WO2020042986A1 - 一种多跳数据传输方法及装置 - Google Patents

一种多跳数据传输方法及装置 Download PDF

Info

Publication number
WO2020042986A1
WO2020042986A1 PCT/CN2019/101839 CN2019101839W WO2020042986A1 WO 2020042986 A1 WO2020042986 A1 WO 2020042986A1 CN 2019101839 W CN2019101839 W CN 2019101839W WO 2020042986 A1 WO2020042986 A1 WO 2020042986A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
routing
terminal device
data
data transmission
Prior art date
Application number
PCT/CN2019/101839
Other languages
English (en)
French (fr)
Inventor
林刚
文长辉
王旭东
黄程
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19853513.0A priority Critical patent/EP3840474B1/en
Publication of WO2020042986A1 publication Critical patent/WO2020042986A1/zh
Priority to US17/187,404 priority patent/US11533769B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/02Capturing of monitoring data
    • H04L43/028Capturing of monitoring data by filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/125Shortest path evaluation based on throughput or bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and a device for multi-hop data transmission.
  • the access network part of a mobile communication system only supports a single-hop (base station-terminal device) or two-hop (base station-relay device-terminal device) communication mode.
  • a single-hop communication mode or the two-hop communication mode there is at most one relay device between the terminal device and the base station, so the data transmission between the terminal device and the base station does not require a complicated routing mechanism.
  • ultra-dense networking technology in future mobile communication systems.
  • macro base stations and micro base stations also referred to as small base stations, hereinafter referred to as small base stations
  • small base stations the distance between small base stations and small base stations is reduced (the distance between stations can reach 50-100 meters)
  • the spatial multiplexing rate increases, and the data transmission rate and the number of terminal device connections also increase correspondingly.
  • optical fibers due to cost and geographical constraints, it is not possible to arrange optical fibers at each small base station to achieve wired backhaul.
  • some small base stations will choose to arrange in simple locations such as street lights. Therefore, the data accessed by these small base stations cannot be sent to the core network through the wired network. Instead, they need to rely on the wireless self-backhaul between the small base stations and send them to the optical fiber.
  • the returned base station or small base station is sent to the core network by the base station or small base station with optical fiber backhaul.
  • data transmission between the terminal device and the base station or small base station with optical fiber backhaul needs to rely on multiple small base stations, that is, the access network part needs to support a multi-hop path communication mode.
  • the embodiments of the present application provide a multi-hop data transmission method and device, which are used to solve the problem of how to implement multi-hop data transmission in an ultra-dense network.
  • an embodiment of the present application provides a multi-hop data transmission method.
  • the method includes:
  • the master base station obtains routing configuration information, where the routing configuration information is used to indicate a first data transmission path between the terminal device and the serving gateway, the first data transmission path includes at least two routing base stations, and the at least two routing base stations
  • the secondary base station of the terminal device is included therein; the primary base station sends the routing configuration information to the at least two routing base stations.
  • the main base station sends the acquired routing configuration information to the routing base station in the first data transmission path, so that each routing base station can determine a data transmission path between the terminal device and the serving gateway, thereby solving the terminal device. Problems with multi-hop data transmission of data with the serving gateway.
  • the acquiring, by the master base station, routing configuration information includes: receiving, by the master base station, the routing configuration information from a network manager.
  • the master base station receives routing configuration information from the network management, which can avoid consuming the resources of the master base station and reduce the load of the master base station.
  • the method before the master base station receives the routing configuration information from a network manager, the method further includes:
  • the master base station receives a route establishment request message from the terminal device or a data gateway, and the route establishment request message is used to request establishment of route configuration information; the master base station sends the route establishment request message to the network manager.
  • the sending, by the master base station, the routing configuration information to the at least two routing base stations includes: according to the first data transmission path, the master base station passes data through the at least two routes In a direction opposite to the direction of the base station, the routing configuration information is sequentially sent to the at least two routing base stations.
  • the method further includes: the primary base station receives a route change request message from the secondary base station, and the route change request message is used to request to update the routing configuration information; the primary base station obtains Updated routing configuration information.
  • the primary base station can update the data transmission path between the terminal device and the serving gateway in real time according to the request of the secondary base station, thereby meeting the QoS requirements of data transmission.
  • the method further includes: the master base station sends a topology change message to the network manager, the topology change message is used to indicate that the topology of the first data transmission path changes; the master base station Get the updated routing configuration information.
  • the main base station can change the topology of the first data transmission path, and update the data transmission path between the terminal device and the serving gateway in real time, thereby meeting the QoS requirements of data transmission.
  • the method further includes: the updated routing configuration information indicates a second data transmission path for indicating between the terminal device and the serving gateway, and the second data transmission path includes at least two Routing base stations; if the primary base station determines that the secondary base station accessed by the terminal device is changed to a first base station, it instructs the terminal device to establish a data radio bearer DRB with the first base station, and the first base station is The routing base station in the second data transmission path is described.
  • the method further includes: the updated routing configuration information indicates a second data transmission path for indicating between the terminal device and the serving gateway, and the second data transmission path includes at least two Routing base stations; if the primary base station determines that the edge base station is changed to a second base station, instructing the second base station to establish an S1 bearer with the serving gateway; the second base station is a route in the second data transmission path A base station, the edge base station is a routing base station that establishes an S1 bearer between the at least two routing base stations included in the first data transmission path and the serving gateway.
  • an embodiment of the present application provides a multi-hop data transmission device.
  • the multi-hop data transmission device includes a processor, and the processor is coupled to a memory, where the memory is used to store instructions and the processor is used to execute the memory according to Stored instructions to perform the method in the first aspect or any possible design of the first aspect.
  • the multi-hop data transmission device may further include the memory.
  • the multi-hop data transmission device may further include a transceiver for supporting the multi-hop data transmission device to perform information transmission and / or reception in the above method.
  • the multi-hop data transmission device may be a base station or a device in the base station, such as a chip or a chip system, where the chip system includes at least one chip, and the chip system may further include other circuit structures and / Or discrete devices.
  • an embodiment of the present application provides a multi-hop data transmission device for implementing the foregoing first aspect or any one of the first aspects of the method, and includes a corresponding functional module, such as a receiving unit, a sending unit, and the like. They are respectively used to implement the steps in the above method.
  • an embodiment of the present application provides a multi-hop data transmission method, including:
  • the terminal device determines a route establishment request message, and the route establishment request message is used to request establishment of a route Configuration information; the terminal device sends the route establishment request message to the main base station.
  • the terminal device when the terminal device determines that the DRB corresponding to the data to be sent is not established, it can request establishment of routing configuration information through the master base station, so that the data transmission path between the terminal device and the serving gateway can be established at the same time as the DRB establishment is completed.
  • the method further includes: the terminal device receives a TFT configuration request message from a data gateway; the TFT configuration request message is used for Requesting the terminal device to establish a data radio bearer DRB and configure a TFT corresponding to the DRB; the terminal device establishes a DRB with a secondary base station according to the TFT configuration request message; if the terminal device determines that the terminal device exists The first TFT corresponding to the DRB, and the quality of service classification identifier QCI corresponding to the first TFT is the same as the QCI of the data transmitted in the DRB, then adding to the first TFT the data to be sent A matching packet filter; or, if the terminal device determines that a first TFT corresponding to the DRB exists, and the QCI corresponding to the first TFT is different from the QCI of the data transmitted in the DRB, creating a new A second TFT, and a packet filter matching the data to be sent is added to the
  • the terminal device communicates with the primary base station through a low-frequency link; the terminal device communicates with the secondary base station through a high-frequency link.
  • the terminal device determines that a DRB corresponding to the data to be sent is not established, and includes: when the data flow template TFT of the terminal device does not include a packet filter matching the data to be sent, The terminal device determines that the DRB is not established.
  • an embodiment of the present application provides a multi-hop data transmission device.
  • the multi-hop data transmission device includes a processor, and the processor is coupled to a memory, where the memory is used to store instructions and the processor is used to execute the memory according to The stored instructions are used to execute the fourth aspect or the method in any one of the possible designs of the fourth aspect.
  • the multi-hop data transmission device may further include the memory.
  • the multi-hop data transmission device may further include a transceiver for supporting the multi-hop data transmission device to perform information transmission and / or reception in the above method.
  • the multi-hop data transmission device may be a terminal device or a device in the terminal device, such as a chip or a chip system, where the chip system includes at least one chip, and the chip system may further include other circuit structures. And / or discrete devices.
  • an embodiment of the present application provides a multi-hop data transmission device, configured to implement the fourth aspect or any one of the fourth aspects, and includes a corresponding functional module, such as a processing unit, a transceiver unit, and the like. They are respectively used to implement the steps in the above method.
  • an embodiment of the present application provides a multi-hop data transmission method, including: a network manager determining routing configuration information, where the routing configuration information is used to indicate a first data transmission path between a terminal device and a serving gateway, and the first A data transmission path includes at least two routing base stations, and the at least two routing base stations include a secondary base station of the terminal device; the network management sends the routing configuration information to a primary base station.
  • the routing configuration information determined by the network management can enable each routing base station in the first data transmission path to determine the data transmission path between the terminal device and the serving gateway, thereby solving the problem between the terminal device and the serving gateway.
  • the problem of multi-hop data transmission of data can be achieved.
  • the method before the network manager determines route configuration information, the method further includes: the network manager receives a route establishment request message sent by the master base station, and the route establishment request message is used to request establishment of route configuration information .
  • the routing configuration information includes at least one routing table entry
  • Each routing entry in the at least one routing entry includes the following information: a source address; a destination address; an address of a next hop routing base station; a quality of service classification identifier QCI corresponding to the data of the terminal device; the routing entry
  • the time to live value is TTL.
  • an embodiment of the present application provides a multi-hop data transmission device.
  • the multi-hop data transmission device includes a processor, and the processor is coupled to a memory, where: the memory is used to store instructions; A stored instruction for performing the method in the seventh aspect or any one of the possible designs in the seventh aspect.
  • the multi-hop data transmission device may further include the memory.
  • the multi-hop data transmission device may further include a transceiver for supporting the multi-hop data transmission device to perform information transmission and / or reception in the above method.
  • the multi-hop data transmission device may be a network management device or a device in the network management device, such as a chip or a chip system, where the chip system includes at least one chip, and the chip system may further include other circuit structures and / Or discrete devices.
  • an embodiment of the present application provides a multi-hop data transmission device for implementing the seventh aspect or any one of the seventh aspects described above, including a corresponding functional module, such as a processing unit, a transceiver unit, and the like. They are respectively used to implement the steps in the above method.
  • an embodiment of the present application provides a multi-hop data transmission method, including: obtaining, by a secondary base station, routing configuration information, where the routing configuration information is used to indicate a first data transmission path between a terminal device and a serving gateway.
  • the first data transmission path includes at least two routing base stations, and the at least two routing base stations include the secondary base station; the secondary base station establishes a data radio bearer DRB with the terminal device, and establishes a first relationship;
  • the first relationship is a mapping relationship between a network address of an edge base station and a DRB identifier of the DRB, and the edge base station is a routing base station that establishes an S1 bearer between the at least two routing base stations and the serving gateway.
  • the secondary base station transmits data for the terminal device according to the routing configuration information and the first relationship, or according to the DRB identifier.
  • the secondary base station can perform multi-hop data transmission for the terminal device according to the routing configuration information.
  • the method further includes:
  • the transmitting, by the secondary base station, data for the terminal device according to the routing configuration information and the first relationship includes:
  • the secondary base station sends the uplink data packet after adding the network address packet header to the next hop routing base station indicated by the routing configuration information.
  • the method further includes:
  • the transmitting, by the secondary base station, data for the terminal device according to the DRB identifier includes:
  • the method further includes:
  • the secondary base station When the channel quality value indicated by the channel quality information is less than a preset channel quality value, the secondary base station sends a routing change request message to the primary base station, and the routing change request message is used to request to update the routing configuration information.
  • an embodiment of the present application provides a multi-hop data transmission device.
  • the multi-hop data transmission device includes a processor, and the processor is coupled to a memory, where the memory is used to store instructions and the processor is used to The instructions stored in the memory are used to execute the method in the tenth aspect or any one of the tenth possible designs.
  • the multi-hop data transmission device may further include the memory.
  • the multi-hop data transmission device may further include a transceiver for supporting the multi-hop data transmission device to perform information transmission and / or reception in the above method.
  • the multi-hop data transmission device may be a base station or a device in the base station, such as a chip or a chip system, where the chip system includes at least one chip, and the chip system may further include other circuit structures and / Or discrete devices.
  • an embodiment of the present application provides a multi-hop data transmission device, configured to implement the tenth aspect or any one of the tenth aspects, and includes a corresponding functional module, such as a processing unit, a transceiver unit, and the like. , Respectively, to implement the steps in the above method.
  • an embodiment of the present application provides a multi-hop data transmission method, including:
  • the edge base station receives routing configuration information from the master base station, where the routing configuration information is used to indicate a first data transmission path between the terminal device and the serving gateway, where the first data transmission path includes at least two routing base stations,
  • the two routing base stations include a secondary base station of the terminal device;
  • the edge base station is a device that establishes an S1 bearer between the at least two routing base stations and a serving gateway; and the edge base station receives data from the secondary base station Radio bearer DRB identifier;
  • the DRB identifier is an identifier of a data radio bearer DRB between the secondary base station and the terminal device;
  • the edge base station establishes an S1 bearer with the serving gateway, and establishes a second relationship
  • the second relationship is a mapping relationship between the DRB identifier and the S1 tunnel endpoint identifier TEID carried by the S1; the edge base station according to the DRB identifier and the second relationship, or according to the S1 TEID ,
  • the edge base station can perform multi-hop data transmission for the terminal device according to the routing configuration information.
  • the method further includes:
  • the transmitting, by the edge base station, data for the terminal device according to the DRB identifier and the second relationship includes:
  • Adding, by the edge base station, a network address header to the uplink data packet, and a destination address of the network address header is a network address of the serving gateway;
  • the edge base station sends the uplink data packet after adding the network address packet header to the serving gateway through an S1 bearer corresponding to the S1 TEID.
  • the method further includes:
  • the edge base station transmitting data for the terminal device according to the SITEID, the second relationship, and the routing configuration information includes:
  • Adding, by the edge base station, a network address header to the downlink data packet, and a destination address of the network address header is a network address of the secondary base station;
  • the edge base station sends the downlink data packet after adding the network address packet header to the next hop routing base station indicated by the routing configuration information.
  • an embodiment of the present application provides a multi-hop data transmission device.
  • the multi-hop data transmission device includes a processor, and the processor is coupled to a memory, where the memory is used to store instructions and the processor is used to execute instructions according to execution.
  • the instructions stored in the memory are used to execute the method in the thirteenth aspect or any one of the thirteenth possible designs.
  • the multi-hop data transmission device may further include the memory.
  • the multi-hop data transmission device may further include a transceiver for supporting the multi-hop data transmission device to perform information transmission and / or reception in the above method.
  • the multi-hop data transmission device may be a base station or a device in the base station, such as a chip or a chip system, where the chip system includes at least one chip, and the chip system may further include other circuit structures and / Or discrete devices.
  • an embodiment of the present application provides a multi-hop data transmission device, which is used to implement the thirteenth aspect or any one of the thirteenth aspects, and includes a corresponding functional module, such as a processing unit, a transceiver Units are used to implement the steps in the above method.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable instructions are stored in the computer storage medium, and when the computer reads and executes the computer-readable instructions, the computer is caused to execute the foregoing tasks.
  • Method in one or any of the possible designs of any aspect.
  • an embodiment of the present application provides a computer program product.
  • the computer reads and executes the computer program product, the computer is caused to execute a method in any one of the foregoing aspects or any one of the possible designs. .
  • an embodiment of the present application provides a chip that is connected to a memory and is configured to read and execute a software program stored in the memory to implement any one of the foregoing aspects or any of the aspects. Possible design methods.
  • an embodiment of the present application provides a multi-hop data transmission device, including a processor, where the processor is configured to be coupled to a memory, and read and execute instructions in the memory to implement any of the foregoing aspects or tasks.
  • a multi-hop data transmission device including a processor, where the processor is configured to be coupled to a memory, and read and execute instructions in the memory to implement any of the foregoing aspects or tasks.
  • an embodiment of the present application provides a communication system including the above-mentioned second, fifth, eighth, eleventh, and fourteenth aspects of the multi-hop data transmission device.
  • FIG. 1 is a schematic diagram of a communication system applicable to a communication method according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a multi-hop data transmission method according to an embodiment of the present application
  • 3 (a) to 3 (d) are schematic diagrams of a data transmission path provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of uplink data transmission according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a multi-hop data transmission method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of downlink data transmission according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a data transmission path according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a data transmission path according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a multi-hop data transmission device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a multi-hop data transmission device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a multi-hop data transmission device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a multi-hop data transmission device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a multi-hop data transmission device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a multi-hop data transmission device according to an embodiment of the present application.
  • 15 is a schematic structural diagram of a multi-hop data transmission device according to an embodiment of the present application.
  • 16 is a schematic structural diagram of a multi-hop data transmission device according to an embodiment of the present application.
  • 17 is a schematic structural diagram of a multi-hop data transmission device according to an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a multi-hop data transmission device according to an embodiment of the present application.
  • the embodiments of the present application can be applied to various mobile communication systems, such as: a new radio (NR) system, a long term evolution (LTE) system, and an advanced long term evolution (LTE-A) System, evolved long term evolution (eLTE) system, future communication system, and other communication systems. Specifically, there are no restrictions here.
  • NR new radio
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • eLTE evolved long term evolution
  • future communication system and other communication systems.
  • a communication system shown in FIG. 1 is taken as an example to describe in detail a communication system applicable to the embodiments of the present application.
  • the communication system shown in Figure 1 uses ultra-dense networking technology, including multiple small base stations with optical fiber backhaul (small base stations 1, 2, and 3 in Figure 1 as examples), and multiple non-fiber The small base station to be transmitted (small base station 4 is taken as an example in FIG. 1).
  • Figure 1 also includes network elements such as a network manager, multiple macro base stations (only macro base station 1 and macro base station 2 are shown in Figure 1), and terminal equipment (one terminal device 1 is shown in Figure 1 as an example).
  • the small base station with optical fiber backhaul and the small base station without optical fiber backhaul can be collectively referred to as a small base station or a home base station.
  • the terminal device supports dual connection technology, that is, the terminal device communicates with the small base station through a high-frequency link and communicates with the macro base station through a low-frequency link.
  • the EPS bearer includes a data bearer (DRB) between a terminal device and a macro base station or a small base station, an S1 bearer (S1 bearer) between a macro base station or a small base station and a serving gateway (S-GW), and an S -S5 bearer (S5 bearer) between GW and P-GW.
  • DRB data bearer
  • S1 bearer S1 bearer
  • S-GW serving gateway
  • S5 bearer S -S5 bearer
  • the correspondence between the DRB bearer and the S1 bearer is stored in the macro base station or the small base station, and the correspondence between the S1 bearer and the S5 bearer is stored in the S-GW.
  • the P-GW and each terminal device store the corresponding data flow template (traffic flow template, TFT) to carry the mapping of IP data packets and bearers.
  • TFT includes multiple packet filters arranged in a certain order. The TFT is configured by the core network during the bearer establishment process, and the arrangement order of the packet filters is specified by the core network. Not limited.
  • an embodiment of the present application provides a multi-hop data transmission method, which is used to support data between a terminal device and a core network to implement multi-hop data transmission, which will be described in detail below. It should be noted that, in the embodiment of the present application, multi-hop data transmission refers to that data is transmitted through two routing base stations or more than two routing base stations and reaches a terminal device or a serving gateway.
  • the terminal device is a device having a wireless transmitting / receiving function or a chip that can be set on the device.
  • the device with wireless transmitting and receiving function may also be called terminal equipment (UE), access terminal, terminal equipment unit, terminal equipment station, mobile station, remote station, remote terminal, mobile device, terminal equipment agent Or terminal equipment.
  • UE terminal equipment
  • the terminal device in the embodiments of the present application may be a mobile phone, a tablet, a computer with a wireless transceiver function, a virtual reality (VR) terminal, or augmented reality (AR) terminals, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, Wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • the embodiment of the present application does not limit the application scenario.
  • the aforesaid devices with wireless transmitting and receiving functions and chips that can be set in the devices are collectively referred to as terminal devices.
  • the main base station may be an access network device under various standards, and the main base station may be a macro base station, such as an evolved Node B (eNB), and a radio network controller (RNC). Or Node B (Node B, NB), base station network controller (BSC), base transceiver station (BTS), baseband unit (BBU), wireless fidelity (WIFI) system
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station network controller
  • BTS base transceiver station
  • BBU baseband unit
  • WIFI wireless fidelity
  • the access point (AP), wireless relay node, wireless backhaul node, transmission point (TRP or transmission point, TP), etc. can also be gNB in 5G systems.
  • the routing base station may be a wireless access device under various standards, and the routing base station may be a macro base station or a small base station.
  • the routing base station may be located within the signal coverage of the main base station, such as a home base station (for example, home nodeB, or home nodeB, HNB).
  • a home base station for example, home nodeB, or home nodeB, HNB.
  • the network architecture and service scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application.
  • Those of ordinary skill in the art know that with the network The evolution of the architecture and the emergence of new business scenarios.
  • the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the following uses the terminal device to initiate uplink route establishment as an example for description.
  • FIG. 2 is a schematic flowchart of a multi-hop data transmission method according to an embodiment of the present application. The method includes:
  • Step 201 When the terminal device determines that the DRB corresponding to the data to be sent is not established, and the delay of the data to be sent is greater than a threshold, it sends a route establishment request message to the master base station, where the route establishment request message is used to request establishment of route configuration information. .
  • the terminal device when the terminal device initiates uplink data transmission, the terminal device adds an IP packet header to the data to be transmitted, and the IP packet header includes a source address and a destination address.
  • the terminal device traverses the packet filter in the TFT. If it is determined that a packet filter including information such as source address, destination address, source port number, destination port number, and transmission protocol identifier of the data to be transmitted exists, it is determined that the TFT includes the The packet filter matching the data to be sent; if it is determined that there is no packet filter including the source address and the destination address of the data to be sent, it is determined that the TFT does not include a packet filter that matches the data to be sent .
