WO2010124572A1 - 中继数据的传输方法、装置及系统 - Google Patents

中继数据的传输方法、装置及系统 Download PDF

Info

Publication number
WO2010124572A1
WO2010124572A1 PCT/CN2010/071941 CN2010071941W WO2010124572A1 WO 2010124572 A1 WO2010124572 A1 WO 2010124572A1 CN 2010071941 W CN2010071941 W CN 2010071941W WO 2010124572 A1 WO2010124572 A1 WO 2010124572A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
radio access
service
module
control signaling
Prior art date
Application number
PCT/CN2010/071941
Other languages
English (en)
French (fr)
Inventor
韩立锋
李大鹏
黄亚达
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43020302&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010124572(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP10769261.8A priority Critical patent/EP2427002B1/en
Priority to US13/259,664 priority patent/US9077430B2/en
Publication of WO2010124572A1 publication Critical patent/WO2010124572A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • a cellular radio communication system mainly includes: a terminal (User Equipment, UE for short), an access network, and a core network.
  • a terminal refers to various devices that can communicate with a cellular wireless communication network, such as a mobile phone or a notebook computer.
  • a radio access network refers to a network composed of a base station or a base station and a base station controller, and is mainly responsible for access layer transactions, for example, management of radio resources.
  • the core network is the anchor point of the user plane, and is mainly responsible for non-access layer transactions, for example, location update.
  • Each base station can be connected to one or more core network (Core Network, CN for short) nodes.
  • Core Network Core Network
  • the wireless coverage of a fixed base station network may be limited for a number of reasons. For example, blocking the wireless signal by the building structure may cause coverage of the wireless network.
  • the communication quality of the UE at the cell edge is poor, and the error rate of the wireless transmission is increased.
  • a wireless network node called a relay node/relay station, is introduced in the cellular wireless communication system. Node/Relay Station )
  • the relay node (hereinafter referred to as Relay) has a function of relaying data and possible control information through a wireless link.
  • FIG. 2 is a schematic diagram of a network architecture including a relay in the prior art.
  • the base station eNodeB
  • the UE that can be abbreviated as eNB is called a macro UE, and the UE with Relay is called a Relay UE.
  • the direct link refers to the radio link between the base station and the UE, and includes uplink/downlink (UL/DL) direct transmission link; access link (access link) Refers to the radio link between the Relay and the UE, including the DL/UL access link; the backhaul link refers to the base station and the Relay.
  • the wireless link between the DL/UL trunk links Refers to the radio link between the Relay and the UE, including the DL/UL access link; the backhaul link refers to the base station and the Relay.
  • Relay can relay data through various methods, for example, directly amplifying the received wireless signal from the base station; or receiving the data sent by the base station and performing corresponding processing, and then forwarding the correctly received data packet to the terminal; or the base station and The relay cooperates to send data to the terminal, and the Relay also relays data sent from the terminal to the base station.
  • relay there is a kind of relay, which has the following characteristics:
  • the UE cannot distinguish between the cell under the relay and the fixed base station. That is, the UE itself is a cell, which is not different from the cell under the base station. Such a cell may be called a relay cell.
  • the relay cell has its own Physical Cell Identity (PCI), which is similar to a normal cell and can send broadcasts.
  • PCI Physical Cell Identity
  • the relay cell may separately allocate the scheduling radio resource to the UE, and may be independent of the radio station participating in the relay (the base station is called the Donor base station, that is, the base station connected by the relay through the backhaul link).
  • Resource Scheduling The interface between the relay cell and the UE and the protocol stack are the same as the interface between the normal base station cell and the UE and the protocol stack.
  • the CN node includes: an MME (Mobility Management Entity), an S-GW (Serving Gateway), and other supporting nodes, wherein the MME is responsible for Control plane related work such as mobility management, non-access stratum signaling processing, user mobility management context management, etc.; S-GW is responsible for UE user plane data transmission, forwarding, and routing handover, etc.;
  • the X2 interfaces are connected to each other to support the mobility of the UE in the entire network to ensure seamless handover of users.
  • Each eNB is connected to the SAE (System Architecture Evolution) core network through the S1 interface, that is, through The control plane S 1-MME interface is connected to the MME, and is connected to the S-GW through the user plane S 1-U interface, and the S 1 interface supports the eN.
  • 4 is a schematic diagram of a S1-MME interface protocol stack in the related art. As shown in FIG. 4, the network layer of the S1-MME interface uses an IP protocol, and the transport layer above the network layer uses an SCTP protocol, and the upper layer is The application layer is the S1-AP protocol of the control plane, and the signaling of the S1-AP is transmitted using the underlying transport bearer.
  • FIG. 5 is a related diagram of an S 1-U interface protocol stack in the related art Schematic diagram, as shown in FIG. 5, is a General Packet Radio Service (GPRS) Tunnel User Protocol (User plane of GPRS Tunneling Protocol, GTP-U) / User Data Protocol (User) Datagram Protocol (abbreviated as UDP)
  • GPRS General Packet Radio Service
  • GTP-U User plane of GPRS Tunneling Protocol
  • UDP User Data Protocol
  • I IP constitutes a transport payload, used to transmit the User Plane PDU between the eNB and the S-GW ( Protocol Data Unit) precede Transmitted by the GTP-U tunnel endpoint identifier
  • the tunnel endpoint Identifier (referred to as the TEID) and the IP address are used to identify, including: the source side GTP-U TEID, the target side GTP-U TEID, the source side IP address, and the destination side IP address.
  • the UDP port number is fixed to 2152;
  • GTP -U is a tunneling protocol used to perform seamless transmission over IPv4 and IPv6.
  • Each transport is used to carry data on one service (Service Data Flows) say
  • Each eNB passes the Uu interface (originally defined as UTRAN and UE) Inter-radio interface) Signaling and data transmission with the UE.
  • 6 and 7 show the air interface protocol stack between L1, L2, and L3 of the eNB and the UE from the control plane and the user plane, respectively.
  • 8 is a schematic diagram of a bearer structure of an LTE system in the related art. As shown in FIG. 8, the LTE system can provide an end-to-end service, and can guarantee a service provided by a specific bearer parameter.
  • the QoS level guaranteed by the Evolved Packet Core (EPC) and E-UTRAN is EPS bearer (EPS bearer) / E-RAB (E-UTRAN wireless access bearer, E- UTRAN Radio Access Bearer ).
  • the data packets carried by the EPS are transmitted between the S-GW and the PDN Gateway (PDN Gateway, P-GW for short) through the S5/S8 bearer.
  • the E-RAB packet is transmitted between the eNodeB and the S-GW through the SI Bearer, and the E-RAB packet is transmitted between the UE and the eNodeB through a Radio bearer (Radio Bearer, RB for short).
  • Radio Bearer Radio Bearer
  • the present invention aims to provide a relay data transmission scheme to solve The above question.
  • a method of transmitting relay data is provided, which is applied to a system including a relay node.
  • the method for transmitting the relay data includes: completing the radio access bearer service of the terminal by relaying the radio access bearer service between the bearer relay node and the relay service gateway. Following. Before the method of carrying the relay radio access bearer service, the method further includes: the relay node or the relay service gateway multiplexing the radio access bearer services of the multiple terminals, and obtaining the relay radio access bearer to be carried business.
  • the method further includes: relaying the monthly service gateway Receiving the relayed radio access bearer service of the bearer, and demultiplexing the received relay radio access bearer service to obtain a radio access bearer service from multiple terminals.
