio side network element.
  • Step 315 the step is optional. If the handover indication is carried in step 314, the S-GW sends a bearer update request to the L-PGW.
  • Step 316 the step is optional, and the L-PGW returns a bearer update response to the S-GW.
  • Step 317 The S-GW returns a bearer update response to the mobility management device.
  • the technical problem to be solved by the present invention is to provide an implementation method and system for establishing an IP offload connection to create two data tunnels.
  • IP Internet Protocol
  • the mobility management device will tunnel information of the local access gateway or the local access gateway and the access network.
  • the closed tunnel information is transmitted to the wireless side network element;
  • the access gateway transmits tunnel information of the radio side network element and the access gateway to the local access gateway.
  • the method further includes: in the step of transmitting, by the access gateway, tunnel information of the radio side network element and the access gateway to the local access gateway, the access gateway further The tunnel information is transmitted to the local access gateway; the tunnel information of the radio side network element and the dual tunnel information are obtained by the access gateway after being acquired by the mobility management device, and then transmitted to the local access gateway. of.
  • the method further includes: the local access gateway saves the tunnel information and the dual tunnel information transmitted by the access gateway, and the local access gateway forwards downlink data according to the saved information; the dual tunnel information
  • the IP offload identifier or the dual tunnel identifier is included, and the tunnel information includes an address and a tunnel identifier, or only a tunnel identifier.
  • the local access gateway comprises one of: a local service gateway (L-SGW) and a local packet data network gateway (L-PGW), a separate L-PGW, and a local gateway general packet radio service (GPRS) support.
  • L-GGSN node
  • L-SGSN local serving GPRS support node
  • the radio side network element comprises one of the following: a base station, a home base station, a radio network controller ( RNC), a local access gateway, a data offloading functional entity
  • the access gateway is a Serving Gateway (S-GW) or a Serving GPRS Support Node (SGSN).
  • IP Internet Protocol
  • the mobility management device transmits the tunnel information of the local access gateway or the tunnel information of the local access gateway and the access gateway to the wireless side network element;
  • the wireless side network element transmits its tunnel information to the local access gateway.
  • the tunnel information of the radio side network element is transited by the mobility management apparatus.
  • IP Internet Protocol
  • the initiating connection establishment process establishes two A tunnel, a tunnel from the terminal to the wireless side network element to the local access gateway, and another tunnel from the terminal to the wireless side network element to the access gateway to the local access gateway.
  • IP Internet Protocol
  • the initiating connection establishment process establishes two tunnels, one tunnel from the terminal to the radio side network element to the local access gateway, and the other tunnel from the access gateway to the local access gateway.
  • the present invention provides an implementation system for establishing an Internet Protocol (IP) offload connection, the system comprising a mobility management device, a wireless side network element, an access gateway, and a local access gateway connected through a network, wherein :
  • IP Internet Protocol
  • the mobility management apparatus is configured to transmit tunnel information of the local access gateway or tunnel information of the local access gateway and the access gateway to the radio side network element;
  • the wireless side network element is configured to receive tunnel information transmitted by the mobility management device, and the access gateway is configured to transmit tunnel information of the wireless side network element and the access gateway to the local Access gateway
  • the local access gateway is configured to receive tunnel information transmitted by the access gateway.
  • the mobility management apparatus is further configured to send tunnel information of the radio side network element and dual tunnel information to the access gateway; and the access gateway is further configured to acquire the radio side network element The tunnel information and the dual tunnel information are forwarded to the local access gateway.
  • the local access gateway is further configured to save the tunnel information and the dual tunnel information transmitted by the access gateway, and forward the downlink data according to the saved information;
  • the dual tunnel information includes an IP offload identifier or a dual tunnel identifier.
  • the tunnel information includes an address and a tunnel identifier, or only a tunnel identifier.
  • the local access gateway comprises one of: a local service gateway (L-SGW) and a local packet data network gateway (L-PGW), a separate L-PGW, and a local gateway general packet radio service (GPRS) support.
  • L-GGSN node
  • L-SGSN local serving GPRS support node
  • the radio side network element comprises one of the following: a base station, A home base station, a radio network controller (RNC), a local access gateway, and a data offloading function entity
  • the access gateway is a Serving Gateway (S-GW) or a Serving GPRS Support Node (SGSN).
  • the present invention provides an implementation system for establishing an Internet Protocol (IP) offload connection, the system comprising a mobility management device, a wireless side network element, an access gateway, and a local access gateway connected through a network, wherein :
  • IP Internet Protocol
  • the mobility management apparatus is configured to transmit tunnel information of the local access gateway or tunnel information of the local access gateway and the access gateway to the radio side network element, and the radio side network element Tunnel information is transmitted to the local access gateway;
  • the wireless side network element is configured to receive tunnel information transmitted by the mobility management device, and transmit tunnel information of the wireless side network element to the mobility management device;
  • the local access gateway is configured to receive tunnel information of the radio side network element transmitted by the mobility management apparatus.
  • the address and tunnel information of the radio side network element may be forwarded by the access gateway (for example, S-GW) to the local access gateway (for example, L-PGW) ), so that the local access gateway simultaneously saves the tunnel information of the S-GW and the tunnel information of the network side of the radio side, thereby solving the problem of establishing multiple connections for IP offloading at the same time, and effectively realizing the creation mechanism of two data tunnels.
  • the access gateway for example, S-GW
  • L-PGW local access gateway
  • FIG. 1 is a schematic diagram of a mobile communication network connection in the prior art
  • FIG. 2 is a schematic diagram of another mobile communication network connection in the prior art
  • FIG. 3 is a flow chart of establishing a local IP connection when a user initially accesses in the prior art
  • FIG. 4a and FIG. 4b are schematic diagrams showing a local IP access data flow in a mobile communication system according to the present invention
  • FIG. Flowchart of local IP connection
  • FIG. 6 is a flowchart of establishing a local IP connection in a multi-PDN connection establishment process according to the present invention
  • FIG. 7 is a flowchart of establishing a dedicated bearer of an IP offload according to the present invention
  • FIG. 9 is a flow chart of the present invention for realizing the establishment of a local IP connection when the user initially accesses the dual tunnel shown in FIG. 4b.
  • the main idea of the method and system of the present invention is to simultaneously establish two tunnels connecting the core network and not connecting through the core network for the user supporting the IP offloading, wherein the data is quickly transmitted without the connection of the core network.
  • the connection of the core network as a secondary connection, the downlink data of the idle state terminal can be cached.
  • 4a, 4b show an illustrative data flow for IP offloading.
  • the connection establishment process is initiated to establish two tunnels.
  • the first tunnel from the terminal to the wireless side network element to the local access gateway the data transmission does not pass through the core network, and the efficiency is high, and the wireless side network element is not required for data buffering; another tunnel slave terminal To the wireless side network element to the S-GW to the local access gateway, where the S-GW can buffer the downlink data of the idle state terminal.
  • the terminal is in the connected state, data can be transmitted from the first tunnel, and after the terminal enters the idle state, data can be transmitted from the second tunnel.
  • the IP offload connection may also be the schematic connection shown in FIG. 4b, that is, the first tunnel through the network element is the same as FIG. 4a, but the second tunnel exists only between the S-GW and the local access gateway. There is no need to establish a channel between the S-GW and the wireless side network element.
  • the method for establishing two data tunnels for IP offloading is provided by the access gateway (for example, S-GW) to forward the address and tunnel information of the radio side network element to the local access gateway (for example, L-PGW). Therefore, the local access gateway simultaneously saves the tunnel information of the S-GW and the tunnel information of the wireless side network element, thereby solving the problem of establishing multiple connections for the IP offloading, and effectively implementing the creation mechanism of the two data tunnels.
  • the access gateway for example, S-GW
  • L-PGW local access gateway
  • the implementation method for establishing an IP offload connection includes: The step of acquiring, by the wireless side network element, the tunnel information, the mobility management device transmitting the tunnel information of the local access gateway or the tunnel information of the local access gateway and the access gateway to the wireless side network element;
  • the access gateway In the step of acquiring the tunnel information by the local access gateway, the access gateway simultaneously transmits the dual tunnel information to the local access gateway; the local access gateway saves the tunnel information transmitted by the access gateway And the dual tunnel information, the local access gateway forwards the downlink data according to the saved information;
  • the dual tunnel information includes an IP offload identifier or a dual tunnel identifier
  • the tunnel information includes an address and a tunnel identifier, or only a tunnel identifier
  • the tunnel identifier may be a TEID (Tunnel End Point Identifier), a GRE Key (Universal Routing Encapsulation Keys, Generic Routing Encapsulation Key), etc.
  • the tunnel information of the radio side network element and the dual tunnel information are obtained by the access gateway from the mobility management apparatus and then transmitted to the local access gateway.
  • the local access gateway includes one of the following: a local service gateway (L-SGW) and a local packet data network gateway (L-PGW), a separate L-PGW, a local L-GGSN (local GGSN), and L-SGSN (local SGSN), separate L-GGSN, data offloading functional entity.
  • the wireless side network element includes one of the following: a base station, a home base station, an RNC (Radio Network Controller), a local access gateway, and a data offload function entity.
  • the access gateway can be an S-GW or an SGSN.