  • the terminal device determines that the TFT includes a packet filter matching the data to be sent, it is determined that a DRB corresponding to the data to be sent has been established, and the terminal device may match the data to be sent by matching
  • the DRB corresponding to the data packet filter sends the data to be sent. It should be noted that the correspondence between the data packet filter and the DRB is established when the DRB is established, and details are not described herein again.
  • the main base station sends The core network sends a bearer establishment request, which is used to establish a bearer that transmits data over a low frequency link.
  • the terminal device sends the data to be sent through the established bearer.
  • the thresholds described in the embodiments of the present application may be set according to actual conditions.
  • the threshold When the corresponding delay of the data to be sent is less than or equal to the threshold, it may also be referred to as delay-sensitive data, such as voice data.
  • delay-sensitive data such as voice data.
  • non-delay-sensitive data such as video data.
  • the terminal device may determine the delay corresponding to the data to be transmitted according to the QoS class identifier (QCI) of the data to be transmitted.
  • QCI QoS class identifier
  • QCI Delay 1 150ms 2 100ms 3 50ms 4 300ms 5 100ms
  • Table 1 is only an example, and there may be other corresponding relationships between QCI and delay, which will not be repeated here.
  • a third possible scenario that is, the scenario described in step 201, if the terminal device determines that the TFT does not include a packet filter that matches the data to be sent, it determines that the DRB corresponding to the data to be sent is not established.
  • the route establishment request message may include a destination address of the data to be sent, a source port number, a traffic profile, a QoS parameter, and the like.
  • Data flow description file including the application type of data to be sent, data flow file composition, and file size of each part; QoS parameters include four types: QCI, allocation and retention priority (ARP), guaranteed bit rate (guaranteed bit rate (GBR)) and aggregated maximum bit rate (AMBR).
  • ARP allocation and retention priority
  • GRR guaranteed bit rate
  • AMBR aggregated maximum bit rate
  • FIG. 3 (a) The third possible scenario can be shown in Figure 3 (a).
  • the terminal device determines that the DRB corresponding to the data to be transmitted is not established, and the delay of the data to be transmitted is greater than a threshold, it sends a route to the primary base station. Create request message.
  • Step 202 The master base station receives a route establishment request message from the terminal device, and sends a route establishment request message to a network manager.
  • the master base station may send a route establishment request message to the network management system through the X2 interface. For details, refer to FIG. 3 (b).
  • Step 203 The network manager receives a route establishment request message sent by the master base station, and determines route configuration information according to the route establishment request message.
  • the routing configuration information is used to indicate a first data transmission path between a terminal device and a serving gateway.
  • the first data transmission path includes at least two routing base stations, and the at least two routing base stations include the terminal device. Secondary base station.
  • the routing base station may be a small base station with optical fiber backhaul or a small base station without optical fiber backhaul, or may be a macro base station.
  • the data transmission direction in the first data transmission path is from the terminal device to the serving gateway
  • the data passes through the first data transmission path in this order: routing base station A, routing base station B. Routing base station C and routing base station D.
  • the uplink data of the terminal equipment can be sequentially transmitted from the routing base station A to the routing base station D, and then forwarded by the routing base station D to the core network.
  • the routing configuration information may include at least one routing table entry, and each routing table entry in the at least one routing table entry includes the following information:
  • a source address where the source address is the network address of the base station routing base station in the first data transmission path;
  • a destination address where the destination address is a network address of the destination routing base station in the first data transmission path
  • the address of the next hop routing base station can be IP addresses.
  • Time-to-live (TTL) of the routing entry After the TTL of a routing entry expires, the routing base station can delete the routing entry.
  • TTL Time-to-live
  • one routing entry in the at least one routing entry is associated with one routing base station of at least two routing base stations included in the first data transmission path, and the routing base station exists according to the existence of the routing base station.
  • the next-hop routing base station address in the routing entry of the association relationship forwards the data of the terminal device.
  • the association relationship between the routing table entry and the routing base station is predetermined and will not be repeated here.
  • the network management specifically determines the routing configuration information is not limited in this embodiment of the present application.
  • the network administrator may determine route configuration information that satisfies the QoS parameters and can implement traffic balancing according to the data flow description file and the QoS parameters in the route establishment request message.
  • Step 204 The network management sends routing configuration information to the master base station.
  • the network management system can send routing configuration information through the X2 interface.
  • Step 205 The master base station obtains routing configuration information, and sends the routing configuration information to at least two routing base stations.
  • the main base station may obtain the routing configuration information sent by the network management, or may determine the routing configuration information according to the routing establishment request message sent by the terminal device, which is not limited in this embodiment of the present application.
  • the at least two routing base stations are routing base stations included in the first data transmission path indicated by the routing configuration information.
  • the master base station may send the routing configuration information to the at least two routing base stations in sequence according to a direction opposite to the direction in which the data passes through the at least two routing base stations in the first data transmission path. . In this way, when the uplink data of the terminal device is transmitted to one of the routing base stations, the routing base station has not received the routing configuration information and the data is discarded.
  • Each of the at least two routing base stations may store routing configuration information in a local routing table.
  • the local routing table is composed of multiple routing entries.
  • the routing entries in the local routing table may comply with QCI values from small to small. They are listed in order from the highest to the highest number of hits. After the TTL of a routing entry expires, the routing base station can delete the routing entry.
  • the primary base station may use the starting point routing base station in the first data transmission path as the secondary base station according to the data transmission direction.
  • the terminal device is instructed to establish a wireless connection with the secondary base station through a low-frequency connection.
  • the primary base station may route the terminal in the first data transmission path to the base station as a secondary base station according to the data transmission direction, and instruct the terminal through a low frequency connection
  • the device establishes a wireless connection with the secondary base station.
  • the data transmission direction in the first data transmission path is from the terminal device to the serving gateway, the data passes through the first data transmission path in this order: routing base station A, routing base station B. Routing base station C and routing base station D.
  • the primary base station may use the routing base station A as a secondary base station.
  • the routing base station D may also be referred to as an edge base station.
  • the data transmission direction in the first data transmission path is from the serving gateway to the terminal device, the data passes through the first data transmission path in this order: routing base station D, routing base station C, routing base station B, and routing base station A.
  • the primary base station may use the routing base station A as a secondary base station.
  • the routing base station D may also be referred to as an edge base station.
  • Step 206 The terminal device establishes a wireless connection with the secondary base station.
  • the secondary base station is a small base station without optical fiber backhaul
  • the wireless connection may be a high-frequency radio resource control (RRC) connection.
  • RRC radio resource control
  • the terminal device communicates with the primary base station through a low-frequency link; the terminal device communicates with the secondary base station through a high-frequency link.
  • Step 207 The terminal device sends an EPS bearer modification request to the data gateway in the core network.
  • the EPS bearer modification request is used to request the establishment of an S5 bearer.
  • the terminal device may send an EPS bearer modification request to the secondary base station, the secondary base station forwards the EPS bearer modification request to the primary base station, and the primary base station forwards the EPS bearer modification request to the data gateway.
  • the data gateway may be a P-GW, or may be another device having a P-GW function, which is not limited in this embodiment of the present application.
  • Step 208 An S5 bearer is established between the data gateway and the serving gateway. After the S5 bearer is established, the data gateway sends a TFT configuration request message to the terminal device.
  • the TFT configuration request message is used to request establishment of a DRB between the terminal device and the secondary base station, and configure a TFT corresponding to the DRB.
  • the serving gateway may be an S-GW, or may be another device having an S-GW function, which is not limited in this embodiment of the present application.
  • Step 209 The terminal device receives a TFT configuration request message from the data gateway, and establishes a DRB with the secondary base station according to the TFT configuration request message, and configures a TFT corresponding to the DRB.
  • the establishment process of the DRB is not limited in this embodiment of the present application, and details are not described herein again.
  • the process of configuring the TFT corresponding to the DRB by the terminal device may be as follows:
  • the terminal device determines that a first TFT including a DRB identifier of the DRB exists in the terminal device, and a QCI corresponding to a DRB identifier included in the first TFT is the same as a QCI in the routing configuration information, A data packet filter matching the data to be sent is added to the first TFT.
  • the terminal device determines that a first TFT including a DRB identifier of the DRB exists in the terminal device, and the QCI corresponding to the DRB identifier included in the first TFT is different from the QCI in the routing configuration information, Then, a second TFT is created, and a packet filter matching the data to be sent is added to the second TFT.
  • the terminal device determines that there is no first TFT including the DRB identifier of the DRB in the terminal device, a new TFT is created, and a data packet matching the data to be sent is added to the second TFT filter.
  • the packet filter includes a five-tuple: a source address, a destination address, a source port number, a destination port number, and a transport layer protocol identifier.
  • the quintuple of the data to be sent by the terminal device can be used as the quintuple of the added packet filter, thereby implementing the addition of a packet filter that matches the data to be sent.
  • Step 210 The secondary base station establishes a first relationship.
  • the first relationship is a mapping relationship between a network address of an edge base station and a DRB identifier of the DRB.
  • the edge base station is an S1 bearer established between the at least two routing base stations and the serving gateway.
  • the routing base station or the edge base station is a device of the at least two routing base stations so that the serving gateway receives data of the terminal device or wants the serving gateway to forward the data of the terminal device.
  • the network address of the edge base station may be the IP address of the edge base station.
  • the edge base station may be a small base station or a macro base station with optical fiber backhaul.
  • Step 211 The terminal device sends an access successful completion message to the core network through the secondary base station, and the access successful completion message is used to indicate that the terminal device has accessed the secondary base station.
  • the successful access message is transmitted to the core network through the first data transmission path indicated by the routing configuration information.
  • the access success completion message may also trigger the establishment of an S1 bearer between the edge base station and the serving gateway.
  • Step 212 An S1 bearer is established between the edge base station and the serving gateway.
  • Step 213 The edge base station establishes a second relationship.
  • the second relationship is a mapping relationship between a DRB identifier and an S1 tunnel endpoint identifier (TEID) carried by the S1.
  • TEID tunnel endpoint identifier
  • DRB identifier is sent by the secondary base station to the edge base station, and the specific sending process is not described again.
  • the edge base station may transmit data for the terminal device according to the DRB identifier and the second relationship, or the edge base station may transmit the data to the terminal device according to the SID, the second relationship, and the routing configuration information.
  • the terminal device transmits data, which will be described in detail later, and is not repeated here.
  • Step 214 The serving gateway establishes a third relationship, where the third relationship is a mapping relationship between the S1 TEID carried by S1 and the S5 TEID carried by S5.
  • the EPS bearer between the endpoint device and the core network is established, and the data of the terminal device is transmitted through the EPS bearer, which can ensure the QoS requirements of the data.
  • the network side also determines the routing configuration information of the terminal device's data during uplink transmission.
  • the secondary base station to the edge base station can forward the uplink data of the terminal device according to the routing configuration information, so that the access network side Able to support multi-hop data transmission.
  • the mapping of DRB identification and S1 TEID is implemented at the edge base station, making the multi-hop data transmission process invisible to the core network, which can reduce the impact on existing standards.
  • FIG. 4 it is a schematic flowchart of an uplink data transmission process according to an embodiment of the present application.
  • Step 1 The terminal device sends an uplink data packet to the secondary base station.
  • the uplink data packet includes a payload, a one-layer data packet header, and a two-layer data packet header.
  • the first layer of the data packet header is the IP header, which includes the source address, the destination address, etc.
  • the source address is the network address of the terminal device
  • the destination address is the network address of the destination device that finally receives the uplink data packet
  • the second layer data packet header includes the DRB Logos and more.
  • the network address may refer to an IP address, etc., and details are not described herein again.
  • the terminal device may determine, according to the destination address of the data to be sent, that the terminal device includes a TFT of the destination address, and the TFT includes the DRB identifier.
  • the DRB identifier is the identifier of the DRB between the terminal device and the secondary base station.
  • Step 2 After receiving the uplink data packet from the terminal device, the secondary base station processes the uplink data packet, and sends the processed uplink data packet to the next hop routing base station indicated by the routing configuration information.
  • the secondary base station determines the network address of the edge base station in the first relationship according to the DRB identifier in the uplink data packet.
  • the first relationship is established in advance in the process shown in FIG. 2.
  • the secondary base station adds a network address header to the uplink data packet, and adds the uplink data packet after the network address header to the processed uplink data packet, and sends the processed uplink data packet to the next hop routing base station indicated by the routing configuration information. .
  • the source address in the network address packet header is the network address of the secondary base station, and the destination address in the network address packet header is the network address of the edge base station.
  • the network address header added by the secondary base station includes a user datagram protocol (UDP) header and an IP header.
  • UDP user datagram protocol
  • IP header IP header
  • Step 3 The next hop routing base station of the secondary base station receives the uplink data packet sent by the secondary base station and adds the network address packet header, and then sends it to the next hop routing base station indicated by the routing configuration information.
  • the above method is used to forward uplink data of the terminal device, and details are not described herein again.
  • Step 4 After receiving the uplink data packet from the terminal device, the edge base station deletes the network address header added by the secondary base station and adds the network address header to the uplink data packet.
  • the uplink data packet after the network address header is added The S1 bearer corresponding to the S1 TEID is sent to the serving gateway.
  • the edge base station may determine S1 TEID in the second relationship according to the DRB identifier in the uplink data packet. After the edge base station determines the S1 TEID, the DRB identity in the uplink data packet is replaced with the S1 TEID.
  • the source address in the network address header added by the edge base station is the network address of the edge base station
  • the destination address in the network address header added by the edge base station is the network address of the serving gateway
  • the network address header added by the edge base station includes a UDP header and an IP header.
  • UDP header For details, refer to the description in the prior art, and details are not described herein again.
  • the S1 TEID is the identifier of the S1 bearer between the serving gateway and the edge base station.
  • the second relationship is established in advance in the process shown in FIG. 2.
  • Step 5 After receiving the uplink data packet sent by the edge base station, the serving gateway deletes the network address header of the uplink data packet, adds a three-layer data packet header and a four-layer data packet header, and adds a three-layer data packet header and a four-layer data packet header.
  • the uplink data packets are sent to the data gateway.
  • the serving gateway may obtain the S1 TEID in the uplink data packet, determine the S5 TEID according to the S1 TEID and the third relationship, and replace the S1 TEID in the uplink data packet with the S5 TEID.
  • the Layer 3 data packet header added by the service gateway is a UDP header
  • the Layer 4 data packet header is an IP header
  • the source address in the layer 4 data packet header is the network address of the service gateway
  • the destination address is the network address of the data gateway.
  • Step 6 The data gateway deletes the Layer 2 packet header, Layer 3 packet header, and Layer 4 packet header in the received uplink data packet, retains only the data and the layer 1 packet header, and divides the data in the uplink packet into one layer.
  • the destination address in the packet header is sent out.
  • the terminal device In addition to the scenario where the terminal device actively sends uplink data, when the core network side receives the downlink data of the terminal device, in order to send the downlink data of the terminal device, it may also need to initiate the establishment of a downlink route. Examples are described.
  • FIG. 5 is a schematic flowchart of a multi-hop data transmission method according to an embodiment of the present application. The method includes:
  • Step 501 The data gateway determines a packet filter including a destination address of data to be sent in the TFT, and the TFT does not include a packet filter matching the data to be sent, and the time when the data to be sent corresponds to If the delay is greater than the threshold, a route establishment request message is sent to the master base station, where the route establishment request message is used to request establishment of route configuration information.
  • the data gateway may be a P-GW, or may be another device having a P-GW function, which is not limited in this embodiment of the present application.
  • the data gateway when the data gateway receives the downlink data transmission of the terminal device, the downlink data is used as the data to be sent.
  • the data gateway traverses the packet filter in the TFT stored by the data gateway. If it is determined that a packet filter including a source address and a destination address of the data to be sent exists, it is determined that the TFT includes a packet filter that matches the data to be sent If it is determined that a packet filter including a source address and a destination address of data to be sent does not exist, it is determined that the TFT does not include a packet filter that matches the data to be sent.
  • the data gateway determines that the TFT includes a packet filter that matches the data to be sent, sends the packet through the S5 bearer corresponding to the packet filter that matches the data to be sent. Data to be sent. It should be noted that the correspondence between the packet filter and the S5 bearer is established when the S5 bearer is established, and details are not described herein again.
  • the data gateway determines that the TFT does not include a packet filter that matches the data to be sent, and the corresponding delay of the data to be sent is less than or equal to a threshold, the default bearer is used to pass
  • the main base station to which the terminal device is connected sends a bearer establishment request to the terminal device, where the bearer establishment request is used to establish a bearer that transmits data over a low-frequency link, so as to send data to be sent through the established bearer.
  • the specific process can refer to the existing technology , Will not repeat them here.
  • the data gateway sends a route establishment request message to the master base station.
  • the route establishment request message may include a destination address of the data to be sent, a source port number, a traffic profile, a QoS parameter, and the like.
  • the route establishment request message may include a destination address of the data to be sent, a source port number, a traffic profile, a QoS parameter, and the like.
  • Step 502 The master base station receives a route establishment request message from the data gateway, and sends a route establishment request message to the network manager.
  • the master base station may send a route establishment request message to the network management system through the X2 interface. For details, refer to FIG. 3 (b).
  • Step 503 The network manager receives a route establishment request message sent by the master base station, and determines route configuration information according to the route establishment request message.
  • the routing configuration information indicates a first data transmission path for data of a terminal device, and the first data transmission path includes at least two routing base stations.
  • the routing base station may be a small base station with optical fiber backhaul or a small base station without optical fiber backhaul, or may be a macro base station.
  • the routing configuration information may include at least one routing table entry, and the specific content of the routing table entry may refer to the description in step 203, and details are not described herein again.
  • the network management specifically determines the routing configuration information is not limited in this embodiment of the present application.
  • the network administrator may determine route configuration information that satisfies the QoS parameters and can implement traffic balancing according to the data flow description file and the QoS parameters in the route establishment request message.
  • Step 504 The network management sends routing configuration information to the master base station.
  • the network management system can send routing configuration information through the X2 interface.
  • Step 505 The master base station obtains routing configuration information, and sends the routing configuration information to at least two routing base stations.
  • the main base station may obtain the routing configuration information sent by the network management, or may determine the routing configuration information according to the routing establishment request message sent by the terminal device, which is not limited in this embodiment of the present application.
  • the at least two routing base stations are routing base stations included in the first data transmission path indicated by the routing configuration information.
  • the master base station may send the routing configuration information to the at least two routing base stations in sequence according to a direction opposite to the direction in which the data passes through the at least two routing base stations in the first data transmission path. . That is, the master base station sequentially sends the routing configuration information in the order of the destination routing base station to the origin routing base station in the first data transmission path. In this way, when the downlink data of the terminal device is transmitted to one of the routing base stations, the routing base station has not received the routing configuration information, and data cannot be forwarded.
  • Each of the at least two routing base stations may store routing configuration information in a local routing table.
  • the local routing table is composed of multiple routing entries.
  • the routing entries in the local routing table may comply with QCI values from small to small. They are listed in order from the highest to the highest number of hits. After the TTL of a routing entry expires, the routing base station can delete the routing entry.
  • the primary base station may determine the secondary base station according to the routing base station included in the first data transmission path, and indicate the secondary base station to the terminal device. For details, refer to the description in step 206, and details are not described herein again.
  • Step 506 The terminal device establishes a wireless connection with the secondary base station.
  • the secondary base station is a small base station without optical fiber backhaul, and the wireless connection may be a high-frequency RRC connection.
  • Step 507 The terminal device sends an EPS bearer modification request to a data gateway in the core network.
  • the EPS bearer modification request is used to request the establishment of an S5 bearer.
  • the terminal device may send an EPS bearer modification request to the secondary base station, the secondary base station forwards the EPS bearer modification request to the primary base station, and the primary base station forwards the EPS bearer modification request to the data gateway.
  • Step 508 An S5 bearer is established between the data gateway and the serving gateway. After the S5 bearer is established, the data gateway sends a TFT configuration request message to the terminal device.
  • the TFT configuration request message is used to request establishment of a DRB between the terminal device and the secondary base station, and configure a TFT corresponding to the DRB.
  • the serving gateway may be an S-GW, or may be another device having an S-GW function, which is not limited in this embodiment of the present application.
  • Step 509 The terminal device receives a TFT configuration request message from the data gateway, and establishes a DRB with the secondary base station according to the TFT configuration request message, and configures a TFT corresponding to the DRB.
  • the establishment process of the DRB is not limited in this embodiment of the present application, and details are not described herein again.
  • the process of configuring the TFT corresponding to the DRB by the terminal device may be as follows:
  • the terminal device determines that a first TFT including a DRB identifier of the DRB exists in the terminal device, and a QCI corresponding to a DRB identifier included in the first TFT is the same as a QCI in the routing configuration information, A data packet filter matching the data to be sent is added to the first TFT.
  • the terminal device determines that a first TFT including a DRB identifier of the DRB exists in the terminal device, and the QCI corresponding to the DRB identifier included in the first TFT is different from the QCI in the routing configuration information, Then, a second TFT is created, and a packet filter matching the data to be sent is added to the second TFT.
  • the terminal device determines that there is no first TFT including the DRB identifier of the DRB in the terminal device, a new TFT is created, and a data packet matching the data to be sent is added to the second TFT filter.
  • the packet filter includes a five-tuple: a source address, a destination address, a source port number, a destination port number, and a transport layer protocol identifier.
  • the quintuple of the data to be sent by the terminal device can be used as the quintuple of the added packet filter, thereby implementing the addition of a packet filter that matches the data to be sent.
  • Step 510 The secondary base station establishes a first relationship.
  • the first relationship is a mapping relationship between a network address of an edge base station and a DRB identifier of the DRB.
  • the edge base station receives data of the terminal device from a serving gateway in the at least two routing base stations or A device that forwards data of the terminal device to the serving gateway.
  • the network address of the edge base station may be the IP address of the edge base station.
  • edge base station is a small base station or a macro base station with optical fiber backhaul.
  • Step 511 The terminal device sends an access successful completion message to the core network through the secondary base station, and the access successful completion message is used to indicate that the terminal device has accessed the secondary base station.
  • the successful access message is transmitted to the core network through the first data transmission path indicated by the routing configuration information.
  • the access successful completion message may also trigger the establishment of an S1 bearer between the edge base station and the serving gateway.
  • Step 512 An S1 bearer is established between the edge base station and the serving gateway.
  • Step 513 The edge base station establishes a second relationship.
  • the second relationship is a mapping relationship between the DRB identifier and the S1 TEID carried by the S1.
  • DRB identifier is sent by the secondary base station to the edge base station, and the specific sending process is not described again.
  • the edge base station may transmit data for the terminal device according to the DRB identifier and the second relationship, or the edge base station may transmit the data to the terminal device according to the SID, the second relationship, and the routing configuration information.
  • the terminal device transmits data, which will be described in detail later, and is not repeated here.
  • Step 514 The serving gateway establishes a third relationship, where the third relationship is a mapping relationship between the S1 TEID carried by S1 and the S5 TEID carried by S5.
