WO2012025031A1 - 基于本地接入的承载建立方法及系统 - Google Patents
基于本地接入的承载建立方法及系统 Download PDFInfo
- Publication number
- WO2012025031A1 WO2012025031A1 PCT/CN2011/078664 CN2011078664W WO2012025031A1 WO 2012025031 A1 WO2012025031 A1 WO 2012025031A1 CN 2011078664 W CN2011078664 W CN 2011078664W WO 2012025031 A1 WO2012025031 A1 WO 2012025031A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- service
- base station
- bearer
- message
- quality
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/24—Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
Definitions
- the present invention relates to a bearer establishment technology for data services, and in particular, to a bearer establishment method and system based on local access. Background technique
- FIG. 1 is a schematic structural diagram of an evolved packet domain system. As shown in FIG. 1, the entire EPS system is divided into two parts: a radio access network and a core network. In the core network, it includes a Home Subscriber Server (HSS), a Mobility Management Entity (MME), a Serving GPRS Support Node (SGSN), and a Policy Charging Rule Function (PCRF). , Policy and Charging Rule Function ), Service Gateway (S-GW, Serving Gateway), Packet Data Gateway (P-GW, PDN Gateway) and Packet Data Network (PDN).
- HSS Home Subscriber Server
- MME Mobility Management Entity
- SGSN Serving GPRS Support Node
- PCRF Policy Charging Rule Function
- S-GW Service Gateway
- P-GW Packet Data Gateway
- PDN Gateway Packet Data Network
- the home subscriber server is the permanent storage location of the subscriber's subscription data, and is located in the home network to which the subscriber subscribes.
- the mobility management entity is the location where the user subscription data is stored in the current network, responsible for non-access layer signaling management of the user equipment (UE, User Equipment) to the network, security verification function of the user equipment, mobility management of the user equipment, Tracking and paging management functions and bearer management in user idle mode.
- the monthly GPRS support node is a service support point for GERAN and UTRAN users to access the core network. It is similar in function to the mobility management entity and is responsible for user location update, paging management, and bearer management.
- the service gateway is a gateway of the core network to the wireless system, and is responsible for user plane bearer of the user equipment to the core network, data buffering in the idle mode of the user equipment, a function of initiating a service request by the network side, lawful interception, and packet data routing and forwarding functions;
- the service gateway is responsible for counting the situation in which the user equipment uses the wireless network, and generates a CDR of the user equipment using the wireless network, and transmits the CDR to the charging gateway.
- the packet data gateway is a gateway of the evolved system and the external packet data network of the system, and is connected to the Internet and the packet data network, and is responsible for the Internet Protocol (IP) address allocation, the charging function, the packet filtering, and the user equipment.
- IP Internet Protocol
- the packet data network is the operator's IP service network, which provides IP services to users through the carrier's core network.
- the policy charging rule function entity is a server in the evolution system that is responsible for providing rules for charging control, online credit control, threshold control, and quality of service (QoS) policies.
- the radio access network is composed of an evolved base station (eNB, E-UTRAN NodeB) and a 3G radio network controller (RNC), which is mainly responsible for transmitting and receiving wireless signals, and is connected to user equipment through an air interface to manage the air. Radio resources, resource scheduling, and access control of the interface.
- eNB evolved base station
- RNC 3G radio network controller
- the service GPRS support node is an upgraded SGSN, which can support the S4 interface with the service gateway, and communicates with the mobility management unit by using the GTPv2 protocol.
- the PS domain network architecture is different from that of Figure 1.
- the SGSN and the MME are connected by using the Gn interface, and the interworking uses the GTPvl protocol.
- the SGSN cannot be connected to the serving gateway, and is connected to the gateway GPRS support node (GGSN, Gateway GPRS Support Node) through the Gn interface to directly access the packet data network.
- GGSN Gateway GPRS Support Node
- a home base station (HNB, Home NodeB) or an evolved home base station (HeNB, Home eNodeN) is a type of small, low-power base station. It is used as a dedicated resource for some users and deployed in private places such as homes, groups, companies, or schools. The main purpose is to provide users with higher service rates and reduce the cost of using high-rate services, while at the same time making up for the shortage of existing distributed cellular wireless communication systems.
- the advantages of a home base station are affordability, convenience, low power output, plug and play, broadband access, use of single mode user equipment, and the like.
- the home base station can be applied in a 3G or Long Term Evolution (LTE) mobile communication network.
- LTE Long Term Evolution
- a new network element that is, a home base station gateway (HNB GW, Home NodeB Gateway) is introduced into the network.
- the main functions of the home base station gateway are: verifying the security of the home base station, performing maintenance and management on the operation of the home base station, configuring and controlling the home base station according to the operator's requirements, and exchanging data information of the core network and the home base station.
- 2 is a 3G home base station network architecture diagram. As shown in FIG.
- the 3G home base station is connected to the home base station gateway through a newly defined Iuh interface, and the home base station gateway provides IuPS and IuCs interfaces to the core network group domain and the circuit domain.
- the home base station gateway must shield the impact on the user equipment and the network side after the introduction of the home base station.
- the home base station gateway is optional. Therefore, the LTE home base station and the core network are connected in two ways. One is that the home base station and the core network element are directly connected, and the other is the home base station through the gateway. As shown in FIG. 3 and FIG. 4, FIG. 3 is a schematic diagram of one of the LTE home base station network architectures, and FIG.
- FIG. 4 is a schematic diagram of the LTE home base station network architecture.
- 5 is a schematic diagram of the network architecture of the LTE home base station.
- the home base station gateway may not integrate the user plane function, and the home base station and the core network user plane gateway.
- the user plane is directly established, which can flatten the user plane and reduce the data transmission delay.
- the home base station can also support local IP access functions, have local IP access capability in the home base station, and the user can sign up to allow local IP access. Under the condition of the user, local access to other IP devices or the Internet of the home network can be realized. Through the local access function, the Internet data service can be offloaded, the core network load can be reduced, and the access to the home network device can be forwarded without the core network, and the data transmission is convenient and efficient.
- the local IP access function can also be used on the macro cell. The main purpose is similar to that of the home base station. More is the application of the local IP access to the Internet. The purpose is to reduce the core network load.
- Figure 6 and Figure 7 show the architecture for implementing the above-mentioned local access function.
- the local access gateway acts as a local access network to an external network (such as the Internet), and provides address allocation, charging, packet filtering, policy control, data offloading, and radio access network application (NAS/RANAP, Radios). Access Network Application Part) Features such as message parsing, Network Address Translation (NAT), local IP access policy routing, and execution.
- the network element can be deployed as an independent network element or an existing home base station or a home base station gateway.
- the macrocell to implement the local access architecture, or the access architecture without the home base station gateway, it can be implemented by the architecture shown in FIG.
- the local gateway in order to reduce the impact on existing network elements, although the local gateway is located in the data path of the base station to the core network gateway, it is not perceived by the base station and the core network gateway.
- the local access is mainly referred to as data offloading on the wireless side, and currently includes services such as local IP connection and selective IP offload service, and does not limit subsequent extension.
- the base station and the core network negotiate the respective QoS parameters to ensure that the service requested by the UE can run on the corresponding bearer.
- the UE setup process is as shown in FIG. 8.
- the UTRAN/GERAN setup process is taken as an example, and the EUTRAN setup process is similar to the UTRAN/GERAN setup process.
- Step 801 The user equipment initiates a Packet Data Protocol (PDP) activation request, and the non-access stratum message is forwarded to the SGSN via the base station.
- PDP Packet Data Protocol
- Step 802 The SGSN is configured according to an access point name (APN, Access Point Name) provided by the UE. Select a suitable core network gateway for the UE.
- the SGSN sends a PDP activation request to the core network gateway, where the SGSN carries the UE identifier, PDP type, QoS information, and charging information.
- the core network gateway is the GGSN.
- the Evolved Packet Core (EPC) network the core network gateway refers to the SGW and the PGW. .
- the access network is different.
- the messages that are exchanged between the NEs are different, but the functions are similar.
- the description of accessing the GRPS network is taken as an example. Those skilled in the art should understand that in the rest of the network.
- the processing method is basically the same.
- Step 803 The core network gateway verifies the parameters carried in the PDP activation request message, and authorizes the QoS parameters carried in the request.
- Step 804 The core network gateway returns a PDP activation response to the SGSN, where the tunnel end identifier, the authorized QoS parameter, and the like are allocated.
- Step 805 The SGSN sends a bearer assignment request to the base station, where the information carries the MSISDN number, APN, and QoS parameters of the UE.
- Step 806 If the base station accepts the QoS parameters sent by the core network gateway, the base station initiates a process of establishing a radio resource control (RRC) connection.
- RRC radio resource control
- Step 807 The base station returns a radio access bear (RAB, Radio Access Bear) assignment response message to the SGSN. If multiple bearers are established at the same time, the base station will return multiple RAN assignment response messages.
- RAB Radio Access Bear
- Step 808 If the base station cannot accept the QoS parameter in the RAB assignment message, indicate to the SGSN in the returned RAN assignment response message. According to the indication, the SGSN may choose to issue new QoS parameters.
- Step 809 The SGSN determines whether to send a PDP update request to the core network gateway according to whether a direct tunnel is established, and if it is sent, carries the tunnel end identifier of the base station. If the QoS is inconsistent with the QoS delivered by the previous core network gateway, the SGSN notifies the core through the PDP update process. Network gateway.
- Step 810 The SGSN sends a PDP activation response message to the UE.
- the UE accesses the network through a certain base station.
- a part of the data stream may flow out through the core network, and part of it may be distributed through the local gateway.
- the impact of the local gateway on other network elements in the existing architecture, especially the impact on the base station is avoided, thereby saving the cost of the operator to deploy the function. Therefore, the base station and the core network gateway do not perceive the local gateway located on the data path, and thus the QoS parameters controlled by the core network gateway and the base station are inconsistent, especially when the amount of the offloaded data is relatively large, the excess data may cause the data of the core network to be affected. Influence even packet loss. Summary of the invention
- the main purpose of the present invention is to provide a bearer establishment method and system based on local access, which can also enable the UE to access smoothly in a network with a local access gateway.
- a method for establishing a bearer based on local access includes:
- the local gateway checks the message transmitted between the mobility management network element and the base station, and determines to modify the quality of service parameters included in the message when the service data is offloaded.
- the determining to offload the service data is: the local gateway determines whether the service data can be offloaded according to the information carried in the carrier policy and/or the message carried by the mobility management network element and the base station .
- the modifying the quality of service parameter included in the message is specifically:
- the message transmitted between the mobility management network element and the base station further carries a quality of service parameter subscribed by the UE, and the local gateway makes the modified quality of service parameter not violate the UE. Signed service quality parameters.
- the method further includes:
- the local gateway places the modified quality of service parameter in a bearer related request message and forwards it to the base station or the mobility management unit.
- the mobility management network element is an SGSN
- the process of establishing or modifying the bearer is a PDP activation request process or a PDP modification request process
- the bearer related request message is an RAB assignment request message or a radio access bearer With a response message.