  • the wireless side network element and the local access gateway obtain the above information, it is considered that the two tunnels of the IP offload connection according to the present invention are established.
  • the mobility management device, the wireless side network element, the local access gateway and the access gateway according to the present invention are logical functional entities.
  • FIG. 5 to FIG. 8 describe the implementation based on the E-UTRAN system as shown in FIG. 4a.
  • FIG. 5 is a flow chart of the present invention for establishing a local IP connection when the user initially accesses based on the system shown in FIG. 1. This embodiment includes the following steps:
  • Step 501 The user establishes an RRC (Radio Resource Control) connection as a signaling message or a bearer of service data before performing communication;
  • RRC Radio Resource Control
  • Step 502 The user sends an Initialization NAS (Non-Access-Stratume, Non-Access Layer) message to perform an attach operation.
  • Initialization NAS Non-Access-Stratume, Non-Access Layer
  • Step 503 The wireless side network element sends an initial user message to the mobility management apparatus, and forwards the NAS message to the mobility management apparatus.
  • Step 504 The mobility management device starts the authentication and security process to authenticate the user.
  • Step 505 The mobility management device uses an APN (Access Point Name) or a local access identifier (the identifiers may be in the message in step 503). If the local IP connection is found, the session establishment request message is sent to the S-GW, and the message may carry the IP offload identifier or the dual tunnel identifier.
  • APN Access Point Name
  • the session establishment request message is sent to the S-GW, and the message may carry the IP offload identifier or the dual tunnel identifier.
  • Step 506 After receiving the message sent by the mobility management device, the S-GW sends a session establishment request message to the L-PGW, where the message carries the tunnel information of the S-GW, and may also carry the IP offload identifier or the dual tunnel identifier.
  • Step 507 The L-PGW returns a session establishment response to the S-GW.
  • Step 508 The S-GW sends a session establishment response to the mobility management apparatus.
  • Step 509 The mobility management device determines that the connection is an IP offload connection, and initiates an initial context setup request to the radio side network element, where the tunnel information of the S-GW and the tunnel information of the L-PGW are carried.
  • the radio side network element stores the tunnel information of the L-PGW and the tunnel information of the S-GW.
  • Step 510 Perform an RRC connection configuration process.
  • Step 511 The wireless side network element returns an initial context establishment response to the mobility management apparatus.
  • Step 512 The terminal sends a direct transmission message to the wireless side network element, including the attachment completion information.
  • Step 513 The wireless side network element sends the mobility management apparatus to the mobility management apparatus. Attachment completion message;
  • Step 514 The mobility management apparatus sends a bearer update request to the S-GW, where the tunnel information of the radio side network element is carried, and the IP offload identifier or the dual tunnel identifier may also be carried.
  • Step 515 The S-GW determines that the connection is an IP offload connection, and the bearer update request sent to the L-PGW carries the tunnel information of the radio side network element, and may also carry the IP offload identifier or the dual tunnel identifier.
  • Step 516 L- The PGW saves the tunnel information of the radio side network element and the tunnel information of the S-GW for the IP offload connection; and returns a bearer update response to the S-GW at the same time;
  • the L-PGW can send the downlink data directly to the radio side network element, or send the downlink data to the S-GW.
  • Step 517 The S-GW returns a bearer update response message to the mobility management apparatus.
  • FIG. 6 is a flow chart of the present invention for establishing a local IP connection after initial user access based on the system shown in FIG. 1. This embodiment includes the following steps:
  • Step 601 the user has attached to the network, and has a core network PDN connection
  • Step 602 The terminal initiates a PDN connection request to the mobility management device via the radio side network element.
  • Step 603 The mobility management device discovers that the local IP address needs to be established according to the APN or the local access identifier (the identifiers may be carried in the message in step 602).
  • the connection sends a session establishment request message to the S-GW, where the message may carry an IP offload identifier or a dual tunnel identifier.
  • Step 604 After receiving the message sent by the mobility management device, the S-GW sends a session establishment request to the L-PGW, where the tunnel information of the S-GW is carried, and the IP offload identifier or the dual tunnel identifier may also be carried.
  • Step 605 The L-PGW returns a session establishment response to the S-GW.
  • Step 606 The S-GW sends a session establishment response to the mobility management apparatus.
  • Step 607 The mobility management apparatus determines that the connection is an IP offload connection, and initiates a bearer setup request to the radio side network element, where the tunnel information of the S-GW and the tunnel information of the L-PGW are carried; the radio side network element saves the L-PGW Tunnel information and tunnel information of the S-GW.
  • Step 608 Perform an RRC connection configuration process.
  • Step 609 The radio side network element returns a bearer setup response to the mobility management apparatus.
  • Step 610 The terminal initiates a direct transmission message.
  • Step 611 The radio side network element sends a PDN connection setup complete message to the mobility management apparatus.
  • Step 613 The S-GW determines that the connection is an IP offload connection, and the bearer update request sent to the L-PGW carries the tunnel information of the radio side network element, and may also carry the IP offload identifier or the dual tunnel identifier.
  • Step 614 L- The PGW saves the tunnel information of the radio side network element and the tunnel information of the S-GW for the IP offload connection; and the L-PGW returns an update response to the S-GW;
  • the L-PGW can send the downlink data directly to the radio side network element, or send the downlink data to the S-GW.
  • Step 615 The S-GW returns a bearer update response message to the mobility management apparatus.
  • Figure 7 is a flow chart showing the establishment of a dedicated load after initial user access based on the system of Figure 1 of the present invention. This embodiment includes the following steps:
  • Step 701 The user has attached to the network and has a local IP connection.
  • Step 702 The terminal initiates a bearer modification request to the mobility management apparatus by using the radio side network element.
  • Step 703 The mobility management apparatus forwards the bearer modification request to the S-GW.
  • Step 704 After receiving the bearer modification request sent by the mobility management apparatus, the S-GW sends a bearer modification request to the L-PGW.
  • Step 705 The L-PGW sends a dedicated bearer setup request to the S-GW.
  • Step 706 The S-GW sends a dedicated bearer setup request to the mobility management apparatus.
  • Step 707 The mobility management apparatus determines that the connection is an IP offload connection, and initiates a bearer setup request to the radio side network element, where the tunnel information of the L-PGW is carried.
  • the wireless side network element stores the tunnel information of the L-PGW.
  • FIG. 7 is implemented on the basis of the process of FIG. 5 or FIG. 6.
  • the address of the L-PGW is already stored in the radio side network element. Therefore, the address of the L-PGW is no longer required to be carried in the bearer setup request. A similar situation exists for 712 and 713.
  • Step 708 Perform an RRC connection configuration process.
  • Step 709 The radio side network element returns a bearer setup response to the mobility management apparatus.
  • Step 710 The terminal initiates a direct transmission message.
  • Step 711 The radio side network element sends a session management response message to the mobility management apparatus.
  • Step 713 The S-GW determines that the connection is an IP offload connection, and the tunnel information of the radio side network element and the tunnel information of the S-GW are carried in the response of the dedicated bearer setup response sent to the L-PGW.
  • the L-PGW stores the tunnel information of the radio side network element and the tunnel information of the S-GW for the IP offload connection.
  • the L-PGW may send the downlink data directly to the radio side network element, or may send the downlink data to the S-GW.
  • FIG. 8 is a PDP (Packet Data Protocol, Packet) for implementing the dual tunnel as shown in FIG. 4a on the basis of the UTRAN (Universal Terrestrial Radio Access Network) system. Data Protocol) Flowchart for context activation. This embodiment includes the following steps:
  • Step 801 The terminal performs an operation of attaching to the network.
  • Step 802 The terminal sends a PDP context activation message to the SGSN.
  • Step 803 The SGSN sends a PDP context establishment request to the L-GGSN, where the SGSN carries the tunnel information, and may also carry the IP offload identifier or the dual tunnel identifier.
  • Step 804 The L-GGSN returns a PDP context setup response to the SGSN, where the L-GGSN is carried. Tunnel information;
  • Step 805 Perform a radio access bearer establishment process, and the SGSN provides the tunnel information of the SGSN and the tunnel information of the L-GGSN to the radio side network element.
  • Step 806 The SGSN sends a PDP context update request to the L-GGSN, where the tunnel information of the wireless side network element is carried.
  • Step 807 The L-GGSN returns a PDP context update response to the SGSN.
  • the L-GGSN stores dual tunnel information for the IP offload: tunnel information of the SGSN, and tunnel information of the radio side network element.
  • Step 808 The SGSN returns a PDP context activation response message to the terminal.
  • the foregoing process may also implement the dual tunnel establishment in another manner, that is, the tunnel information of the SGSN sent to the L-GGSN is carried in step 806, and is not carried in step 803.
  • the IP may be carried in step 806.
  • Split ID or dual tunnel ID may also implement the dual tunnel establishment in another manner, that is, the tunnel information of the SGSN sent to the L-GGSN is carried in step 806, and is not carried in step 803.
  • the IP may be carried in step 806.
  • Split ID or dual tunnel ID may be carried in step 806.
  • Figure 9 depicts an application scenario based on the E-UTRAN system to implement the dual tunnel shown in Figure 4b.
  • FIG. 9 is a flow chart of the present invention for establishing a local IP connection when the user initially accesses based on the system shown in FIG. 1. This embodiment includes the following steps:
  • Step 901 The user establishes an RRC (Radio Resource Control) connection as a signaling message or a bearer of service data before performing communication;
  • RRC Radio Resource Control
  • Step 902 The user sends an Initialization NAS (Non-Access-Stratume) message to perform an attach operation.
  • Initialization NAS Non-Access-Stratume
  • Step 903 The wireless side network element sends an initial user message to the mobility management apparatus, and forwards the NAS message to the mobility management apparatus.
  • Step 904 the mobility management device starts the authentication and the security process, and authenticates the user.
  • Step 905 The mobility management device according to the APN (Access Point Name) Or the local access identifier (the identifier may be carried in the message in step 903), if it is found that a local IP connection needs to be established, the session establishment request message is sent to the S-GW, and the message may carry the IP offload identifier or the dual tunnel identifier.