  • the EPS bearer between the endpoint device and the core network is established, and the data of the terminal device is transmitted through the EPS bearer, which can ensure the QoS requirements of the data.
  • the network side also determines the routing configuration information of the terminal device's data during downlink transmission.
  • the secondary base station to the edge base station can forward the downlink data of the terminal device according to the routing configuration information, so that the access network side Able to support multi-hop data transmission.
  • the mapping of DRB identification and S1 TEID is implemented at the edge base station, making the multi-hop data transmission process invisible to the core network, which can reduce the impact on existing standards.
  • steps 501 to 514 the following describes the transmission process of downlink data of the terminal device in detail.
  • FIG. 6 it is a schematic diagram of a downlink data transmission process according to an embodiment of the present application.
  • Step 1 The data gateway sends a downlink data packet of the terminal device to the serving gateway.
  • the downlink data packet includes a payload, a layer data packet header, a layer two data packet header, a layer three data packet header, and a layer four data packet header.
  • the data included in the downlink data packet and a layer of data packet header are received by the service gateway.
  • the service gateway encapsulates the layer 2 data packet header, layer 3 data packet header, and layer 4 data packet header in the received data and layer 1 data packet header. .
  • One layer of data packet header is the IP header of the data received by the service gateway, including the source address, destination address, etc.
  • the source address is the network address of the device that sends data to the terminal device
  • the destination address is the network address of the terminal device
  • the Layer 2 packet header includes S5 TEID and other contents.
  • the layer 3 data packet header is a UDP header
  • the layer 4 data packet header is an IP packet header, including source address, destination address and the like. Among them, the source address in the layer 4 data packet header is the network address of the data gateway and the destination address is the network address of the service gateway .
  • the data gateway may determine a TFT including the destination address in the data gateway according to the destination address of the received data, and the TFT includes the S5TEID.
  • the S5 TEID is the identifier of the S5 bearer between the serving gateway and the serving gateway.
  • Step 2 After receiving the downlink data packet, the serving gateway deletes the three-layer data packet header and the four-layer data packet header in the downlink data packet, adds a new three-layer data packet header and a new four-layer data packet header, and adds TEID is replaced with S1 TEID, and downlink data packets are sent to the edge base station.
  • the serving gateway may obtain the S5 TEID in the downlink data packet, and determine the S1 TEID according to the S5 TEID and the third relationship.
  • the new layer 3 data packet header is a UDP header
  • the new layer 4 data packet header is an IP packet header
  • the source address in the new layer 4 data packet header is the network address of the serving gateway
  • the destination address is the network address of the edge base station.
  • Step 3 After receiving the downlink data packet, the edge base station determines the DRB identifier in the second relationship according to the S1 TEID in the downlink data packet, and replaces the S1 TEID in the downlink data packet with the DRB identifier. .
  • the second relationship is established in advance in the process shown in FIG. 5.
  • Step 4 The edge base station deletes the new Layer 3 packet header and the new Layer 4 packet header added by the serving gateway, adds a network address header to the downlink packet, and adds the network address header after the The downlink data packet is sent to the next hop routing base station indicated by the routing configuration information.
  • the network address header added by the edge base station includes a UDP header and an IP header.
  • the source address in the network address packet header is the network address of the edge base station
  • the destination address in the network address packet header is the network address of the secondary base station.
  • Step 5 The next hop routing base station of the edge base station receives the downlink data packet sent by the edge base station and adds the network address packet header, and then sends it to the next hop routing base station indicated by the routing configuration information.
  • the foregoing method is used to forward the downlink data of the terminal device, and details are not described herein again.
  • Step 6 After receiving the downlink data packet of the terminal device, the secondary base station sends the downlink data packet to the terminal device through the DRB corresponding to the DRB identifier.
  • the secondary base station deletes the network address header added by the edge base station before sending the downlink data packet to the terminal device, and determines the DRB identifier in the first relationship according to the S1 TEID in the downlink data packet, and sends the downlink The S1 TEID in the data packet is replaced with the DRB identity.
  • downlink data of the terminal device received from the network side can be transmitted to the terminal device.
  • the routing configuration information can be updated according to the actual situation, so as to meet the QoS requirements of the data of the terminal device.
  • the following descriptions are based on different situations.
  • the first possible scenario when the secondary base station accessed by the terminal device determines that the channel quality between the secondary base station and the terminal device is less than a preset channel quality value, it requests to update the routing configuration information.
  • the terminal equipment accesses the secondary base station, it periodically sends quality report (match report) signaling to the secondary base station, where the quality report signaling includes channel quality information, and the channel quality information indicates that the secondary base station and the secondary base station A channel quality value between the terminal devices.
  • the secondary base station may send a routing change request message to the primary base station.
  • the routing change request message includes a data flow description file and QoS parameters.
  • the master base station may send the route change request message to the network management through the X2 interface, thereby instructing the network management to update the routing configuration information.
  • the terminal device accesses the routing base station A.
  • the routing base station A may send a routing change request message to the master base station, thereby updating the data transmission path of the terminal device.
  • the second possible scenario When the master base station detects that the topology of the first data transmission path changes, the master base station may send a topology change message to the network manager through the X2 interface, thereby instructing the network manager to update routing configuration information.
  • the topology change message includes data flow description files and QoS parameters.
  • the data transmission path of the terminal device is from the routing base station A, the routing base station B, and the routing base station C to the routing base station D.
  • the master base station can detect that the routing base station B is in a shutdown state due to a failure or the like, it can send a topology change message to the network manager, thereby updating the data transmission path of the terminal device.
  • the network manager After the network manager receives the route change request message or the topology change message, it updates the route configuration information and sends the updated route configuration information to the master base station.
  • the updated routing configuration information indicates a second data transmission path for data of the terminal device, and the second data transmission path includes at least two routing base stations.
  • the master base station needs to re-issue the updated route to the routing base station in the second data transmission path.
  • Configuration information When the starting and ending routing base stations of the second data transmission path are the same as the starting and ending routing base stations of the first data transmission path, the master base station can be configured as follows:
  • the main base station may send updated routing configuration information to the routing base station.
  • the master base station may instruct the routing base station to delete routing configuration information.
  • the master base station may issue the updated routing configuration to the routing base station. information.
  • routing configuration information in the routing base station can be kept unchanged.
  • the originating routing base station and destination routing base station of the second data transmission path are the same as the originating routing base station and destination routing base station of the first data transmission path, it is not necessary to notify the core network, that is, the terminal device is in the access network
  • the change of the side route is transparent to the core network.
  • the master base station may send updates to all the routing base stations in the second data transmission path. Routing configuration information.
  • the primary base station may further instruct the terminal device to establish a DRB with the first base station, and the first base station is in the second data transmission path. Included routing base stations.
  • the first base station needs to establish the correspondence between the network address of the edge base station and the DRB identifier. For details, refer to the foregoing description, and details are not described herein again.
  • the primary base station may further instruct the second base station to establish an S1 bearer with the serving gateway; the second base station is included in the second data transmission path. Routing base station.
  • the second base station needs to establish the correspondence between the DRB identifier and the S1 TEID.
  • FIG. 9 a schematic structural diagram of a multi-hop data transmission device is provided according to an embodiment of the present application.
  • the device 900 includes:
  • the receiving unit 901 is configured to obtain routing configuration information, where the routing configuration information is used to indicate a first data transmission path between a terminal device and a serving gateway, where the first data transmission path includes at least two routing base stations, and the at least A secondary base station including the terminal equipment in the two routing base stations;
  • the sending unit 902 is configured to send the routing configuration information to the at least two routing base stations.
  • the receiving unit 901 is specifically configured to:
  • the receiving unit 901 is further configured to:
  • the sending unit 902 is further configured to send the route establishment request message to the network manager.
  • the sending unit 902 is specifically configured to:
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 10 may be an implementation manner of a hardware circuit of the communication device shown in FIG. 9.
  • the communication device may be applicable to the flowchart shown in FIG. 2 or FIG. 5 to perform a function of a master base station in the foregoing method embodiment.
  • FIG. 10 shows only the main components of the communication device.
  • the communication device may be a base station or a device in the base station, such as a chip or a chip system, where the chip system includes at least one chip, and the chip system may further include other circuit structures and / or discrete devices.
  • the communication device is used as an example of a base station. As shown in FIG.
  • the communication device 1000 includes a processor 1001, a memory 1002, a communication module 1003, an antenna 1004, and the like.
  • the processor 1001 is mainly used to process a communication protocol and communication data, and control the entire communication device, execute a software program, and process data of the software program, for example, to support a wireless communication device to perform an action described in the foregoing method embodiment Wait.
  • the memory 1002 is mainly used to store software programs and data.
  • the communication module 1003 is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals, and can also support optical fiber communication.
  • the antenna 1004 is mainly used for transmitting and receiving radio frequency signals in the form of electromagnetic waves.
  • the communication device 1000 is configured to perform the functions of the primary base station in the flowchart shown in FIG. 2 or FIG. 5. For details, refer to the foregoing description, and details are not described herein again.
  • a processor 1001 is configured to obtain routing configuration information through a communication module 1003, where the routing configuration information is used to indicate a first data transmission path between a terminal device and a serving gateway, where the first data transmission path includes at least two routing base stations , The at least two routing base stations include a secondary base station of the terminal device;
  • the processor 1001 is configured to send the routing configuration information to the at least two routing base stations through the communication module 1003.
  • the communication module 1003 is specifically configured to:
  • the communication module 1003 is further configured to:
  • the communication module 1003 is further configured to send the route establishment request message to the network manager.
  • the communication module 1003 is specifically configured to:
  • FIG. 11 a schematic structural diagram of a multi-hop data transmission device is provided according to an embodiment of the present application.
  • the apparatus 1100 includes: a processing unit 1101, configured to determine a route establishment request message when it is determined that a data radio bearer DRB corresponding to data to be transmitted is not established, and the time delay of the data to be transmitted is greater than a threshold, the route establishment request The message is used to request establishment of routing configuration information;
  • the transceiver unit 1102 is configured to send the route establishment request message to the master base station.
  • the transceiver unit 1102 is further configured to:
  • the TFT configuration request message is used to request establishment of a data radio bearer DRB, and configure a TFT corresponding to the DRB;
  • the processing unit 1101 establishes a DRB with the secondary base station according to the TFT configuration request message;
  • the processing unit 1101 determines that a first TFT corresponding to the DRB exists, and a quality of service classification identifier QCI corresponding to the first TFT is the same as a QCI of data transmitted in the DRB, Adding a packet filter that matches the data to be sent; or if it is determined that a first TFT corresponding to the DRB exists, and the QCI corresponding to the first TFT does not match the QCI of the data transmitted in the DRB If it is the same, a new TFT is created, and a packet filter matching the data to be sent is added to the second TFT; or if it is determined that there is no first TFT corresponding to the DRB, a new second TFT is created A TFT, and a packet filter matching the data to be sent is added to the second TFT.
  • processing unit 1101 is specifically configured to:
  • the data flow template TFT does not include a packet filter matching the data to be sent, it is determined that the DRB is not established.
  • FIG. 12 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 12 may be an implementation manner of a hardware circuit of the communication device shown in FIG. 11.
  • the communication device may be applicable to the flowchart shown in FIG. 2 or FIG. 5 to execute the functions of the terminal device in the foregoing method embodiment.
  • FIG. 12 shows only the main components of the communication device.
  • the communication device may be a terminal device or a device in the terminal device, such as a chip or a chip system, where the chip system includes at least one chip, and the chip system may further include other circuit structures and / or Discrete devices.
  • the communication device is a terminal device. As shown in FIG.
  • the communication device 1200 includes a processor 1201, a memory 1202, a transceiver 1203, an antenna 1204, and an input / output device 1205.
  • the processor 1201 is mainly used to process communication protocols and communication data, and control the entire wireless communication device, execute software programs, and process data of the software programs, for example, to support the wireless communication device to execute the methods described in the foregoing method embodiments. Action, etc.
  • the memory 1202 is mainly used to store software programs and data.
  • the transceiver 1203 is mainly used for converting baseband signals to radio frequency signals and processing radio frequency signals.
  • the antenna 1204 is mainly used for transmitting and receiving radio frequency signals in the form of electromagnetic waves.
  • the input / output device 1205, for example, a touch screen, a display screen, a keyboard, etc., is mainly used to receive data input by the user and output data to the user.
  • the communication device 1200 is configured to execute the functions of the terminal device in the flowchart shown in FIG. 2 or FIG. 5. For details, refer to the foregoing description, and details are not described herein again.
  • the processor 1201 is configured to determine a route establishment request message when it is determined that a data radio bearer DRB corresponding to the data to be transmitted is not established, and the time delay of the data to be transmitted is greater than a threshold, the route establishment request message is used to request establishment of a route Configuration information
  • the transceiver 1203 is configured to send the route establishment request message to the master base station.
  • the transceiver 1203 is further configured to:
  • the TFT configuration request message is used to request establishment of a data radio bearer DRB, and configure a TFT corresponding to the DRB;
  • the processor 1201 establishes a DRB with the secondary base station according to the TFT configuration request message
  • the processor 1201 determines that a first TFT corresponding to the DRB exists, and a quality of service classification identifier QCI corresponding to the first TFT is the same as a QCI of data transmitted in the DRB, Adding a packet filter that matches the data to be sent; or if it is determined that a first TFT corresponding to the DRB exists, and the QCI corresponding to the first TFT does not match the QCI of the data transmitted in the DRB If it is the same, a new TFT is created, and a packet filter matching the data to be sent is added to the second TFT; or if it is determined that there is no first TFT corresponding to the DRB, a new second TFT is created A TFT, and a packet filter matching the data to be sent is added to the second TFT.
  • the processor 1201 is specifically configured to:
  • the data flow template TFT does not include a packet filter matching the data to be sent, it is determined that the DRB is not established.
  • FIG. 13 a schematic structural diagram of a multi-hop data transmission device is provided according to an embodiment of the present application.
  • the apparatus 1300 includes:
  • a processing unit 1301 is configured to determine routing configuration information, where the routing configuration information is used to indicate a first data transmission path between a terminal device and a serving gateway, where the first data transmission path includes at least two routing base stations, and the at least A secondary base station including the terminal equipment in the two routing base stations;
  • the transceiver unit 1302 is configured to send the routing configuration information to the master base station.
  • the transceiver unit 1302 before determining the route configuration information, is further configured to receive a route establishment request message sent by the master base station, and the route establishment request message is used to request establishment of route configuration information.
  • the routing configuration information includes at least one routing table entry
  • Each routing entry in the at least one routing entry includes the following information: a source address; a destination address; an address of a next hop routing base station; a quality of service classification identifier QCI corresponding to the data of the terminal device; the routing entry
  • the time to live value is TTL.
  • FIG. 14 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 14 may be an implementation manner of a hardware circuit of the communication device shown in FIG. 13.
  • the communication device may be applicable to the flowchart shown in FIG. 2 or FIG. 5 to perform a function of the network management in the foregoing method embodiment.
  • FIG. 14 shows only the main components of the communication device.
  • the communication device 1400 includes a processor 1401, a memory 1402, and a communication module 1403.
  • the processor 1401 is mainly configured to process a communication protocol and communication data, and control the entire wireless communication device, execute a software program, and process data of the software program, for example, to support the wireless communication device to execute the method described in the foregoing method embodiment. Action, etc.
  • the memory 1402 is mainly used to store software programs and data.
  • the processor 1401 is configured to determine routing configuration information, where the routing configuration information is used to indicate a first data transmission path between a terminal device and a serving gateway, where the first data transmission path includes at least two routing base stations, A secondary base station including the terminal equipment in the two routing base stations;
  • the communication module 1403 is configured to send the routing configuration information to a master base station.
  • the communication module 1403 before determining the route configuration information, is further configured to: receive a route establishment request message sent by the master base station, and the route establishment request message is used to request establishment of route configuration information.
  • the routing configuration information includes at least one routing table entry
  • Each routing entry in the at least one routing entry includes the following information: a source address; a destination address; an address of a next hop routing base station; a quality of service classification identifier QCI corresponding to the data of the terminal device; the routing entry
  • the time to live value is TTL.
  • FIG. 15 a schematic structural diagram of a multi-hop data transmission device is provided according to an embodiment of the present application.
  • the apparatus 1500 includes:
  • the transceiver unit 1501 is configured to obtain routing configuration information, where the routing configuration information is used to indicate a first data transmission path between the terminal device and the serving gateway, where the first data transmission path includes at least two routing base stations, The two routing base stations include the secondary base station;
  • a processing unit 1502 configured to establish a data radio bearer DRB with the terminal device and establish a first relationship; the first relationship is a mapping relationship between a network address of an edge base station and a DRB identifier of the DRB
  • the edge base station is a routing base station that establishes an S1 bearer between the at least two routing base stations and the serving gateway;
  • the transceiver unit 1501 is configured to transmit data for the terminal device according to the routing configuration information and the first relationship, or according to the DRB identifier.
  • the secondary base station can perform multi-hop data transmission for the terminal device according to the routing configuration information.
  • the transceiver unit 1501 is further configured to:
  • the transceiver unit 1501 is specifically configured to:
  • the transceiver unit 1501 is further configured to:
  • the transceiver unit 1501 is specifically configured to:
  • the transceiver unit 1501 is further configured to:
  • a routing change request message is sent to the master base station, and the routing change request message is used to request to update the routing configuration information.
  • FIG. 16 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 16 may be an implementation manner of a hardware circuit of the communication device shown in FIG. 15.
  • the communication device may be applicable to the flowchart shown in FIG. 2 or FIG. 5 to perform a function of a secondary base station in the foregoing method embodiment.
  • FIG. 16 shows only the main components of the communication device.
  • the communication device 1600 includes a processor 1601, a memory 1602, a communication module 1603, an antenna 1604, and the like.
  • the processor 1601 is mainly used to process the communication protocol and communication data, and control the entire wireless communication device, execute a software program, and process the data of the software program, for example, to support the wireless communication device to execute the method described in the foregoing method embodiment. Action, etc.
  • the memory 1602 is mainly used to store software programs and data.
  • the communication module 1603 is configured to obtain routing configuration information, where the routing configuration information is used to indicate a first data transmission path between a terminal device and a serving gateway, where the first data transmission path includes at least two routing base stations, The two routing base stations include the secondary base station;
  • a processor 1601 configured to establish a data radio bearer DRB with the terminal device, and establish a first relationship; the first relationship is a mapping relationship between a network address of an edge base station and a DRB identifier of the DRB,
  • the edge base station is a routing base station that establishes an S1 bearer between the at least two routing base stations and the serving gateway;
  • the communication module 1603 is configured to transmit data for the terminal device according to the routing configuration information and the first relationship, or according to the DRB identifier.
  • the secondary base station can perform multi-hop data transmission for the terminal device according to the routing configuration information.
  • the communication module 1603 is further configured to:
  • the communication module 1603 is specifically configured to:
  • the communication module 1603 is further configured to:
  • the communication module 1603 is specifically configured to:
  • the communication module 1603 is further configured to:
  • a routing change request message is sent to the master base station, and the routing change request message is used to request to update the routing configuration information.
  • FIG. 17 a schematic structural diagram of a multi-hop data transmission device is provided according to an embodiment of the present application.
  • the device 1700 includes:
  • the transceiver unit 1701 is configured to receive routing configuration information from the master base station, where the routing configuration information is used to indicate a first data transmission path between the terminal device and the serving gateway, where the first data transmission path includes at least two routing base stations
  • the at least two routing base stations include a secondary base station of the terminal device;
  • the edge base station is a device that establishes an S1 bearer between the at least two routing base stations and a serving gateway; and receives data from the secondary base station
  • the DRB identifier is an identifier of a data radio bearer DRB between the secondary base station and the terminal device;
  • a processing unit 1702 configured to establish an S1 bearer with the serving gateway, and establish a second relationship; the second relationship is a mapping relationship between the DRB identifier and an S1 tunnel endpoint identifier TEID carried by the S1 ;
  • the transceiver unit 1701 is configured to transmit data for the terminal device according to the DRB identifier and the second relationship, or according to the S1TEID, the second relationship, and the routing configuration information.
  • the edge base station can perform multi-hop data transmission for the terminal device according to the routing configuration information.
  • the transceiver unit 1701 is further configured to:
  • the transceiver unit 1701 is specifically configured to:
  • Adding a network address header to the uplink data packet, and the destination address of the network address header is the network address of the serving gateway;
  • the transceiver unit 1701 is further configured to:
  • the transceiver unit 1701 is further configured to:
  • Adding a network address header to the downlink data packet, and a destination address of the network address header is a network address of the secondary base station
  • FIG. 18 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 18 may be an implementation manner of a hardware circuit of the communication device shown in FIG. 17.
  • the communication device may be applicable to the flowchart shown in FIG. 2 or FIG. 5 to perform a function of an edge base station in the foregoing method embodiment.
  • FIG. 18 shows only the main components of the communication device.
  • the communication device 1800 includes a processor 1801, a memory 1802, a communication module 1803, an antenna 1804, and the like.
  • the processor 1801 is mainly used to process communication protocols and communication data, and control the entire wireless communication device, execute a software program, and process data of the software program, for example, to support the wireless communication device to execute the methods described in the foregoing method embodiments. Action, etc.
  • the memory 1802 is mainly used to store software programs and data.
  • a communication module 1803 is configured to receive routing configuration information from a master base station, where the routing configuration information is used to indicate a first data transmission path between a terminal device and a serving gateway, where the first data transmission path includes at least two routing base stations
  • the at least two routing base stations include a secondary base station of the terminal device;
  • the edge base station is a device that establishes an S1 bearer between the at least two routing base stations and a serving gateway; and receives data from the secondary base station
  • the DRB identifier is an identifier of a data radio bearer DRB between the secondary base station and the terminal device;
  • the processor 1801 is configured to establish an S1 bearer with the serving gateway and establish a second relationship; the second relationship is a mapping relationship between the DRB identifier and an S1 tunnel endpoint identifier TEID carried by the S1 ;
  • the communication module 1803 is configured to transmit data for the terminal device according to the DRB identifier and the second relationship, or according to the SITEID, the second relationship, and the routing configuration information.
  • the edge base station can perform multi-hop data transmission for the terminal device according to the routing configuration information.
  • the communication module 1803 is further configured to:
  • the communication module 1803 is specifically configured to:
  • Adding a network address header to the uplink data packet, and the destination address of the network address header is the network address of the serving gateway;
  • the communication module 1803 is further configured to:
  • the communication module 1803 is further configured to:
  • the destination address of the network address packet header is the network address of the secondary base station; and sending the downlink data packet after adding the network address header to the next hop routing base station indicated by the routing configuration information.
  • this application may be provided as a method, a system, or a computer program product. Therefore, this application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, this application may take the form of a computer program product implemented on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) containing computer-usable program code.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种多跳数据传输方法及装置,其中方法包括:主基站获取路由配置信息,所述路由配置信息用于指示终端设备与服务网关之间的第一数据传输路径,所述第一数据传输路径包括至少两个路由基站,所述至少两个路由基站中包括所述终端设备的辅基站;所述主基站向所述至少两个路由基站发送所述路由配置信息。