  • the method further includes: The node receives the relayed radio access bearer service, and demultiplexes the received relay radio access bearer service to obtain a radio access bearer service that needs to be sent to multiple terminals.
  • the above method further comprises one of the following: the relay node or the relay service gateway will use the tunnel protocol user plane protocol address allocated for the wireless 7-carrier of the wireless access 7-carrier service as multiplexing and/or decoding.
  • the tunnel end identifier of the wireless 7-load assigned to the 7-carrier service is used as an identifier for multiplexing and/or demultiplexing.
  • the above-mentioned relay wireless access 7 is also used for S1-AP control signaling of the transmission terminal on the user plane or the control plane.
  • the S1-AP control signaling carried by the relay radio access 7 on the user plane transmission terminal includes: the S1-AP control signaling of the relay node or the relay service gateway to the multiple terminals according to the respective S 1-
  • the AP identifier is multiplexed to obtain a relay radio access bearer service to be carried.
  • the S1-AP control signaling of the relay radio access bearer on the control plane transmission terminal includes: transmitting the S1-AP control signaling of the terminal by using a control plane direct transmission message of the relay radio access bearer, where, The S1-AP control signaling of the terminal is multiplexed according to the S1-AP identifier as part of the control plane direct transmission message of the relay radio access 7; the multiplexing operation is performed at the relay node
  • the core network mobility management unit performs a demultiplexing operation; or, performs a complex operation in the core network mobility management unit.
  • the relay node performs a demultiplexing operation.
  • a relay node is provided.
  • the relay node includes: a first receiving module, configured to receive a radio access bearer service from the terminal; and a second receiving module, configured to receive a relay radio access bearer service from the core network; a module, configured to multiplex a radio access bearer service and/or an S1-AP control signaling of multiple terminals received by the first receiving module; and a demultiplexing module, configured to receive the received by the second receiving module
  • the S1-AP control signaling and/or the radio access bearer service are demultiplexed;
  • the first transmission module is configured to transmit the radio access bearer multiplexed by the multiplexing module by using the relay radio access bearer.
  • a relay service gateway configured to transmit S1-AP control signaling multiplexed by the multiplexing module through the control plane; and a third transmission module, configured to The wireless access 7-carrier service of the demultiplexed terminal is sent to the terminal through an air interface.
  • the relay service gateway includes: a receiving module, configured to receive the multiplexed S 1-AP control signaling and/or the radio access bearer service from the relay node; and a demultiplexing module, configured to receive The multiplexed S 1-AP control signaling received by the module and/or the wireless access 7-carrier service is demultiplexed; the multiplexing module is configured to control signaling and/or wireless to the S 1-AP from the core network
  • the access bearer service performs multiplexing operation;
  • the transmission module is configured to transmit, by using the relay radio access bearer, the radio access bearer service multiplexed by the multiplexing module and/or the S1-AP control signaling to the relay node .
  • a mobility management network element includes: a receiving module, configured to receive the multiplexed S1-AP control signaling from the relay node; and a demultiplexing module, configured to receive the multiplexed S received by the receiving module
  • the 1-AP control signaling performs a demultiplexing operation;
  • the multiplexing module is configured to perform multiplexing operations on multiple S 1-AP control signaling;
  • the transmission module is configured to perform direct transmission of the message through the control plane through the multiplexing module.
  • the multiplexed S 1 -AP control signaling is sent to the relay node.
  • a transmission system for relay data includes: a relay node and a service gateway, and/or a mobility management network element, where the relay node includes: a first receiving module, configured to receive a radio access bearer from the terminal with a second receiving module, configured to receive a relay wireless access 7-carrier service from the core network, and a multiplexing module, configured to receive, by the first receiving module, the wireless access bearer service of the multiple terminals And/or S 1-AP control signaling is multiplexed; a demultiplexing module is configured to cancel the multiplexed S 1-AP control signaling and/or the radio access bearer service received by the second receiving module
  • the first transmission module is configured to transmit, by using the relay radio access bearer, the radio access bearer service and/or the S 1-AP control signaling that is multiplexed by the multiplexing module to the serving gateway; the second transmission module, The S1-AP
  • the present invention implements a relay node in the UE by relaying radio access 7 relayed radio access 7-carrier service between the 7-carrier relay node and the monthly service gateway. Relaying data between S-GWs fills the gaps in the prior art.
  • FIG. 1 is a schematic structural diagram of a cellular radio communication system in the prior art
  • FIG. 2 is a schematic diagram of a network architecture including a relay in the prior art
  • FIG. 3 is a schematic diagram of IP-based LTE in the related art. Schematic diagram of the flat structure of the system
  • 4 is a schematic diagram of an S1-MME interface protocol stack in the related art
  • FIG. 1 is a schematic structural diagram of a cellular radio communication system in the prior art
  • FIG. 2 is a schematic diagram of a network architecture including a relay in the prior art
  • FIG. 3 is a schematic diagram of IP-based LTE in the related art. Schematic diagram of the flat structure of the system
  • 4 is a schematic diagram of an S1-MME interface protocol stack in the related art
  • FIG. 5 is a schematic diagram of an S1-U interface protocol stack in the related art
  • FIG. 6 is a control plane eNB and UE LI, L2, L3
  • FIG. 7 is a schematic diagram of a bearer structure between the eNB of the user plane and the LI, L2, and L3 of the UE
  • FIG. 8 is a schematic diagram of a bearer structure of the LTE system in the prior art
  • FIG. 10 is a diagram showing a bearer structure of an LTE system after adding a relay radio access bearer in the embodiment of the present invention
  • FIG. 11 is a diagram showing a Relay Bearer in the embodiment of the present invention
  • FIG. 12 is a schematic diagram of a control plane protocol stack after adding a Relay Bearer (UE) in the embodiment of the present invention
  • FIG. 13 is a schematic diagram of adding a Relay Bearer in the embodiment of the present invention
  • FIG. 14 is a schematic diagram of multiplexing with a virtual GTP-U address in a method for transmitting relay data according to an embodiment of the present invention
  • FIG. 15 is a diagram for implementing according to the present invention.
  • Example of the relay data transmission method in each FIG. 16 is a schematic diagram of multiplexing of TEIDs in a method of transmitting relay data according to an embodiment of the present invention
  • FIG. 17 is a block diagram of a relay node according to an embodiment of the present invention
  • Figure 18 is a block diagram of a service gateway in accordance with an embodiment of the present invention
  • Figure 19 is a block diagram of a mobility management network element in accordance with an embodiment of the present invention.
  • DETAILED DESCRIPTION As described above, after the introduction of the relay, the current LTE system does not have a technical solution for the Relay Node to relay data between the UE and the S-GW. To this end, the present invention tampers with the bearer structure of the LTE system, that is, by relaying the wireless access bearer service between the relay node and the monthly service gateway. The process of relaying data between the UE and the S-GW by the Relay Node is implemented.
  • a method for transmitting relay data is provided, which is applied to a system including a relay.
  • the method for transmitting the relay data includes: wirelessly carrying a service by using a relay between the relay node and the serving gateway.
  • the embodiments of the present invention are described in detail below.
  • FIG. 9 shows the network logical structure of the LTE system after joining the Relay Node. As shown in FIG. 9, on the user plane, the Relay S-GW (ie, the Relay Serving Gateway in the figure) passes S.
  • the 1-U interface interacts with the base station (ie, the donor base station Donor eNB shown in the figure).