  • APN Access Point Name
  • the local access identifier the identifier may be carried in the message in step 903
  • Step 906 Receive the message sent by the mobility management device, and the S-GW sends the session establishment request message to the L-PGW, where the message carries the tunnel information of the S-GW, and may also carry the IP offload identifier or the dual tunnel identifier.
  • Step 907 The L-PGW returns a session establishment response to the S-GW.
  • Step 908 The S-GW sends a session establishment response to the mobility management apparatus.
  • Step 909 The mobility management device determines that the connection is an IP offload connection, and then initiates an initial context setup request to the radio side network element, where the tunnel information of the L-PGW is carried, and the tunnel information of the S-GW, such as the address and the tunnel identifier, does not need to be carried. ;
  • Step 910 Perform an RRC connection configuration process.
  • Step 911 The wireless side network element returns an initial context establishment response to the mobility management apparatus.
  • Step 912 The terminal sends a direct transmission message to the wireless side network element, including the attachment completion information.
  • Step 913 The wireless side network element sends the mobility management apparatus to the mobility management apparatus. Attachment completion message;
  • Step 914 The mobility management apparatus sends a bearer update request to the S-GW, where the tunnel information of the wireless side network element is carried, and the IP offload identifier or the dual tunnel identifier may also be carried.
  • Step 915 The S-GW determines that the connection is an IP offload connection, and the bearer update request sent to the L-PGW carries the tunnel information of the radio side network element, and may also carry the IP offload identifier or the dual tunnel identifier. At this time, the S-GW does not need to save the tunnel information of the radio side network element, such as the address and the tunnel identifier;
  • Step 916 The L-PGW saves the tunnel information of the radio side network element and the tunnel information of the S-GW for the IP offload connection; and returns a bearer update response to the S-GW at the same time;
  • the L-PGW can send the downlink data directly to the radio side network element, or send the downlink data to the S-GW.
  • Step 917 The S-GW returns a bearer update response message to the mobility management apparatus.
  • L-PGW local access gateway
  • S-GW slave access gateway
  • FIG. 9 illustrates only two methods of establishing a data tunnel as shown in FIG. 4b for IP offloading by taking the local IP connection establishment in the initial access of the user in the E-UTRAN system as an example.
  • the mobility management device SGSN or MME
  • the address and the tunnel information of the access gateway are sent to the radio network element (the tunnel information of the access gateway does not need to be carried at this time).
  • the access gateway needs to send the address and tunnel information of the radio side network element to the local access gateway (access The gateway does not need to save the tunnel information of the wireless side network element), so that two data channels can be established for the IP offload connection.
  • access The gateway does not need to save the tunnel information of the wireless side network element, so that two data channels can be established for the IP offload connection.
  • the method of establishing two tunnels for IP offloading is very similar to the embodiment of Fig. 9, and therefore the description will not be repeated here.
  • the above embodiment only illustrates a method of establishing two data tunnels for IP offloading by taking the case where there is no home base station gateway as an example.
  • the mobility management device SGSN or MME
  • the access gateway needs to set the address and tunnel information of the radio side network element. It is sent to the local access gateway so that two data channels can be established for the IP offload connection.
  • the message between the mobility management device and the wireless side network element will be transmitted via the home base station gateway.
  • the method of establishing two tunnels for IP splitting is very similar to the above embodiment, and therefore the description will not be repeated here.
  • the tunnel identifier allocated by the local access gateway to the tunnel between the local access gateway and the access gateway may be the same as the tunnel identifier allocated for the tunnel between the local access gateway and the radio side network element. It can also be different.
  • the tunnel information of the S-GW sent to the radio side network element and the tunnel information of the L-PGW are respectively:
  • the tunnel information of the S-GW is used to establish a tunnel between the S-GW and the radio side network element.
  • the uplink channel that is, the data sent by the radio side network element to the S-GW is encapsulated;
  • the tunnel information of the L-PGW is used to establish an uplink channel of the tunnel between the L-PGW and the radio side network element, that is, to the radio side network element. Encapsulate the data to the L-PGW.
  • the tunnel information of the SGSN sent to the radio side network element and the tunnel information of the L-GGSN are respectively:
  • the tunnel information of the SGSN is used to establish an uplink channel of the tunnel between the SGSN and the radio side network element, that is, to the radio side network element.
  • the data of the SGSN is encapsulated;
  • the tunnel information of the L-GGSN is used to establish an uplink channel of the tunnel between the L-GGSN and the radio side network element, that is, to the radio side network.
  • the data sent by the Yuan to the L-GGSN is encapsulated.
  • the L-PGW obtains the tunnel information of the radio side network element, and the radio side network element transmits the tunnel information of the radio side network element to the mobility management apparatus, and then the mobility management apparatus transmits the tunnel information through the S-GW.
  • the manner in which the L-PGW acquires the radio side network element tunnel information is not limited to the above embodiment.
  • the tunnel information may be transmitted to the L-PGW through the radio side network element, where mobility management is possible.
  • the device is relayed.
  • the method is also applicable to the UTRAN or the scenario where the home base station gateway exists. In these cases, the method for establishing two tunnels for IP offloading is very similar to the above embodiment, and thus the description is not repeated here.
  • the tunnel information of the S-GW sent to the L-PGW and the tunnel information of the radio side network element are respectively:
  • the tunnel information of the S-GW is used to establish the tunnel between the S-GW and the L-PGW.
  • the downlink channel that is, the data sent by the L-PGW to the S-GW is encapsulated;
  • the tunnel information of the radio side network element is used to establish a downlink channel of the tunnel between the L-PGW and the radio side network element, that is, the L-PGW is sent to the wireless network.
  • the data of the side network element is encapsulated.
  • the tunnel information of the SGSN sent to the L-GGSN and the tunnel information of the radio side network element are respectively:
  • the tunnel information of the SGSN is used to establish a downlink channel of the tunnel between the SGSN and the L-GGSN, that is, the L-GGSN is sent to the SGSN.
  • the data is encapsulated.
  • the tunnel information of the radio side network element is used to establish a downlink channel of the tunnel between the L-GGSN and the radio side network element, that is, the data sent by the L-GGSN to the radio side network element is encapsulated.
  • the access gateway may be located in the core network or may be located locally.
  • the wireless side network element of the IP offload connection may be the same as the local access gateway address.
  • IP offloading can be local IP access.
  • IP offloading can be local IP access to the user's local network, local IP access to the company's local network, local IP access to the Internet, Internet traffic shunting, specific IP data offloading, and so on.
  • the local access gateway includes one of the following: Local Service Gateway (L-SGW) and Local Packet Data Network Gateway (L-PGW), separate L-PGW, L-GGSN and L-SGSN, separate L-GGSN, data The shunt function entity.
  • L-SGW Local Service Gateway
  • L-PGW Local Packet Data Network Gateway
  • the wireless side network element includes one of the following: a base station, a home base station, an RNC, a local access gateway, and a data offload function entity.
  • the present invention also provides an implementation system for establishing an IP offload connection, the system
  • the system includes a mobility management device connected through a network, a wireless side network element, an access gateway, and a local access gateway, where:
  • the mobility management apparatus is configured to transmit tunnel information of the local access gateway or tunnel information of the local access gateway and the access gateway to the radio side network element;
  • the wireless side network element is configured to receive tunnel information sent by the mobility management apparatus, and the access gateway is configured to transmit tunnel information of the wireless side network element and the access gateway to the local Access gateway
  • the mobility management device is further configured to send tunnel information and dual tunnel information of the radio side network element to the access gateway; and the access gateway is further configured to acquire tunnel information of the radio side network element. And forwarding the dual tunnel information to the local access gateway;
  • the local access gateway is configured to receive tunnel information sent by the access gateway; the local access gateway is further configured to save the tunnel information and the dual tunnel information transmitted by the access gateway, and according to the saved information. And forwarding the downlink data; the dual tunnel information includes an IP offload identifier or a dual tunnel identifier, where the tunnel information includes an address and a tunnel identifier, or only includes a tunnel identifier.
  • the wireless side network element ⁇ ⁇ station, home base station or RNC wireless network controller
  • the mobility management device is a mobility management entity ( ⁇ ), a mobile switching center (MSC) or a serving GPRS support node (SGSN), and the local access gateway is an L-PGW or an L-GGSN,
  • the access gateway is an S-GW or an SGSN.
  • the IP offloading connection includes a multi-segment tunnel.
  • the establishment of the IP offloading connection involved in the present invention mainly involves the establishment of a tunnel between the radio side network element, the access gateway and the local access gateway.
  • a method for establishing two data tunnels for IP offloading the tunnel information of the local access gateway or the tunnel information of the local access gateway and the access gateway is transmitted by the mobility management apparatus to the radio side network element;
  • the gateway eg, S-GW
  • the gateway forwards the address and tunnel information of the radio side network element to the local access gateway (eg, L-PGW), or the radio side network element transmits its tunnel information to the local connection.
  • the gateway can be transited by the mobility management device, thereby solving the problem of establishing multiple connections for IP offloading, and effectively implementing the creation mechanism of two data tunnels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明建立 IP分流连接的实现方法包括: 移动性管理装置将本地接入网关的隧道信息或者本地接入网关和接入网关的隧道信息传送给无线侧网元;以及所述接入网关将所述无线侧网元和所述接入网关的隧道信息传送给所述本地接入网关,或者,所述无线侧网元将其隧道信息传送给所述本地接入网关。本发明还提供了建立 IP分流连接的实现系统。应用本发明可以实现两条数据隧道的创建。