- the mobility management network element is an MME
- the process of establishing or modifying the bearer is a PDN connection establishment process, or an attach procedure, or a resource allocation process initiated by the terminal, or a resource modification process initiated by the terminal, Or a bearer setup process initiated by the network, or a bearer modification process
- the bearer related request message is a UE initial context setup request message, or is a RAB setup request message, or a response message is established for the UE initial context, or a response is established for the RAB. Message.
- a bearer establishment system based on local access which is applicable to a GPRS network or an EPC network; the system includes an inspection unit, a determining unit, and a modifying unit;
- An checking unit configured to check a message transmitted between the mobility management network element and the base station during a bearer establishment or modification process
- a determining unit configured to determine, according to the information in the message, whether the service data can be offloaded, and the modifying unit can be triggered;
- a modification unit configured to modify a quality of service parameter included in the message.
- the determining unit further determines whether the service data can be offloaded according to the carrier policy and/or the information carried in the message transmitted between the mobility management network element and the base station.
- the modifying unit further determines a quality of service parameter of the offloading service according to the data transmission requirement of the offloading service; and modifying the quality of service parameter according to the determined quality of service parameter of the offloading service.
- the message transmitted between the mobility management network element and the base station further carries the quality of service parameter subscribed by the UE, and the modified quality of service parameter does not violate the quality of service parameter signed by the UE.
- the system further includes a bearer unit and a forwarding unit;
- a bearer unit configured to: put the modified quality of service parameter into the bearer related request message
- a forwarding unit configured to forward the related request message to the base station.
- the mobility management network element is an SGSN
- the process of establishing or modifying the bearer is a PDP activation request process or a PDP modification request process
- the bearer related request message is a RAB assignment request message or an RAB assignment response message.
- the mobility management network element is an MME
- the process of establishing or modifying the bearer is a PDN connection establishment process, or an attach procedure, or a resource allocation process initiated by the terminal, or a resource modification process initiated by the terminal, Or a bearer setup process initiated by the network, or a bearer modification process
- the bearer related request message is a UE initial context setup request message, or is a RAB setup request message, or a response message is established for the UE initial context, or a response is established for the RAB. Message.
- the radio bearer for the UE when the radio bearer for the UE is initiated, after the network side determines the QoS parameter of the corresponding service bearer for the current radio bearer, it sends the data to the local gateway for data splitting before sending to the UE to access the base station.
- the decision when the service data can be offloaded, the local gateway will re-determine the quality of service parameter for the offloaded service, the quality of service parameter does not violate the quality of service parameter in the subscription data of the UE.
- the local gateway sends the modified related message to the base station, and the base station performs related bearer establishment process.
- the local gateway intercepts and modifies the quality of service parameters, so that the local gateway completely shields the wireless communication network, and implements effective control on the quality of service parameters of the offloaded data, and reduces the data impact of the introduced split data on the base station.
- 1 is a schematic structural diagram of an evolved packet domain system
- FIG. 2 is a schematic diagram of a 3G home base station network architecture
- FIG. 3 is a schematic diagram of one of LTE home base station network architectures
- FIG. 4 is a schematic diagram of a network architecture of an LTE home base station
- FIG. 5 is a schematic diagram of a third network structure of an LTE home base station
- FIG. 6 is a schematic diagram of one of network architectures for implementing local access
- FIG. 7 is a schematic diagram of a second network architecture for implementing local access
- FIG. 9 is a flowchart of a processing method for modifying a quality of service parameter by a local gateway when the GPRS network is accessed according to the present invention.
- FIG. 10 is a flowchart of a method for processing a local gateway to modify a quality of service parameter when the GPRS network is accessed by the present invention
- 11 is a flow chart of a processing method for modifying a quality of service parameter by a local gateway when the invention accesses an EPC network;
- FIG. 12 is a flow chart of a second processing method for modifying a quality of service parameter by a local gateway when the present invention accesses an EPC network;
- FIG. 13 is a schematic structural diagram of a structure of a bearer establishment system based on local access according to the present invention. detailed description
- FIG. 9 is a flowchart of a processing manner for modifying a QoS parameter of a local gateway when the GPRS network is accessed in the present invention.
- the base station type is not limited in this embodiment, that is, the base station may be a home base station, an evolved base station, or Ordinary base station, etc.
- the base station is taken as an example, The processing methods such as the home base station are identical. This embodiment can be applied to
- the core network gateway refers to the GGSN/PGW located in the core network, and the network element is not related to the implementation of the technical solution of the present invention, and details are not described herein.
- the local gateway may be a data offloading function (TOF) entity or a NAT gateway, but the implementation functions are basically the same.
- the TOF entity is taken as an example for description.
- the base station is a home base station
- the home base station gateway messages between all the home base stations and the mobility management network element need to be forwarded through the home base station gateway.
- the message between the home base station and the local gateway may be sent through the home base station gateway or not through the home base station gateway.
- the home base station gateway can transparently transmit the passed message.
- the process for modifying the service quality parameter of the local gateway when the GPRS network is accessed by the present invention specifically includes the following steps:
- Step 901 The user equipment initiates a PDP activation request, and the non-access stratum message is forwarded to the SGSN by using the base station.
- Step 902 The SGSN selects a suitable core network gateway for the UE according to the APN provided by the UE.
- the SGSN sends a PDP activation request to the core network gateway, which carries the UE identifier, PDP type, QoS information, charging information, and the like.
- Step 903 The core network gateway verifies the parameters carried in the PDP activation request message, and authorizes the QoS parameters carried in the request.
- Step 904 The core network gateway returns a PDP activation response to the SGSN, where the tunnel end identifier, the authorized QoS parameter, and the like are allocated.
- Step 905 The SGSN determines, according to the subscription information of the UE and/or the APN information that the UE requests to connect, whether to allow the UE to establish a local access service (including but not limited to the local IP access service or the selected IP offload service), and send the RAB to the base station.
- the assignment request message carries the information such as the MSISDN number, APN, QoS parameters, and charging feature parameters of the UE in the RAB assignment request message.
- the RAB assignment request message also needs to carry the signed quality of service parameters, including but not limited to a maximum bit rate (MBR), a guaranteed bit rate (GBR, Guaranteed Bit Rate) and the like.
- Step 906 The TOF entity intercepts the RAB assignment request message sent by the SGSN, according to the operator policy and the mobile station international ISDN number (MSISDN, Mobile Station International ISDN Number), the APN and/or the charging feature included in the RAB assignment request message. Information, to determine whether to carry all the bearers, or some data in the bearer.
- the TOF entity determines the quality of service parameters required for the offloaded data according to the selected data characteristics of the offloaded data, including but not limited to the maximum bit rate, the RAB symmetric indication (used to indicate whether the uplink and downlink data are symmetric), and the like.
- the TOF entity modifies the quality of service parameters in the RAB Assignment Request message based on the quality of service parameters of the offloaded data.
- the modified quality of service parameter is required to violate the contracted service quality parameter.
- the modified procedure is described by taking the maximum bit rate as an example.
- the maximum bit rate in the RAB assignment request is A.
- B the maximum bit rate of the UE subscription
- the TOF entity determines the offload data.
- the maximum bit rate is C
- the maximum bit rate in the RAB assignment message after the TOF modification is A+C.
- the TOF requires C ⁇ B-A when determining the maximum bit rate of the offloaded data.
- all the service quality parameters modified cannot violate the contracted service quality parameters, and the specific modification principle is set by the operator in advance.
- the TOF entity needs to save the quality of service parameters carried in the original RAB assignment request message and the modified quality of service parameters.
- Step 907 The TOF entity sends the modified RAB assignment request message to the base station.
- Step 908 If the base station accepts the QoS parameters sent by the core network gateway, the base station initiates an RRC connection establishment process.
- Step 909 The base station returns an RAB assignment response message to the SGSN. If multiple bearers are established at the same time, the base station will return multiple RAB assignment response messages. Step 910: If the base station cannot accept the QoS parameter in the RAB Assignment Request message, indicate to the SGSN in the returned RAB Assignment Response message. Optionally, the TOF entity intercepts the message and records whether the bearer is successfully established.
- Step 911 The TOF entity forwards the RAB assignment response message to the SGSN, and the SGSN may select to send a new QoS parameter according to the indication.
- the TOF entity still needs to intercept and process according to the processing in step 906.
- Step 912 The SGSN determines whether to send a PDP update request to the core network gateway according to whether a direct tunnel is established, and if it is sent, carries the tunnel end identifier of the base station. If the QoS is inconsistent with the QoS delivered by the previous core network gateway, the SGSN notifies the core network gateway through the PDP update process.
- Step 913 The SGSN sends a PDP activation response message to the UE.
- the process is applicable to UE initiated PDP activation, secondary PDP activation, network initiated PDP and secondary PDP activation procedures.
- FIG. 10 is a flowchart of a second processing manner for modifying a QoS parameter of a local gateway when the GPRS network is connected to the GPRS network.
- the base station type is not limited in this embodiment, that is, the base station may be a home base station, an evolved base station, or an ordinary Base station, etc.
- the base station is taken as an example, and the processing manners for the home base station and the like are completely the same.
- This embodiment can be applied to the case where UTRAN/GERAN accesses the GPRS network.
- the core network gateway refers to the GGSN/PGW located in the core network, and the network element is not related to the implementation of the technical solution of the present invention, and details are not described herein.
- the local gateway may be a data offloading function (TOF) entity or a NAT gateway, but the implementation functions are basically the same.
- the TOF entity is taken as an example for description.
- the base station is a home base station
- the home base station gateway When there is a home base station gateway, messages between all the home base stations and the mobility management network element need to be forwarded through the home base station gateway. Further, the message between the home base station and the local gateway may be through the home base station gateway or may be unreachable. Sent through the home base station gateway.
- the home base station gateway can transparently transmit the passed message.
- the process for modifying the service quality parameter of the local gateway when the GPRS network is accessed by the present invention specifically includes the following steps:
- Step 1001 The user equipment initiates a PDP modification request, and the non-access stratum message is forwarded to the SGSN via the base station.
- Step 1002 The SGSN determines, according to the subscription information provided by the UE, whether to allow the UE to modify, and if so, performs the subsequent steps.
- the SGSN sends a PDP modification request to the core network gateway, where the SGSN carries information such as the quality of service parameters requested by the UE.
- Step 1003 The core network gateway verifies the parameters carried in the PDP modification request message, and authorizes the QoS parameters carried in the request.
- Step 1004 The core network gateway returns a PDP modification response to the SGSN, where the re-authorized QoS parameters and the like are carried.
- Step 1005 The SGSN determines, according to the subscription information of the UE and/or the APN information that the UE requests to connect, whether to allow the UE to establish a local access service (including but not limited to a local IP access service or a selected IP offload service), if allowed to the base station.
- the RAB assignment request message is sent, where the MSISDN number of the UE, the APN, the re-authorization QoS parameter, the charging feature parameter, and the like are carried.
- Optional which also needs to carry the signed quality of service parameters, including but not limited to parameters such as MBR, GBR.
- Step 1006 The TOF entity intercepts the RAB assignment request message sent by the SGSN, and determines, according to the operator policy and the MSISDN, APN, and/or charging feature information included in the RAB assignment request message, whether all bearers, or bearers, will be Some data is shunted.