Description

一种多跳数据传输方法及装置
相关申请的交叉引用
本申请要求在2018年08月31日提交中国专利局、申请号为201811014628.1、申请名称为“一种多跳数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种多跳数据传输方法及装置。
背景技术
目前,移动通信系统的接入网部分只支持单跳(基站-终端设备)或两跳(基站-中继设备-终端设备)的通信模式。在单跳通信模式或者两跳通信模式中,终端设备与基站之间最多存在一个中继设备,因此终端设备与基站之间的数据传输不需要复杂的路由机制。
随着通信系统对超高速率和超大连接的需求,第三代伙伴计划(the 3rd generation partnership project,3GPP)在未来的移动通信系统中,提出了超密集组网(ultra dense network,UDN)技术。在超密集组网技术中,宏基站与微基站(也可称为小基站,以下均称为小基站),或者小基站与小基站之间的距离减小(站间距可以达到50-100米),空间复用率提高,数据传输速率和终端设备连接数也相应提高。然而,在超密集组网技术中,由于成本和地理条件的限制,无法实现在每个小基站布置光纤,实现有线回传。例如,一些小基站会选择在路灯等简易的地点布置,因此接入这些小基站的数据无法通过有线网络送往核心网,而是需要依靠小基站间的无线自回传,送往带有光纤回传的基站或小基站,再由带有光纤回传的基站或小基站发送至核心网。在这种情况下,终端设备与带有光纤回传的基站或小基站之间的数据传输,需要依靠多个小基站,即接入网部分需要支持多跳路径的通信模式。
然而,目前的移动通信标准,并没有规定在接入网拓扑结构复杂的情况下,如何实现多跳数据传输,因此,在超密集网络中,如何实现多跳数据传输,还没有明确的解决方案,是一个亟待解决的问题。
发明内容
本申请实施例提供一种多跳数据传输方法及装置,用以解决如何在超密集网络中实现多跳数据传输的问题。
第一方面,本申请实施例提供一种多跳数据传输方法,该方法包括:
主基站获取路由配置信息,所述路由配置信息用于指示终端设备与服务网关之间的第一数据传输路径,所述第一数据传输路径包括至少两个路由基站,所述至少两个路由基站中包括所述终端设备的辅基站;所述主基站向所述至少两个路由基站发送所述路由配置信息。
通过上述方法,主基站将获取到的路由配置信息,发送至第一数据传输路径中的路由基站,使得每个路由基站能够确定终端设备与服务网关之间的数据传输路径,从而解决了 终端设备与服务网关之间的数据的多跳数据传输的问题。
一种可能的设计中,所述主基站获取路由配置信息,包括:所述主基站从网管接收所述路由配置信息。
通过上述方法,主基站从网管接收路由配置信息,可以避免消耗主基站的资源,降低主基站的负荷。
一种可能的设计中,所述主基站从网管接收所述路由配置信息之前,所述方法还包括:
所述主基站接收来自所述终端设备或数据网关的路由建立请求消息,所述路由建立请求消息用于请求建立路由配置信息;所述主基站向所述网管发送所述路由建立请求消息。
一种可能的设计中,所述主基站向所述至少两个路由基站发送所述路由配置信息,包括:所述主基站按照所述第一数据传输路径中,数据经过所述至少两个路由基站的方向的反方向,依次向所述至少两个路由基站,发送所述路由配置信息。
通过上述方法,可以避免终端设备的上行数据传到其中一个路由基站时,由于该路由基站还未收到路由配置信息,从而丢弃终端设备的上行数据的情况的发生。
一种可能的设计中,所述方法还包括:所述主基站接收来自所述辅基站的路由更改请求消息,所述路由更改请求消息用于请求更新所述路由配置信息;所述主基站获取更新后的路由配置信息。
通过上述方法,主基站可以根据辅基站的请求,实时更新终端设备与服务网关之间的数据传输路径,从而满足数据传输的QoS需求。
一种可能的设计中,所述方法还包括:所述主基站向所述网管发送拓扑变更消息,所述拓扑变更消息用于指示所述第一数据传输路径的拓扑发生变化;所述主基站获取更新后的路由配置信息。
通过上述方法,主基站可以在第一数据传输路径的拓扑发生变化,实时更新终端设备与服务网关之间的数据传输路径,从而满足数据传输的QoS需求。
一种可能的设计中,所述方法还包括:所述更新后的路由配置信息指示出用于指示终端设备与服务网关之间的第二数据传输路径,所述第二数据传输路径包括至少两个路由基站;所述主基站若确定所述终端设备接入的辅基站变更为第一基站,则指示所述终端设备与所述第一基站建立数据无线承载DRB,所述第一基站为所述第二数据传输路径中的路由基站。
一种可能的设计中,所述方法还包括:所述更新后的路由配置信息指示出用于指示终端设备与服务网关之间的第二数据传输路径,所述第二数据传输路径包括至少两个路由基站;所述主基站若确定边缘基站变更为第二基站,则指示所述第二基站与所述服务网关建立S1承载;所述第二基站为所述第二数据传输路径中的路由基站,所述边缘基站为所述第一数据传输路径所包括的至少两个路由基站中与所述服务网关之间建立S1承载的路由基站。
第二方面,本申请实施例提供一种多跳数据传输装置,所述多跳数据传输装置包括处理器,所述处理器与存储器耦合,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,以执行上述第一方面或第一方面中任一种可能的设计中的方法。可选的,所述多跳数据传输装置还可以包括所述存储器。可选的,所述多跳数据传输装置还可以包括收发器,用于支持所述多跳数据传输装置进行上述方法中的信息发送和/或接收。可选的,该多跳数据传输装置可以是基站,也可以是基站中的装置,如芯片或者芯片系统,其中所 述芯片系统包含至少一个芯片,所述芯片系统还可以包括其他电路结构和/或分立器件。
第三方面,本申请实施例提供一种多跳数据传输装置,用于实现上述第一方面或第一方面中的任意一种方法,包括相应的功能模块,例如包括接收单元、发送单元等,分别用于实现以上方法中的步骤。
第四方面,本申请实施例提供一种多跳数据传输方法,包括:
当终端设备确定待发送数据对应的数据无线承载DRB未建立,且所述待发送数据的时延大于阈值时,所述终端设备确定路由建立请求消息,所述路由建立请求消息用于请求建立路由配置信息;所述终端设备向主基站发送所述路由建立请求消息。
通过上述方法,终端设备确定待发送数据对应的DRB未建立时,可以通过主基站请求建立路由配置信息,从而可以使得在DRB建立完成的同时,建立终端设备与服务网关之间的数据传输路径。
一种可能的设计中,所述终端设备向主基站发送所述路由建立请求消息之后,所述方法还包括:所述终端设备接收来自数据网关的TFT配置请求消息;所述TFT配置请求消息用于请求所述终端设备建立数据无线承载DRB,并配置与所述DRB对应的TFT;所述终端设备根据所述TFT配置请求消息,建立与辅基站之间的DRB;所述终端设备若确定存在与所述DRB对应的第一TFT,且所述第一TFT对应的服务质量分类标识QCI与所述DRB中传输的数据的QCI相同,则在所述第一TFT中增加与所述待发送数据匹配的数据包过滤器;或者,所述终端设备若确定存在与所述DRB对应的第一TFT,且所述第一TFT对应的QCI与所述DRB中传输的数据的QCI不相同,则新建第二TFT,并在所述第二TFT中增加与所述待发送数据匹配的数据包过滤器;或者,所述终端设备若确定不存在与所述DRB对应的第一TFT,则新建第二TFT,并在所述第二TFT中增加与所述待发送数据匹配的数据包过滤器。
一种可能的设计中,所述终端设备与所述主基站通过低频链路通信;所述终端设备与所述辅基站通过高频链路通信。
一种可能的设计中,所述终端设备确定待发送数据对应的DRB未建立,包括:当所述终端设备的数据流模板TFT中不包括与所述待发送数据匹配的数据包过滤器时,所述终端设备确定所述DRB未建立。
第五方面,本申请实施例提供一种多跳数据传输装置,所述多跳数据传输装置包括处理器,所述处理器与存储器耦合,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,用于执行上述第四方面或第四方面中任一种可能的设计中的方法。可选的,所述多跳数据传输装置还可以包括所述存储器。可选的,所述多跳数据传输装置还可以包括收发器,用于支持所述多跳数据传输装置进行上述方法中的信息发送和/或接收。可选的,该多跳数据传输装置可以是终端设备,也可以是终端设备中的装置,如芯片或者芯片系统,其中所述芯片系统包含至少一个芯片,所述芯片系统还可以包括其他电路结构和/或分立器件。
第六方面,本申请实施例提供一种多跳数据传输装置,用于实现上述第四方面或第四方面中的任意一种方法,包括相应的功能模块,例如包括处理单元、收发单元等,分别用于实现以上方法中的步骤。
第七方面,本申请实施例提供一种多跳数据传输方法,包括:网管确定路由配置信息,所述路由配置信息用于指示终端设备与服务网关之间的第一数据传输路径,所述第一数据 传输路径包括至少两个路由基站,所述至少两个路由基站中包括所述终端设备的辅基站;所述网管向主基站发送所述路由配置信息。
通过上述方法,网管确定出的路由配置信息,可以使得第一数据传输路径中的每个路由基站能够确定终端设备与服务网关之间的数据传输路径,从而解决了终端设备与服务网关之间的数据的多跳数据传输的问题。
一种可能的设计中,所述网管确定路由配置信息之前,所述方法还包括:所述网管接收所述主基站发送的路由建立请求消息,所述路由建立请求消息用于请求建立路由配置信息。
一种可能的设计中,所述路由配置信息包括至少一个路由表项;
所述至少一个路由表项中的每个路由表项包括以下信息:源地址;目的地址;下一跳路由基站的地址;所述终端设备的数据对应的服务质量分类标识QCI;该路由表项的生存时间值TTL。
第八方面,本申请实施例提供一种多跳数据传输装置,所述多跳数据传输装置包括处理器,所述处理器与存储器耦合,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,用于执行上述第七方面或第七方面中任一种可能的设计中的方法。可选的,所述多跳数据传输装置还可以包括所述存储器。可选的,所述多跳数据传输装置还可以包括收发器,用于支持所述多跳数据传输装置进行上述方法中的信息发送和/或接收。可选的,该多跳数据传输装置可以是网管,也可以是网管中的装置,如芯片或者芯片系统,其中所述芯片系统包含至少一个芯片,所述芯片系统还可以包括其他电路结构和/或分立器件。
第九方面,本申请实施例提供一种多跳数据传输装置,用于实现上述第七方面或第七方面中的任意一种方法,包括相应的功能模块,例如包括处理单元、收发单元等,分别用于实现以上方法中的步骤。
第十方面,本申请实施例提供一种多跳数据传输方法,包括:辅基站获取路由配置信息,所述路由配置信息用于指示终端设备与服务网关之间的第一数据传输路径,所述第一数据传输路径包括至少两个路由基站,所述至少两个路由基站中包括所述辅基站;所述辅基站建立与所述终端设备之间的数据无线承载DRB,并建立第一关系;所述第一关系为边缘基站的网络地址与所述DRB的DRB标识之间的映射关系,所述边缘基站为所述至少两个路由基站中与所述服务网关之间建立S1承载的路由基站;所述辅基站根据所述路由配置信息以及所述第一关系,或者根据所述DRB标识,为所述终端设备传输数据。
通过上述方法,由于路由配置信息指示的第一数据传输路径包括至少两个路由基站,辅基站从而可以根据路由配置信息为终端设备进行多跳数据传输。
一种可能的设计中,所述方法还包括:
所述辅基站接收来自所述终端设备的上行数据包,所述上行数据包中包括所述DRB标识;
所述辅基站根据所述路由配置信息以及所述第一关系,为所述终端设备传输数据,包括:
所述辅基站根据所述DRB标识,在所述第一关系中确定所述边缘基站的网络地址,并在所述上行数据包中添加网络地址包头,所述网络地址包头的目的地址为所述边缘基站的网络地址;
所述辅基站将添加所述网络地址包头后的所述上行数据包,发送至所述路由配置信息 指示的下一跳路由基站。
一种可能的设计中,所述方法还包括:
所述辅基站接收所述终端设备的下行数据包,所述下行数据包中包括所述DRB标识;
所述辅基站根据所述DRB标识,为所述终端设备传输数据,包括:
所述辅基站将所述下行数据包通过所述DRB标识对应的DRB,发送至所述终端设备。
一种可能的设计中,所述方法还包括:
所述辅基站接收来自所述终端设备的信道质量信息,所述信道质量信息指示出所述辅基站与所述终端设备之间的信道质量值;
所述信道质量信息指示的信道质量值小于预设信道质量值时,所述辅基站向所述主基站发送路由更改请求消息,所述路由更改请求消息用于请求更新所述路由配置信息。
第十一方面,本申请实施例提供一种多跳数据传输装置,所述多跳数据传输装置包括处理器,所述处理器与存储器耦合,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,用于执行上述第十方面或第十方面中任一种可能的设计中的方法。可选的,所述多跳数据传输装置还可以包括所述存储器。可选的,所述多跳数据传输装置还可以包括收发器,用于支持所述多跳数据传输装置进行上述方法中的信息发送和/或接收。可选的,该多跳数据传输装置可以是基站,也可以是基站中的装置,如芯片或者芯片系统,其中所述芯片系统包含至少一个芯片,所述芯片系统还可以包括其他电路结构和/或分立器件。
第十二方面,本申请实施例提供一种多跳数据传输装置,用于实现上述第十方面或第十方面中的任意一种方法,包括相应的功能模块,例如包括处理单元、收发单元等,分别用于实现以上方法中的步骤。
第十三方面,本申请实施例提供一种多跳数据传输方法,包括:
边缘基站接收来自主基站的路由配置信息,所述路由配置信息用于指示终端设备与服务网关之间的第一数据传输路径,所述第一数据传输路径包括至少两个路由基站,所述至少两个路由基站中包括所述终端设备的辅基站;所述边缘基站为所述至少两个路由基站中与服务网关之间建立S1承载的设备;所述边缘基站接收来自所述辅基站的数据无线承载DRB标识;所述DRB标识为所述辅基站与所述终端设备之间的数据无线承载DRB的标识;所述边缘基站建立与所述服务网关之间的S1承载,并建立第二关系;所述第二关系为所述DRB标识与所述S1承载的S1隧道端点标识TEID之间的映射关系;所述边缘基站根据所述DRB标识以及所述第二关系,或者根据所述S1 TEID、所述第二关系以及所述路由配置信息,为所述终端设备传输数据。
通过上述方法,由于路由配置信息指示的第一数据传输路径包括至少两个路由基站,边缘基站从而可以根据路由配置信息为终端设备进行多跳数据传输。
一种可能的设计中,所述方法还包括:
所述边缘基站接收所述终端设备的上行数据包,所述上行数据包中包括所述DRB标识;
所述边缘基站根据所述DRB标识以及所述第二关系,为所述终端设备传输数据,包括:
所述边缘基站根据所述DRB标识,在所述第二关系中确定所述S1 TEID,并将所述上行数据包中的所述DRB标识替换为所述S1 TEID;
所述边缘基站在所述上行数据包中添加网络地址包头,所述网络地址包头的目的地址为所述服务网关的网络地址;
所述边缘基站将添加所述网络地址包头后的所述上行数据包,通过所述S1 TEID对应的S1承载发送至所述服务网关。
一种可能的设计中,所述方法还包括:
所述边缘基站接收所述终端设备的下行数据包,所述下行数据包中包括所述S1 TEID标识;
所述边缘基站根据所述S1 TEID、所述第二关系以及所述路由配置信息,为所述终端设备传输数据,包括:
所述边缘基站根据所述S1 TEID,在所述第二关系中确定所述DRB标识,并将所述下行数据包中的所述S1 TEID替换为所述DRB标识;
所述边缘基站在所述下行数据包中添加网络地址包头,所述网络地址包头的目的地址为所述辅基站的网络地址;
所述边缘基站将添加所述网络地址包头后的所述下行数据包,发送至所述路由配置信息指示的下一跳路由基站。
第十四方面,本申请实施例提供一种多跳数据传输装置,所述多跳数据传输装置包括处理器,所述处理器与存储器耦合,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,用于执行上述第十三方面或第十三方面中任一种可能的设计中的方法。可选的,所述多跳数据传输装置还可以包括所述存储器。可选的,所述多跳数据传输装置还可以包括收发器,用于支持所述多跳数据传输装置进行上述方法中的信息发送和/或接收。可选的,该多跳数据传输装置可以是基站,也可以是基站中的装置,如芯片或者芯片系统,其中所述芯片系统包含至少一个芯片,所述芯片系统还可以包括其他电路结构和/或分立器件。
第十五方面,本申请实施例提供一种多跳数据传输装置,用于实现上述第十三方面或第十三方面中的任意一种方法,包括相应的功能模块,例如包括处理单元、收发单元等,分别用于实现以上方法中的步骤。
第十六方面,本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一方面或任一方面中任一种可能的设计中的方法。
第十七方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一方面或任一方面中任一种可能的设计中的方法。
第十八方面,本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述任一方面或任一方面中任一种可能的设计中的方法。
第十九方面,本申请实施例提供一种多跳数据传输装置,包括处理器,所述处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现上述任一方面或任一方面中任一种可能的设计中的方法。
第二十方面,本申请实施例提供一种通信系统,包括上述第二方面、第五方面、第八方面、第十一方面以及第十四方面的多跳数据传输装置。
附图说明
图1为适用于本申请实施例的通信方法的通信系统的示意图;
图2为本申请实施例提供的一种多跳数据传输方法流程示意图;
图3(a)至3(d)为本申请实施例提供的一种数据传输路径示意图;
图4为本申请实施例提供的一种上行数据传输示意图;
图5为本申请实施例提供的一种多跳数据传输方法流程示意图;
图6为本申请实施例提供的一种下行数据传输示意图;
图7为本申请实施例提供的一种数据传输路径示意图;
图8为本申请实施例提供的一种数据传输路径示意图;
图9为本申请实施例提供的一种多跳数据传输装置结构示意图;
图10为本申请实施例提供的一种多跳数据传输装置结构示意图;
图11为本申请实施例提供的一种多跳数据传输装置结构示意图;
图12为本申请实施例提供的一种多跳数据传输装置结构示意图;
图13为本申请实施例提供的一种多跳数据传输装置结构示意图;
图14为本申请实施例提供的一种多跳数据传输装置结构示意图;
图15为本申请实施例提供的一种多跳数据传输装置结构示意图;
图16为本申请实施例提供的一种多跳数据传输装置结构示意图;
图17为本申请实施例提供的一种多跳数据传输装置结构示意图;
图18为本申请实施例提供的一种多跳数据传输装置结构示意图。
具体实施方式
下面结合说明书附图对本申请实施例做详细描述。
本申请实施例可以应用于各种移动通信系统,例如:新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、演进的长期演进(evolved long term evolution,eLTE)系统、未来通信系统等其它通信系统,具体的,在此不做限制。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。如图1所示,图1所示的通信系统采用超密集组网技术,包括多个带光纤回传的小基站(图1中以小基站1、2、3为例),多个无光纤回传的小基站(图1中以小基站4为例)。图1中还包括一个网管,多个宏基站(图1中仅以宏基站1和宏基站2为例),以及终端设备(图1中以一个终端设备1为例)等网元。其中,网管和宏基站之间存在光纤连接;宏基站和终端设备之间、宏基站和小基站之间采用低频链路通信,而终端设备和小基站之间、终端设备和宏基站之间采用高频链路通信。其中,带光纤回传的小基站和无光纤回传的小基站,可以统称为小基站或者家庭基站。
本申请实施例中,终端设备支持双连接技术,即终端设备通过高频链路与小基站通信,通过低频链路与宏基站通信。
进一步的,根据3GPP的标准,终端设备和核心网中的分组数据网网关(packet data network gateway,P-GW)之间的通信通过演进的分组系统(evolved packet system,EPS)承载(bearer)实现,从而满足端到端数据传输的服务质量(quality of service,QoS)要求。 EPS承载包括终端设备和宏基站或小基站之间的数据承载(data Radio bearer,DRB)、宏基站或小基站和服务网关(serving gateway,S-GW)之间的S1承载(S1bearer)以及S-GW和P-GW之间的S5承载(S5bearer)。
在EPS承载建立的过程中,DRB承载和S1承载的对应关系存储在宏基站或小基站中,S1承载和S5承载的对应关系存储在S-GW中。P-GW和每个终端设备处存储承载对应的数据流模板(traffic flow template,TFT),实现IP数据包和承载的映射。一个TFT包括按照一定顺序排列的多个数据包过滤器(packet filter),其中TFT在承载建立过程中由核心网配置,且数据包过滤器的排列顺序由核心网指定,本申请实施例对此并不限定。
图1所示的通信系统,终端设备至核心网之间的数据在传输的过程中,可能需要经过多个小站的转发,即数据需要经过多跳数据传输,由于现有移动通信系统的接入网部分只支持单跳或两跳路径传输,无法完成数据在多跳数据传输中的路由转发。为此本申请实施例提供一种多跳数据传输方法,用以支持终端设备至核心网之间的数据实现多跳数据传输,下面将详细描述。需要说明的是,本申请实施例中,多跳数据传输是指数据经过两个路由基站或者两个以上的路由基站进行传输,到达终端设备或者服务网关。
在本申请实施例中,终端设备,为具有无线收发功能的设备或可设置于该设备的芯片。其中,所述具有无线收发功能的设备也可以称为终端设备(user equipment,UE)、接入终端、终端设备单元、终端设备站、移动站、远方站、远程终端、移动设备、终端设备代理或终端设备装置。在实际应用中,本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请的实施例对应用场景不做限定。本申请中将前述具有无线收发功能的设备及可设置于该设备中的芯片统称为终端设备。
在本申请实施例中,主基站可以为各种制式下接入网设备,主基站可以为宏基站,例如演进型节点B(evolved Node B,eNB)、无线网络网管(radio network controller,RNC)或节点B(Node B,NB)、基站网管(base station controller,BSC)、基站收发台(base transceiver station,BTS)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G系统中的gNB等。
在本申请实施例中,路由基站可以为各种制式下无线接入设备,路由基站可以为宏基站,也可以为小基站。路由基站可以位于主基站的信号覆盖范围内,例如家庭基站(例如,home evolved NodeB,或home Node B,HNB)等。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面以终端设备发起上行路由建立为例进行描述。
参见图2,为本申请实施例提供的一种多跳数据传输方法流程示意图。该方法包括:
步骤201:终端设备确定待发送数据对应的DRB未建立,且所述待发送数据的时延大于阈值时,向主基站发送路由建立请求消息,所述路由建立请求消息用于请求建立路由配置信息。
本申请实施例中,当终端设备发起上行数据传输时,终端设备在待发送数据(payload)外加IP包头,IP包头中包括源地址以及目的地址等。终端设备遍历TFT中的数据包过滤器,若确定存在包括待发送数据的源地址、目的地址、源端口号、目的端口号、传输协议标识等信息的数据包过滤器,则确定TFT中包括与所述待发送数据匹配的数据包过滤器;若确定不存在包括待发送数据的源地址以及目的地址的数据包过滤器,则确定TFT中不包括与所述待发送数据匹配的数据包过滤器。
第一种可能的场景中,如果终端设备确定TFT中包括与所述待发送数据匹配的数据包过滤器,则确定待发送数据对应的DRB已经建立,终端设备可以通过与所述待发送数据匹配的数据包过滤器对应的DRB,发送所述待发送数据。需要说明的是,数据包过滤器与DRB的对应关系,是在建立DRB时建立的,在此不再赘述。