  • the Relay MME interacts with the base station through the S1-MME interface.
  • the relay S-GW can be a logical network element, which can be implemented on the S-GW or as an independent network element between the eNB and the S-GW.
  • the relay MME can be a functional network element, which can be implemented on the MME or as an independent network element between the eNB and the MME.
  • the interface between the Relay Node (ie, the relay node, shown as Relay) and the Donor eNB (ie, the eNB in the figure) uses the existing air interface, that is, the Macro UE and the Donor eNB.
  • Relay Node can be used as a normal UE access Donor-eNB 0 E-RAB (Relay) (that is, the above-mentioned relay radio access bearer) is connected between the Relay Node and the S-GW, by Relay
  • the Radio Bearer Radio Bearer (radio carrier, RB for short) between the Node and the Donor eNB and the S 1 Bearer (Relay) between the Donor eNB and the S-GW are transmitted.
  • Radio Bearer Radio Bearer (radio carrier, RB for short) between the Node and the Donor eNB and the S 1 Bearer (Relay) between the Donor eNB and the S-GW are transmitted.
  • Each E-RAB of the UE is used to connect the UE and the core network, and is transmitted by the Radio Bearer (UE) of the air interface between the UE and the Relay Node, and the Relay Bearer (UE) between the Relay Node and the core network.
  • the Relay Bearer (UE) of multiple UEs is transmitted by the above E-RAB (Relay).
  • the relay node Before the 7-carrier relay wireless access 7-carrier service, the relay node multiplexes the radio access bearer services from multiple terminals to obtain the relay radio access bearer service to be carried. After the relay wireless access service is transmitted to the monthly service gateway, the monthly service gateway demultiplexes the received relay wireless access bearer service.
  • the Radio Bearer (UE) of multiple UEs may correspond to one E-RAB (Relay), and one E-RAB (Relay) may correspond to multiple S5/S8 Bearers (UEs) corresponding to the Radio Bearer (UE).
  • UE Radio Bearer
  • Figure 11 shows the user plane protocol stack after adding Relay Bearer (UE).
  • UE Relay Bearer
  • the S-GW can be a logical network element, which can be implemented on the S-GW or as an independent network element between the eNB and the S-GW.
  • E-RAB (Relay) is used to carry the Relay Node subordinates.
  • Corresponding to the carrier structure shown in Fig. 10, Fig. 12 and Fig. 13 show two control plane protocol stacks after adding Relay Bearer (UE). It is shown that the S 1-AP control signaling of all UEs under the Relay Node passes through one
  • the E-RAB interacts between the Relay Node and the Relay S-GW, that is, transmits the S1-AP control signaling of the UE through the user plane bearer of the Relay Node; as shown in FIG. 13, all the Relay Node subordinates
  • the S1-AP control signaling of the UE is exchanged between the Relay Node and the Relay MME through a Relay AP (Relay Application Protocol) layer, that is, the S1 of the UE is transmitted through the Relay AP PDU of the Relay Node. - AP control signaling.
  • the Relay AP layer of the Relay Node is mainly used to implement the multiplexing and demultiplexing function of the S 1-AP control signaling of the UE.
  • the Relay AP layer of the Relay MME is mainly used to implement the S 1-AP control signaling of the UE. Reusing, demultiplexing, and forwarding the S1-AP control signaling of the UE according to the S1-AP control signaling identifier (ie, S1-AP id).
  • the Relay AP PDU is transmitted between the Relay Node and the Relay MME by the Relay Node's NAS (Non Access Layer) PDU. This method can also be regarded as transmitting the UE's S 1- through a direct transmission message.
  • NAS Non Access Layer
  • the relay wireless accesses the relay wireless access between the relay node and the monthly service gateway to implement the relay in the UE and
  • the process of relaying data between S-GWs completes the function of air relay, which enhances network coverage and throughput.
  • the user plane implements the transmission of the E-RAB of the plurality of UEs under the Relay Node between the Relay Node and the S-GW through the E-RAB (Relay).
  • the Radio Bearer (UE) of one UE of the Relay Node corresponds to a Relay Bearer (UE), and corresponds to an S5/S8 Bearer (UE) in the Relay S-GW.
  • the Radio Bearer (UE) of multiple UEs may correspond to one E-RAB (Relay), and one E-RAB (Relay) may correspond to multiple S5/S8 Bearer (UE) corresponding to the Radio Bearer (UE).
  • the Relay Node Before transmitting the E-RAB, the Relay Node can select the following three types of multiplexing to identify the E-RABs of multiple terminals for multiplexing: (1) The GTP-U address assigned to the radio bearer of the E-RAB is used as the complex (2) The identifier assigned to each radio access bearer is used as an identifier for multiplexing; (3) the TEID is used as an identifier for multiplexing. Correspondingly, the demultiplexing operation is performed at the Relay S-GW with the same multiplexing identifier. The following is an example of multiplexing the above three methods to describe the flow of relay data on the user plane in detail. Example 1: Using a virtual GTP-U address as a multiplexed identifier FIG.
  • FIG. 14 is a schematic diagram of multiplexing with a virtual GTP-U address in a method for transmitting relay data according to an embodiment of the present invention, as shown in FIG.
  • the user plane service establishment procedure of each UE under the Relay Node is the same as that of the Macro UE.
  • the relay node allocates a virtual GTP-U tunnel address for each service RB of each UE, and the GTP-U tunnel allocated with the MME. The address corresponds. In this way, the existing S 1 process can be maintained without change.
  • E-RAB Relay
  • TEID and Transport Layer Address are required to identify user plane PDUs of different services of different UEs.
  • the multiplexing and demultiplexing functions are provided by Relay Node and Relay S-GW Relay.
  • the Bearer layer is done.
  • the relay node For the processing of the uplink data, the relay node generates a user plane PDU of the E-RAB (Relay) according to the GTP-U address allocated by the MME for each service RB, and transmits the user plane PDU of the E-RAB (Relay) to the Donor-eNB through the air interface.
  • the transmission of S 1 is still using the GTP-U address of E-RAB (Relay), that is, the GTP-U tunnel is sent by the Donor Node to the Relay S-GW.
  • Received by Relay S-GW After the E-RAB (Relay) user plane PDU, by the head identification (i.e.
  • Node completes the functions of multiplexing and demultiplexing.
  • the virtual GTP-U address is used as the multiplexed identifier, the header overhead of the (20+4) bytes is increased, wherein the Transport Layer Address occupies 20 bytes and the TEID occupies 4 bytss.
  • E-RAB (Relay) bonds Relay Node establishes up to 256 E-RAB (Relay)!
  • the mapping relationship between Relay Bearer (UE) and E-RAB (Relay) of this UE can be determined by Relay Node or Relay S-GW according to each service.
  • the QoS requirements are generated according to certain rules and notified to the peer.
  • Example 2 Using the identifier of each RAB of the UE as the multiplexed identifier
  • the header overhead is relatively large due to multiplexing with the virtual GTP-U address, in this example,
  • Each RAB of the UE is multiplexed by using one identification method.
  • FIG. 15 is a schematic diagram of multiplexing the identifier of each RAB in a method for transmitting relay data according to an embodiment of the present invention.
  • the multiplexed header identifier is allocated by a Relay Node or a Relay S-GW.
  • the user plane service establishment procedure of each UE under the Relay Node is similar to that of the Macro UE.
  • the GTP-U tunnel address is not allocated for each service RB of each UE, and only one E-RAB identifier is needed.