- the TOF entity determines the QoS parameters required for the offloaded data according to the selected data characteristics of the offload, including but not limited to the maximum bit rate, and the RAB symmetry indication (for indicating whether the uplink and downlink data are correct Said) and other quality of service parameters.
- the TOF entity modifies the quality of service parameters from the RAB assignment request according to the quality of service parameters of the offloaded data.
- the modified quality of service parameter is required to violate the contracted service quality parameter.
- the modified procedure is described by using the maximum bit rate as an example.
- the maximum bit rate in the RAB assignment request message is A.
- ⁇ is set to B, and the TOF entity determines.
- the maximum bit rate of the offloaded data is C, and the maximum bit rate in the modified RAB assignment message of the TOF entity is A+C.
- the TOF entity requires C ⁇ BA when determining the maximum bit rate of the offloaded data.
- the TOF entity needs to save the quality of service parameters carried in the original RAB assignment request message and the modified quality of service parameters.
- Step 1007 The TOF entity sends the modified RAB assignment request message to the base station.
- Step 1008 If the base station accepts the QoS parameters sent by the core network gateway, the base station initiates an RRC connection establishment process.
- Step 1009 The base station returns an RAB assignment response message to the SGSN. If multiple bearers are established at the same time, the base station will return multiple RAB assignment response messages.
- Step 1010 If the base station cannot accept the QoS parameter in the RAB assignment request message, indicate to the SGSN in the returned RAN assignment response message. Optionally, the TOF entity intercepts the message and records whether the load is successfully established. Step 1011: The TOF entity forwards the RAB assignment response message to the SGSN. The SGSN may select to send a new QoS parameter according to the indication.
- the TOF entity still needs to be intercepted and processed according to the processing in step 1006.
- the SGSN determines whether to send a PDP update request to the core network gateway according to whether a direct tunnel is established, and if it is sent, carries the tunnel end identifier of the base station. If QoS The SGSN notifies the core network gateway through the PDP update process, which is inconsistent with the QoS delivered by the previous core network gateway.
- Step 1013 The SGSN sends a PDP modification response message to the UE.
- the process is applicable to the PDP modification initiated by the UE, the PDP modification initiated by the SGSN, the PDP modification initiated by the GGSN, and the PDP modification process initiated by the HLR/HSS.
- the present embodiment does not limit the type of the base station, that is, the base station can be a home base station or a common base station.
- the base station is taken as an example, and the impact on the home base station is the same.
- This embodiment can be applied to the case where the UTRAN/EUTRAN is connected to the EPC network.
- the mobility management network element refers to the SGSN; for EUTRAN access, the mobility management network element refers to the MME.
- the core network gateway refers to the SGW/PGWo local gateway located in the core network.
- the SGW/PGWo local gateway may be a TOF entity or a NAT gateway, but the implementation functions are similar.
- the ETURAN is connected to the EPC network, and the base station is a common base station, and the local gateway is a NAT gateway as an example.
- the base station is a home base station
- the home base station gateway When there is a home base station gateway, messages between all the home base stations and the mobile management network element need to be forwarded through the home base station gateway. Further, the message between the home base station and the local gateway may be sent through the home base station gateway or not through the home base station gateway.
- the home base station gateway transparently transmits the passed message.
- the process for modifying the QoS parameter of the local gateway when the present invention accesses the EPC network specifically includes the following steps:
- Step 1101 The user equipment initiates a PDN connection establishment request, and the non-access stratum message is sent to the MME via the base station.
- Step 1102 The MME selects a suitable core network gateway for the UE according to the APN provided by the UE.
- the MME sends a create session request to the PGW through the SGW, where the UE carries the UE Identification, PDN type, QoS information signed by the UE, billing information and other parameters.
- Step 1103 The PGW gateway verifies the parameters carried in the session request message, and authorizes the signed QoS parameters carried in the request.
- Step 1104 The PGW returns a Create Session Response message to the MME through the SGW, where the PGW carries the information of the tunnel end identifier, the authorized QoS parameter, and the like allocated by the UE.
- Step 1105 The MME determines, according to the subscription information of the UE and/or the APN information that the UE requests to connect, whether to allow the UE to establish a local access service (including but not limited to the local IP access service or the selected IP offload service), and send the UE to the base station.
- a local access service including but not limited to the local IP access service or the selected IP offload service
- the identifier of the UE (including but not limited to the MSISDN number/IMSI/S-TMSI of the UE, and/or the APN, and/or the QoS parameter, and/or the charging feature parameter, and/or whether to establish a local connection, etc.)
- the service quality parameter of the subscription is also required to be carried, including but not limited to the MBR of the UE.
- the message also carries a default bearer activation request that needs to be transparently transmitted to the UE.
- the sending of the UE initial context request message or the RAB setup request message is based on whether the MME establishes an S1 connection for the UE.
- An S1 connection is established between the MME and the base station, and the RAB establishment request is sent, otherwise the UE initial context request is sent.
- the contents of the above two messages related to the present invention are similar, and the judgment condition is the prior art.
- Step 1106 The local gateway intercepts the UE initial context request message sent by the MME, or the RAB establishment request message, according to the operator policy and the MSISDN, APN and/or charging feature information included in the message, and/or whether to establish a local connection, Determine whether all bearers, or some data in the bearer, will be offloaded.
- the local gateway determines the quality of service parameters required for the offloaded data according to the selected data characteristics of the offloaded data, including but not limited to the maximum bit rate, the RAB symmetric indication (used to indicate whether the uplink and downlink data are symmetric), and the like.
- the local gateway modifies the UE initial context request message or the quality of service parameter in the RAB setup request message according to the quality of service parameter of the offloaded data.
- the parameter requires that the modified quality of service parameters cannot violate the contracted quality of service parameters.
- the modified procedure is described by using the maximum bit rate as an example.
- the maximum bit rate in the UE initial context request message or the RAB setup request message is A.
- the local gateway determines that the maximum bit rate of the offloaded data is C, then the modified initial UE context request of the local gateway, or the maximum bit rate of the RAB establishment request is A+C.
- the local gateway requires C ⁇ BA when determining the maximum bit rate of the offloaded data.
- the local gateway needs to save the original UE initial context request, or the quality of service parameters carried in the RAB setup request, and the modified quality of service parameters.
- the local gateway also needs to modify the service quality parameter in the default bearer activation request that the MME needs to transparently transmit to the UE, and the modified quality of service parameter is consistent with the above.
- Step 1107 The local gateway sends the modified UE initial context request or the RAB setup request to the base station.
- Step 1108 If the base station accepts the QoS parameters sent by the core network gateway, the base station initiates an RRC connection establishment process. Otherwise the base station rejects the bearer setup request.
- Step 1109 The base station returns a UE initial context response to the MME, or the RAB establishes a response message.
- Step 1110 the local gateway intercepts the message, and records whether the bearer is successfully established.
- the local gateway forwards to the MME.
- Step 1111 The UE returns a default bearer activation response to the MME through the base station.
- the local gateway intercepts the message and records whether the bearer is successfully established.
- Step 1112 The MME sends an update bearer process to the SGW, and sends the tunnel end identifier of the base station to the SGW.
- This process is applicable to the establishment of a PDN connection in the attach procedure initiated by the UE, and also applies to a separate PDN connection establishment process.
- the core network gateway is the SGW and the PGW.
- the message from the UE to the base station to the SGSN is similar to that of FIG. 9, and the flow of the SGSN to the core network is similar to that of FIG.
- the main difference is that if the RNC indicates that the QoS parameter delivered by the network cannot be accepted in step 909, the SGSN will directly return the bearer command request or wait for retransmission to the core network, without re-issuing the QoS parameters.
- the above process is a prior art known technique and will not be mentioned here.
- FIG. 12 is a flowchart of a method for processing a local gateway to modify a QoS parameter when accessing an EPC network according to the present invention.
- the embodiment does not limit the type of the base station, that is, the base station may be a home base station or a common base station. In the process description, the base station is taken as an example, and the impact on the home base station is the same.
- This embodiment can be applied to the case where the UTRAN/EUTRAN is connected to the EPC network.
- the mobility management network element refers to the SGSN; for EUTRAN access, the mobility management network element refers to the MME.
- the core network gateway refers to the SGW/PGWo local gateway located in the core network.
- the SGW/PGWo local gateway may be a TOF entity or a NAT gateway, but the implementation functions are similar.
- the ETURAN is connected to the EPC network
- the base station is a common base station
- the local gateway is a NAT gateway as an example.
- the base station is a home base station
- the home base station gateway When there is a home base station gateway, messages between all the home base stations and the mobile management network element need to be forwarded through the home base station gateway. Further, the message between the home base station and the local gateway may be sent through the home base station gateway or not through the home base station gateway.
- the home base station gateway transparently transmits the passed message.
- the process for modifying the QoS parameter of the local gateway when the present invention accesses the EPC network specifically includes the following steps:
- Step 1201 The PGW initiates a request to create a bearer, where the information such as the IMSI, the charging ID, and the QoS parameter of the UE is sent to the MME through the SGW.
- Step 1202 The MME requests the connected APN information according to the subscription information of the UE and/or the UE. Determining whether the UE is allowed to establish a local access service (including but not limited to a local IP access service or a selected IP offload service), and sending an RAB establishment request message to the base station.
- the identifier of the UE including but not limited to the MSISDN number/IMSI/S-TMSI of the UE, and/or the APN, and/or QoS parameters (including but not limited to the maximum bit rate of the UE, and/or the guaranteed bit rate of the bearer) And maximum bit rate), and/or charging feature parameters, and/or whether to allow establishment of local connections, etc.
- Optional therein also needs to carry signed quality of service parameters, including but not limited to UE Maximum Bit Rate (MBR).
- MMR UE Maximum Bit Rate
- the message also carries a dedicated bearer activation request that needs to be transparently transmitted to the UE.
- Step 1203 The local gateway intercepts the RAB setup request message sent by the MME, and determines whether the bearer will be all according to the operator policy and the MSISDN, APN and/or charging feature information included in the message, and/or whether to establish a local connection. Or some data in the bearer is offloaded.
- the local gateway determines the quality of service parameters required for the offloaded data according to the selected data characteristics of the offloaded data, including but not limited to the maximum bit rate, the RAB symmetric indication (used to indicate whether the uplink and downlink data are symmetric), and the like.
- the local gateway modifies the initial context request of the UE according to the quality of service parameter of the offloaded data, or the quality of service parameter in the RAB establishment request.
- the modified quality of service parameter is required to violate the contracted quality of service parameter.
- the modified procedure is described by using the maximum bit rate as an example.
- the maximum bit rate in the initial context request of the UE or the RAB establishment request is A.
- the maximum bit rate of the UE subscription is sent in step 1202, it is assumed to be B, local.
- the gateway determines that the maximum bit rate of the offloaded data is C, then the modified initial UE context request of the local gateway, or the maximum bit rate of the RAB establishment request is A+C.
- the local gateway requires C ⁇ B-A when determining the maximum bit rate of the offloaded data.
- the local gateway needs to save the original UE initial context request, or the quality of service parameters carried in the RAB setup request, and the modified quality of service parameters.
- the local gateway also needs to modify the QoS parameter in the default bearer activation request that the MME needs to transparently transmit to the UE, and the modified QoS parameter is consistent with the above.