第二种可能的场景中,如果终端设备确定TFT中不包括与所述待发送数据匹配的数据包过滤器,且所述待发送数据的对应的时延小于或等于阈值时,通过主基站向核心网发送承载建立请求,所述承载建立请求用于建立通过低频链路传输数据的承载。所述终端设备通过建立的承载发送待发送数据,具体过程可以参考LTE标准中的描述,在此不再赘述。
需要说明的是,本申请实施例中所述阈值可以根据实际情况设置。待发送数据的对应的时延小于或等于阈值时,也可以称为时延敏感型数据,例如语音数据等。待发送数据的时延大于阈值时,也可以称为非时延敏感型数据,例如视频数据等。
需要说明的是,终端设备可以根据待发送数据的服务质量等级标识(QoS class identifier,QCI),确定待发送数据对应的时延。例如,现有技术中,QCI与时延之间的对应关系可以如表1所示。
表1
QCI 时延
1 150ms
2 100ms
3 50ms
4 300ms
5 100ms
当然,表1只是示例,QCI与时延之间还可以存在其他对应关系,在此不再赘述。
第三种可能的场景中,即步骤201所描述的场景,如果终端设备确定TFT中不包括与所述待发送数据匹配的数据包过滤器,则确定待发送数据对应的DRB未建立。
本申请实施例中,路由建立请求消息中可以包括待发送数据的目的地址、源端口号、数据流描述文件(traffic profile)和QoS参数等。数据流描述文件,包括待发送数据的应用类型、数据流文件构成及各部分文件大小等信息;QoS参数包括四类:QCI、分配和保留优先级(allocation and retention priority,ARP)、保证比特速率(guaranteed bit rate,GBR)和聚合最大比特速率(aggregated maximum bit rate,AMBR)。
第三种可能的场景,可以如图3(a)所示。图3(a)中,主基站的信号覆盖范围内有多个路由基站,终端设备确定待发送数据对应的DRB未建立,且所述待发送数据的时延 大于阈值时,向主基站发送路由建立请求消息。
步骤202:主基站接收来自所述终端设备的路由建立请求消息,并向网管发送路由建立请求消息。
主基站可以通过X2接口向网管发送路由建立请求消息,具体可以参考图3(b)所示。
步骤203:网管接收主基站发送的路由建立请求消息,并根据所述路由建立请求消息确定路由配置信息。
所述路由配置信息用于指示终端设备与服务网关之间的第一数据传输路径,所述第一数据传输路径包括至少两个路由基站,所述至少两个路由基站中包括所述终端设备的辅基站。本申请实施例中,路由基站可以为带光纤回传的小基站或无光纤回传的小基站,也可以为宏基站。
举例来说,如图3(c)所示,第一数据传输路径中的数据传输方向为从终端设备传输至服务网关时,数据在第一数据传输路径中依次经过:路由基站A、路由基站B、路由基站C、路由基站D。终端设备的上行数据,可以从路由基站A依次传输至路由基站D,再由路由基站D转发至核心网。
本申请实施例中,路由配置信息可以包括至少一个路由表项,所述至少一个路由表项中的每个路由表项包括以下信息:
源地址,所述源地址为第一数据传输路径中,起点路由基站的网络地址;
目的地址,所述目的地址为第一数据传输路径中,终点路由基站的网络地址;
下一跳路由基站的地址;源地址、目的地址以及下一跳路由基站的地址均可以为IP地址。
终端设备的数据对应的QCI;
该路由表项的生存时间值(time to live,TTL)。路由基站在一个路由表项的TTL过期后,可以删除该路由表项。
本申请实施例中,所述至少一个路由表项中的一个路由表项,与第一数据传输路径包括的至少两个路由基站中的一个路由基站存在关联关系,路由基站根据与该路由基站存在关联关系的路由表项中的下一跳路由基站的地址,转发终端设备的数据。路由表项与路由基站的关联关系,为预先约定的,在此不再赘述。
需要说明的是,网管具体如何确定路由配置信息,本申请实施例对此并不限定。一种可能的实现方式中,网管可以根据路由建立请求消息中的数据流描述文件和QoS参数,确定出满足所述QoS参数,且能够实现流量均衡的路由配置信息。
步骤204:网管向所述主基站发送路由配置信息。
网管可以通过X2接口发送路由配置信息。
步骤205:主基站获取路由配置信息,并向至少两个路由基站发送所述路由配置信息。
需要说明的是,主基站可以获取网管发送的路由配置信息,也可以根据终端设备发送的路由建立请求消息确定路由配置信息,本申请实施例对此并不限定。
所述至少两个路由基站为路由配置信息指示的第一数据传输路径中包括的路由基站。
本申请实施例中,主基站可以按照所述第一数据传输路径中,数据经过所述至少两个路由基站的方向的反方向,依次向所述至少两个路由基站,发送所述路由配置信息。这样可以避免终端设备的上行数据传到其中一个路由基站时,该路由基站还未收到路由配置信息,而丢弃数据的情况发生。
所述至少两个路由基站中的每个路由基站,可以将路由配置信息存储在本地路由表中,本地路由表由多个路由表项组成,本地路由表中的路由表项可以遵从QCI值从小到大或者命中次数从高到底的顺序进行排列。路由基站在一个路由表项的TTL过期后,可以删除该路由表项。
本申请实施例中,当第一数据传输路径中的数据传输方向为从终端设备传输至服务网关时,主基站可以按照数据传输方向,将第一数据传输路径中的起点路由基站作为辅基站,并通过低频连接指示终端设备与该辅基站建立无线连接。
当第一数据传输路径中的数据传输方向为从服务网关传输至终端设备时,主基站可以按照数据传输方向,将第一数据传输路径中的终端路由基站作为辅基站,并通过低频连接指示终端设备与该辅基站建立无线连接。
举例来说,如图3(d)所示,第一数据传输路径中的数据传输方向为从终端设备传输至服务网关时,数据在第一数据传输路径中依次经过:路由基站A、路由基站B、路由基站C、路由基站D。主基站可以将路由基站A作为辅基站。需要说明的是,在该场景下,路由基站D也可以称为边缘基站。
相应的,第一数据传输路径中的数据传输方向为从服务网关传输至终端设备时,数据在第一数据传输路径中依次经过:路由基站D、路由基站C、路由基站B、路由基站A。主基站可以将路由基站A作为辅基站。需要说明的是,在该场景下,路由基站D也可以称为边缘基站。
步骤206:终端设备与辅基站建立无线连接。
需要说明的是,辅基站为无光纤回传的小基站,所述无线连接可以为高频无线资源控制(radio resource control,RRC)连接。
本申请实施例中,所述终端设备与所述主基站通过低频链路通信;所述终端设备与所述辅基站通过高频链路通信。
步骤207:终端设备向核心网中的数据网关发送EPS承载修改请求。EPS承载修改请求用于请求建立S5承载。
需要说明的是,终端设备可以向辅基站发送EPS承载修改请求,辅基站将EPS承载修改请求转发至主基站,主基站再将EPS承载修改请求转发至数据网关。
需要说明的是,数据网关可以为P-GW,也可以为具有P-GW功能的其它设备,本申请实施例对此并不限定。
步骤208:数据网关与服务网关之间建立S5承载,数据网关在S5承载建立完成之后,向终端设备发送TFT配置请求消息。
其中,所述TFT配置请求消息用于请求建立终端设备与辅基站之间的DRB,并配置与DRB对应的TFT。
需要说明的是,S5承载的建立过程,本申请实施例对此并不限定,在此不再赘述。服务网关可以为S-GW,也可以为具有S-GW功能的其它设备,本申请实施例对此并不限定。
步骤209:终端设备接收来自数据网关的TFT配置请求消息,并根据所述TFT配置请求消息,建立与辅基站之间的DRB,以及配置与DRB对应的TFT。
其中,DRB的建立过程,本申请实施例对此并不限定,在此不再赘述。
本申请实施例中,终端设备配置与DRB对应的TFT的过程可以如下:
所述终端设备若确定所述终端设备中存在包括所述DRB的DRB标识的第一TFT,且 所述第一TFT中包括的DRB标识对应的QCI与所述路由配置信息中的QCI相同,则在所述第一TFT中增加与所述待发送数据匹配的数据包过滤器。
所述终端设备若确定所述终端设备中存在包括所述DRB的DRB标识的第一TFT,且所述第一TFT中包括的DRB标识对应的QCI与所述路由配置信息中的QCI不相同,则新建第二TFT,并在所述第二TFT中增加与所述待发送数据匹配的数据包过滤器。
所述终端设备若确定所述终端设备中不存在包括所述DRB的DRB标识的第一TFT,则新建第二TFT,并在所述第二TFT中增加与所述待发送数据匹配的数据包过滤器。
需要说明的是,数据包过滤器包括五元组:源地址、目的地址、源端口号、目的端口号和传输层协议标识。终端设备在TFT中增加数据包过滤器时,可以终端设备待发送数据的五元组,作为增加的数据包过滤器的五元组,从而实现增加与待发送数据匹配的数据包过滤器。
步骤210:辅基站建立第一关系。
其中,所述第一关系为边缘基站的网络地址与所述DRB的DRB标识之间的映射关系,所述边缘基站为所述至少两个路由基站中与所述服务网关之间建立S1承载的路由基站,或者所述边缘基站为所述至少两个路由基站中从而服务网关接收所述终端设备的数据或者想所述服务网关转发所述终端设备的数据的设备。边缘基站的网络地址可以为边缘基站的IP地址。
需要说明的是,边缘基站可以为带光纤回传的小基站或宏基站。
步骤211:终端设备通过辅基站向核心网发送接入成功完成消息,所述接入成功完成消息用于指示所述终端设备已经接入辅基站。
需要说明的是,接入成功完成消息是通过路由配置信息指示的第一数据传输路径,传输至核心网的。
当第一数据传输路径中的终点路由基站,即边缘基站,接收到接入成功完成消息后,接入成功完成消息还可以触发建立边缘基站与所述服务网关之间的S1承载。
步骤212:边缘基站与服务网关之间建立S1承载。
步骤213:边缘基站建立第二关系。
其中,所述第二关系为DRB标识与所述S1承载的S1隧道端点标识(tunnel endpoint identifier,TEID)之间的映射关系。
需要说明的是,所述DRB标识为辅基站发送给所述边缘基站的,具体发送过程,不再描述。
本申请实施例中,边缘基站可以根据所述DRB标识以及所述第二关系为终端设备传输数据,或者边缘基站可以根据所述S1 TEID、所述第二关系以及所述路由配置信息为所述终端设备传输数据,后面将详细描述,在此不再赘述。
步骤214:服务网关建立第三关系,所述第三关系为S1承载的S1 TEID与S5承载的S5 TEID之间的映射关系。
通过上述过程,实现建立终点设备与核心网之间的EPS承载,终端设备的数据通过EPS承载传输,可以保证数据的QoS要求。在建立EPS承载的过程中,网络侧还确定了终端设备的数据在上行传输时的路由配置信息,辅基站至边缘基站可以根据路由配置信息对终端设备的上行数据进行转发,使得接入网侧能够支持多跳数据传输。同时,DRB标识和S1 TEID的映射在边缘基站处实现,使得多跳数据传输过程对核心网不可见,可以降低对 现有标准的影响。
结合步骤201至步骤214,下面详细描述,终端设备的上行数据的传输过程。
如图4所示,为本申请实施例提供的一种上行数据传输流程示意图。
步骤一:终端设备向辅基站发送上行数据包。
其中,所述上行数据包包括数据(payload)、一层数据包头以及二层数据包头。一层数据包头为IP包头,包括源地址、目的地址等内容,源地址为终端设备的网络地址,目的地址为最终接收所述上行数据包的目的设备的网络地址;二层数据包头中包括DRB标识等内容。需要说明的是,本申请实施例中,网络地址可以是指IP地址等,在此不再赘述。
终端设备可以根据需要发送的数据的目的地址,确定终端设备中包括该目的地址的TFT,该TFT中包括所述DRB标识。
需要说明的是,所述DRB标识就是终端设备与辅基站之间的DRB的标识。
步骤二:辅基站接收来自所述终端设备的上行数据包之后,对上行数据包进行处理,并将处理后的上行数据包,发送至路由配置信息指示的下一跳路由基站。
具体的,辅基站根据所述上行数据包中的DRB标识,在第一关系中确定边缘基站的网络地址。其中,第一关系为图2所示的流程中,预先建立好的。
辅基站在所述上行数据包中添加网络地址包头,将添加所述网络地址包头后的所述上行数据包,作为处理后的上行数据包,并发送至路由配置信息指示的下一跳路由基站。
其中,所述网络地址包头中的源地址为所述辅基站的网络地址,所述网络地址包头中的目的地址为所述边缘基站的网络地址。
需要说明的是,辅基站添加的网络地址包头包括用户数据报协议(user datagram protocol,UDP)包头和IP包头,具体可以参考现有技术中的描述,在此不再赘述。
步骤三:辅基站的下一跳路由基站,接收到辅基站发送的添加网络地址包头后的上行数据包后,发送至路由配置信息指示的下一跳路由基站。
针对第一数据传输路径中,辅基站与边缘基站之间的路由基站,均采用上述方法转发终端设备的上行数据,在此不再赘述。
步骤四:边缘基站接收到终端设备的上行数据包之后,删除辅基站添加的网络地址包头,并在上行数据包中添加网络地址包头,将添加所述网络地址包头后的所述上行数据包,通过所述S1 TEID对应的S1承载发送至服务网关。
其中,边缘基站可以根据所述上行数据包中的DRB标识,在第二关系中确定S1 TEID。边缘基站确定S1 TEID之后,将所述上行数据包中的所述DRB标识替换为所述S1 TEID。
边缘基站添加的网络地址包头中的源地址为所述边缘基站的网络地址,边缘基站添加的网络地址包头中目的地址为所述服务网关的网络地址。
需要说明的是,边缘基站添加的网络地址包头包括UDP包头和IP包头,具体可以参考现有技术中的描述,在此不再赘述。
需要说明的是,所述S1 TEID就是服务网关与边缘基站之间的S1承载的标识。第二关系为图2所示的流程中,预先建立好的。
步骤五:服务网关接收到边缘基站发送的上行数据包之后,将上行数据包的网络地址包头删除,并添加三层数据包头以及四层数据包头,将添加三层数据包头以及四层数据包头后的上行数据包发送至数据网关。
其中,服务网关可以获取上行数据包中的S1 TEID,并根据所述S1 TEID以及第三关 系,确定S5 TEID,并将上行数据包中的S1 TEID替换为S5 TEID。
服务网关添加的三层数据包头为UDP包头,四层数据包头为IP包头;四层数据包头中的源地址为服务网关的网络地址,目的地址为数据网关的网络地址。
步骤六:数据网关将接收到的上行数据包中的二层数据包头、三层数据包头以及四层数据包头删除,只保留数据和一层数据包头,并将上行数据包中的数据按照一层数据包头中的目的地址发送出去。
除了终端设备主动发送上行数据的场景之外,核心网侧接收到终端设备的下行数据时,为了发送终端设备的下行数据,也可能需要发起下行路由的建立,下面以数据网关发起下行路由建立为例进行描述。
参见图5,为本申请实施例提供的一种多跳数据传输方法流程示意图。该方法包括:
步骤501:数据网关确定TFT中包括待发送数据的目的地址的数据包过滤器,且所述TFT中不包括与所述待发送数据匹配的数据包过滤器,且所述待发送数据对应的时延大于阈值,则向主基站发送路由建立请求消息,所述路由建立请求消息用于请求建立路由配置信息。
需要说明的是,数据网关可以为P-GW,也可以为具有P-GW功能的其它设备,本申请实施例对此并不限定。
本申请实施例中,当数据网关接收到终端设备的下行数据传输时,将所述下行数据作为待发送数据。数据网关遍历数据网关存储的TFT中的数据包过滤器,若确定存在包括待发送数据的源地址以及目的地址的数据包过滤器,则确定TFT中包括与所述待发送数据匹配的数据包过滤器;若确定不存在包括待发送数据的源地址以及目的地址的数据包过滤器,则确定TFT中不包括与所述待发送数据匹配的数据包过滤器。
第一种可能的场景中,如果数据网关确定TFT中包括与所述待发送数据匹配的数据包过滤器,则通过与所述待发送数据匹配的数据包过滤器对应的S5承载,发送所述待发送数据。需要说明的是,数据包过滤器与S5承载的对应关系,是在建立S5承载时建立的,在此不再赘述。
第二种可能的场景中,如果数据网关确定TFT中不包括与所述待发送数据匹配的数据包过滤器,且所述待发送数据的对应的时延小于或等于阈值时,利用默认承载通过终端设备连接的主基站,向该终端设备发送承载建立请求,所述承载建立请求用于建立通过低频链路传输数据的承载,从而通过建立的承载发送待发送数据,具体过程可以参考现有技术,在此不再赘述。
第三种可能的场景中,即步骤501所描述的场景,此时,数据网关向主基站发送路由建立请求消息。其中,路由建立请求消息中可以包括待发送数据的目的地址、源端口号、数据流描述文件(traffic profile)和QoS参数等。数据流描述文件以及QoS参数的具体内容可以参考不再201终端描述,在此不再赘述。
步骤502:主基站接收来自数据网关的路由建立请求消息,并向网管发送路由建立请求消息。
主基站可以通过X2接口向网管发送路由建立请求消息,具体可以参考图3(b)所示。
步骤503:网管接收主基站发送的路由建立请求消息,并根据所述路由建立请求消息确定路由配置信息。
所述路由配置信息指示出终端设备的数据的第一数据传输路径,所述第一数据传输路 径包括至少两个路由基站。本申请实施例中,路由基站可以为带光纤回传的小基站或无光纤回传的小基站,也可以为宏基站。
本申请实施例中,路由配置信息可以包括至少一个路由表项,路由表项的具体内容可以参考步骤203中的描述,在此不再赘述。
需要说明的是,网管具体如何确定路由配置信息,本申请实施例对此并不限定。一种可能的实现方式中,网管可以根据路由建立请求消息中的数据流描述文件和QoS参数,确定出满足所述QoS参数,且能够实现流量均衡的路由配置信息。
步骤504:网管向所述主基站发送路由配置信息。
网管可以通过X2接口发送路由配置信息。
步骤505:主基站获取路由配置信息,并向至少两个路由基站发送所述路由配置信息。
需要说明的是,主基站可以获取网管发送的路由配置信息,也可以根据终端设备发送的路由建立请求消息确定路由配置信息,本申请实施例对此并不限定。
所述至少两个路由基站为路由配置信息指示的第一数据传输路径中包括的路由基站。
本申请实施例中,主基站可以按照所述第一数据传输路径中,数据经过所述至少两个路由基站的方向的反方向,依次向所述至少两个路由基站,发送所述路由配置信息。即主基站按照所述第一数据传输路径中终点路由基站至起点路由基站的顺序,依次发送所述路由配置信息。这样可以避免终端设备的下行数据传到其中一个路由基站时,该路由基站还未收到路由配置信息,而无法转发数据的情况发生。
所述至少两个路由基站中的每个路由基站,可以将路由配置信息存储在本地路由表中,本地路由表由多个路由表项组成,本地路由表中的路由表项可以遵从QCI值从小到大或者命中次数从高到底的顺序进行排列。路由基站在一个路由表项的TTL过期后,可以删除该路由表项。
本申请实施例中,主基站可以根据第一数据传输路径中所包括的路由基站,确定辅基站,并向终端设备指示辅基站,具体可以参考步骤206中的描述,在此不再赘述。
步骤506:终端设备与辅基站建立无线连接。
需要说明的是,辅基站为无光纤回传的小基站,所述无线连接可以为高频RRC连接。
步骤507:终端设备向核心网中的数据网关发送EPS承载修改请求。EPS承载修改请求用于请求建立S5承载。
需要说明的是,终端设备可以向辅基站发送EPS承载修改请求,辅基站将EPS承载修改请求转发至主基站,主基站再将EPS承载修改请求转发至数据网关。
步骤508:数据网关与服务网关之间建立S5承载,数据网关在S5承载建立完成之后,向终端设备发送TFT配置请求消息。
其中,所述TFT配置请求消息用于请求建立终端设备与辅基站之间的DRB,并配置与DRB对应的TFT。
需要说明的是,S5承载的建立过程,本申请实施例对此并不限定,在此不再赘述。服务网关可以为S-GW,也可以为具有S-GW功能的其它设备,本申请实施例对此并不限定。
步骤509:终端设备接收来自数据网关的TFT配置请求消息,并根据所述TFT配置请求消息,建立与辅基站之间的DRB,以及配置与DRB对应的TFT。
其中,DRB的建立过程,本申请实施例对此并不限定,在此不再赘述。
本申请实施例中,终端设备配置与DRB对应的TFT的过程可以如下:
所述终端设备若确定所述终端设备中存在包括所述DRB的DRB标识的第一TFT,且所述第一TFT中包括的DRB标识对应的QCI与所述路由配置信息中的QCI相同,则在所述第一TFT中增加与所述待发送数据匹配的数据包过滤器。
所述终端设备若确定所述终端设备中存在包括所述DRB的DRB标识的第一TFT,且所述第一TFT中包括的DRB标识对应的QCI与所述路由配置信息中的QCI不相同,则新建第二TFT,并在所述第二TFT中增加与所述待发送数据匹配的数据包过滤器。
所述终端设备若确定所述终端设备中不存在包括所述DRB的DRB标识的第一TFT,则新建第二TFT,并在所述第二TFT中增加与所述待发送数据匹配的数据包过滤器。
需要说明的是,数据包过滤器包括五元组:源地址、目的地址、源端口号、目的端口号和传输层协议标识。终端设备在TFT中增加数据包过滤器时,可以终端设备待发送数据的五元组,作为增加的数据包过滤器的五元组,从而实现增加与待发送数据匹配的数据包过滤器。
步骤510:辅基站建立第一关系。
其中,所述第一关系为边缘基站的网络地址与所述DRB的DRB标识之间的映射关系,所述边缘基站为所述至少两个路由基站中从服务网关接收所述终端设备的数据或者向所述服务网关转发所述终端设备的数据的设备。边缘基站的网络地址可以为边缘基站的IP地址。
需要说明的是,边缘基站为带光纤回传的小基站或宏基站。
步骤511:终端设备通过辅基站向核心网发送接入成功完成消息,所述接入成功完成消息用于指示所述终端设备已经接入辅基站。
需要说明的是,接入成功完成消息是通过路由配置信息指示的第一数据传输路径,传输至核心网的。
当第一数据传输路径中的边缘基站,接收到接入成功完成消息后,接入成功完成消息还可以触发建立边缘基站与所述服务网关之间的S1承载。
步骤512:边缘基站与服务网关之间建立S1承载。
步骤513:边缘基站建立第二关系。
其中,所述第二关系为DRB标识与所述S1承载的S1 TEID之间的映射关系。
需要说明的是,所述DRB标识为辅基站发送给所述边缘基站的,具体发送过程,不再描述。
本申请实施例中,边缘基站可以根据所述DRB标识以及所述第二关系为终端设备传输数据,或者边缘基站可以根据所述S1 TEID、所述第二关系以及所述路由配置信息为所述终端设备传输数据,后面将详细描述,在此不再赘述。
步骤514:服务网关建立第三关系,所述第三关系为S1承载的S1 TEID与S5承载的S5 TEID之间的映射关系。
通过上述过程,实现建立终点设备与核心网之间的EPS承载,终端设备的数据通过EPS承载传输,可以保证数据的QoS要求。在建立EPS承载的过程中,网络侧还确定了终端设备的数据在下行传输时的路由配置信息,辅基站至边缘基站可以根据路由配置信息对终端设备的下行数据进行转发,使得接入网侧能够支持多跳数据传输。同时,DRB标识和S1 TEID的映射在边缘基站处实现,使得多跳数据传输过程对核心网不可见,可以降低对现有标准的影响。
结合步骤501至步骤514,下面详细描述,终端设备的下行数据的传输过程。
如图6所示,为本申请实施例提供的一种下行数据传输流程示意图。
步骤一:数据网关向服务网关发送终端设备的下行数据包。
其中,所述下行数据包包括数据(payload)、一层数据包头、二层数据包头、三层数据包头以及四层数据包头。
其中,下行数据包包括的数据和一层数据包头,为服务网关接收到的,服务网关在接收到的数据和一层数据包头中封装了二层数据包头、三层数据包头以及四层数据包头。
一层数据包头,为服务网关接收到的数据的IP包头,包括源地址、目的地址等内容,该源地址为向终端设备发送数据的设备的网络地址,该目的地址为终端设备的网络地址;二层数据包头中包括S5 TEID等内容。三层数据包头为UDP包头,四层数据包头为IP包头,包括源地址、目的地址等内容,其中,四层数据包头中的源地址为数据网关的网络地址,目的地址为服务网关的网络地址。
数据网关可以根据接收到的数据的目的地址,确定数据网关中包括该目的地址的TFT,该TFT中包括所述S5 TEID。
需要说明的是,所述S5 TEID就是服务网关与服务网关之间的S5承载的标识。
步骤二:服务网关接收到下行数据包之后,删除下行数据包中的三层数据包头以及四层数据包头,添加新的三层数据包头以及新的四层数据包头,将下行数据包中的S5 TEID替换为S1 TEID,并将下行数据包发送至边缘基站。
其中,服务网关可以获取下行数据包中的S5 TEID,并根据所述S5 TEID以及第三关系,确定S1 TEID。新的三层数据包头为UDP包头,新的四层数据包头为IP包头,新的四层数据包头中的源地址为服务网关的网络地址,目的地址为边缘基站的网络地址。