  • the mapping relationship between the E-RAB identifier and the E-RAB (Relay) id of the UE is also generated by the Relay Node or the Relay S-GW according to the QoS requirements of each service according to certain rules, and the peer is notified.
  • the TEID is used for multiplexing.
  • the overhead of multiplexing is 4 bytes.
  • FIG. 16 is a schematic diagram of multiplexing a TEID in a method for transmitting relay data according to an embodiment of the present invention. As shown in FIG. 16, the S-GW can forward data according to the TEID.
  • the uplink data and the downlink data refer to the related description in the example 1, and details are not described herein again.
  • Example 4 The control plane of the UE S 1-AP control signaling is transmitted on the Relay Node user plane based on the control plane protocol stack shown in FIG. 12, and the S 1-AP control signaling of all UEs under the Relay Node passes the E-RAB ( Relay ) interacts between the Relay Node and the Relay S-GW, that is, transmits the UE's S 1-AP control signaling through the user plane of the Relay Node.
  • E-RAB Relay
  • the Relay Node For the processing of the uplink S 1-AP control signaling: the Relay Node generates the S 1-AP control signaling of the UE under its jurisdiction, and multiplexes it to the S 1-AP control signaling identifier (ie, S l-AP id )
  • the user plane PDU of the E-RAB (Relay) is then transmitted to the Donor-eNB through the air interface.
  • the transmission of the S1 still requires the GTP-U address of the E-RAB (Relay), that is, the GTP-U tunnel is used.
  • the Donor-eNB sends to the Relay S-GW.
  • the Relay S-GW After receiving the user plane PDU of the E-RAB (Relay), the Relay S-GW demultiplexes the S l-AP id by using the S l-AP id, and obtains the S l-AP control signaling of each UE, and then sends the S l-AP control signaling to the corresponding MME.
  • the Relay S-GW For the initial direct transmission message, since the S l-AP id has not been allocated, the Relay S-GW needs to unlock the direct transmission message, and then sends the MMEC (MME code, mobile management unit code) to the corresponding MME.
  • MME code mobile management unit code
  • the functions of multiplexing and demultiplexing are respectively performed by the Relay S-GW and the Relay Node.
  • the mapping relationship between the S 1-Ap id and the E-RAB ( Relay ) id of the UE may be generated by the Relay Node or the Relay S-GW, and the peer is notified. Based on QoS considerations, the S 1-AP control signaling of all UEs can be mapped onto the same E-RAB ( Relay ).
  • Example 5 Control plane of the UE S 1-AP control signaling is transmitted on the Relay Node control plane Based on the control plane protocol stack shown in Figure 13, the S1-AP control signaling of all UEs under the Relay Node interacts between the Relay Node and the Relay MME through the control plane (Relay AP), that is, through the Relay AP of the Relay Node.
  • the relay MME can be a logical network element, which can be implemented on the MME or as an independent network element between the eNB and the MME.
  • the Relay AP layer of the Relay Node multiplexes the S 1-AP control signaling of all UEs under its jurisdiction to the Relay AP PDU through the UE S 1-AP id, and then passes the null The port is transmitted to the Donor-eNB, and the Donor-eNB is sent to the Relay MME through the S 1-AP Relay AP PDU.
  • the Relay MME demultiplexes the S1-AP id by the S1-AP id, and obtains the S1-AP control signaling of each UE, and then sends the S1-AP control signaling to the corresponding MME.
  • Embodiment 1 of the present invention provides a relay node according to an embodiment of the present invention.
  • the relay node is used to implement the function of the Relay Node in the foregoing method embodiment.
  • the relay node includes: a first receiving module 1, a multiplexing module 2, a first transmission module 3, and a second transmission module 4, and a second receiving module 5 a multiplexing module 6 and a third transmission module 7, wherein the first receiving module 1 is configured to receive a radio access service from the terminal and an S1-AP control signaling; and the multiplexing module 2 is connected to the receiving
  • the module 1 is configured to multiplex the radio access bearer service and/or the S1-AP control signaling of the multiple terminals that are received by the receiving module 1.
  • the multiplexing module is used to implement the foregoing method embodiment.
  • the first transmission module 3 is connected to the multiplexing module 2, configured to transmit the radio access bearer service after multiplexing by the multiplexing module 2 through the relay radio access bearer and/or S 1- AP control signaling to service a second transmission module 4, connected to the multiplexing module 2, configured to transmit S1-AP control signaling multiplexed by the multiplexing module through the control plane; and a second receiving module 5, configured to receive from the core network The relay wireless access 7-load service; the demultiplexing module 6 is connected to the second receiving module 5, and demultiplexes the relay wireless access service received by the second receiving module 5, and obtains the The radio access service data is connected to the demultiplexing module 6 for transmitting the radio access bearer service of the demultiplexed terminal to the terminal through the air interface to complete the air interface relay.
  • a relay service gateway is provided.
  • the service gateway is used to implement the function of the Relay S-GW in the foregoing method embodiment.
  • 18 is a block diagram of the service gateway. As shown in FIG.
  • the service gateway includes: a receiving module 1, a demultiplexing module 2, a multiplexing module 3, and a transmission module 4, wherein the receiving module 1 is configured to receive from the medium Following the multiplexed S 1-AP control signaling and radio access bearer service of the node; the demultiplexing module 2 is connected to the receiving module 1 for receiving the multiplexed S 1-AP control signal received by the receiving module And the radio access bearer service is demultiplexed; the multiplexing module 3 is configured to multiplex the S1-AP control signaling and the radio access bearer service that are to be transmitted from the core network to the relay node, and generate Following the radio access bearer service, the transmission module 4 is connected to the multiplexing module 3, and is configured to transmit the radio access bearer service that is multiplexed by the multiplexing module by using the relay radio access bearer and/or S 1- The AP controls signaling to the relay node.
  • the receiving module 1 is configured to receive from the medium Following the multiplexed S 1-AP control signaling and radio access bearer
  • the third embodiment of the present invention provides a mobile management network element, and preferably a block diagram of the mobile management network element.
  • the mobile management network element includes: a receiving module 1, and a decoding The module 2, the multiplexing module 3 and the transmission module 4, wherein the receiving module 1 is configured to receive the multiplexed S 1-AP control signaling from the relay node; the demultiplexing module 2 is connected to the receiving module 1 And performing demultiplexing operation on the multiplexed S 1-AP control signaling received by the receiving module 1 to obtain S 1-AP control signaling of each terminal; and multiplexing module 3, configured to use multiple terminals S The 1-AP control signaling performs a multiplexing operation; the transmission module 4 is connected to the multiplexing module 3, and is configured to transmit the S1-AP control signaling to the relay after multiplexing by the multiplexing module through the control plane direct transmission message.
  • a relay data transmission system including the relay node in the first embodiment of the apparatus and the relay service gateway in the second embodiment of the apparatus, and/or device implementation.