- Step 1204 The local gateway sends the modified RAB setup request message to the base station.
- Step 1205 If the base station accepts the QoS parameters sent by the core network gateway, the base station initiates an RRC connection establishment process. Otherwise the base station rejects the RAB setup request message.
- Step 1206 The base station returns an RAB setup response message to the MME.
- Step 1207 the local gateway intercepts the message, and records whether the bearer is successfully established.
- the local gateway forwards the UE initial context response message to the MME, or the RAB establishes a response message.
- Step 1208 The UE returns a dedicated activation response to the MME through the base station.
- the local gateway intercepts the message and records whether the bearer is successfully established.
- Step 1209 The MME sends a create bearer response message to the SGW, and sends the tunnel end identifier of the base station to the SGW.
- the SGW forwards a create bearer response message to the PGW.
- the process is also applicable to the bearer modification process initiated by the PGW.
- the message in the step 1201/1209 is the update bearer request
- the message in the step 1202/1204 is the RAB modification request
- the message carrying the MME transparently transmitted to the UE is modified.
- the bearer request, the message of step 1206/1207 is a RAB modification response, and in step 1208, the bearer response is modified.
- the implementation of the parameter local gateway involved in the present invention is similar to that in the embodiment, and is not described here.
- the process is also applicable to the UE-initiated resource allocation or the PGW-initiated bearer setup or bearer modification procedure triggered by the UE-initiated resource modification process, or the MME/HSS initiates the bearer bearer modification process.
- the core network gateway is the SGW and the PGW. Otherwise, the message from the UE to the base station to the SGSN is similar to that of FIG. 10, and the flow of the SGSN to the core network is similar to that of FIG.
- the main difference is that if the RNC indicates that the QoS parameter delivered by the network cannot be accepted in step 1009, the SGSN will directly return the bearer command request or wait for retransmission to the core network, and will not re-issue the QoS parameters.
- the above process is a prior art well-known technique and will not be described here.
- the bearer establishment system based on local access of the present invention is applicable to a GPRS network or an EPC network.
- FIG. 13 is a schematic structural diagram of a structure of a local access-based bearer establishment system according to the present invention. As shown in FIG. 13, the system includes an inspection unit 130, a determining unit 131, and a modifying unit 132. In the process of bearer establishment or modification, checking messages transmitted between the mobility management network element and the base station;
- the determining unit 131 is configured to determine, according to the information in the message, whether the service data can be offloaded, and the modifying unit can be triggered;
- the modifying unit 132 is configured to modify the quality of service parameter included in the message.
- the determining unit 131 further determines whether the service data can be offloaded according to the operator policy and/or the information carried in the message transmitted between the mobility management network element and the base station.
- the modifying unit 132 further determines a service quality parameter of the offload service according to the data transmission requirement of the offload service; and modifying the quality of service parameter according to the determined quality of service parameter of the offload service.
- the message transmitted between the mobility management network element and the base station further carries the quality of service parameters subscribed by the UE, and the modified quality of service parameter does not violate the quality of service parameters signed by the UE.
- the bearer establishment system based on the local access of the present invention further includes a bearer unit (not shown) and a forwarding unit (not shown);
- a bearer unit configured to: put the modified quality of service parameter into the bearer related request message
- a forwarding unit configured to forward the related request message to the base station.
- the mobility management network element is an SGSN, and the process of establishing or modifying the bearer is a PDP activation request process or a PDP modification request process; and the bearer related request message is an RAB assignment request message.
- the mobility management network element is an MME, and the process of establishing or modifying the bearer is a PDN.
- the connection establishment process, or the attaching process, or the resource allocation process initiated by the terminal, or the resource modification process initiated by the terminal, or the bearer establishment process initiated by the network, or the bearer modification process; the bearer related request message is the UE An initial context setup request message, or a setup message for the RAB, or a response message for the initial context of the UE, or a response message for the RAB.
- the local access-based bearer establishment system shown in FIG. 13 and FIG. 14 is designed to implement the foregoing local access-based bearer establishment method, and the implementation functions of the foregoing processing units may be It is understood with reference to the related description of the foregoing method.
- the functions of the various processing units in the figure can be implemented by a program running on a processor or by a specific logic circuit.
Landscapes
- Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Description
基于本地接入的承载建立方法及系统 技术领域
本发明涉及数据业务的承载建立技术, 尤其涉及一种基于本地接入的 承载建立方法及系统。 背景技术