步骤三:边缘基站接收下行数据包之后,根据所述下行数据包中的S1 TEID,在第二关系中确定DRB标识,并将所述下行数据包中的所述S1 TEID替换为所述DRB标识。
其中,第二关系为图5所示的流程中,预先建立好的。
步骤四:所述边缘基站删除服务网关添加的新的三层数据包头以及新的四层数据包头,在所述下行数据包中添加网络地址包头,并将添加所述网络地址包头后的所述下行数据包,发送至路由配置信息指示的下一跳路由基站。
其中,需要说明的是,边缘基站添加的网络地址包头包括UDP包头和IP包头,具体可以参考现有技术中的描述,在此不再赘述。所述网络地址包头中的源地址为所述边缘基站的网络地址,所述网络地址包头中的目的地址为辅基站的网络地址。
步骤五:边缘基站的下一跳路由基站,接收到边缘基站发送的添加网络地址包头后的下行数据包后,发送至路由配置信息指示的下一跳路由基站。
针对第一数据传输路径中,辅基站与边缘基站之间的路由基站,均采用上述方法转发终端设备的下行数据,在此不再赘述。
步骤六:辅基站接收到终端设备的下行数据包之后,将所述下行数据包通过所述DRB标识对应的DRB,发送至所述终端设备。
其中,辅基站在向终端设备发送下行数据包之前,先删除边缘基站添加的网络地址包头,并根据所述下行数据包中的S1 TEID,在第一关系中确定DRB标识,并将所述下行数据包中的所述S1 TEID替换为所述DRB标识。
需要说明的是,第一关系为图5所示的流程中,预先建立好的。
通过上述流程,可以实现将从网络侧接收到的终端设备的下行数据,发送至终端设备。
本申请实施例中,路由配置信息可以根据实际情况进行更新,从而满足终端设备的数据的QoS需求。下面分别根据不同情况描述。
第一种可能的场景:终端设备接入的辅基站,确定辅基站与终端设备之间的信道质量小于预设信道质量值时,请求更新路由配置信息。
具体的,终端设备接入辅基站之后,会周期性地向辅基站发送质量报告(match report)信令,该质量报告信令包括信道质量信息,所述信道质量信息指示出所述辅基站与所述终端设备之间的信道质量值。当辅基站根据质量报告信令,确定辅基站与所述终端设备之间的信道质量值小于预设信道质量值时,辅基站可以向主基站发送路由更改请求消息,所述路由更改请求消息用于请求更新所述路由配置信息,所述路由更改请求消息中包括数据流描述文件以及QoS参数等内容。主基站可以通过X2接口向网管发送所述路由更改请求消息,从而指示网管对路由配置信息进行更新。
举例来说,如图7所示,终端设备接入了路由基站A,当终端设备移动至路由基站D的信号覆盖范围内时,终端设备与路由基站A之间的信道质量变差,此时路由基站A可以向主基站发送路由更改请求消息,从而更新终端设备的数据的传输路径。
第二种可能的场景:当主基站检测到第一数据传输路径的拓扑发生变化时,主基站可以通过X2接口向所述网管发送拓扑变更消息,从而指示网管对路由配置信息进行更新。拓扑变更消息中包括数据流描述文件以及QoS参数等内容。
举例来说,如图8所示,终端设备的数据的传输路径为从路由基站A、路由基站B、路由基站C至路由基站D。当主基站可以检测到路由基站B由于故障等原因,处于关机状态时,可以向所述网管发送拓扑变更消息,从而更新终端设备的数据的传输路径。
网管接收到路由更改请求消息或者拓扑变更消息之后,对路由配置信息进行更新,并向主基站发送更新后的路由配置信息。所述更新后的路由配置信息指示出终端设备的数据的第二数据传输路径,所述第二数据传输路径包括至少两个路由基站。
路由配置信息更新之后,第一数据传输路径不再使用,终端设备的数据需要通过第二数据传输路径传输,为此主基站需要重新向第二数据传输路径中的路由基站下发更新后的路由配置信息,在第二数据传输路径的起点路由基站与终点路由基站,与第一数据传输路径的起点路由基站与终点路由基站相同时,主基站可以按照如下方式配置:
1、对于第二数据传输路径中,相对于第一数据传输路径新增的路由基站,主基站可以向该路由基站下发更新后的路由配置信息。
2、对于第一数据传输路径中已经删除,且不在第二数据传输路径中的路由基站,主基站可以指示该路由基站删除路由配置信息。
3、对于位于第二数据传输路径中,且位于第一数据传输路径中的路由基站,若该路由基站的下一跳路由基站发生变化,主基站可以向该路由基站下发更新后的路由配置信息。
4、对于位于第二数据传输路径中,且位于第一数据传输路径中的路由基站,若该路由基站的下一跳路由基站没有发生变化,可以保持该路由基站中的路由配置信息不变。
需要说明的是,在第二数据传输路径的起点路由基站与终点路由基站,与第一数据传输路径的起点路由基站与终点路由基站相同时,不需要通知核心网,即终端设备在接入网侧路由的改变对核心网透明。
在第二数据传输路径的起点路由基站与终点路由基站,与第一数据传输路径的起点路 由基站与终点路由基站不相同时,主基站可以向第二数据传输路径中的所有路由基站发送更新后的路由配置信息。
进一步的,主基站确定终端设备接入的辅基站变更为第一基站时,主基站还可以指示所述终端设备与第一基站建立DRB,所述第一基站为所述第二数据传输路径中包括的路由基站。
需要说明的是,在建立DRB的过程中,第一基站需要建立边缘基站的网络地址与DRB标识的对应关系,具体可以参考前面的描述,在此不再赘述。
进一步的,所述主基站确定边缘基站变更为第二基站时,主基站还可以指示所述第二基站与服务网关建立S1承载;所述第二基站为所述第二数据传输路径中包括的路由基站。
需要说明的是,在建立S1承载的过程中,第二基站需要建立DRB标识与S1 TEID的对应关系,具体可以参考前面的描述,在此不再赘述。
如图9所示,为本申请实施例提供一种多跳数据传输装置结构示意图。
该装置900,包括:
接收单元901,用于获取路由配置信息,所述路由配置信息用于指示终端设备与服务网关之间的第一数据传输路径,所述第一数据传输路径包括至少两个路由基站,所述至少两个路由基站中包括所述终端设备的辅基站;
发送单元902,用于向所述至少两个路由基站发送所述路由配置信息。
一种可能的设计中,所述接收单元901具体用于:
从网管接收所述路由配置信息。
一种可能的设计中,所述接收单元901还用于:
接收来自所述终端设备或数据网关的路由建立请求消息,所述路由建立请求消息用于请求建立路由配置信息;
所述发送单元902还用于,向所述网管发送所述路由建立请求消息。
一种可能的设计中,所述发送单元902具体用于:
按照所述第一数据传输路径中,数据经过所述至少两个路由基站的方向的反方向,依次向所述至少两个路由基站,发送所述路由配置信息。
图10是本申请实施例提供的一种通信装置的结构示意图。图10所示的通信装置可以为图9所示的通信装置的一种硬件电路的实现方式。该通信装置可适用于图2或图5所示出的流程图中,执行上述方法实施例中主基站的功能。为了便于说明,图10仅示出了通信装置的主要部件。可选的,该通信装置可以是基站,也可以是基站中的装置,如芯片或者芯片系统,其中所述芯片系统包含至少一个芯片,所述芯片系统还可以包括其他电路结构和/或分立器件。可选的,以该通信装置为基站为例,如图10所示,通信装置1000包括处理器1001、存储器1002、通信模块1003、天线1004等。处理器1001主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据,例如用于支持无线通信装置执行上述方法实施例中所描述的动作等。存储器1002主要用于存储软件程序和数据。通信模块1003主要用于基带信号与射频信号的转换以及对射频信号的处理,还可以支持光纤通信。天线1004主要用于收发电磁波形式的射频信号。
该通信装置1000用于执行图2或图5所示出的流程图中,主基站的功能,具体可以参考前面的描述,在此不再赘述。
处理器1001,用于通过通信模块1003获取路由配置信息,所述路由配置信息用于指示终端设备与服务网关之间的第一数据传输路径,所述第一数据传输路径包括至少两个路由基站,所述至少两个路由基站中包括所述终端设备的辅基站;
处理器1001,用于通过通信模块1003向所述至少两个路由基站发送所述路由配置信息。
一种可能的设计中,所述通信模块1003具体用于:
从网管接收所述路由配置信息。
一种可能的设计中,所述通信模块1003还用于:
接收来自所述终端设备或数据网关的路由建立请求消息,所述路由建立请求消息用于请求建立路由配置信息;
所述通信模块1003还用于,向所述网管发送所述路由建立请求消息。
一种可能的设计中,所述通信模块1003具体用于:
按照所述第一数据传输路径中,数据经过所述至少两个路由基站的方向的反方向,依次向所述至少两个路由基站,发送所述路由配置信息。
如图11所示,为本申请实施例提供一种多跳数据传输装置结构示意图。
该装置1100,包括:处理单元1101,用于当确定待发送数据对应的数据无线承载DRB未建立,且所述待发送数据的时延大于阈值时,确定路由建立请求消息,所述路由建立请求消息用于请求建立路由配置信息;
收发单元1102,用于向主基站发送所述路由建立请求消息。
一种可能的设计中,所述收发单元1102还用于:
接收来自数据网关的TFT配置请求消息;所述TFT配置请求消息用于请求建立数据无线承载DRB,并配置与所述DRB对应的TFT;
所述处理单元1101根据所述TFT配置请求消息,建立与辅基站之间的DRB;
所述处理单元1101若确定存在与所述DRB对应的第一TFT,且所述第一TFT对应的服务质量分类标识QCI与所述DRB中传输的数据的QCI相同,则在所述第一TFT中增加与所述待发送数据匹配的数据包过滤器;或者,若确定存在与所述DRB对应的第一TFT,且所述第一TFT对应的QCI与所述DRB中传输的数据的QCI不相同,则新建第二TFT,并在所述第二TFT中增加与所述待发送数据匹配的数据包过滤器;或者,若确定不存在与所述DRB对应的第一TFT,则新建第二TFT,并在所述第二TFT中增加与所述待发送数据匹配的数据包过滤器。
一种可能的设计中,所述处理单元1101具体用于:
当数据流模板TFT中不包括与所述待发送数据匹配的数据包过滤器时,确定所述DRB未建立。
图12是本申请实施例提供的一种通信装置的结构示意图。图12所示的通信装置可以为图11所示的通信装置的一种硬件电路的实现方式。该通信装置可适用于图2或图5所示出的流程图中,执行上述方法实施例中终端设备的功能。为了便于说明,图12仅示出了通信装置的主要部件。可选的,该通信装置可以是终端设备,也可以是终端设备中的装置,如芯片或者芯片系统,其中所述芯片系统包含至少一个芯片,所述芯片系统还可以包括其他电路结构和/或分立器件。可选的,以该通信装置为终端设备为例,如图12所示,通信装置1200包括处理器1201、存储器1202、收发器1203、天线1204以及输入输出装置1205。 处理器1201主要用于对通信协议以及通信数据进行处理,以及对整个无线通信装置进行控制,执行软件程序,处理软件程序的数据,例如用于支持无线通信装置执行上述方法实施例中所描述的动作等。存储器1202主要用于存储软件程序和数据。收发器1203主要用于基带信号与射频信号的转换以及对射频信号的处理。天线1204主要用于收发电磁波形式的射频信号。输入输出装置1205,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
该通信装置1200用于执行图2或图5所示出的流程图中,终端设备的功能,具体可以参考前面的描述,在此不再赘述。
处理器1201,用于当确定待发送数据对应的数据无线承载DRB未建立,且所述待发送数据的时延大于阈值时,确定路由建立请求消息,所述路由建立请求消息用于请求建立路由配置信息;
收发器1203,用于向主基站发送所述路由建立请求消息。
一种可能的设计中,所述收发器1203还用于:
接收来自数据网关的TFT配置请求消息;所述TFT配置请求消息用于请求建立数据无线承载DRB,并配置与所述DRB对应的TFT;
所述处理器1201根据所述TFT配置请求消息,建立与辅基站之间的DRB;
所述处理器1201若确定存在与所述DRB对应的第一TFT,且所述第一TFT对应的服务质量分类标识QCI与所述DRB中传输的数据的QCI相同,则在所述第一TFT中增加与所述待发送数据匹配的数据包过滤器;或者,若确定存在与所述DRB对应的第一TFT,且所述第一TFT对应的QCI与所述DRB中传输的数据的QCI不相同,则新建第二TFT,并在所述第二TFT中增加与所述待发送数据匹配的数据包过滤器;或者,若确定不存在与所述DRB对应的第一TFT,则新建第二TFT,并在所述第二TFT中增加与所述待发送数据匹配的数据包过滤器。
一种可能的设计中,所述处理器1201具体用于:
当数据流模板TFT中不包括与所述待发送数据匹配的数据包过滤器时,确定所述DRB未建立。
如图13所示,为本申请实施例提供一种多跳数据传输装置结构示意图。
参见图13,该装置1300包括:
处理单元1301,用于确定路由配置信息,所述路由配置信息用于指示终端设备与服务网关之间的第一数据传输路径,所述第一数据传输路径包括至少两个路由基站,所述至少两个路由基站中包括所述终端设备的辅基站;
收发单元1302,用于向主基站发送所述路由配置信息。
一种可能的设计中,所述确定路由配置信息之前,所述收发单元1302还用于:接收所述主基站发送的路由建立请求消息,所述路由建立请求消息用于请求建立路由配置信息。
一种可能的设计中,所述路由配置信息包括至少一个路由表项;
所述至少一个路由表项中的每个路由表项包括以下信息:源地址;目的地址;下一跳路由基站的地址;所述终端设备的数据对应的服务质量分类标识QCI;该路由表项的生存时间值TTL。
图14是本申请实施例提供的一种通信装置的结构示意图。图14所示的通信装置可以为图13所示的通信装置的一种硬件电路的实现方式。该通信装置可适用于图2或图5所 示出的流程图中,执行上述方法实施例中网管的功能。为了便于说明,图14仅示出了通信装置的主要部件。如图14所示,通信装置1400包括处理器1401、存储器1402、通信模块1403。处理器1401主要用于对通信协议以及通信数据进行处理,以及对整个无线通信装置进行控制,执行软件程序,处理软件程序的数据,例如用于支持无线通信装置执行上述方法实施例中所描述的动作等。存储器1402主要用于存储软件程序和数据。
处理器1401,用于确定路由配置信息,所述路由配置信息用于指示终端设备与服务网关之间的第一数据传输路径,所述第一数据传输路径包括至少两个路由基站,所述至少两个路由基站中包括所述终端设备的辅基站;
通信模块1403,用于向主基站发送所述路由配置信息。
一种可能的设计中,所述确定路由配置信息之前,所述通信模块1403还用于:接收所述主基站发送的路由建立请求消息,所述路由建立请求消息用于请求建立路由配置信息。
一种可能的设计中,所述路由配置信息包括至少一个路由表项;
所述至少一个路由表项中的每个路由表项包括以下信息:源地址;目的地址;下一跳路由基站的地址;所述终端设备的数据对应的服务质量分类标识QCI;该路由表项的生存时间值TTL。
如图15所示,为本申请实施例提供一种多跳数据传输装置结构示意图。
参见图15,该装置1500包括:
收发单元1501,用于获取路由配置信息,所述路由配置信息用于指示终端设备与服务网关之间的第一数据传输路径,所述第一数据传输路径包括至少两个路由基站,所述至少两个路由基站中包括所述辅基站;
处理单元1502,用于建立与所述终端设备之间的数据无线承载DRB,并建立第一关系;所述第一关系为边缘基站的网络地址与所述DRB的DRB标识之间的映射关系,所述边缘基站为所述至少两个路由基站中与所述服务网关之间建立S1承载的路由基站;
所述收发单元1501,用于根据所述路由配置信息以及所述第一关系,或者根据所述DRB标识,为所述终端设备传输数据。
通过上述方法,由于路由配置信息指示的第一数据传输路径包括至少两个路由基站,辅基站从而可以根据路由配置信息为终端设备进行多跳数据传输。
一种可能的设计中,所述收发单元1501还用于:
接收来自所述终端设备的上行数据包,所述上行数据包中包括所述DRB标识;
所述收发单元1501具体用于:
根据所述DRB标识,在所述第一关系中确定所述边缘基站的网络地址,并在所述上行数据包中添加网络地址包头,所述网络地址包头的目的地址为所述边缘基站的网络地址;
将添加所述网络地址包头后的所述上行数据包,发送至所述路由配置信息指示的下一跳路由基站。
一种可能的设计中,所述收发单元1501还用于:
接收所述终端设备的下行数据包,所述下行数据包中包括所述DRB标识;
所述收发单元1501具体用于:
将所述下行数据包通过所述DRB标识对应的DRB,发送至所述终端设备。
一种可能的设计中,所述收发单元1501还用于:
接收来自所述终端设备的信道质量信息,所述信道质量信息指示出所述装置与所述终 端设备之间的信道质量值;
所述信道质量信息指示的信道质量值小于预设信道质量值时,向所述主基站发送路由更改请求消息,所述路由更改请求消息用于请求更新所述路由配置信息。
图16是本申请实施例提供的一种通信装置的结构示意图。图16所示的通信装置可以为图15所示的通信装置的一种硬件电路的实现方式。该通信装置可适用于图2或图5所示出的流程图中,执行上述方法实施例中辅基站的功能。为了便于说明,图16仅示出了通信装置的主要部件。如图16所示,通信装置1600包括处理器1601、存储器1602、通信模块1603、天线1604等。处理器1601主要用于对通信协议以及通信数据进行处理,以及对整个无线通信装置进行控制,执行软件程序,处理软件程序的数据,例如用于支持无线通信装置执行上述方法实施例中所描述的动作等。存储器1602主要用于存储软件程序和数据。
通信模块1603,用于获取路由配置信息,所述路由配置信息用于指示终端设备与服务网关之间的第一数据传输路径,所述第一数据传输路径包括至少两个路由基站,所述至少两个路由基站中包括所述辅基站;
处理器1601,用于建立与所述终端设备之间的数据无线承载DRB,并建立第一关系;所述第一关系为边缘基站的网络地址与所述DRB的DRB标识之间的映射关系,所述边缘基站为所述至少两个路由基站中与所述服务网关之间建立S1承载的路由基站;
通信模块1603,用于根据所述路由配置信息以及所述第一关系,或者根据所述DRB标识,为所述终端设备传输数据。
通过上述方法,由于路由配置信息指示的第一数据传输路径包括至少两个路由基站,辅基站从而可以根据路由配置信息为终端设备进行多跳数据传输。
一种可能的设计中,所述通信模块1603还用于:
接收来自所述终端设备的上行数据包,所述上行数据包中包括所述DRB标识;
所述通信模块1603具体用于:
根据所述DRB标识,在所述第一关系中确定所述边缘基站的网络地址,并在所述上行数据包中添加网络地址包头,所述网络地址包头的目的地址为所述边缘基站的网络地址;
将添加所述网络地址包头后的所述上行数据包,发送至所述路由配置信息指示的下一跳路由基站。
一种可能的设计中,所述通信模块1603还用于:
接收所述终端设备的下行数据包,所述下行数据包中包括所述DRB标识;
所述通信模块1603具体用于:
将所述下行数据包通过所述DRB标识对应的DRB,发送至所述终端设备。
一种可能的设计中,所述通信模块1603还用于:
接收来自所述终端设备的信道质量信息,所述信道质量信息指示出所述装置与所述终端设备之间的信道质量值;
所述信道质量信息指示的信道质量值小于预设信道质量值时,向所述主基站发送路由更改请求消息,所述路由更改请求消息用于请求更新所述路由配置信息。
如图17所示,为本申请实施例提供一种多跳数据传输装置结构示意图。
参见图17,该装置1700包括:
收发单元1701,用于接收来自主基站的路由配置信息,所述路由配置信息用于指示终 端设备与服务网关之间的第一数据传输路径,所述第一数据传输路径包括至少两个路由基站,所述至少两个路由基站中包括所述终端设备的辅基站;所述边缘基站为所述至少两个路由基站中与服务网关之间建立S1承载的设备;接收来自所述辅基站的数据无线承载DRB标识;所述DRB标识为所述辅基站与所述终端设备之间的数据无线承载DRB的标识;
处理单元1702,用于建立与所述服务网关之间的S1承载,并建立第二关系;所述第二关系为所述DRB标识与所述S1承载的S1隧道端点标识TEID之间的映射关系;
收发单元1701,用于根据所述DRB标识以及所述第二关系,或者根据所述S1 TEID、所述第二关系以及所述路由配置信息,为所述终端设备传输数据。
通过上述方法,由于路由配置信息指示的第一数据传输路径包括至少两个路由基站,边缘基站从而可以根据路由配置信息为终端设备进行多跳数据传输。
一种可能的设计中,所述收发单元1701还用于:
接收所述终端设备的上行数据包,所述上行数据包中包括所述DRB标识;
所述收发单元1701具体用于:
根据所述DRB标识,在所述第二关系中确定所述S1 TEID,并将所述上行数据包中的所述DRB标识替换为所述S1 TEID;
在所述上行数据包中添加网络地址包头,所述网络地址包头的目的地址为所述服务网关的网络地址;
将添加所述网络地址包头后的所述上行数据包,通过所述S1 TEID对应的S1承载发送至所述服务网关。
一种可能的设计中,所述收发单元1701还用于:
所述边缘基站接收所述终端设备的下行数据包,所述下行数据包中包括所述S1 TEID标识;
所述收发单元1701还用于:
根据所述S1 TEID,在所述第二关系中确定所述DRB标识,并将所述下行数据包中的所述S1 TEID替换为所述DRB标识;
在所述下行数据包中添加网络地址包头,所述网络地址包头的目的地址为所述辅基站的网络地址;
将添加所述网络地址包头后的所述下行数据包,发送至所述路由配置信息指示的下一跳路由基站。
图18是本申请实施例提供的一种通信装置的结构示意图。图18所示的通信装置可以为图17所示的通信装置的一种硬件电路的实现方式。该通信装置可适用于图2或图5所示出的流程图中,执行上述方法实施例中边缘基站的功能。为了便于说明,图18仅示出了通信装置的主要部件。如图18所示,通信装置1800包括处理器1801、存储器1802、通信模块1803、天线1804等。处理器1801主要用于对通信协议以及通信数据进行处理,以及对整个无线通信装置进行控制,执行软件程序,处理软件程序的数据,例如用于支持无线通信装置执行上述方法实施例中所描述的动作等。存储器1802主要用于存储软件程序和数据。
通信模块1803,用于接收来自主基站的路由配置信息,所述路由配置信息用于指示终端设备与服务网关之间的第一数据传输路径,所述第一数据传输路径包括至少两个路由基站,所述至少两个路由基站中包括所述终端设备的辅基站;所述边缘基站为所述至少两个 路由基站中与服务网关之间建立S1承载的设备;接收来自所述辅基站的数据无线承载DRB标识;所述DRB标识为所述辅基站与所述终端设备之间的数据无线承载DRB的标识;
处理器1801,用于建立与所述服务网关之间的S1承载,并建立第二关系;所述第二关系为所述DRB标识与所述S1承载的S1隧道端点标识TEID之间的映射关系;
通信模块1803,用于根据所述DRB标识以及所述第二关系,或者根据所述S1 TEID、所述第二关系以及所述路由配置信息,为所述终端设备传输数据。
通过上述方法,由于路由配置信息指示的第一数据传输路径包括至少两个路由基站,边缘基站从而可以根据路由配置信息为终端设备进行多跳数据传输。
一种可能的设计中,所述通信模块1803还用于:
接收所述终端设备的上行数据包,所述上行数据包中包括所述DRB标识;
所述通信模块1803具体用于:
根据所述DRB标识,在所述第二关系中确定所述S1 TEID,并将所述上行数据包中的所述DRB标识替换为所述S1 TEID;
在所述上行数据包中添加网络地址包头,所述网络地址包头的目的地址为所述服务网关的网络地址;
将添加所述网络地址包头后的所述上行数据包,通过所述S1 TEID对应的S1承载发送至所述服务网关。
一种可能的设计中,所述通信模块1803还用于:
所述边缘基站接收所述终端设备的下行数据包,所述下行数据包中包括所述S1 TEID标识;
所述通信模块1803还用于:
根据所述S1 TEID,在所述第二关系中确定所述DRB标识,并将所述下行数据包中的所述S1 TEID替换为所述DRB标识;在所述下行数据包中添加网络地址包头,所述网络地址包头的目的地址为所述辅基站的网络地址;将添加所述网络地址包头后的所述下行数据包,发送至所述路由配置信息指示的下一跳路由基站。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (14)