  • the air relay function can be completed by the embodiment of the present invention, and is backward compatible with the R8 eNB, so that the eNB of the whole network can support the Relay Node, fully supports the mobile or nomadic Relay Node, completes the function of the air relay, and enhances the function. Network coverage and throughput.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)
  • Radio Relay Systems (AREA)

Description

中继数据的传输方法、 装置及系统 技术领域 本发明涉及通信领域, 具体而言, 涉及一种中继数据的传输方法、 装置 及系统。 背景技术 图 1是现有技术中的蜂窝无线通信系统的结构示意图, 如图 1所示, 蜂 窝无线通信系统主要包括: 终端 (User Equipment, 简称为 UE )、 接入网和 核心网。 其中, 终端是指可以和蜂窝无线通信网络通信的各种设备, 例如, 移动电话或者笔记本电脑。无线接入网( Radio Access Network,简称为 RAN ) 是指由基站或基站和基站控制器组成的网络, 主要负责接入层事务, 例如, 无线资源的管理。 基站之间根据实际情况, 存在物理或者逻辑上的连接, 例 如, 图 1所示的基站 1和基站 2之间的连接、 以及基站 1和基站 3之间的连 接。 核心网是用户面的锚点, 主要负责非接入层事务, 例如, 位置更新。 每 个基站可以和一个或者一个以上的核心网 (Core Network, 简称为 CN )节点 连接。 在蜂窝无线通信系统中,固定基站网络的无线覆盖范围会由于一些原因 而受到限制, 例如, 建筑结构对无线信号的阻挡会造成无线网络的覆盖漏洞。 另夕卜, 在小区的边缘地区, 由于无线信号强度的减弱, 以及相邻小区的千扰, 会造成 UE在小区边缘的通信质量较差, 增加无线传输的错误率。 为了提高 数据率的覆盖率, 群组移动性, 临时网络部署, 小区边缘地区的吞吐量以及 新区域的覆盖, 在蜂窝无线通信系统引入一种无线网络节点, 称为中继节点 / 中继站 ( Relay Node/Relay Station )„
Relay 节点 (以下可以简称为 Relay ) 具有通过无线链路中继数据和可 能的控制信息的功能, 图 2是现有技术中的包括 Relay的网络架构示意图, 如图 2所示, 由基站 (eNodeB , 可以简称为 eNB ) 直接月艮务的 UE称为宏 ( Macro ) UE, 有 Relay月艮务的 UE称为 Relay UE。 其中, 直传链路 ( direct link ) 是指基站与 UE之间的无线链路, 包含上 /下行 ( uplink I downlink, 简 称为 UL/DL )直传链路; 接入链路( access link )是指 Relay与 UE之间的无 线链路, 包含 DL/UL接入链路; 回程链路(backhaul link )是指基站与 Relay 之间的无线链路, 包含 DL/UL中继链路。
Relay可以通过多种方法中继数据, 例如, 直接放大接收到的来自基站 的无线信号; 或者将基站发送的数据接收后进行相应的处理后, 将正确接收 的数据包转发给终端; 或者基站和中继合作向终端发送数据, 以及, Relay 也会中继从终端向基站发送的数据。 其中, 有一种中继, 其特点如下:
UE无法区分中继和固定基站下的小区, 即, 在 UE看来, 中继本身就 是一个小区, 和基站下的小区没有区别, 此类小区可以称为中继小区。 中继 小区有自己的小区物理标识 ( Physical Cell Identity, 简称为 PCI ), 类似于普 通小区, 可以发送广播。 当 UE驻留在中继小区中时, 中继小区可以单独分 配调度无线资源给 UE, 可以独立于参与中继的基站 (该基站称为 Donor基 站, 即 Relay通过 backhaul link连接的基站) 的无线资源调度。 中继小区和 UE之间的接口以及协议栈,与普通基站小区和 UE之间的接口以及协议栈相 同。 图 3是相关技术中的基于 IP (互联网协议, Internet Protocol )的长期演 进(Long Term Evolution, 简称为 LTE ) 系统的扁平化架构示意图, 如图 3 所示,由 E-UTRAN(演进的通用地面无线接入网, Evolved Universal Terrestrial Radio Access Network ), CN 节点包括: MME (移动管理单元, Mobility Management Entity ), S-GW (月艮务网关, Serving Gateway ) 及其他支撑节点 组成, 其中, MME 负责移动性管理、 非接入层信令的处理、 用户的移动管 理上下文的管理等控制面相关工作; S-GW 负责 UE用户面数据的传送、 转 发和路由切换等; eNB之间在逻辑上通过 X2接口互相连接, 用于支持 UE 在整个网络内的移动性, 保证用户的无缝切换; 每个 eNB通过 S 1接口, 连 接到 SAE (系统架构演进, System Architecture Evolution ) 核心网, 即, 通 过控制平面 S 1-MME接口与 MME相连, 通过用户平面 S 1-U接口与 S-GW 相连, S 1接口支持 eNB与 MME和 S-GW之间的多点连接。 图 4 是相关技术中的 S 1-MME接口协议栈的示意图, 如图 4 所示, S 1-MME接口的网络层釆用 IP协议, 网络层之上的传输层使用 SCTP协议, 最上层的应用层即控制面的 S 1-AP协议,使用底层的传输承载传输 S 1-AP的 信令,釆用 IP协议的 S 1-MME接口的网络层下层依次是数据链路层( Data link layer ) 和物理层 ( Physical layer )。 图 5是相关技术中的 S 1-U接口协议栈的 示意图, 如图 5所示, 由通用分组无线业务 ( General Packet Radio Service, 简称为 GPRS )隧道协议用户面协议 ( User plane of GPRS Tunneling Protocol, 简称为 GTP-U ) /用户数据 4艮协议 ( User Datagram Protocol, 简称为 UDP ) I IP 组成传输 载, 用来传输 eNB和 S-GW之间的用户面 PDU ( Protocol Data Unit, 十办议数据单元 )„ 传输 载由 GTP-U的隧道端点标识 ( Tunnel Endpoint Identifier, 简称为 TEID )和 IP地址来标识, 包括: 源侧 GTP-U TEID、 目标 侧 GTP-U TEID、 源侧 IP地址和目标侧 IP地址。 其中, UDP端口号固定为 2152; GTP-U是隧道协议, 用来完成 IPv4和 IPv6上的无缝传输。 每个传输 载用于 载一个业务上的数据 ( Service Data Flows )„ 每个 eNB通过 Uu接口 (最初定义为 UTRAN与 UE之间的无线接口) 与 UE进行信令和数据的传输。图 6和图 7分别从控制面和用户面显示了 eNB 和 UE的 L 1、 L2、 L3之间的空口协议栈。 图 8是相关技术中的 LTE系统的承载结构示意图,如图 8所示,该 LTE 系统可以提供端到端的服务(End-to-end Service ), 并且能够通过具体承载的 参数保证所提供业务的服务质量 (Quality of Service, 简称为 QoS )。 