为了保持第三代(3G, 3th Generation )移动通信系统在通信领域的竟 争力, 为用户提供速率更快、 时延更低、 更加个性化的移动通信服务, 同 时, 也为了降低运营商的运营成本, 第三代合作伙伴计划 (3GPP , 3rd Generation Partnership Project )标准工作组正致力于演进分组系统(EPS, Evolved Packet System ) 的研究。 图 1是演进分组域系统的结构示意图, 如 图 1所示, 整个 EPS系统分为无线接入网和核心网两部分。 在核心网中, 包含有归属用户服务器(HSS, Home Subscriber Server ), 移动性管理实体 ( MME, Mobility Management Entity )、服务 GPRS支持节点( SGSN, Serving GPRS Support Node )、 策略计费规则功能( PCRF, Policy and Charging Rule Function ), 服务网关( S-GW, Serving Gateway ), 分组数据网关(P-GW, PDN Gateway )和分组数据网络( PDN, Packet Data Network )。 下面详细介 绍各部分功能:
归属用户服务器, 是用户签约数据的永久存放地点, 位于用户签约的 归属网。
移动性管理实体, 是用户签约数据在当前网络的存放地点, 负责用户 设备(UE, User Equipment )到网络的非接入层信令管理、 用户设备的安全 验证功能、 用户设备的移动性管理、 用户空闲模式下的跟踪和寻呼管理功 能和承载管理。
月良务 GPRS支持节点,是 GERAN和 UTRAN用户接入核心网络的业务 支持点, 功能上与移动性管理实体类似, 负责用户的位置更新、 寻呼管理 和承载管理等功能。
服务网关, 是核心网到无线系统的网关, 负责用户设备到核心网的用 户面承载、 用户设备空闲模式下的数据緩存、 网络侧发起业务请求的功能、 合法监听和分组数据路由和转发功能; 服务网关负责统计用户设备使用无 线网的情况, 并产生用户设备使用无线网的话单, 传送给计费网关。
分组数据网关, 是演进系统和该系统外部分组数据网络的网关, 它连 接到因特网和分组数据网络上, 负责用户设备的互联网协议(IP, Internet Protocol )地址分配、 计费功能、 分组包过滤、 策略控制等功能。
分组数据网络, 是运营商的 IP业务网络, 该网络通过运营商的核心网 为用户提供 IP服务。
策略计费规则功能实体, 是演进系统中负责提供计费控制、 在线信用 控制、 门限控制、 服务质量(QoS, Quality of Service )策略方面规则的服 务器。
无线接入网, 是由演进基站(eNB, E-UTRAN NodeB )和 3G无线网 络控制器(RNC, Radio Network Control )组成, 它主要负责无线信号的收 发, 通过空中接口和用户设备联系, 管理空中接口的无线资源、 资源调度、 接入控制。
上述服务 GPRS支持节点是升级过的 SGSN,能够支持与服务网关之间 的 S4接口, 并与移动性管理单元之间采用 GTPv2协议进行互通。 而对于 支持 3G核心网的 SGSN来说 PS域网络架构与图 1有所不同。 此时 SGSN 与 MME采用 Gn接口相连, 互通采用 GTPvl协议。 SGSN不能与服务网关 相连, 通过 Gn接口连接到网关 GPRS支持节点 (GGSN, Gateway GPRS Support Node )直接进行分组数据网络访问。
家庭基站(HNB, Home NodeB )或者演进的家庭基站(HeNB, Home eNodeN )是一类小型、 低功率的基站, 作为某些用户的专属资源, 部署在 家庭、 团体、 公司或者学校等私人场所使用, 主要是为了给用户提供更高 的业务速率并降低使用高速率服务所需要的费用, 同时弥补已有分布式蜂 窝无线通信系统覆盖的不足。 家庭基站的优点是实惠、 便捷、 低功率输出、 即插即用、 宽带接入、 使用单模用户设备等。
家庭基站可以应用在 3G或者长期演进( LTE, Long Term Evolution ) 移动通信网络中。 为了便于对家庭基站进行管理, 在网络中引入了一个新 网元, 即家庭基站网关( HNB GW, Home NodeB Gateway )。 家庭基站网关 主要执行的功能为: 验证家庭基站的安全性, 对家庭基站的运行进行维护 管理, 根据运营商要求配置和控制家庭基站, 负责交换核心网和家庭基站 的数据信息。 图 2是 3G家庭基站网络架构图, 如图 2所示, 3G家庭基站 通过新定义的 Iuh接口连接至家庭基站网关,家庭基站网关提供到核心网分 组域和电路域的 IuPS和 IuCs接口。 对于 3G网络来说, 家庭基站网关必须 屏蔽引入家庭基站后对用户设备和网络侧的影响。 对于 LTE网络来说, 家 庭基站网关是可选部署的, 因此, LTE家庭基站和核心网连接有两种方式, 一种是家庭基站和核心网网元直接相连, 另一种是家庭基站通过网关和核 心网网元相连, 分别如图 3、 4所示, 其中, 图 3是 LTE家庭基站网络架构 之一的示意图, 图 4是 LTE家庭基站网络架构之二的示意图。 图 5是 LTE 家庭基站网络架构之三的示意图, 如图 5所示, 对于图 4所示引入家庭基 站网关的场景, 家庭基站网关可以不集成用户面功能, 家庭基站和核心网 用户面网关间直接建立用户面, 这样可以使用户面扁平化, 数据传输时延 减小。
家庭基站除了支持通过移动核心网络的接入之外, 还可以支持本地 IP 接入功能,在家庭基站具备本地 IP接入能力并且用户签约允许本地 IP访问
的条件下,可以实现用户对家庭网络其他 IP设备或者互联网络的本地接入。 通过本地接入功能, 可以实现 Internet数据业务的分流, 降低核心网负荷, 并且对于家庭网络设备的访问可以不通过核心网来进行转发, 数据传输便 捷高效。 本地 IP接入功能在宏蜂窝上也可以使用, 主要用途和家庭基站类 似, 更多的是应用在本地 IP接入 Internet这种场景, 目的是降低核心网负 荷。 图 6和图 7分别给出了实现上述本地接入功能的架构, 主要差别体现 在是否存在家庭基站网关。 其中, 本地接入网关作为本地接入到外部网络 (例如 Internet ) 的网络, 提供地址分配、 计费、 分组包过滤、 策略控制、 数据分流功能、无线接入网应用部分( NAS/RANAP, Radios Access Network Application Part ) 消息解析、 网络地址转换 (NAT , Network Address Translation )、 本地 IP访问策略路由和执行等功能。 该网元作为一个逻辑单 元在实际部署时可以作为独立存在的网元也可以和现有的家庭基站或者家 庭基站网关联合部署。 对于宏蜂窝实现本地接入架构, 或者没有家庭基站 网关的接入架构, 可以通过图 7所示的架构实现。
上述架构中, 为了减少对现有网元的影响, 虽然本地网关位于基站到 核心网网关的数据路径上, 但是不被基站和核心网网关感知。 此外这里作 为本地接入主要指的是靠近无线侧的数据分流, 目前包括本地 IP连接和选 定 IP分流业务等业务, 不限定后续扩展。
UE建立承载时,基站和核心网网络会对各自支持的服务质量参数进行 协商, 以保证为 UE请求的业务能够在相应的承载上运行。 现有技术中, UE建立 载的过程如图 8所示, 本实施方式以 UTRAN/GERAN的建立过 程为例 , EUTRAN建立过程与 UTRAN/GERAN的建立过程类似。
步驟 801 , 用户设备发起包数据协议(PDP, Packet Data Protocol )激 活请求, 该非接入层消息经由基站转发给 SGSN。
步驟 802, SGSN根据 UE提供的接入点名称( APN, Access Point Name ),
为 UE选择一个合适的核心网网关。 SGSN向核心网网关发送 PDP激活请 求, 其中携带 UE标识, PDP类型, QoS信息, 计费信息等参数。 如果是 接入通用分组无线服务( GPRS, General Packet Radio Service ) 网络, 则核 心网网关为 GGSN, 如果接入演进分组核心 ( EPC, Evolved Packet Core ) 网络, 则核心网网关指的是 SGW和 PGW。 接入的网络不同, 在网元之间 交互的消息也会有所不同, 但是其作用类似, 这里以接入 GRPS 网络的描 述为例进行说明, 本领域技术人员应当理解, 在其余网络中的处理方式也 基本相同。
步驟 803 , 核心网网关对 PDP激活请求消息中携带的参数进行验证, 并对请求中携带的 QoS参数进行授权。
步驟 804, 核心网网关向 SGSN返回 PDP激活响应, 其中携带为 UE 分配的隧道端标识, 授权的 QoS参数等信息。
步驟 805 , SGSN向基站发送承载指配请求, 其中携带 UE的 MSISDN 号码, APN, QoS参数等信息。
步驟 806, 如果基站接受了核心网网关下发的 QoS参数, 则基站发起 无线资源控制 (RRC, Radio Resource Control )连接建立的过程。
步驟 807, 基站向 SGSN返回无线接入承载( RAB, Radio Access Bear ) 指配响应消息。 如果同时建立多条承载, 则基站会返回多个 RAN指配响应 消息。
步驟 808, 如果基站无法接受 RAB指配消息中的 QoS参数, 则在返回 的 RAN指配响应消息中指示给 SGSN。 SGSN根据该指示, 可以选择下发 新的 QoS参数。
步驟 809, SGSN根据是否建立直接隧道, 判断是否要向核心网网关发 送 PDP更新请求, 如果发送, 则其中携带基站的隧道端标识。 如果 QoS与 之前核心网网关下发的 QoS不一致,则 SGSN通过 PDP更新过程通知核心
网网关。
步驟 810, SGSN向 UE发送 PDP激活响应消息。
UE会通过某个基站接入网络, 但是根据不同的数据分流策略, 数据流 可能一部分通过核心网网络流出, 一部分通过本地网关分流出去。 在上述 架构中, 为了减少对网关架构的影响, 尽量避免引入本地网关对现有架构 中其他网元的影响, 尤其是对基站的影响, 从而节约运营商部署该功能所 带来的成本开销, 因此基站和核心网网关并不感知位于数据路径上的本地 网关, 从而导致核心网网关和基站所控制的 QoS参数不一致, 尤其在分流 数据量比较大时, 过量的数据可能导致核心网的数据受到影响甚至丟包。 发明内容
有鉴于此, 本发明的主要目的在于提供一种基于本地接入的承载建立 方法及系统, 在具有本地接入网关的网络中也能使 UE顺利接入。
为达到上述目的, 本发明的技术方案是这样实现的:
一种基于本地接入的承载建立方法, 包括:
在承载建立或修改过程中, 本地网关检查移动性管理网元和基站的之 间传递的消息, 确定对业务数据进行分流时, 修改所述消息中包含的服务 质量参数。
优选地, 所述确定对业务数据进行分流具体为: 本地网关根据运营商 策略和 /或所述移动性管理网元和基站的之间传递的消息中携带的信息确定 能否对业务数据进行分流。
优选地, 所述修改所述消息中包含的服务质量参数具体为:
根据分流业务的数据传输要求确定分流业务的服务质量参数; 根据所确定分流业务的服务质量参数, 修改服务质量参数。
优选地,移动性管理网元和基站的之间传递的消息中还携带有 UE签约 的服务质量参数, 所述本地网关使修改后的服务质量参数不违背所述 UE
签约的服务质量参数。
优选地, 所述方法还包括:
所述本地网关将修改后的服务质量参数置于承载相关请求消息中, 并 转发给基站或移动性管理单元。
优选地, 所述移动性管理网元为 SGSN, 所述承载建立或者修改的过程 为 PDP激活请求过程或 PDP修改请求过程;所述承载相关请求消息为 RAB 指配请求消息或者无线接入承载指配响应消息。
优选地, 所述移动性管理网元为 MME, 所述承载建立或者修改的过程 为 PDN连接建立过程,或者为附着流程,或者为终端发起的资源分配过程, 或者为终端发起的资源修改过程, 或者为网络发起的承载建立过程, 或者 为承载修改过程; 所述承载相关请求消息为 UE初始上下文建立请求消息, 或为 RAB建立请求消息, 或为 UE初始上下文建立响应消息, 或为 RAB 建立响应消息。
一种基于本地接入的承载建立系统, 适用于 GPRS网络或 EPC网络; 所述系统包括检查单元、 确定单元和修改单元; 其中,
检查单元, 用于在承载建立或修改过程中, 检查移动性管理网元和基 站的之间传递的消息;
确定单元, 用于根据所述消息中的信息确定能否对业务数据进行分流, 能时触发修改单元;
修改单元, 用于修改所述消息中包含的服务质量参数。
优选地, 所述确定单元进一步根据运营商策略和 /或所述移动性管理网 元和基站的之间传递的消息中携带的信息确定能否对业务数据进行分流。
优选地, 所述修改单元进一步根据分流业务的数据传输要求确定分流 业务的服务质量参数; 根据所确定分流业务的服务质量参数, 修改服务质 量参数。
优选地,移动性管理网元和基站的之间传递的消息中还携带有 UE签约 的服务质量参数,所述修改后的服务质量参数不违背所述 UE签约的服务质 量参数。
优选地, 所述系统还包括承载单元和转发单元; 其中,
承载单元, 用于将所述修改单元修改后的服务质量参数置于承载相关 请求消息;
转发单元, 用于将相关请求消息转发给基站。
优选地, 所述移动性管理网元为 SGSN, 所述承载建立或者修改的过程 为 PDP激活请求过程或 PDP修改请求过程;所述承载相关请求消息为 RAB 指配请求消息或者 RAB指配响应消息。
优选地, 所述移动性管理网元为 MME, 所述承载建立或者修改的过程 为 PDN连接建立过程,或者为附着流程,或者为终端发起的资源分配过程, 或者为终端发起的资源修改过程, 或者为网络发起的承载建立过程, 或者 为承载修改过程; 所述承载相关请求消息为 UE初始上下文建立请求消息, 或为 RAB建立请求消息, 或为 UE初始上下文建立响应消息, 或为 RAB 建立响应消息。