  1. 一种多跳数据传输方法,其特征在于,包括:
    主基站获取路由配置信息,所述路由配置信息用于指示终端设备与服务网关之间的第一数据传输路径,所述第一数据传输路径包括至少两个路由基站,所述至少两个路由基站中包括所述终端设备的辅基站;
    所述主基站向所述至少两个路由基站发送所述路由配置信息。
  2. 根据权利要求1所述的方法,其特征在于,所述主基站获取路由配置信息,包括:
    所述主基站从网管接收所述路由配置信息。
  3. 根据权利要求2所述的方法,其特征在于,所述主基站从网管接收所述路由配置信息之前,所述方法还包括:
    所述主基站接收来自所述终端设备或数据网关的路由建立请求消息,所述路由建立请求消息用于请求建立路由配置信息;
    所述主基站向所述网管发送所述路由建立请求消息。
  4. 根据权利要求1或2所述的方法,其特征在于,所述主基站向所述至少两个路由基站发送所述路由配置信息,包括:
    所述主基站按照所述第一数据传输路径中,数据经过所述至少两个路由基站的方向的反方向,依次向所述至少两个路由基站,发送所述路由配置信息。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述方法还包括:
    所述主基站接收来自所述辅基站的路由更改请求消息,所述路由更改请求消息用于请求更新所述路由配置信息;
    所述主基站获取更新后的路由配置信息。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述方法还包括:
    所述主基站向所述网管发送拓扑变更消息,所述拓扑变更消息用于指示所述第一数据传输路径的拓扑发生变化;
    所述主基站获取更新后的路由配置信息。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:所述更新后的路由配置信息指示出用于指示终端设备与服务网关之间的第二数据传输路径,所述第二数据传输路径包括至少两个路由基站;
    所述主基站若确定所述终端设备接入的辅基站变更为第一基站,则指示所述终端设备与所述第一基站建立数据无线承载DRB,所述第一基站为所述第二数据传输路径中的路由基站。
  8. 根据权利要求5至7任一所述的方法,其特征在于,所述方法还包括:所述更新后的路由配置信息指示出用于指示终端设备与服务网关之间的第二数据传输路径,所述第二数据传输路径包括至少两个路由基站;
    所述主基站若确定边缘基站变更为第二基站,则指示所述第二基站与所述服务网关建立S1承载;所述第二基站为所述第二数据传输路径中的路由基站,所述边缘基站为所述第一数据传输路径所包括的至少两个路由基站中与所述服务网关之间建立S1承载的路由基站。
  9. 一种多跳数据传输方法,其特征在于,包括:
    当终端设备确定待发送数据对应的数据无线承载DRB未建立,且所述待发送数据的时延大于阈值时,所述终端设备确定路由建立请求消息,所述路由建立请求消息用于请求建立路由配置信息;
    所述终端设备向主基站发送所述路由建立请求消息。
  10. 根据权利要求9所述的方法,其特征在于,所述终端设备向主基站发送所述路由建立请求消息之后,所述方法还包括:
    所述终端设备接收来自数据网关的TFT配置请求消息;所述TFT配置请求消息用于请求所述终端设备建立数据无线承载DRB,并配置与所述DRB对应的TFT;
    所述终端设备根据所述TFT配置请求消息,建立与辅基站之间的DRB;
    所述终端设备若确定存在与所述DRB对应的第一TFT,且所述第一TFT对应的服务质量分类标识QCI与所述DRB中传输的数据的QCI相同,则在所述第一TFT中增加与所述待发送数据匹配的数据包过滤器;
    或者,所述终端设备若确定存在与所述DRB对应的第一TFT,且所述第一TFT对应的QCI与所述DRB中传输的数据的QCI不相同,则新建第二TFT,并在所述第二TFT中增加与所述待发送数据匹配的数据包过滤器;
    或者,所述终端设备若确定不存在与所述DRB对应的第一TFT,则新建第二TFT,并在所述第二TFT中增加与所述待发送数据匹配的数据包过滤器。
  11. 根据权利要求10所述的方法,其特征在于,所述终端设备与所述主基站通过低频链路通信;
    所述终端设备与所述辅基站通过高频链路通信。
  12. 根据权利要求9至11任一所述的方法,其特征在于,所述终端设备确定待发送数据对应的DRB未建立,包括:
    当所述终端设备的数据流模板TFT中不包括与所述待发送数据匹配的数据包过滤器时,所述终端设备确定所述DRB未建立。
  13. 一种多跳数据传输装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1至12中任一项所述的方法。
  14. 一种可读存储介质,其特征在于,包括程序或指令,当所述程序或指令被执行时,如权利要求1至12中任意一项所述的方法被执行。
PCT/CN2019/101839 2018-08-31 2019-08-21 一种多跳数据传输方法及装置 WO2020042986A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19853513.0A EP3840474B1 (en) 2018-08-31 2019-08-21 Multi-hop data transmission method and apparatus
US17/187,404 US11533769B2 (en) 2018-08-31 2021-02-26 Multi-hop data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811014628.1 2018-08-31
CN201811014628.1A CN110876171B (zh) 2018-08-31 2018-08-31 一种多跳数据传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/187,404 Continuation US11533769B2 (en) 2018-08-31 2021-02-26 Multi-hop data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2020042986A1 true WO2020042986A1 (zh) 2020-03-05