Description

建立 IP分流连接的实现方法和系统
技术领域
本发明涉及移动通信领域, 具体涉及建立因特网协议(IP )分流连接的 实现方法和系统。
背景技术
第三代合作伙伴计划 ( 3rd Generation Partnership Project, 简称为 3GPP ) 演进的分组系统( Evolved Packet System , 简称为 EPS ) 由演进的通用陆地 无线接入网 ( Evolved Universal Terrestrial Radio Access Network , 简称为 E-UTRAN )、移动性管理实体(Mobility Management Entity, 简称为 MME ) 、 服务网关( Serving Gateway, S-GW )、分组数据网络网关( Packet Data Network Gateway, 简称为 P-GW或者 PDN GW)、 归属用户服务器(Home Subscriber Server,简称为 HSS )、 3 GPP的认证授权计费( Authentication, Authorization and Accounting , 简称为 AAA )服务器、策略和计费规则功能( Policy and Charging Rules Function, 简称为 PCRF ) 实体及其他支撑节点组成。
图 1是根据相关技术的 EPS的系统架构的示意图, 如图 1所示, MME 负责移动性管理、 非接入层信令的处理和用户移动性管理上下文的管理等控 制面的相关工作; S-GW是与 E-UTRAN相连的接入网关设备, 在 E-UTRAN 和 P-GW之间转发数据,并且负责对寻呼等待数据进行緩存; P-GW则是 EPS 与分组数据网络( Packet Data Network , 简称为 PDN )之间的边界网关, 负 责 PDN的接入及在 EPS与 PDN间转发数据等功能; PCRF是策略和计费规 则功能实体, 它通过接收接口 Rx和运营商网络协议( Internet Protocol , 简称 为 IP )业务网络相连, 获取业务信息, 此外, 它通过 Gx/Gxa/Gxc接口与网络 中的网关设备相连, 负责发起 IP承载的建立, 保证业务数据的服务质量 ( Quality of Service , 简称为 QoS ) , 并进行计费控制。
家用基站是一种小型、低功率的基站, 部署在家庭及办公室等室内场所, 主要作用是向用户提供更高的业务速率并降低使用高速率服务所需要的费 用, 同时弥补已有分布式蜂窝无线通信系统覆盖的不足。 家用基站的优点是 实惠、 便捷、 低功率输出、 即插即用等。
家用基站可以直接连接到核心网络, 如图 1所示, 也可以通过家用基站 网关这个逻辑网元接入到核心网络, 如图 2所示, 其中, 家用基站网关的主 要功能为: 验证家用基站的安全性, 处理家用基站的注册, 对家用基站进行 运行维护管理, 根据运营商要求配置和控制家用基站, 负责交换核心网和家 用基站的数据。接入网关可以是 S-GW (服务网关, Serving Gateway ) 、 P-GW (分组数据网网关, Packet Data Network Gateway ) 、 SGSN (服务 GPRS (通 用分组无线业务, General Packet Radio Service ) 支持节点, Serving GPRS Support Node )、 GGSN(网关 GPRS支持节点, Gateway GPRS Support Node )。 本地接入网关可以是 L-SGW (本地 SGW, Local SGW ) 、 本地 L-PGW (本 地 PGW, Local PGW ) 、 V-SGW (虚拟 SGW, Virtual SGW ) 、 V-PGW (虚 拟 PGW, Virtual PGW ) 。 本地接入网关可以和无线侧网元合设或分设, 也 可以和家用基站网关合设或分设。
除了支持移动核心网络的接入以外,移动通信系统还可支持 IP分流功能, 可实现终端对家用网络中其他 IP设备或者互联网络的本地接入。 如图 1和图 2所示, 本地接入网关的增设可提供对 IP分流技术的有力支持, 该网关可与 无线侧网元合设。
图 3是现有技术在图 1所示系统的基础上, 用户初始接入时建立 IP分流 连接的过程的流程图, 包括如下步骤:
步骤 301 , 用户在进行通信前建立 RRC ( Radio Resource Control, 无线资 源控制 )连接作为信令消息或者业务数据的承载;
步骤 302, 用户发送初始化 NAS ( Non-Access-Stratum, 非接入层) 消息 进行附着操作;
步骤 303 , 无线侧网元将初始的用户消息发给移动性管理装置, 并转发 NAS消息至移动性管理装置;
步骤 304, 移动性管理装置开启鉴权以及安全流程, 对用户进行验证; 步骤 305, 移动性管理装置根据 APN ( Access Point Name, 接入点名称) 或本地访问标识(这些标识可以在步骤 303消息中携带)发现需建立本地 IP 连接, 并向 S-GW发送会话建立请求消息;
步骤 306,接收到移动性管理装置发送的消息后, S-GW将会话建立请求 消息发送给 L-PGW;
步骤 307 , L-PGW向 S-GW返回会话建立响应;
步骤 308, S-GW向移动性管理装置发送会话建立响应;
步骤 309, 移动性管理装置向无线侧网元发起初始上下文建立请求; 步骤 310, 执行 RRC连接配置过程;
步骤 311 , 无线侧网元向移动性管理装置返回初始上下文建立响应; 步骤 312, 终端向无线侧网元发送直传消息, 包含附着完成信息; 步骤 313 , 无线侧网元向移动性管理装置发送附着完成消息;
步骤 314, 移动性管理装置向 S-GW发送承载更新请求, 携带无线侧网 元地址和无线侧网元的隧道标识;
步骤 315, 该步可选, 如果在步骤 314中携带了切换指示, 则 S-GW向 L-PGW发送承载更新请求。
步骤 316, 该步可选, L-PGW向 S-GW返回承载更新响应。
步骤 317, S-GW向移动性管理装置返回承载更新响应。
在上述 IP分流连接建立过程中, 只存在一个数据隧道( L-PGW至 S-GW 至无线侧网元), 该 IP分流连接需要经过核心网, 因此数据的传递速度受到 一定的制约。 创建两个数据隧道虽然可以解决该问题, 但现有技术中还未提 供明确的解决方案。
发明内容
本发明要解决的技术问题是提供一种建立 IP分流连接的实现方法和系 统, 以创建两条数据隧道。
为解决上述技术问题, 本发明提供一种建立因特网协议(IP )分流连接 的实现方法, 该方法包括:
移动性管理装置将本地接入网关的隧道信息或者本地接入网关和接入网 关的隧道信息传送给无线侧网元; 以及
所述接入网关将所述无线侧网元和所述接入网关的隧道信息传送给所述 本地接入网关。
优选地, 上述方法还包括: 在所述接入网关将所述无线侧网元和所述接 入网关的隧道信息传送给所述本地接入网关的步骤中, 所述接入网关还将双 隧道信息传送给所述本地接入网关; 所述无线侧网元的隧道信息及所述双隧 道信息是所述接入网关从所述移动性管理装置获取后再传送给所述本地接入 网关的。
优选地, 上述方法还包括: 所述本地接入网关保存所述接入网关传送的 所述隧道信息及双隧道信息, 所述本地接入网关根据保存的信息转发下行数 据; 所述双隧道信息包括 IP分流标识或双隧道标识, 所述隧道信息包括地址 和隧道标识, 或者仅包括隧道标识。
优选地, 所述本地接入网关包括以下之一: 本地服务网关 (L-SGW )和 本地分组数据网络网关(L-PGW ) , 单独的 L-PGW, 本地网关通用分组无线 业务( GPRS )支持节点( L-GGSN )和本地服务 GPRS支持节点( L-SGSN ) , 单独的 L-GGSN, 数据分流功能实体; 所述无线侧网元包括以下之一: 基站、 家用基站、 无线网络控制器(RNC ) 、 本地接入网关、 数据分流功能实体; 所述接入网关是服务网关 ( S-GW )或服务 GPRS支持节点 ( SGSN ) 。
为解决上述技术问题, 本发明提供一种建立因特网协议(IP )分流连接 的实现方法, 该方法包括:
移动性管理装置将本地接入网关的隧道信息或者本地接入网关和接入网 关的隧道信息传送给无线侧网元; 以及
所述无线侧网元将其隧道信息传送给所述本地接入网关。
优选地, 在所述无线侧网元将其隧道信息传送给所述本地接入网关的过 程中, 所述无线侧网元的隧道信息由所述移动性管理装置进行中转。
为解决上述技术问题, 本发明提供一种建立因特网协议(IP )分流连接 的实现方法, 该方法包括:
移动性管理装置判断需要建立 IP分流连接时,发起连接建立流程建立两 条隧道, 一条隧道从终端至无线侧网元至本地接入网关, 另一条隧道从终端 至无线侧网元至接入网关至本地接入网关。
为解决上述技术问题, 本发明提供一种建立因特网协议(IP )分流连接 的实现方法, 该方法包括:
移动性管理装置判断需要建立 IP分流连接时,发起连接建立流程建立两 条隧道, 一条隧道从终端至无线侧网元至本地接入网关, 另一条隧道从接入 网关至本地接入网关。
为解决上述技术问题, 本发明提供一种建立因特网协议(IP )分流连接 的实现系统, 该系统包括通过网络连接的移动性管理装置、 无线侧网元、 接 入网关及本地接入网关, 其中:
所述移动性管理装置, 设置为将所述本地接入网关的隧道信息或者所述 本地接入网关和接入网关的隧道信息传送给所述无线侧网元;
所述无线侧网元, 设置为接收所述移动性管理装置传送的隧道信息; 所述接入网关, 设置为将所述无线侧网元和所述接入网关的隧道信息传 送给所述本地接入网关;
所述本地接入网关, 设置为接收所述接入网关传送的隧道信息。
优选地, 所述移动性管理装置还设置为向所述接入网关发送所述无线侧 网元的隧道信息以及双隧道信息; 并且所述接入网关还设置为在获取所述无 线侧网元的隧道信息以及所述双隧道信息后将这些信息转发给所述本地接入 网关。
优选地, 所述本地接入网关还设置为保存所述接入网关传送的所述隧道 信息及双隧道信息以及根据保存的信息转发下行数据; 所述双隧道信息包括 IP分流标识或双隧道标识, 所述隧道信息包括地址和隧道标识, 或者仅包括 隧道标识。
优选地, 所述本地接入网关包括以下之一: 本地服务网关 (L-SGW )和 本地分组数据网络网关(L-PGW ) , 单独的 L-PGW, 本地网关通用分组无线 业务( GPRS )支持节点( L-GGSN )和本地服务 GPRS支持节点( L-SGSN ) , 单独的 L-GGSN, 数据分流功能实体; 所述无线侧网元包括以下之一: 基站、 家用基站、 无线网络控制器(RNC ) 、 本地接入网关、 数据分流功能实体; 所述接入网关是服务网关 ( S-GW )或服务 GPRS支持节点 ( SGSN ) 。
为解决上述技术问题, 本发明提供一种建立因特网协议(IP )分流连接 的实现系统, 该系统包括通过网络连接的移动性管理装置、 无线侧网元、 接 入网关及本地接入网关, 其中:
所述移动性管理装置, 设置为将所述本地接入网关的隧道信息或者所述 本地接入网关和接入网关的隧道信息传送给所述无线侧网元, 以及将所述无 线侧网元的隧道信息传送给所述本地接入网关;
所述无线侧网元, 设置为接收所述移动性管理装置传送的隧道信息, 并 且将所述无线侧网元的隧道信息传送给所述移动性管理装置;
所述本地接入网关, 设置为接收所述移动性管理装置传送的所述无线侧 网元的隧道信息。
本发明提供的为 IP分流建立两条数据隧道的方法中, 可以由接入网关 (如, S-GW )将无线侧网元的地址和隧道信息转发给本地接入网关 (如, L-PGW ) , 以便本地接入网关同时保存 S-GW的隧道信息以及无线侧网元的 隧道信息, 从而解决了为 IP分流同时建立多连接的问题, 有效地实现了两条 数据隧道的创建机制。 附图概述
图 1为现有技术中一种移动通信网络连接示意图;
图 2为现有技术中另一种移动通信网络连接示意;
图 3为现有技术中用户初始接入时建立本地 IP连接的流程图; 图 4a和 4b为本发明移动通信系统中本地 IP接入数据流示意图; 图 5是本发明用户初始接入时建立本地 IP连接的流程图;
图 6是本发明多 PDN连接建立过程中进行本地 IP连接建立流程图; 图 7是本发明 IP分流的专有承载建立流程图;
图 8是本发明 UTRAN系统中用户初始接入时进行 PDP上下文激活的流 程图;
图 9是本发明为实现如图 4b所示的双隧道在用户初始接入时进行本地 IP 连接建立的流程图。
本发明的较佳实施方式
本发明的方法和系统的主要思想是,对于支持 IP分流的用户同时建立经 过核心网的连接和不经过核心网的连接的两条隧道, 其中, 不经过核心网的 连接, 实现数据的快速传递, 经过核心网的连接, 作为辅连接, 可实现空闲 状态终端下行数据的緩存。
以 LTE ( Long Term Evolution, 长期演进)移动通信网络架构为例, 图
4a、 4b显示了 IP分流的示意性数据流。 对于 IP分流连接, 为了实现数据的 快速传递, 移动性管理装置判断需要建立 IP分流连接时, 发起连接建立流程 建立两条隧道。
如图 4a所示, 第一条隧道从终端至无线侧网元至本地接入网关, 数据传 输不经过核心网, 效率较高, 且不需要无线侧网元进行数据緩存; 另一条隧 道从终端至无线侧网元至 S-GW至本地接入网关, 其中 S-GW可緩存空闲态 终端的下行数据。 终端位于连接态时可从第一条隧道传送数据, 而终端进入 空闲态后, 数据可从第二条隧道进行传输。
除此之外, IP分流连接还可以是图 4b显示的示意性连接, 即第一条隧道 途经网元与图 4a相同,然而第二条隧道只存在于 S-GW和本地接入网关之间, 无需建立 S-GW和无线侧网元之间的通道。 终端位于连接态时可从第一条隧 道传送数据, 而终端进入空闲态后, 数据可从第二条隧道进行传输。
本发明提供的为 IP分流建立两条数据隧道的方法, 由接入网关 (如, S-GW )将无线侧网元的地址和隧道信息转发给本地接入网关(如, L-PGW ) , 以便本地接入网关同时保存 S-GW的隧道信息以及无线侧网元的隧道信息, 从而解决了为 IP分流同时建立多连接的问题,有效地实现了两条数据隧道的 创建机制。
本发明建立 IP分流连接的实现方法包括: 无线侧网元获取隧道信息的步骤, 移动性管理装置将本地接入网关的隧 道信息或者本地接入网关和接入网关的隧道信息传送给无线侧网元;
本地接入网关获取隧道信息的步骤, 接入网关将所述无线侧网元和所述 接入网关的隧道信息传送给所述本地接入网关。
所述本地接入网关获取隧道信息的步骤中, 所述接入网关将双隧道信息 同时传送给所述本地接入网关; 所述本地接入网关保存所述接入网关传送的 所述隧道信息及双隧道信息, 所述本地接入网关根据保存的信息转发下行数 据;
所述双隧道信息包括 IP分流标识或双隧道标识, 所述隧道信息包括地址 和隧道标识 , 或者仅包括隧道标识 , 隧道标识可以是 TEID (隧道端点标识 , Tunnel End Point Identifier ) 、 GRE Key (通用路由封装键值, Generic Routing Encapsulation Key )等。
其中所述无线侧网元的隧道信息及所述双隧道信息是所述接入网关从所 述移动性管理装置获取后再传送给所述本地接入网关的。
具体实现时, 所述本地接入网关包括以下之一: 本地服务网关( L-SGW ) 和本地分组数据网络网关(L-PGW ) , 单独的 L-PGW, 本地 L-GGSN (本地 GGSN )和 L-SGSN (本地 SGSN ) , 单独的 L-GGSN, 数据分流功能实体。 所述无线侧网元包括以下之一: 基站、 家用基站、 RNC (无线网络控制器, Radio Network Controller )、 本地接入网关、 数据分流功能实体。 接入网关可 以是 S-GW或 SGSN。
无线侧网元及本地接入网关获取以上信息后, 即认为建立了本发明所述 的 IP分流连接的两条隧道。
本发明所说的移动性管理装置、 无线侧网元、 本地接入网关及接入网关 均为逻辑功能实体。
下面结合附图和具体实施例对本发明所述技术方案作进一步的详细描 述, 以使本领域的技术人员可以更好的理解本发明并能予以实施, 但所举实 施例不作为对本发明的限定。
以下实施例中, 图 5至图 8描述了基于 E-UTRAN系统的为实现如图 4a 所示的双隧道的应用场景。
图 5是本发明在图 1所示系统的基础上, 在用户初始接入时进行本地 IP 连接建立的流程图。 本实施例包括如下步骤:
步骤 501 , 用户在进行通信前建立 RRC ( Radio Resource Control, 无线资 源控制 )连接作为信令消息或者业务数据的承载;
步骤 502, 用户发送初始化 NAS ( Non-Access-Stratum, 非接入层) 消息 进行附着操作;
步骤 503 , 无线侧网元将初始的用户消息发给移动性管理装置, 并转发 NAS消息至移动性管理装置;
步骤 504, 移动性管理装置开启鉴权以及安全流程, 对用户进行验证; 步骤 505, 移动性管理装置根据 APN ( Access Point Name, 接入点名称) 或本地访问标识(这些标识可以在步骤 503消息中携带)发现需建立本地 IP 连接, 则向 S-GW发送会话建立请求消息, 消息中可以携带 IP分流标识或双 隧道标识;