在演进 的分组核心网 (Evolved Packet Core, 简称为 EPC ) 和 E-UTRAN的 载的 QoS水平保证的粒度是 EPS bearer ( EPS承载) /E-RAB ( E-UTRAN的无线 接入 载, E-UTRAN Radio Access Bearer )。 在 S-GW和 PDN网关 ( PDN Gateway, 简称为 P-GW ) 之间通过 S5/S8承载来传输 EPS承载的数据包。 在 eNodeB和 S-GW之间是通过 S I Bearer来传输 E-RAB的数据包, 在 UE 和 eNodeB之间是通过 Radio bearer (无线 载, 简称为 RB ) 来传输 E-RAB 的数据包。 对于引入中继小区的 LTE系统,目前尚未有 Relay Node在 UE和 S-GW 之间中继数据的技术方案。 发明内容 针对目前在 LTE系统中尚未有 Relay Node在 UE和 S-GW之间中继数 据的技术方案而提出本发明, 为此, 本发明旨在提供一种中继数据的传输方 案, 以解决上述问题。 为了实现上述目的, 根据本发明的一方面, 提供了一种中继数据的传输 方法, 应用于包括中继节点的系统。 根据本发明的中继数据的传输方法包括:通过中继无线接入承载承载中 继节点和中继服务网关之间的中继无线接入承载业务, 来完成终端的无线接 入 载业务的中继。 其中, 在承载中继无线接入承载业务之前, 该方法进一步包括: 中继节 点或中继服务网关对多个终端的无线接入承载业务进行复用, 得到待承载的 中继无线接入 载业务。 在中继节点对多个终端的无线接入 7 载业务进行复用、以及中继无线接 入 7 载 7 载中继无线接入 7 载业务之后, 该方法进一步包括: 中继月艮务网关 接收承载的中继无线接入承载业务, 并对接收的中继无线接入承载业务进行 解复用, 得到来自多个终端的无线接入承载业务。 在中继服务网关对需要发送给多个终端的无线接入承载业务进行复用、 以及中继无线接入 载对中继无线接入 7 载业务进行 7 载之后, 该方法进一 步包括: 中继节点接收承载的中继无线接入承载业务, 并对接收的中继无线 接入承载业务进行解复用, 得到需要发送给多个终端的无线接入承载业务。 优选地, 上述方法进一步包括以下之一: 中继节点或中继月艮务网关将为 无线接入 7 载业务的无线 7 载分配的隧道协议用户面协议地址作为进行复用 和 /或解复用的标识; 中继节点或中继服务网关将为每个无线接入承载分配的 标识作为进行复用和 /或解复用的标识; 中继节点或中继月艮务网关将为无线接 入 7 载业务的无线 7 载分配的隧道端点标识作为进行复用和 /或解复用的标 识。 上述中继无线接入 7 载还用于在用户面或控制面传输终端的 S 1-AP控 制信令。 其中, 中继无线接入 7 载在用户面传输终端的 S 1-AP控制信令包括: 中继节点或中继服务网关对多个终端的 S 1-AP控制信令根据各自的 S 1-AP标 识进行复用, 以获得待承载的中继无线接入承载业务。 中继无线接入承载在控制面传输终端的 S 1-AP控制信令包括: 通过中 继无线接入承载的控制面直传消息来传输终端的 S 1-AP控制信令, 其中, 将 多个终端的 S 1-AP控制信令才艮据 S 1-AP标识进行复用作为中继无线接入 7 载 的控制面直传消息的一部分进行传输; 在中继节点进行复用操作的情况下, 核心网移动管理单元进行解复用操作; 或者, 在核心网移动管理单元进行复 用操作的情况下, 中继节点进行解复用操作。 为了实现上述目的, 根据本发明的另一方面, 提供了一种中继节点。 才艮据本发明的中继节点包括: 第一接收模块, 用于接收来自终端的无线 接入承载业务; 第二接收模块, 用于接收来自核心网的中继无线接入承载业 务; 复用模块, 用于对第一接收模块接收的多个终端的无线接入承载业务和 / 或 S 1-AP控制信令进行复用; 解复用模块, 用于对第二接收模块接收的经过 复用的 S 1-AP控制信令和 /或无线接入承载业务进行解复用; 第一传输模块, 用于通过中继无线接入承载传输经过复用模块进行复用后的无线接入承载业 务和 /或 S 1-AP控制信令到服务网关; 第二传输模块, 用于通过控制面传输经 过复用模块进行复用后的 S 1-AP控制信令; 第三传输模块, 用于将解复用后 的终端的无线接入 7 载业务通过空口发送到终端。 为了实现上述目的,根据本发明的又一方面,提供了一种中继服务网关。 根据本发明的中继服务网关包括: 接收模块, 用于接收来自中继节点的 经过复用的 S 1-AP控制信令和 /或无线接入承载业务; 解复用模块, 用于对接 收模块接收的经过复用的 S 1-AP 控制信令和 /或无线接入 7 载业务进行解复 用; 复用模块, 用于对来自核心网的 S 1-AP控制信令和 /或无线接入承载业务 进行复用操作; 传输模块, 用于通过中继无线接入承载传输经过复用模块进 行复用后的无线接入承载业务和 /或 S 1 -AP控制信令到中继节点。 为了实现上述目的,根据本发明的还一方面,提供了一种移动管理网元。 根据本发明的移动管理网元包括: 接收模块, 用于接收来自中继节点的 经过复用的 S 1-AP控制信令; 解复用模块, 用于对接收模块接收的经过复用 的 S 1-AP控制信令进行解复用操作; 复用模块, 用于对多个 S 1-AP控制信令 进行复用操作; 传输模块, 用于通过控制面直传消息传输经过复用模块进行 复用后的 S 1 -AP控制信令到中继节点。 为了实现上述目的, 根据本发明的还一方面, 提供了一种中继数据的传 输系统。 根据本发明的中继数据的传输系统包括: 中继节点和服务网关, 和 /或 移动管理网元, 其中, 中继节点包括: 第一接收模块, 用于接收来自终端的无线接入承载业和 SI-AP 控制信令; 第二接收模块, 用于接收来自核心网的中继无线接入 7 载 业务; 复用模块, 用于对第一接收模块接收的多个终端的无线接入承载业务 和 /或 S 1-AP控制信令进行复用; 解复用模块, 用于对第二接收模块接收的经 过复用的 S 1-AP 控制信令和 /或无线接入承载业务进行解复用; 第一传输模 块, 用于通过中继无线接入承载传输经过复用模块进行复用后的无线接入承 载业务和 /或 S 1-AP控制信令到服务网关; 第二传输模块, 用于通过控制面传 输经过复用模块进行复用后的 S 1-AP控制信令; 第三传输模块, 用于将解复 用后的终端的无线接入 7 载业务通过空口发送到终端; 中继服务网关包括: 接收模块, 用于接收来自中继节点的经过复用的 S 1-AP控制信令和 /或无线接入承载业务; 解复用模块, 用于对接收模块接收 的经过复用的 S 1-AP 控制信令和 /或无线接入承载业务进行解复用; 复用模 块,用于对来自核心网的 S 1-AP控制信令和 /或无线接入承载业务进行复用操 作; 传输模块, 用于通过中继无线接入承载传输经过复用模块进行复用后的 无线接入 7 载业务和 /或 S 1-AP控制信令到中继节点; 移动管理网元包括: 接收模块, 用于接收来自中继节点的经过复用的