Family

ID=69643926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101839 WO2020042986A1 (zh) 2018-08-31 2019-08-21 一种多跳数据传输方法及装置

Country Status (4)

Country Link
US (1) US11533769B2 (zh)
EP (1) EP3840474B1 (zh)
CN (1) CN110876171B (zh)
WO (1) WO2020042986A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11259157B2 (en) * 2017-12-14 2022-02-22 Lg Electronics Inc. V2X communication device and communication method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117255383B (zh) * 2023-11-20 2024-08-13 陕西东泽瑞科技开发有限公司 一种通讯设备音频数据传输系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101267240A (zh) * 2007-03-15 2008-09-17 华为技术有限公司 多跳无线中继通信系统及其下行数据传输方法、装置
CN101325794A (zh) * 2007-06-13 2008-12-17 中兴通讯股份有限公司 空闲终端跨无线控制点切换的注册方法
CN101835202A (zh) * 2010-04-01 2010-09-15 武汉鸿象信息技术有限公司 一种异构无线网络中基于多跳中继的协作负载均衡方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104717714A (zh) * 2013-12-17 2015-06-17 中兴通讯股份有限公司 路由信息发送、接收的方法、装置及路由信息处理系统
CN113068240B (zh) * 2018-02-14 2023-01-10 维沃移动通信有限公司 一种回传路径的转换方法、无线中继、网络侧节点及终端
CN114900866A (zh) * 2018-06-01 2022-08-12 IPCom两合公司 集成的接入和回程移动性
US11419033B2 (en) * 2018-06-19 2022-08-16 Sony Corporation Methods, wireless communications networks and infrastructure equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101267240A (zh) * 2007-03-15 2008-09-17 华为技术有限公司 多跳无线中继通信系统及其下行数据传输方法、装置
CN101325794A (zh) * 2007-06-13 2008-12-17 中兴通讯股份有限公司 空闲终端跨无线控制点切换的注册方法
CN101835202A (zh) * 2010-04-01 2010-09-15 武汉鸿象信息技术有限公司 一种异构无线网络中基于多跳中继的协作负载均衡方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CONVIDA WIRELESS: "Mapping between PDU sessions and DRBs, and Routing of Flows between DRBs and Upper layers", 3GPP TSG-RAN WG2 MEETING #96 R2-168773, 18 November 2016 (2016-11-18), XP051178317 *
See also references of EP3840474A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11259157B2 (en) * 2017-12-14 2022-02-22 Lg Electronics Inc. V2X communication device and communication method thereof

Also Published As

Publication number Publication date
CN110876171B (zh) 2022-02-25
EP3840474A4 (en) 2021-11-03
CN110876171A (zh) 2020-03-10
EP3840474B1 (en) 2024-04-24
US20210185750A1 (en) 2021-06-17
EP3840474A1 (en) 2021-06-23
US11533769B2 (en) 2022-12-20

Similar Documents

Publication Publication Date Title
US11546811B2 (en) Method for establishing a fronthaul interface, method for performing access for a UE, method and apparatus for performing a handover for a UE, data forwarding method, user equipment and base station
JP7043506B2 (ja) ロングタームエボリューション通信システムのためのマルチテクノロジアグリゲーションアーキテクチャ
US10292082B2 (en) Backhaul link establishment method, base station, and device
US10506644B2 (en) Radio access network device, data processing method, and IP packet processing method
JP6437132B2 (ja) 無線アクセスネットワークノード装置、無線通信デバイス、及び複数のデータユニットを処理する方法
US9955513B2 (en) Radio communication system and control method
KR20220044328A (ko) 라우팅 방법, bsr의 생성 방법, 장치 및 저장 매체
JP7482997B2 (ja) データパケット送信方法および装置
US20230239940A1 (en) Data transmission method and apparatus
WO2013053133A1 (zh) 业务数据传输处理方法、设备以及通信系统
US11533769B2 (en) Multi-hop data transmission method and apparatus
WO2022082690A1 (zh) 群组切换的方法、装置和系统
WO2016161761A1 (zh) 数据传输方法及装置
WO2022236644A1 (zh) 发送和接收信号的方法、装置和通信系统
WO2022151298A1 (zh) 群组迁移方法、装置和系统
WO2021087924A1 (zh) 一种通信方法及装置
RU2803196C1 (ru) Способ передачи пакета данных и устройство
WO2023197184A1 (zh) Iab宿主设备以及传输地址配置方法
WO2022205251A1 (zh) 信息收发方法,数据发送方法以及装置
WO2022205326A1 (en) Integrated access and backhaul donor migration methods and systems
WO2023010364A1 (zh) 集成的接入和回传的通信装置以及方法
KR20240129057A (ko) Iab 도너 디바이스 및 전송 마이그레이션 관리 방법
WO2016101468A1 (zh) 移动性管理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019853513

Country of ref document: EP

Effective date: 20210316