步骤 506,接收到移动性管理装置发送的消息后, S-GW将会话建立请求 消息发送给 L-PGW, 消息中携带 S-GW的隧道信息, 还可以携带 IP分流标 识或双隧道标识;
步骤 507 , L-PGW向 S-GW返回会话建立响应;
步骤 508, S-GW向移动性管理装置发送会话建立响应;
步骤 509, 移动性管理装置判断该连接为 IP分流连接, 则向无线侧网元 发起初始上下文建立请求,其中携带 S-GW的隧道信息以及 L-PGW的隧道信 息。
无线侧网元保存 L-PGW的隧道信息以及 S-GW的隧道信息。
步骤 510, 执行 RRC连接配置过程;
步骤 511 , 无线侧网元向移动性管理装置返回初始上下文建立响应; 步骤 512, 终端向无线侧网元发送直传消息, 包含附着完成信息; 步骤 513 , 无线侧网元向移动性管理装置发送附着完成消息; 步骤 514, 移动性管理装置向 S-GW发送承载更新请求, 其中携带无线 侧网元的隧道信息, 还可以携带 IP分流标识或双隧道标识;
步骤 515, S-GW判断该连接为 IP分流连接, 则向 L-PGW发送的承载更 新请求中携带无线侧网元的隧道信息,还可以携带 IP分流标识或双隧道标识; 步骤 516, L-PGW为该 IP分流连接保存无线侧网元的隧道信息以及 S-GW 的隧道信息; 同时向 S-GW返回承载更新响应;
L-PGW 可以将下行数据直接发向无线侧网元, 也可以将下行数据发往 S-GW。
步骤 517, S-GW向移动性管理装置返回承载更新响应消息。
通过以上流程, 建立了两条隧道, 一条隧道为从终端至无线侧网元至本 地接入网关 (L-PGW), 另一条隧道为从终端至无线侧网元至接入网关 (S-GW) 至本地接入网关 (L-PGW) , 对应于图 4a所示的情形。
图 6是本发明在图 1所示系统的基础上, 在用户初始接入后进行本地 IP 连接建立的流程图。 本实施例包括如下步骤:
步骤 601 , 用户已经附着到网络, 具有核心网 PDN连接;
步骤 602, 终端经无线侧网元向移动性管理装置发起 PDN连接请求; 步骤 603 , 移动性管理装置才艮据 APN或本地访问标识(这些标识可以在 步骤 602消息中携带)发现需建立本地 IP连接, 则向 S-GW发送会话建立请 求消息, 消息中可以携带 IP分流标识或双隧道标识;
步骤 604, 接收到移动性管理装置发送的消息后, S-GW向 L-PGW发送 会话建立请求, 其中携带 S-GW的隧道信息, 还可以携带 IP分流标识或双隧 道标识;
步骤 605 , L-PGW向 S-GW返回会话建立响应;
步骤 606, S-GW向移动性管理装置发送会话建立响应;
步骤 607, 移动性管理装置判断该连接为 IP分流连接, 则向无线侧网元 发起承载建立请求, 其中携带 S-GW的隧道信息以及 L-PGW的隧道信息; 无线侧网元保存 L-PGW的隧道信息以及 S-GW的隧道信息。 步骤 608 , 执行 RRC连接配置过程;
步骤 609, 无线侧网元向移动性管理装置返回承载建立响应;
步骤 610, 终端发起直传消息;
步骤 611 , 无线侧网元向移动性管理装置发送 PDN连接建立完成消息; 步骤 612, 移动性管理装置向 S-GW发送承载更新请求, 其中携带无线 侧网元的隧道信息, 还可以携带 IP分流标识或双隧道标识;
步骤 613 , S-GW判断该连接为 IP分流连接, 则向 L-PGW发送的承载更 新请求中携带无线侧网元的隧道信息,还可以携带 IP分流标识或双隧道标识; 步骤 614, L-PGW为该 IP分流连接保存无线侧网元的隧道信息以及 S-GW 的隧道信息; 同时 L-PGW向 S-GW返回 载更新响应;
L-PGW 可以将下行数据直接发向无线侧网元, 也可以将下行数据发往 S-GW。
步骤 615, S-GW向移动性管理装置返回承载更新响应消息。
通过以上流程, 建立了两条隧道, 一条隧道为从终端至无线侧网元至本 地接入网关 (L-PGW), 另一条隧道为从终端至无线侧网元至接入网关 (S-GW) 至本地接入网关 (L-PGW) , 对应于图 4a所示的情形。
图 7是本发明在图 1所示系统的基础上, 在用户初始接入后进行专有承 载建立的流程图。 本实施例包括如下步骤:
步骤 701 , 用户已经附着到网络, 具有本地 IP连接;
步骤 702, 终端经无线侧网元向移动性管理装置发起承载修改请求; 步骤 703, 移动性管理装置转发承载修改请求给 S-GW;
步骤 704 , 接收到移动性管理装置发送的承载修改请求后, S-GW 向 L-PGW发送承载修改请求;
步骤 705, L-PGW向 S-GW发送专有承载建立请求;
步骤 706, S-GW向移动性管理装置发送专有承载建立请求;
步骤 707, 移动性管理装置判断该连接为 IP分流连接, 则向无线侧网元 发起承载建立请求, 其中携带 L-PGW的隧道信息; 无线侧网元保存 L-PGW的隧道信息。
图 7的流程是在图 5或图 6流程的基础上实现的, L-PGW的地址已经保 存在无线侧网元中, 因此上述承载建立请求中不再需要携带 L-PGW的地址, 以下步骤 712、 713也存在类似的情况。
步骤 708, 执行 RRC连接配置过程;
步骤 709, 无线侧网元向移动性管理装置返回承载建立响应;
步骤 710, 终端发起直传消息。
步骤 711 , 无线侧网元向移动性管理装置发送会话管理响应消息; 步骤 712, 移动性管理装置向 S-GW发送专有承载建立响应, 响应消息 中携带无线侧网元的隧道信息;
步骤 713 , S-GW判断该连接为 IP分流连接, 则向 L-PGW发送的专有承 载建立响应中携带无线侧网元的隧道信息以及 S-GW的隧道信息;
L-PGW为该 IP分流连接保存无线侧网元的隧道信息以及 S-GW的隧道 信息; L-PGW可以将下行数据直接发向无线侧网元, 也可以将下行数据发往 S-GW。
通过以上流程, 建立了两条隧道, 一条隧道为从终端至无线侧网元至本 地接入网关 (L-PGW), 另一条隧道为从终端至无线侧网元至接入网关 (S-GW) 至本地接入网关 (L-PGW) , 对应图 4a所示的情形。
图 8是本发明在 UTRAN(通用陆地无线接入网, Universal Terrestrial Radio Access Network ) 系统的基础上, 为实现如图 4a所示的双隧道在用户初始接 入时进行 PDP (分组数据协议, Packet Data Protocol )上下文激活的流程图。 本实施例包括如下步骤:
步骤 801 , 终端执行附着到网络的操作;
步骤 802, 终端发送 PDP上下文激活消息给 SGSN;
步骤 803 , SGSN向 L-GGSN发送 PDP上下文建立请求,其中携带 SGSN 的隧道信息, 还可以携带 IP分流标识或双隧道标识;
步骤 804 , L-GGSN向 SGSN返回 PDP上下文建立响应,其中携带 L-GGSN 的隧道信息;
步骤 805, 执行无线接入承载建立流程, SGSN将 SGSN的隧道信息, 以 及 L-GGSN的隧道信息提供给无线侧网元;
步骤 806, SGSN向 L-GGSN发送 PDP上下文更新请求, 其中携带无线 侧网元的隧道信息;
步骤 807 , L-GGSN向 SGSN返回 PDP上下文更新响应;
L-GGSN为该 IP分流保存双隧道信息: SGSN的隧道信息, 以及无线侧 网元的隧道信息。
步骤 808 , SGSN返回 PDP上下文激活响应消息给终端。
上述流程也可以釆用另一种方式实现双隧道建立, 即, 发送给 L-GGSN 的 SGSN的隧道信息在步骤 806中携带, 而不在步骤 803中携带, 此时也可 以在步骤 806中携带 IP分流标识或双隧道标识。
通过以上流程, 建立了两条隧道, 一条隧道为从终端至无线侧网元至本 地接入网关 (L-GGSN),另一条隧道为从终端至无线侧网元至接入网关 (SGSN) 至本地接入网关 (L-GGSN) , 对应于图 4a所示的情形。
以下实施例中, 图 9描述了基于 E-UTRAN系统的为实现如图 4b所示的 双隧道的应用场景。
图 9是本发明在图 1所示系统的基础上, 在用户初始接入时进行本地 IP 连接建立的流程图。 本实施例包括如下步骤:
步骤 901 , 用户在进行通信前建立 RRC ( Radio Resource Control, 无线资 源控制 )连接作为信令消息或者业务数据的承载;
步骤 902, 用户发送初始化 NAS ( Non-Access-Stratum, 非接入层) 消息 进行附着操作;
步骤 903 , 无线侧网元将初始的用户消息发给移动性管理装置, 并转发 NAS消息至移动性管理装置;