本发明中,在发起针对 UE的无线承载时, 当网络侧为当前无线承载确 定出相应的业务承载的服务质量参数后,在发送至 UE接入基站之前,发送 至本地网关进行数据分流与否的判决, 当可以对业务数据进行分流时, 本 地网关将为分流业务重新确定服务质量参数, 该服务质量参数不违背 UE 的签约数据中的服务质量参数。 本地网关将修改后的相关消息发送至基站, 由基站进行相关的承载建立流程。 本发明中, 本地网关通过截获和修改服 务质量参数, 使得本地网关完全对无线通信网络屏蔽, 并实现了对分流数 据的服务质量参数有效的控制, 减少了引入分流数据对基站的数据沖击。
附图说明
图 1是演进分组域系统的结构示意图;
图 2是 3G家庭基站网络架构示意图;
图 3是 LTE家庭基站网络架构之一的示意图;
图 4是 LTE家庭基站网络架构之二的示意图;
图 5是 LTE家庭基站网络架构之三的示意图;
图 6是实现本地接入的网络架构之一的示意图;
图 7是实现本地接入的网络架构之二的示意图;
图 8是现有技术中, UTRAN接入 PDP激活流程的过程;
图 9是本发明接入 GPRS网络时本地网关修改服务质量参数的处理方 式一的流程图;
图 10本发明接入 GPRS网络时本地网关修改服务质量参数的处理方式 二的流程图;
图 11本发明接入 EPC网络时本地网关修改服务质量参数的处理方式一 的流程图;
图 12是本发明接入 EPC网络时本地网关修改服务质量参数的处理方式 二的流程图;
图 13是本发明基于本地接入的承载建立系统的一种组成结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
图 9是本发明接入 GPRS网络时本地网关修改服务质量参数的处理方 式一的流程图, 如图 9所示, 本实施方式中并不限定基站类型, 即基站可 以为家庭基站、 演进基站或者普通基站等。 流程描述中以基站为例, 对于
家庭基站等处理方式是完全相同的。 本实施方式可以适用于
UTRAN/GERAN接入 GPRS网络的情况。 而核心网网关指的是位于核心网 的 GGSN/PGW, 该网元与本发明的技术方案实现无关, 这里不作赘述。 本 地网关在本实施方式中可以为数据分流功能(TOF ) 实体或者 NAT网关, 但是实现功能基本相同, 本实施例以 TOF实体为例进行说明。 对于基站为 家庭基站的场景, 网络中可能存在家庭基站网关, 当存在家庭基站网关时, 所有家庭基站和移动管理网元之间的消息都需要经过家庭基站网关进行转 发即可。 进一步地, 家庭基站和本地网关之间的消息, 可以通过家庭基站 网关也可以不通过家庭基站网关而发送。 对于通过家庭基站网关转发消息 的场景, 家庭基站网关对经过的消息进行透传即可。
如图 9所示, 本发明接入 GPRS网络时本地网关修改服务质量参数的 处理流程具体包括以下步驟:
步驟 901 , 用户设备发起 PDP激活请求, 该条非接入层消息经由基站 转发给 SGSN。
步驟 902, SGSN根据 UE提供的 APN, 为 UE选择一个合适的核心 网网关。 SGSN向核心网网关发送 PDP激活请求, 其中携带 UE标识, PDP 类型, QoS信息, 计费信息等参数等。
步驟 903 , 核心网网关对 PDP激活请求消息中携带的参数进行验证, 并对请求中携带的 QoS参数进行授权。
步驟 904, 核心网网关向 SGSN返回 PDP激活响应, 其中携带为 UE 分配的隧道端标识, 授权的 QoS参数等信息。
步驟 905, SGSN根据 UE的签约信息和 /或 UE请求连接的 APN信息 判断是否允许 UE建立本地接入业务(包括但不限于本地 IP接入业务或者 选定的 IP分流业务), 向基站发送 RAB指配请求消息, RAB指配请求消息 中携带 UE的 MSISDN号码, APN, QoS参数, 计费特征参数等信息。 可
选的, RAB指配请求消息中还需要携带签约的服务质量参数, 包括但不限 于最大比特率(MBR, Maximum Bit Rate ), 保证比特率( GBR, Guaranteed Bit Rate )等参数。
步驟 906, TOF实体截获 SGSN发送的 RAB指配请求消息, 根据运营 商策略以及 RAB指配请求消息中包含的移动台国际 ISDN号码( MSISDN, Mobile Station International ISDN Number ) , APN和 /或计费特征信息, 判断 是否将全部承载, 或者承载中的某些数据进行分流。 TOF 实体根据所选取 的分流的数据特性, 确定分流数据需要的服务质量参数, 其中包括但不限 于最大比特率, RAB对称指示(用于指示上下行数据是否对称)等服务质 量参数。 TOF实体根据分流数据的服务质量参数修改从 RAB指配请求消息 中的服务质量参数。 可选的如果步驟 905 下发了签约的服务质量参数, 则 要求修改后的服务质量参数不能违背签约的服务质量参数。 修改的过程以 最大比特率为例进行说明, RAB指配请求中的最大比特率为 A, 可选的如 果步驟 905中下发 UE签约的最大比特率,假设为 B, TOF实体确定了分流 数据的最大比特率为 C, 则 TOF修改后的 RAB指配消息中最大比特率为 A+C。 TOF在确定分流数据的最大比特率时要求 C<B-A。 总之, 所修改的 所有服务质量参数不能违背签约的服务质量参数, 具体的修改原则由运营 商事先设置。
TOF实体需要保存原 RAB指配请求消息中携带的服务质量参数,以及 修改后的服务质量参数。
步驟 907, TOF实体将修改过的 RAB指配请求消息发送给基站。
步驟 908, 如果基站接受了核心网网关下发的 QoS参数, 则基站发起 RRC连接建立的过程。
步驟 909, 基站向 SGSN返回 RAB指配响应消息。 如果同时建立多条 承载, 则基站会返回多个 RAB指配响应消息。
步驟 910, 如果基站无法接受 RAB指配请求消息中的 QoS参数, 则在 返回的 RAB指配响应消息中指示给 SGSN。可选的, TOF实体截获该消息, 并记录承载是否建立成功。
步驟 911 , TOF实体向 SGSN转发 RAB指配响应消息, SGSN根据该 指示, 可以选择下发新的 QoS参数。
如果后续 SGSN下发了新的 RAB指配请求消息, 则 TOF实体仍需截 获并按照步驟 906的处理方式进行处理。
步驟 912, SGSN根据是否建立直接隧道, 判断是否要向核心网网关发 送 PDP更新请求, 如果发送, 则其中携带基站的隧道端标识。 如果 QoS与 之前核心网网关下发的 QoS不一致,则 SGSN通过 PDP更新过程通知核心 网网关。
步驟 913 , SGSN向 UE发送 PDP激活响应消息。
该过程适用于 UE发起的 PDP激活、 次 PDP激活, 网络发起的 PDP 和次 PDP激活流程。
图 10本发明接入 GPRS网络时本地网关修改服务质量参数的处理方式 二的流程图, 如图 10所示, 本实施方式中并不限定基站类型, 即基站可以 为家庭基站、 演进基站或者普通基站等。 流程描述中以基站为例, 对于家 庭基站等处理方式是完全相同的。 本实施方式可以适用于 UTRAN/GERAN 接入 GPRS网络的情况。 而核心网网关指的是位于核心网的 GGSN/PGW, 该网元与本发明的技术方案实现无关, 这里不作赘述。 本地网关在本实施 方式中可以为数据分流功能(TOF ) 实体或者 NAT网关, 但是实现功能基 本相同,本实施例以 TOF实体为例进行说明。对于基站为家庭基站的场景, 网络中可能存在家庭基站网关, 当存在家庭基站网关时, 所有家庭基站和 移动管理网元之间的消息都需要经过家庭基站网关进行转发即可。 进一步 地, 家庭基站和本地网关之间的消息, 可以通过家庭基站网关也可以不通
过家庭基站网关而发送。 对于通过家庭基站网关转发消息的场景, 家庭基 站网关对经过的消息进行透传即可。
如图 10所示, 本发明接入 GPRS网络时本地网关修改服务质量参数的 处理流程具体包括以下步驟:
步驟 1001 , 用户设备发起 PDP修改请求, 该条非接入层消息经由基站 转发给 SGSN。
步驟 1002, SGSN根据 UE提供的签约信息判断是否允许 UE修改, 如果允许则执行后续步驟。 SGSN向核心网网关发送 PDP修改请求, 其中 携带 UE所请求的服务质量参数等信息。
步驟 1003 , 核心网网关对 PDP修改请求消息中携带的参数进行验证, 并对请求中携带的 QoS参数进行授权。
步驟 1004, 核心网网关向 SGSN返回 PDP修改响应, 其中携带重新授 权的 QoS参数等信息。
步驟 1005 , SGSN根据 UE的签约信息和 /或 UE请求连接的 APN信息 判断是否允许 UE建立本地接入业务(包括但不限于本地 IP接入业务或者 选定的 IP分流业务), 如果允许向基站发送 RAB指配请求消息, 其中携带 UE的 MSISDN号码, APN, 重新授权 QoS参数, 计费特征参数等信息。 可选的其中还需要携带签约的服务质量参数, 包括但不限于 MBR, GBR 等参数。
步驟 1006, TOF实体截获 SGSN发送的 RAB指配请求消息, 根据运 营商策略以及 RAB指配请求消息中包含的 MSISDN, APN和 /或计费特征 信息, 判断将是否将全部承载, 或者承载中的某些数据进行分流。 TOF 实 体根据所选取的分流的数据特性, 确定分流数据需要的服务质量参数, 其 中包括但不限于最大比特率, RAB对称指示 (用于指示上下行数据是否对
称)等服务质量参数。 TOF实体根据分流数据的服务质量参数修改从 RAB 指配请求中的服务质量参数。 可选的如果步驟 1005下发了签约的服务质量 参数, 则要求修改后的服务质量参数不能违背签约的服务质量参数。 修改 的过程以最大比特率为例进行说明, RAB指配请求消息中的最大比特率为 A, 可选的如果步驟 1005 中下发 UE签约的最大比特率, ^^设为 B, TOF 实体确定了分流数据的最大比特率为 C,则 TOF实体修改后的 RAB指配消 息中最大比特率为 A+C。 TOF 实体在确定分流数据的最大比特率时要求 C<B-A。
TOF实体需要保存原 RAB指配请求消息中携带的服务质量参数,以及 修改后的服务质量参数。
步驟 1007, TOF实体将修改过的 RAB指配请求消息发送给基站。 步驟 1008, 如果基站接受了核心网网关下发的 QoS参数, 则基站发起 RRC连接建立的过程。
步驟 1009,基站向 SGSN返回 RAB指配响应消息。如果同时建立多条 承载, 则基站会返回多个 RAB指配响应消息。
步驟 1010, 如果基站无法接受 RAB指配请求消息中的 QoS参数, 则 在返回的 RAN指配响应消息中指示给 SGSN。 可选的, TOF实体截获该消 息, 并记录 载是否建立成功。 步驟 1011 , TOF实体向 SGSN转发 RAB指配响应消息 SGSN根据该 指示, 可以选择下发新的 QoS参数。
如果后续 SGSN下发了新的 RAB指配请求消息, 则 TOF实体仍需截 获并按照步驟 1006的处理方式进行处理。
步驟 1012, SGSN根据是否建立直接隧道, 判断是否要向核心网网关 发送 PDP更新请求, 如果发送, 则其中携带基站的隧道端标识。 如果 QoS
与之前核心网网关下发的 QoS不一致,则 SGSN通过 PDP更新过程通知核 心网网关。
步驟 1013 , SGSN向 UE发送 PDP修改响应消息。
该流程适用于 UE发起的 PDP修改、 SGSN发起的 PDP修改, GGSN 发起的 PDP修改, HLR/HSS发起的 PDP修改过程。
图 11本发明接入 EPC网络时本地网关修改服务质量参数的处理方式一 的流程图, 如图 11所示, 本实施方式不限定基站类型, 即基站可以是家庭 基站或者普通基站。 流程描述中以基站为例, 对家庭基站的影响是相同的。 本实施方式可以适用于 UTRAN/EUTRAN接入 EPC 网络的情况。 对于 UTRAN/GERAN接入来说,移动管理网元指的是 SGSN; 对于 EUTRAN接 入来说, 移动管理网元指的是 MME。 核心网网关指的是位于核心网的 SGW/PGWo 本地网关在该实施方式中可以为 TOF实体或者 NAT网关, 但 是实现功能类似。 本实施例以 ETURAN接入 EPC网络, 基站为普通基站, 本地网关为 NAT网关为例进行说明。 对于基站为家庭基站的场景, 网络中 可能存在家庭基站网关, 当存在家庭基站网关时, 所有家庭基站和移动管 理网元之间的消息都需要经过家庭基站网关进行转发即可。 进一步地, 家 庭基站和本地网关之间的消息, 可以通过家庭基站网关也可以不通过家庭 基站网关而发送。 对于通过家庭基站网关转发消息的场景, 家庭基站网关 对经过的消息进行透传即可。
如图 11所示,本发明接入 EPC网络时本地网关修改服务质量参数的处 理流程具体包括以下步驟:
步驟 1101 , 用户设备发起 PDN连接建立请求, 该条非接入层消息经由 基站发送给 MME。
步驟 1102, MME根据 UE提供的 APN, 为 UE选择一个合适的核心 网网关。 MME向通过 SGW向 PGW发送创建会话请求, 其中携带 UE标
识, PDN类型, UE签约的 QoS信息, 计费信息等参数。
步驟 1103, PGW网关对创建会话请求消息中携带的参数进行验证, 并 对请求中携带的签约的 QoS参数进行授权。
步驟 1104, PGW通过 SGW向 MME返回创建会话响应消息, 其中携 带为 UE分配的隧道端标识, 授权的 QoS参数等信息。