S 1-AP控制信令; 解复用模块, 用于对接收模块接收的经过复用的 S 1-AP控 制信令进行解复用操作; 复用模块, 用于对多个 S 1-AP控制信令进行复用操 作; 传输模块, 用于通过控制面直传消息传输经过复用模块进行复用后的 S 1-AP控制信令到中继节点。 借助于上述技术方案的至少之一,本发明通过中继无线接入 7 载 7 载中 继节点和月艮务网关之间的中继无线接入 7 载业务, 实现了中继节点在 UE和 S-GW之间中继数据, 填补了现有技术的空白。 附图说明 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是现有技术中的蜂窝无线通信系统的结构示意图; 图 2是现有技术中的包括 Relay的网络架构示意图; 图 3是图 3是相关技术中的基于 IP的 LTE系统的扁平化架构示意图; 图 4是相关技术中的 S 1-MME接口协议栈的示意图; 图 5是相关技术中的 S 1-U接口协议栈的示意图; 图 6是控制面的 eNB和 UE的 LI、 L2、 L3之间的空口十办议栈; 图 7是用户面的 eNB和 UE的 LI、 L2、 L3之间的空口十办议栈; 图 8是现有技术中的 LTE系统的承载结构示意图; 图 9是增加 Relay Node后的 LTE系统的网络逻辑结构图; 图 10是增加本发明实施例中的中继无线接入承载后的 LTE系统承载结 构图; 图 11是增加本发明实施例中的 Relay Bearer ( UE ) 后的用户面协议栈 的示意图; 图 12是增加本发明实施例中的 Relay Bearer ( UE ) 后的控制面协议栈 的一种示意图; 图 13是增加本发明实施例中的 Relay Bearer ( UE ) 后的控制面协议栈 的另一种示意图; 图 14是根据本发明实施例的中继数据的传输方法中的以虚拟 GTP-U地 址进行复用的示意图; 图 15是根据本发明实施例的中继数据的传输方法中的以每个 RAB的标 识进行复用的示意图; 图 16是根据本发明实施例的中继数据的传输方法中的釆用 TEID进行 复用的示意图; 图 17是根据本发明实施例的中继节点的框图; 图 18是才艮据本发明实施例的服务网关的框图; 图 19是才艮据本发明实施例的移动管理网元的框图。 具体实施方式 如上所述, 在引入中继后, 目前的 LTE系统尚未有 Relay Node在 UE 和 S-GW之间中继数据的技术方案。 为此, 本发明通过对 LTE系统的承载结 构的^ ί'爹改, 即, 通过中继无线接入 7 载 载中继节点和月艮务网关之间的中继 无线接入承载业务,来实现 Relay Node在 UE和 S-GW之间中继数据的过程。 下面将参考附图并结合实施例, 来详细说明本发明。 需要说明的是, 如 果不冲突, 本申请中的实施例以及实施例中的特征可以相互组合。 才艮据本发明实施例, 提供了一种中继数据的传输方法, 应用于包括中继 的系统。 该中继数据的传输方法包括: 通过承载中继节点和服务网关之间的 中继无线接入 载业务。 以下对本发明实施例进行详细的描述。 图 9示出了加入 Relay Node后的 LTE系统的网络逻辑结构, 如图 9所 示, 在用户面上, Relay S-GW (即图中的中继月艮务网关, Relay Serving Gateway )通过 S 1-U接口与基站 (即, 图中示出的施主基站 Donor eNB )进 行交互, 在控制面上, Relay MME通过 S 1-MME接口与基站进行交互。 其 中, Relay S-GW从功能上来说可以是一个逻辑网元, 可以在 S-GW上实现, 也可以作为 eNB和 S-GW之间的一个独立网元。 Relay MME从功能上来说 可以是一个還辑网元, 可以在 MME上实现, 也可以作为 eNB和 MME之间 的一个独立网元。 基于图 9, 以下结合图 10所示的增加中继无线接入 7 载后的 LTE系统 承载结构详细描述本发明实施例。 如图 10所示, Relay Node (即中继节点, 图中所示为 Relay ) 和 Donor eNB (即图中的 eNB ) 之间的接口使用现有的空中接口, 即, Macro UE和 Donor eNB 之间的接口, Relay Node 可以作为一个普通的 UE 接入 Donor-eNB0 E-RAB( Relay )(即上述的中继无线接入 载)是连接 Relay Node 和 S-GW之间的 载, 由 Relay Node和 Donor eNB之间空口的 Radio Bearer ( Relay ) (无线 载, 简称为 RB )以及 Donor eNB和 S-GW之间的 S 1 Bearer ( Relay ) 来传输。
UE的每个 E-RAB用于连接 UE和核心网,由 UE和 Relay Node之间空 口的 Radio Bearer ( UE )以及 Relay Node和核心网之间的 Relay Bearer ( UE ) 来传输。 多个 UE的 Relay Bearer ( UE ) 通过上述的 E-RAB ( Relay ) 来传输。 在 7 载中继无线接入 7 载业务之前,中继节点对来自多个终端的无线接 入承载业务进行复用, 得到待承载的中继无线接入承载业务。 之后, 再将中 继无线接入^载业务传输至月艮务网关之后, 月艮务网关对接收的中继无线接入 载业务进行解复用。 也就是说, 多个 UE的 Radio Bearer ( UE ) 可以对应 一个 E-RAB( Relay ),并且,一个 E-RAB( Relay )可以对应多个与 Radio Bearer ( UE )相应的 S5/S8 Bearer ( UE )„ 对应于图 10所示的 载结构, 图 11示出了增加 Relay Bearer ( UE )后 的用户面协议栈,如图 11所示,在协议栈中增加了 Relay S-GW的概念, Relay S-GW从功能上来说可以是一个逻辑网元, 可以在 S-GW上实现, 也可以作 为 eNB和 S-GW之间的一个独立网元。 E-RAB ( Relay )用于 载 Relay Node 下属的多个 UE的经过复用的业务。 对应于图 10所示的 载结构, 图 12和图 13示出了增加 Relay Bearer ( UE ) 后的两种控制面协议栈。 其中: 如图 12所示, Relay Node下属的全部 UE的 S 1-AP控制信令通过一个
E-RAB ( Relay )在 Relay Node和 Relay S-GW之间交互,即,通过 Relay Node 的用户面承载来传输 UE的 S 1-AP控制信令; 如图 13所示, Relay Node下属的全部 UE的 S 1-AP控制信令通过 Relay AP(中继应用十办议, Relay Application Protocol )层在 Relay Node和 Relay MME 之间交互, 即, 通过 Relay Node的 Relay AP PDU来传输 UE的 S 1-AP控制 信令。 其中, Relay Node的 Relay AP层主要用于实现 UE的 S 1-AP控制信令 的复用和解复用的功能; Relay MME 的 Relay AP 层主要用于实现 UE 的 S 1-AP控制信令的复用、 解复用、 以及根据 S 1-AP控制信令标识 (即 S 1-AP id ) 转发 UE的 S 1-AP控制信令。 Relay AP PDU被当故 Relay Node的 NAS (非接入层, Non Access Stratum ) PDU在 Relay Node和 Relay MME之间传 输, 这种方法也可以看成是通过直传消息来传输 UE的 S 1-AP控制信令。 由以上描述可以看出, 在不改变 Donor eNB的情况下, 通过中继无线 接入 载 载中继节点和月艮务网关之间的中继无线接入^载业务, 来实现 Relay在 UE和 S-GW之间中继数据的过程, 完成空中中继的功能, 增强了 网络的覆盖和吞吐量。 为了进一步理解本发明实施例, 基于图 10所示的承载结构, 以下分别 描述在用户面和控制面的中继数据的过程。 (一) 用户面 通过 E-RAB( Relay )实现 Relay Node下属的多个 UE的 E-RAB在 Relay Node和 S-GW之间的传输。 其中, Relay Node下属的一个 UE的 Radio Bearer ( UE ) 与一个 Relay Bearer ( UE ) 对应, 并在 Relay S-GW与一个 S5/S8 Bearer ( UE ) 对应。 多 个 UE的 Radio Bearer ( UE )可以与一个 E-RAB ( Relay )对应, 一个 E-RAB ( Relay )可以与多个与 Radio Bearer ( UE )相应的 S5/S8 Bearer ( UE )对应。 