步骤 904, 移动性管理装置开启鉴权以及安全流程, 对用户进行验证; 步骤 905, 移动性管理装置根据 APN ( Access Point Name, 接入点名称) 或本地访问标识(这些标识可以在步骤 903消息中携带)发现需建立本地 IP 连接, 则向 S-GW发送会话建立请求消息, 消息中可以携带 IP分流标识或双 隧道标识;
步骤 906,接收到移动性管理装置发送的消息, S-GW将会话建立请求消 息发送给 L-PGW, 消息中携带 S-GW的隧道信息, 还可以携带 IP分流标识 或双隧道标识。
步骤 907 , L-PGW向 S-GW返回会话建立响应;
步骤 908, S-GW向移动性管理装置发送会话建立响应;
步骤 909, 移动性管理装置判断该连接为 IP分流连接, 则向无线侧网元 发起初始上下文建立请求,其中携带 L-PGW的隧道信息,无需携带 S-GW的 隧道信息, 如地址和隧道标识;
步骤 910, 执行 RRC连接配置过程;
步骤 911 , 无线侧网元向移动性管理装置返回初始上下文建立响应; 步骤 912, 终端向无线侧网元发送直传消息, 包含附着完成信息; 步骤 913 , 无线侧网元向移动性管理装置发送附着完成消息;
步骤 914, 移动性管理装置向 S-GW发送承载更新请求, 其中携带无线 侧网元的隧道信息, 还可以携带 IP分流标识或双隧道标识;
步骤 915, S-GW判断该连接为 IP分流连接, 则向 L-PGW发送的承载更 新请求中携带无线侧网元的隧道信息,还可以携带 IP分流标识或双隧道标识。 此时, S-GW无需保存无线侧网元的隧道信息, 如地址和隧道标识;
步骤 916, L-PGW为该 IP分流连接保存无线侧网元的隧道信息以及 S-GW 的隧道信息; 同时向 S-GW返回承载更新响应;
L-PGW 可以将下行数据直接发向无线侧网元, 也可以将下行数据发往 S-GW。
步骤 917, S-GW向移动性管理装置返回承载更新响应消息。
通过以上流程, 建立了两条隧道, 一条隧道为从终端至无线侧网元至本 地接入网关 (L-PGW) , 另一条隧道为从接入网关(S-GW)至本地接入网关 (L-PGW) , 对应于图 4b所示的情形。
为了简化描述, 图 9实施例仅以 E-UTRAN系统中在用户初始接入时进 行本地 IP连接建立为例来说明为 IP分流建立两条如图 4b所示的数据隧道的 方法。其他情况下,如用户初始接入后进行本地 IP连接建立、专有承载建立、 UTRAN系统中用户初始接入时进行 PDP上下文激活的情况下, 仍然需要移 动性管理装置( SGSN或 MME )将本地接入网关的地址和隧道信息发送给无 线侧网元(此时无需携带接入网关的隧道信息) , 接入网关需要将无线侧网 元的地址和隧道信息发送给本地接入网关 (接入网关无需保存无线侧网元的 隧道信息) , 以便可以为 IP分流连接建立两条数据通道。 在这些情况下, 为 IP分流建立两条隧道的方法与图 9实施例极为相似, 故在此不再重复描述。
为了简化描述, 以上实施例仅以不存在家用基站网关的情况为例来说明 为 IP分流建立两条数据隧道的方法。 存在家用基站网关的情况下, 仍然需要 移动性管理装置( SGSN或 MME )将本地接入网关的地址和隧道信息发送给 无线侧网元, 接入网关需要将无线侧网元的地址和隧道信息发送给本地接入 网关, 以便可以为 IP分流连接建立两条数据通道。 当然, 存在家用基站网关 时, 移动性管理装置与无线侧网元之间的消息将经由家用基站网关传递。 在 这些情况下, 为 IP分流建立两条隧道的方法与上述实施例极为相似, 故在此 不再重复描述。
在上述实施例中, 本地接入网关为本地接入网关和接入网关之间的隧道 分配的隧道标识 , 与为本地接入网关和无线侧网元之间的隧道分配的隧道标 识可以相同, 也可以不同。
在上述实施例中,发往无线侧网元的 S-GW的隧道信息和 L-PGW的隧道 信息的作用分别为: S-GW的隧道信息用于建立 S-GW和无线侧网元间隧道 的上行通道, 即对无线侧网元发往 S-GW的数据进行封装; L-PGW的隧道信 息用于建立 L-PGW和无线侧网元间隧道的上行通道, 即对无线侧网元发往 L-PGW的数据进行封装。发往无线侧网元的 SGSN的隧道信息和 L-GGSN的 隧道信息的作用分别为: SGSN的隧道信息用于建立 SGSN和无线侧网元间 隧道的上行通道, 即对无线侧网元发往 SGSN的数据进行封装; L-GGSN的 隧道信息用于建立 L-GGSN和无线侧网元间隧道的上行通道, 即对无线侧网 元发往 L-GGSN的数据进行封装。
以上实施例仅描述了 L-PGW获取无线侧网元的隧道信息的途径是无线 侧网元将无线侧网元的隧道信息传递给移动性管理装置, 再由移动性管理装 置经 S-GW传递给 L-PGW, 然而, L-PGW获取无线侧网元隧道信息的方式 不限于以上实施例, 例如, 还可以通过无线侧网元将其隧道信息传递给 L-PGW,其中可以通过移动性管理装置进行中转。该方式同样适用于 UTRAN 或存在家用基站网关的场景, 在这些情况下, 为 IP分流建立两条隧道的方法 与上述实施方式极为相似, 故在此不再重复描述。
在上述实施例中,发往 L-PGW的 S-GW的隧道信息和无线侧网元的隧道 信息的作用分别为: S-GW的隧道信息用于建立 S-GW和 L-PGW间隧道的下 行通道, 即对 L-PGW发往 S-GW的数据进行封装; 无线侧网元的隧道信息用 于建立 L-PGW和无线侧网元间隧道的下行通道, 即对 L-PGW发往无线侧网 元的数据进行封装。 发往 L-GGSN的 SGSN的隧道信息和无线侧网元的隧道 信息的作用分别为: SGSN的隧道信息用于建立 SGSN和 L-GGSN间隧道的 下行通道, 即对 L-GGSN发往 SGSN的数据进行封装; 无线侧网元的隧道信 息用于建立 L-GGSN和无线侧网元间隧道的下行通道, 即对 L-GGSN发往无 线侧网元的数据进行封装。
在上述实施例中, 所述接入网关可以位于核心网, 也可以位于本地。
IP分流连接的无线侧网元可以与本地接入网关地址相同。
IP分流可以是本地 IP访问, 例如, IP分流可以是本地 IP访问用户本地 网络、 本地 IP访问公司本地网络、 本地 IP访问互联网、 互联网业务的分流 操作、 特定 IP数据分流等。
本地接入网关包括以下之一: 本地服务网关 (L-SGW )和本地分组数据 网络网关( L-PGW ) ,单独的 L-PGW, L-GGSN和 L-SGSN,单独的 L-GGSN, 数据分流功能实体。
无线侧网元包括以下之一: 基站、 家用基站、 RNC、 本地接入网关、 数 据分流功能实体。
为实现以上方法, 本发明还提供一种建立 IP分流连接的实现系统, 该系 统包括通过网络连接的移动性管理装置、 无线侧网元、 接入网关及本地接入 网关, 其中:
所述移动性管理装置, 设置为将本地接入网关的隧道信息或者本地接入 网关和接入网关的隧道信息传送给无线侧网元;
所述无线侧网元, 设置为接收所述移动性管理装置发送的隧道信息; 所述接入网关, 设置为将所述无线侧网元和所述接入网关的隧道信息传 送给所述本地接入网关;
所述移动性管理装置还设置为向所述接入网关发送所述无线侧网元的隧 道信息及双隧道信息; 并且所述接入网关还设置为在获取所述无线侧网元的 隧道信息及所述双隧道信息后将其转发给所述本地接入网关;
所述本地接入网关, 设置为接收所述接入网关发送的隧道信息; 所述本 地接入网关还设置为保存所述接入网关传送的所述隧道信息及双隧道信息以 及根据保存的信息转发下行数据; 所述双隧道信息包括 IP分流标识或双隧道 标识, 所述隧道信息包括地址和隧道标识, 或者仅包括隧道标识。
具体实现时, 无线侧网元^ ^站、 家用基站或 RNC (无线网络控制器,
Radio Network Controller ) , 移动性管理装置为移动性管理实体(ΜΜΕ ) 、 移动交换中心(MSC )或服务 GPRS支持节点(SGSN ) , 所述本地接入网关 是 L-PGW或 L-GGSN, 所述接入网关是 S-GW或 SGSN。
本领域技术人员应当理解, IP分流连接包括多段隧道, 本发明所涉及的 IP分流连接的建立主要涉及无线侧网元、 接入网关与本地接入网关之间的隧 道的建立。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。
工业实用性
根据本发明提供的为 IP分流建立两条数据隧道的方法, 由移动性管理装 置将本地接入网关的隧道信息或者本地接入网关和接入网关的隧道信息传送 给无线侧网元; 接入网关(如, S-GW )将无线侧网元的地址和隧道信息转发 给本地接入网关 (如, L-PGW ) , 或者, 所述无线侧网元将其隧道信息传送 给所述本地接入网关, 其中可以通过所述移动性管理装置进行中转, 从而解 决了为 IP分流同时建立多连接的问题,有效地实现了两条数据隧道的创建机 制。