步驟 1105, MME根据 UE的签约信息和 /或 UE请求连接的 APN信息 判断是否允许 UE建立本地接入业务(包括但不限于本地 IP接入业务或者 选定的 IP分流业务),向基站发送 UE初始上下文建立请求消息,或者 RAB 建立请求消息。 其中携带 UE的标识(包括但不限于 UE的 MSISDN号码 /IMSI/S-TMSI, 和 /或 APN, 和 /或 QoS参数, 和 /或计费特征参数, 和 /或是 否允许建立本地连接等信息。 可选的其中还需要携带签约的服务质量参数, 包括但不限于 UE的 MBR。 该消息中还携带了需要透传给 UE的默认承载 激活请求。
发送 UE初始上下文请求消息,或者 RAB建立请求消息,是根据 MME 是否为 UE建立了 S1连接。 MME和基站之间已经建立了 S1连接, 则下发 RAB建立请求, 否则下发 UE初始上下文请求。 上述两个消息携带的涉及 本发明的内容类似, 判断条件为现有技术。
步驟 1106, 本地网关截获 MME发送的 UE初始上下文请求消息, 或 者 RAB建立请求消息, 根据运营商策略以及消息中包含的 MSISDN, APN 和 /或计费特征信息,和 /或是否允许建立本地连接,判断将是否将全部承载, 或者承载中的某些数据进行分流。 本地网关根据所选取的分流的数据特性, 确定分流数据需要的服务质量参数, 其中包括但不限于最大比特率, RAB 对称指示 (用于指示上下行数据是否对称)等服务质量参数。 本地网关根 据分流数据的服务质量参数修改 UE初始上下文请求消息, 或者 RAB建立 请求消息中的服务质量参数。 可选的如果步驟 1105下发了签约的服务质量
参数, 则要求修改后的服务质量参数不能违背签约的服务质量参数。 修改 的过程以最大比特率为例进行说明, UE初始上下文请求消息, 或者 RAB 建立请求消息中的最大比特率为 A, 可选的如果步驟 1105中下发 UE签约 的最大比特率, ^^设为 B, 本地网关确定了分流数据的最大比特率为 C, 则 本地网关修改后的 UE初始上下文请求, 或者 RAB建立请求中最大比特率 为 A+C。 本地网关在确定分流数据的最大比特率时要求 C<B-A。
本地网关需要保存原 UE初始上下文请求, 或者 RAB建立请求中携带 的服务质量参数, 以及修改后的服务质量参数。
本地网关也需要修改 MME需要透传给 UE的默认承载激活请求中的服 务质量参数, 修改的服务质量参数和上述一致。
步驟 1107, 本地网关将修改过的 UE初始上下文请求, 或者 RAB建立 请求发送给基站。
步驟 1108, 如果基站接受了核心网网关下发的 QoS参数, 则基站发起 RRC连接建立的过程。 否则基站拒绝承载建立请求。
步驟 1109, 基站向 MME返回 UE初始上下文响应 , 或者 RAB建立响 应消息。
步驟 1110, 可选的, 本地网关截获该消息, 并记录承载是否建立成功。 本地网关向 MME转发。 UE初始上下文响应 , 或者 RAB建立响应消息。
步驟 1111 , UE通过基站向 MME返回默认承载激活响应。 可选的, 本 地网关截获该消息, 并记录承载是否建立成功。
步驟 1112, MME向 SGW发送更新承载过程, 将基站的隧道端标识发 送给 SGW。
该过程适用于 UE发起的 attach过程中 PDN连接的建立, 也适用于单 独的 PDN连接建立过程。
对于 UTRAN/GERAN接入 EPC网络的情况, 核心网网关是 SGW和 PGW, 除此之外 UE到基站到 SGSN的消息与图 9类似, 而 SGSN到核心 网网络的流程与图 11类似。主要差别在于如果步驟 909中, RNC指示不能 接受网络下发的服务质量参数, 则 SGSN会直接向核心网网络返回删除承 载命令请求或者等待重发, 而不会重新下发 QoS参数。 上述过程为现有的 公知技术, 这里不做赞述。
图 12是本发明接入 EPC网络时本地网关修改服务质量参数的处理方式 二的流程图, 如图 12所示, 本实施方式不限定基站类型, 即基站可以是家 庭基站或者普通基站。 流程描述中以基站为例, 对家庭基站的影响是相同 的。 本实施方式可以适用于 UTRAN/EUTRAN接入 EPC网络的情况。 对于 UTRAN/GERAN接入来说,移动管理网元指的是 SGSN; 对于 EUTRAN接 入来说, 移动管理网元指的是 MME。 核心网网关指的是位于核心网的 SGW/PGWo 本地网关在该实施方式中可以为 TOF实体或者 NAT网关, 但 是实现功能类似。 本实施例以 ETURAN接入 EPC网络, 基站为普通基站, 本地网关为 NAT网关为例进行说明。 对于基站为家庭基站的场景, 网络中 可能存在家庭基站网关, 当存在家庭基站网关时, 所有家庭基站和移动管 理网元之间的消息都需要经过家庭基站网关进行转发即可。 进一步地, 家 庭基站和本地网关之间的消息, 可以通过家庭基站网关也可以不通过家庭 基站网关而发送。 对于通过家庭基站网关转发消息的场景, 家庭基站网关 对经过的消息进行透传即可。
如图 12所示,本发明接入 EPC网络时本地网关修改服务质量参数的处 理流程具体包括以下步驟:
步驟 1201 , PGW发起创建承载请求, 其中携带 UE的 IMSI, 计费 ID, 服务质量参数等信息, 通过 SGW发送给 MME。
步驟 1202, MME根据 UE的签约信息和 /或 UE请求连接的 APN信息
判断是否允许 UE建立本地接入业务(包括但不限于本地 IP接入业务或者 选定的 IP分流业务), 向基站发送 RAB建立请求消息。 其中携带 UE的标 识(包括但不限于 UE的 MSISDN号码 /IMSI/S-TMSI, 和 /或 APN, 和 /或 QoS参数 (包括但不限于 UE的最大比特率, 和 /或承载的保证比特率和最 大比特率), 和 /或计费特征参数, 和 /或是否允许建立本地连接等信息。 可 选的其中还需要携带签约的服务质量参数, 包括但不限于 UE 最大比特率 ( MBR )。 该消息中还携带了需要透传给 UE的专用承载激活请求。
步驟 1203, 本地网关截获 MME发送的 RAB建立请求消息, 根据运营 商策略以及消息中包含的 MSISDN, APN和 /或计费特征信息,和 /或是否允 许建立本地连接, 判断将是否将全部承载, 或者承载中的某些数据进行分 流。 本地网关根据所选取的分流的数据特性, 确定分流数据需要的服务质 量参数, 其中包括但不限于最大比特率, RAB对称指示(用于指示上下行 数据是否对称)等服务质量参数。 本地网关根据分流数据的服务质量参数 修改 UE初始上下文请求, 或者 RAB建立请求中的服务质量参数。 可选的 如果步驟 1202下发了签约的服务质量参数, 则要求修改后的服务质量参数 不能违背签约的服务质量参数。 修改的过程以最大比特率为例进行说明, UE初始上下文请求, 或者 RAB建立请求中的最大比特率为 A, 可选的如 果步驟 1202中下发 UE签约的最大比特率, 假设为 B, 本地网关确定了分 流数据的最大比特率为 C, 则本地网关修改后的 UE初始上下文请求, 或者 RAB建立请求中最大比特率为 A+C。 本地网关在确定分流数据的最大比特 率时要求 C<B-A。
本地网关需要保存原 UE初始上下文请求, 或者 RAB建立请求中携带 的服务质量参数, 以及修改后的服务质量参数。
本地网关也需要修改 MME需要透传给 UE的默认承载激活请求中的服 务质量参数, 修改的服务质量参数和上述一致。
步驟 1204, 本地网关将修改过的 RAB建立请求消息发送给基站。
步驟 1205 , 如果基站接受了核心网网关下发的 QoS参数, 则基站发起 RRC连接建立的过程。 否则基站拒绝 RAB建立请求消息。
步驟 1206 , 基站向 MME返回 RAB建立响应消息。
步驟 1207, 可选的, 本地网关截获该消息, 并记录承载是否建立成功。 本地网关向 MME转发 UE初始上下文响应消息 ,或者 RAB建立响应消息。
步驟 1208, UE通过基站向 MME返回专用 7|载激活响应。 可选的, 本 地网关截获该消息, 并记录承载是否建立成功。
步驟 1209, MME向 SGW发送创建承载响应消息, 将基站的隧道端标 识发送给 SGW。 SGW向 PGW转发创建承载响应消息。
该过程同样适用于 PGW 发起的承载修改过程, 在该过程中, 步驟 1201/1209中的消息为更新承载请求,步驟 1202/1204的消息为 RAB修改请 求其中携带 MME透传给 UE的消息为修改承载请求, 步驟 1206/1207的消 息为 RAB修改响应, 步驟 1208中为修改承载响应。 其中本发明涉及的参 数本地网关的实现方式都与该实施例中类似, 这里不故赞述。
该过程同样适用于, UE发起的资源分配或者 UE发起的资源修改过程 触发的 PGW发起的承载建立或者承载修改过程,或者 MME/HSS发起承载 承载修改过程。
对于 UTRAN/GERAN接入 EPC网络的情况, 核心网网关是 SGW和 PGW, 除此之外 UE到基站到 SGSN的消息与图 10类似, 而 SGSN到核心 网网络的流程与图 12类似。 主要差别在于如果步驟 1009中, RNC指示不 能接受网络下发的服务质量参数, 则 SGSN会直接向核心网网络返回删除 承载命令请求或者等待重发, 而不会重新下发 QoS参数。 上述过程为现有 的公知技术, 这里不做赘述。
本发明基于本地接入的承载建立系统适用于 GPRS网络或 EPC网络。 图 13是本发明基于本地接入的承载建立系统的一种组成结构示意图, 如图 13所示,所述系统包括检查单元 130、确定单元 131和修改单元 132;其中 , 检查单元 130, 用于在承载建立或修改过程中,检查移动性管理网元和 基站的之间传递的消息;
确定单元 131 ,用于根据所述消息中的信息确定能否对业务数据进行分 流, 能时触发修改单元;
修改单元 132, 用于修改所述消息中包含的服务质量参数。
上述确定单元 131进一步根据运营商策略和 /或所述移动性管理网元和 基站的之间传递的消息中携带的信息确定能否对业务数据进行分流。
上述修改单元 132进一步根据分流业务的数据传输要求确定分流业务 的服务质量参数; 根据所确定分流业务的服务质量参数, 修改服务质量参 数。
其中,移动性管理网元和基站的之间传递的消息中还携带有 UE签约的 服务质量参数,所述修改后的服务质量参数不违背所述 UE签约的服务质量 参数。
在图 13所示系统的基础上, 本发明基于本地接入的承载建立系统还包 括承载单元(未图示)和转发单元(未图示); 其中,
承载单元, 用于将所述修改单元修改后的服务质量参数置于承载相关 请求消息;
转发单元, 用于将相关请求消息转发给基站。
上述移动性管理网元为 SGSN, 所述承载建立或者修改的过程为 PDP 激活请求过程或 PDP修改请求过程;所述承载相关请求消息为 RAB指配请 求消息。
上述移动性管理网元为 MME, 所述承载建立或者修改的过程为 PDN
连接建立过程, 或者为附着流程, 或者为终端发起的资源分配过程, 或者 为终端发起的资源修改过程, 或者为网络发起的承载建立过程, 或者为承 载修改过程; 所述承载相关请求消息为 UE初始上下文建立请求消息,或为 RAB建立请求消息, 或为 UE初始上下文建立响应消息, 或为 RAB建立响 应消息。
本领域技术人员应当理解, 本发明图 13及图 14所示的基于本地接入 的承载建立系统是为实现前述的基于本地接入的承载建立方法而设计的, 上述各处理单元的实现功能可参照前述方法的相关描述而理解。 图中的各 处理单元的功能可通过运行于处理器上的程序而实现, 也可通过具体的逻 辑电路而实现。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。
Claims
1、 一种基于本地接入的承载建立方法, 其特征在于, 所述方法包括: 在承载建立或修改过程中, 本地网关检查移动性管理网元和基站的之 间传递的消息, 确定对业务数据进行分流时, 修改所述消息中包含的服务 质量参数。
2、 根据权利要求 1所述的方法, 其特征在于, 所述确定对业务数据进 行分流为: 本地网关根据运营商策略和 /或所述移动性管理网元和基站的之 间传递的消息中携带的信息确定能否对业务数据进行分流。
3、 根据权利要求 2所述的方法, 其特征在于, 所述修改所述消息中包 含的服务质量参数为:
根据分流业务的数据传输要求确定分流业务的服务质量参数; 根据所确定分流业务的服务质量参数, 修改服务质量参数。
4、 根据权利要求 3所述的方法, 其特征在于, 移动性管理网元和基站 的之间传递的消息中还携带有用户设备 UE签约的服务质量参数,所述本地 网关使修改后的服务质量参数不违背所述 UE签约的服务质量参数。
5、 根据权利要求 4所述的方法, 其特征在于, 所述方法还包括: 所述本地网关将修改后的服务质量参数置于承载相关请求消息中, 并 转发给基站或移动性管理单元。
6、 根据权利要求 5所述的方法, 其特征在于, 所述移动性管理网元为 服务 GPRS支持节点 SGSN,所述承载建立或者修改的过程为分组数据网络 PDP激活请求过程或 PDP修改请求过程; 所述承载相关请求消息为无线接 入承载 RAB指配请求消息或者无线接入承载指配响应消息。
7、 根据权利要求 5所述的方法, 其特征在于, 所述移动性管理网元为 移动性管理实体 MME, 所述承载建立或者修改的过程为 PDN连接建立过 程, 或者为附着流程, 或者为终端发起的资源分配过程, 或者为终端发起 的资源修改过程, 或者为网络发起的承载建立过程, 或者为承载修改过程; 所述承载相关请求消息为 UE初始上下文建立请求消息, 或为 RAB建立请 求消息, 或为 UE初始上下文建立响应消息, 或为 RAB建立响应消息。
8、一种基于本地接入的承载建立系统,适用于 GPRS网络或 EPC网络; 其特征在于, 所述系统包括检查单元、 确定单元和修改单元; 其中,
检查单元, 用于在承载建立或修改过程中, 检查移动性管理网元和基 站的之间传递的消息;
确定单元, 用于根据所述消息中的信息确定能否对业务数据进行分流, 能时触发修改单元;
修改单元, 用于修改所述消息中包含的服务质量参数。