Claims

权 利 要 求 书
1、 一种建立因特网协议(IP )分流连接的实现方法, 包括:
移动性管理装置将本地接入网关的隧道信息或者本地接入网关和接入网 关的隧道信息传送给无线侧网元; 以及
所述接入网关将所述无线侧网元和所述接入网关的隧道信息传送给所述 本地接入网关。
2、 如权利要求 1所述的方法, 还包括: 在所述接入网关将所述无线侧网 元和所述接入网关的隧道信息传送给所述本地接入网关的步骤中, 所述接入 网关还将双隧道信息传送给所述本地接入网关; 所述无线侧网元的隧道信息 及所述双隧道信息是所述接入网关从所述移动性管理装置获取后再传送给所 述本地接入网关的。
3、 如权利要求 2所述的方法, 还包括: 所述本地接入网关保存所述接入 网关传送的所述隧道信息及双隧道信息, 所述本地接入网关根据保存的信息 转发下行数据; 所述双隧道信息包括 IP分流标识或双隧道标识, 所述隧道信 息包括地址和隧道标识, 或者仅包括隧道标识。
4、如权利要求 1至 3中任一项所述的方法, 所述本地接入网关包括以下 之一: 本地服务网关(L-SGW )和本地分组数据网络网关(L-PGW ) , 单独 的 L-PGW, 本地网关通用分组无线业务(GPRS )支持节点(L-GGSN )和本 地服务 GPRS支持节点 (L-SGSN ) , 单独的 L-GGSN, 数据分流功能实体; 所述无线侧网元包括以下之一: 基站、 家用基站、 无线网络控制器(RNC ) 、 本地接入网关、 数据分流功能实体; 所述接入网关是服务网关(S-GW )或服 务 GPRS支持节点 ( SGSN ) 。
5、 一种建立因特网协议(IP )分流连接的实现方法, 包括:
移动性管理装置将本地接入网关的隧道信息或者本地接入网关和接入网 关的隧道信息传送给无线侧网元; 以及
所述无线侧网元将其隧道信息传送给所述本地接入网关。
6、 如权利要求 5所述的方法, 其中, 在所述无线侧网元将其隧道信息传 送给所述本地接入网关的过程中, 所述无线侧网元的隧道信息由所述移动性 管理装置进行中转。
7、 一种建立因特网协议(IP )分流连接的实现方法, 包括:
移动性管理装置判断需要建立 IP分流连接时,发起连接建立流程建立两 条隧道, 一条隧道从终端至无线侧网元至本地接入网关, 另一条隧道从终端 至无线侧网元至接入网关至本地接入网关。
8、 一种建立因特网协议(IP )分流连接的实现方法, 包括:
移动性管理装置判断需要建立 IP分流连接时,发起连接建立流程建立两 条隧道, 一条隧道从终端至无线侧网元至本地接入网关, 另一条隧道从接入 网关至本地接入网关。
9、 一种建立因特网协议(IP )分流连接的实现系统, 包括通过网络连接 的移动性管理装置、 无线侧网元、 接入网关及本地接入网关, 其中:
所述移动性管理装置, 设置为将所述本地接入网关的隧道信息或者所述 本地接入网关和接入网关的隧道信息传送给所述无线侧网元;
所述无线侧网元, 设置为接收所述移动性管理装置传送的隧道信息; 所述接入网关, 设置为将所述无线侧网元和所述接入网关的隧道信息传 送给所述本地接入网关;
所述本地接入网关, 设置为接收所述接入网关传送的隧道信息。
10、 如权利要求 9所述的系统, 其中, 所述移动性管理装置还设置为向 所述接入网关发送所述无线侧网元的隧道信息以及双隧道信息; 并且所述接 入网关还设置为在获取所述无线侧网元的隧道信息以及所述双隧道信息后将 这些信息转发给所述本地接入网关。
11、 如权利要求 10所述的系统, 其中, 所述本地接入网关还设置为保存 所述接入网关传送的所述隧道信息及双隧道信息以及根据保存的信息转发下 行数据; 所述双隧道信息包括 IP分流标识或双隧道标识, 所述隧道信息包括 地址和隧道标识, 或者仅包括隧道标识。
12、如权利要求 9至 11中任一项所述的系统, 所述本地接入网关包括以 下之一: 本地服务网关(L-SGW )和本地分组数据网络网关(L-PGW ) , 单 独的 L-PGW, 本地网关通用分组无线业务(GPRS )支持节点(L-GGSN )和 本地服务 GPRS支持节点(L-SGSN ) , 单独的 L-GGSN, 数据分流功能实体; 所述无线侧网元包括以下之一: 基站、 家用基站、 无线网络控制器(RNC ) 、 本地接入网关、 数据分流功能实体; 所述接入网关是服务网关(S-GW )或服 务 GPRS支持节点 ( SGSN ) 。
13、 一种建立因特网协议(IP )分流连接的实现系统, 包括通过网络连 接的移动性管理装置、 无线侧网元、 接入网关及本地接入网关, 其中:
所述移动性管理装置, 设置为将所述本地接入网关的隧道信息或者所述 本地接入网关和接入网关的隧道信息传送给所述无线侧网元, 以及将所述无 线侧网元的隧道信息传送给所述本地接入网关;
所述无线侧网元, 设置为接收所述移动性管理装置传送的隧道信息, 并 且将所述无线侧网元的隧道信息传送给所述移动性管理装置;
所述本地接入网关, 设置为接收所述移动性管理装置传送的所述无线侧 网元的隧道信息。
PCT/CN2010/073965 2009-07-20 2010-06-13 建立ip分流连接的实现方法和系统 WO2011009353A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910161304.5 2009-07-20
CN200910161304.5A CN101959176B (zh) 2009-07-20 2009-07-20 建立本地ip访问连接的实现方法和系统

Publications (1)

Publication Number Publication Date
WO2011009353A1 true WO2011009353A1 (zh) 2011-01-27

Family

ID=43486211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073965 WO2011009353A1 (zh) 2009-07-20 2010-06-13 建立ip分流连接的实现方法和系统

Country Status (2)

Country Link
CN (1) CN101959176B (zh)
WO (1) WO2011009353A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013097626A1 (zh) * 2011-12-30 2013-07-04 华为技术有限公司 一种本地无线接入系统、方法和本地接入网关
CN105307205B (zh) * 2014-07-17 2019-04-12 电信科学技术研究院 移动通信系统、本地接入服务器、以及网络控制器
CN105282803A (zh) * 2014-07-25 2016-01-27 中兴通讯股份有限公司 通讯接口和基于通讯接口的信息传递方法及系统
WO2020108541A1 (en) * 2018-11-30 2020-06-04 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for protocol prefix management

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060416A (zh) * 2006-04-21 2007-10-24 北京三星通信技术研究有限公司 建立和更新隧道传输的方法
CN101094440A (zh) * 2006-08-18 2007-12-26 中兴通讯股份有限公司 分组域中ggsn获知sgsn启用单隧道信息的方法
EP1883195A1 (en) * 2006-07-28 2008-01-30 Nokia Siemens Networks Gmbh & Co. Kg Tunnel switching mechanism inside a SGSN for OTA (one tunnel approach) - TTA (Two tunnel approach) switching used for legal interception

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060416A (zh) * 2006-04-21 2007-10-24 北京三星通信技术研究有限公司 建立和更新隧道传输的方法
EP1883195A1 (en) * 2006-07-28 2008-01-30 Nokia Siemens Networks Gmbh & Co. Kg Tunnel switching mechanism inside a SGSN for OTA (one tunnel approach) - TTA (Two tunnel approach) switching used for legal interception
CN101094440A (zh) * 2006-08-18 2007-12-26 中兴通讯股份有限公司 分组域中ggsn获知sgsn启用单隧道信息的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3 GPP, 3rd Generation Partnership Project (3GPP); Technical Specification Group Services and System Aspects; Feasibility Study for Transport and Control Separation in the PS CN Domain (Release 4)", 3GPP TR 23.873 V4.0.0, March 2001 (2001-03-01) *

Also Published As

Publication number Publication date
CN101959176B (zh) 2014-09-10
CN101959176A (zh) 2011-01-26

Similar Documents

Publication Publication Date Title
JP5368215B2 (ja) 移動体端末
EP2475142B1 (en) Method and system for acquiring route strategies
WO2011095100A1 (zh) 一种对本地ip连接的建立进行控制的方法和系统
WO2011015147A1 (zh) 数据传输方法、装置和通信系统
WO2011020386A1 (zh) 承载类型的指示方法、系统及传输分流网元
WO2013016968A1 (zh) 一种接入方法、系统及移动智能接入点
WO2014005536A1 (zh) 临近终端的通信方法及装置、系统
WO2011012012A1 (zh) 本地ip访问连接属性的通知方法与装置
CN106470465B (zh) Wifi语音业务发起方法、lte通信设备、终端及通信系统
WO2011006404A1 (zh) 本地ip访问连接建立的实现方法及系统
WO2012051897A1 (zh) 一种融合固定网络与移动网络的系统及方法
WO2011015092A1 (zh) 实现本地ip访问控制的方法、通知方法及系统
WO2012062183A1 (zh) 一种实现数据流服务质量和计费策略控制的方法及系统
WO2011054264A1 (zh) 一种建立本地ip访问下行数据通道的方法及系统
WO2009026761A1 (fr) Procédé de contrôle d'un ambr partagé à supports multiples
WO2011017979A1 (zh) 支持ip分流的通信系统中资源管理方法与装置
WO2012025031A1 (zh) 基于本地接入的承载建立方法及系统
WO2013016967A1 (zh) 一种接入方法、系统及移动智能接入点
WO2012051892A1 (zh) 一种数据路由控制方法及系统
WO2014067371A1 (zh) 集群业务实现方法、系统及网元
WO2011009353A1 (zh) 建立ip分流连接的实现方法和系统
WO2011050663A1 (zh) 支持本地ip访问的通信系统中隧道更新方法与系统
WO2011144000A1 (zh) 一种实现路由选择的方法和装置
WO2011020418A1 (zh) 终端转为连接态时更改服务网关的连接激活方法及系统
WO2012041131A1 (zh) 一种用户参与本地访问连接建立的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10801912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10801912

Country of ref document: EP

Kind code of ref document: A1