9、 根据权利要求 8所述的系统, 其特征在于, 所述确定单元进一步根 据运营商策略和 /或所述移动性管理网元和基站的之间传递的消息中携带的 信息确定能否对业务数据进行分流。
10、 根据权利要求 9所述的系统, 其特征在于, 所述修改单元进一步 根据分流业务的数据传输要求确定分流业务的服务质量参数; 根据所确定 分流业务的服务质量参数, 修改服务质量参数。
11、 根据权利要求 10所述的系统, 其特征在于, 移动性管理网元和基 站的之间传递的消息中还携带有 UE签约的服务质量参数,所述修改后的服 务质量参数不违背所述 UE签约的服务质量参数。
12、 根据权利要求 11所述的系统, 其特征在于, 所述系统还包括承载 单元和转发单元; 其中,
承载单元, 用于将所述修改单元修改后的服务质量参数置于承载相关 请求消息中;
转发单元, 用于将相关请求消息转发给基站。
13、 根据权利要求 12所述的系统, 其特征在于, 所述移动性管理网元 为 SGSN, 所述承载建立或者修改的过程为 PDP激活请求过程或 PDP修改 请求过程; 所述承载相关请求消息为 RAB指配请求消息或者 RAB指配响 应消息。
14、 根据权利要求 12所述的系统, 其特征在于, 所述移动性管理网元 为 MME, 所述承载建立或者修改的过程为 PDN连接建立过程, 或者为附 着流程, 或者为终端发起的资源分配过程, 或者为终端发起的资源修改过 程, 或者为网络发起的承载建立过程, 或者为承载修改过程; 所述承载相 关请求消息为 UE初始上下文建立请求消息, 或为 RAB建立请求消息, 或 为 UE初始上下文建立响应消息, 或为 RAB建立响应消息。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010262031.6A CN102378160B (zh) | 2010-08-23 | 2010-08-23 | 基于本地接入的承载建立方法及系统 |
CN201010262031.6 | 2010-08-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012025031A1 true WO2012025031A1 (zh) | 2012-03-01 |
Family
ID=45722896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/078664 WO2012025031A1 (zh) | 2010-08-23 | 2011-08-19 | 基于本地接入的承载建立方法及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102378160B (zh) |
WO (1) | WO2012025031A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11284462B2 (en) | 2019-12-17 | 2022-03-22 | Cisco Technology, Inc. | Techniques for providing a third generation partnership project (3GPP) fabric anchor for an enterprise fabric |
US11582066B2 (en) | 2019-12-19 | 2023-02-14 | Cisco Technology, Inc. | Techniques for extending a cellular quality of service bearer through an enterprise fabric |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110650468B (zh) * | 2013-08-05 | 2022-08-30 | 北京三星通信技术研究有限公司 | 一种小小区架构中支持业务本地分流的方法、系统和设备 |
CN106549987B (zh) * | 2015-09-17 | 2020-06-05 | 中兴通讯股份有限公司 | 一种移动网络决策cdn中缓存内容的方法、装置及系统 |
EP3520468A1 (en) * | 2016-09-30 | 2019-08-07 | Telefonaktiebolaget LM Ericsson (PUBL) | Network assistance via a local breakout function-gateway in ran |
CN108617030B (zh) * | 2017-01-06 | 2020-10-30 | 中国移动通信有限公司研究院 | 一种业务转发方法、网关及移动性管理实体 |
CN113950162B (zh) * | 2020-07-16 | 2024-09-27 | 中国移动通信有限公司研究院 | 一种承载建立方法、装置及基站 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080112946A (ko) * | 2007-06-22 | 2008-12-26 | 엘지전자 주식회사 | 이동통신시스템에서의 베어러 관리 방법 및 장치 |
CN101500270A (zh) * | 2008-02-02 | 2009-08-05 | 华为技术有限公司 | 一种负荷均衡的方法和装置 |
CN101541109A (zh) * | 2008-03-19 | 2009-09-23 | 大唐移动通信设备有限公司 | 服务网关的s1接口用户面地址信息获取方法及通信设备 |
CN101572929A (zh) * | 2008-04-29 | 2009-11-04 | 大唐移动通信设备有限公司 | 一种在切换过程中传送消息的方法、装置及系统 |
CN101742576A (zh) * | 2008-11-07 | 2010-06-16 | 华为技术有限公司 | 恢复保留态gbr承载的方法及装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7336632B2 (en) * | 2003-08-18 | 2008-02-26 | Nokia Corporation | Apparatus, and associated method, for selecting quality of service-related information in a radio communication system |
CN101765090A (zh) * | 2009-12-18 | 2010-06-30 | 华为技术有限公司 | 更新服务质量的方法和设备 |
-
2010
- 2010-08-23 CN CN201010262031.6A patent/CN102378160B/zh not_active Expired - Fee Related
-
2011
- 2011-08-19 WO PCT/CN2011/078664 patent/WO2012025031A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080112946A (ko) * | 2007-06-22 | 2008-12-26 | 엘지전자 주식회사 | 이동통신시스템에서의 베어러 관리 방법 및 장치 |
CN101500270A (zh) * | 2008-02-02 | 2009-08-05 | 华为技术有限公司 | 一种负荷均衡的方法和装置 |
CN101541109A (zh) * | 2008-03-19 | 2009-09-23 | 大唐移动通信设备有限公司 | 服务网关的s1接口用户面地址信息获取方法及通信设备 |
CN101572929A (zh) * | 2008-04-29 | 2009-11-04 | 大唐移动通信设备有限公司 | 一种在切换过程中传送消息的方法、装置及系统 |
CN101742576A (zh) * | 2008-11-07 | 2010-06-16 | 华为技术有限公司 | 恢复保留态gbr承载的方法及装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11284462B2 (en) | 2019-12-17 | 2022-03-22 | Cisco Technology, Inc. | Techniques for providing a third generation partnership project (3GPP) fabric anchor for an enterprise fabric |
US11582066B2 (en) | 2019-12-19 | 2023-02-14 | Cisco Technology, Inc. | Techniques for extending a cellular quality of service bearer through an enterprise fabric |
US11811557B2 (en) | 2019-12-19 | 2023-11-07 | Cisco Technology, Inc. | Techniques for extending a cellular quality of service bearer through an enterprise fabric |
US12021654B2 (en) | 2019-12-19 | 2024-06-25 | Cisco Technology, Inc. | Techniques for extending a cellular quality of service bearer through an enterprise fabric |
Also Published As
Publication number | Publication date |
---|---|
CN102378160B (zh) | 2015-11-25 |
CN102378160A (zh) | 2012-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9320075B2 (en) | Method, system and transmission distribution network element for indicating data-distribution | |
EP2475142B1 (en) | Method and system for acquiring route strategies | |
US9655153B2 (en) | Method and apparatus for notifying connection attributes for local internet protocol (IP) access | |
US20120207104A1 (en) | Method for implementing local access and system thereof | |
US20120300638A1 (en) | Method and System for Controlling Establishment of Local IP Access | |
KR20100060800A (ko) | HeNB에서 단말에게 선택적으로 자원을 할당하기 위한 시스템 및 장치 | |
WO2011134329A1 (zh) | 一种小数据包传输的方法和系统 | |
CN102196405B (zh) | 移动性管理实体获取会话管理信息参数的方法和系统 | |
WO2012062183A1 (zh) | 一种实现数据流服务质量和计费策略控制的方法及系统 | |
WO2012025031A1 (zh) | 基于本地接入的承载建立方法及系统 | |
CN102056142B (zh) | 一种建立本地ip访问下行数据通道的方法及系统 | |
WO2012041073A1 (zh) | 一种实现流迁移的方法及系统 | |
KR102017167B1 (ko) | 무선 통신 시스템에서 데이터 트래픽 분산을 위한 방법 및 장치 | |
JP5859680B2 (ja) | ローカルアクセス接続の処理方法及び装置 | |
WO2011006404A1 (zh) | 本地ip访问连接建立的实现方法及系统 | |
WO2012075907A1 (zh) | 数据分流方法及本地网关 | |
WO2012068946A1 (zh) | 查询网关的方法及系统 | |
WO2011017979A1 (zh) | 支持ip分流的通信系统中资源管理方法与装置 | |
WO2011144000A1 (zh) | 一种实现路由选择的方法和装置 | |
WO2011050663A1 (zh) | 支持本地ip访问的通信系统中隧道更新方法与系统 | |
WO2011085623A1 (zh) | 本地接入网关获取终端的寻呼信息的方法和系统 | |
WO2011009353A1 (zh) | 建立ip分流连接的实现方法和系统 | |
WO2011157100A1 (zh) | 一种数据缓存的方法和系统 | |
WO2011032522A1 (zh) | 一种实现本地接入的系统及方法 | |
WO2011035719A1 (zh) | 一种释放本地连接的方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11819406 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11819406 Country of ref document: EP Kind code of ref document: A1 |