Relay Node在传输 E-RAB之前, 可以选择以下的三种复用标识多个终 端的 E-RAB进行复用操作: ( 1 )将为 E-RAB的无线承载分配的 GTP-U地址 作为进行复用标识; ( 2 ) 将为每个无线接入承载分配的标识作为进行复用的 标识; ( 3 )将 TEID作为进行复用的标识。 相应地, 在 Relay S-GW以同样的 复用标识进行解复用操作。 以下分别对上述三种方式的复用为例,来详细描述在用户面上的中继数 据的流程。 实例 1: 釆用虚拟的 GTP-U地址作为复用的标识 图 14是根据本发明实施例的中继数据的传输方法中的以虚拟 GTP-U地 址进行复用的示意图, 如图 14所示, Relay Node下每个 UE的用户面业务建 立流程和 Macro UE的流程一样, Relay Node中为每个 UE的每个业务 RB分 配虚拟的 GTP-U的隧道地址, 与 MME分配的 GTP-U隧道地址对应。 这样, 可以保持现有的 S 1流程而不需要改变。在 E-RAB ( Relay )中需要通过 TEID 和 Transport Layer Address (传输层地址) 来标识不同的 UE的各个业务的用 户面 PDU,复用和解复用的功能由 Relay Node和 Relay S-GW的 Relay Bearer 层来完成。 对于上行数据的处理, Relay Node才艮据 MME为每个业务 RB分配的 GTP-U地址作为复用的标识, 生成 E-RAB ( Relay ) 的用户面 PDU, 通过空 口传到 Donor-eNB。 在 S 1的传输还是釆用 E-RAB ( Relay ) 的 GTP-U地址, 即, 釆用 GTP-U隧道由 Donor Node发送到 Relay S-GW。 Relay S-GW收到 E-RAB ( Relay )的用户面 PDU后, 通过头标识(即 GTP-U地址)来解复用, 得到各个业务的用户面 PDU, 并^ 1这些业务的用户面 PDU按照头标识发送 到对应的 GTP-U隧道对端。这样,就完成了 Relay Node下的 UE数据从 Relay Node到 S-GW的传输过程, Relay Node起到了空中中继的作用。 对于下行数据的处理, 与上行数据类似, 分别由 Relay S-GW和 Relay
Node完成复用和解复用的功能。 如上所述, 由于釆用虚拟的 GTP-U地址作为复用的标识, 因此, 会增 力口 (20+4)bytes的头开销, 其中, Transport Layer Address占 20bytes, TEID占 4bytss。 基于空口的 QoS 的保证, 可以把 QoS 要求类似的业务复用到同一个
E-RAB ( Relay )„ Relay Node最多建立 256个 E-RAB ( Relay )„ 这种 UE的 Relay Bearer ( UE ) 到 E-RAB ( Relay ) 的映射关系可由 Relay Node或 Relay S-GW根据各个业务的 QoS要求按照一定规则生成, 并通知对端。 实例 2: 釆用对 UE的每个 RAB的标识作为复用的标识 在实施例 1 中, 由于釆用虚拟的 GTP-U地址进行复用而导致头开销比 较大, 在本实例中, 釆用对 UE的每个 RAB釆用一个标识的方法来复用, 由 于 Relay Node下的 UE数目不会太多, 一般, 头开销不大于 3bytes。 图 15是根据本发明实施例的中继数据的传输方法中的以每个 RAB的标 识进行复用的示意图, 如图 15所示, 复用的头标识由 Relay Node或 Relay S-GW分配, Relay Node下每个 UE的用户面业务建立流程和 Macro UE的流 程类似, 只是不再为每个 UE的每个业务 RB分配 GTP-U的隧道地址, 只需 要一个 E-RAB标识。
UE的 E-RAB标识到 E-RAB ( Relay ) id的映射关系也由 Relay Node 或 Relay S-GW根据各个业务的 QoS要求按照一定规则生成, 并通知对端。 对于上行数据和下行数据的处理过程, 可以参考实例 1中的相关描述, 这里不再赘述。 实例 3: 釆用 TEID作为复用的标识 为了不改变现有的业务流程和节省头开销, 釆用 TEID来进行复用的方 法, 复用的头开销为 4bytes。 图 16是根据本发明实施例的中继数据的传输方法中的釆用 TEID进行 复用的示意图, 如图 16所示, S-GW可以才艮据 TEID进行数据的转发。 对于 上行数据和下行数据的处理过程, 可以参考实例 1中的相关描述, 这里不再 赘述。
(二) 控制面 以下分别以 Relay Node下属的 UE 的控制面 S 1-AP控制信令 载在 Relay Node的用户面或者控制面为例, 来详细描述在控制面上的中继数据的 传输流程。 实例 4: UE的控制面 S 1-AP控制信令在 Relay Node用户面传输 基于图 12所示的控制面协议栈, Relay Node下的全部 UE的 S 1-AP控 制信令通过 E-RAB ( Relay ) 在 Relay Node和 Relay S-GW之间交互, 即, 通过 Relay Node的用户面 载来传输 UE的 S 1-AP控制信令。 对于上行 S 1-AP 控制信令的处理: Relay Node 生成其所辖的 UE 的 S 1-AP控制信令, 并通过 S 1-AP控制信令标识 (即 S l-AP id )复用到 E-RAB ( Relay ) 的用户面 PDU, 然后通过空口传到 Donor-eNB , 在 S 1的传输还是 需要 E-RAB( Relay )的 GTP-U地址,即,釆用 GTP-U隧道的方式由 Donor-eNB 发送到 Relay S-GW。 Relay S-GW接收到 E-RAB ( Relay )的用户面 PDU后, 通过 S l-AP id来解复用, 得到各个 UE的 S l-AP控制信令, 然后发送到对应 的 MME。 对于初始直传消息, 由于还没有分配 S l-AP id, 需要 Relay S-GW解开 直传消息, 才艮据其中的 MMEC ( MME code, 移动管理单元编码) 来发送到 对应的 MME。 对于下行 S 1-AP控制信令的处理, 与上行 S 1-AP控制信令的处理流程 的类似, 分别由 Relay S-GW和 Relay Node完成复用和解复用的功能。 UE 的 S 1-Ap id与 E-RAB ( Relay ) id的映射关系可由 Relay Node或 Relay S-GW 生成, 并通知对端。 基于 QoS的考虑, 可以将全部 UE的 S 1-AP控制信令映 射到同一个 E-RAB ( Relay )之上。 实例 5: UE的控制面 S 1-AP控制信令在 Relay Node控制面传输 基于图 13所示的控制面协议栈, Relay Node下属的全部 UE的 S 1 -AP 控制信令通过控制面 ( Relay AP ) 在 Relay Node和 Relay MME之间交互, 即,通过 Relay Node的 Relay AP来传输 UE的 S 1-AP控制信令。 Relay MME 从功能上来说可以是一个逻辑网元, 可以在 MME上实现, 也可以作为 eNB 和 MME之间的一个独立网元。 对于上行 S 1-AP控制信令的处理: Relay Node的 Relay AP层将其所辖 的全部 UE的 S 1-AP控制信令通过 UE S 1-AP id复用到 Relay AP PDU, 然后 通过空口传到 Donor-eNB, Donor-eNB通过 S 1-AP Relay AP PDU发送到 Relay MME。 Relay MME收到 Relay Node的 Relay AP PDU后,通过 S 1-AP id 来解复用, 得到各个 UE的 S 1-AP控制信令, 然后发送到对应的 MME。 对于初始直传消息, 由于还没有分配 MME S 1-AP id, 需要 Relay MME 解开直传消息, 才艮据其中的 MMEC ( MME code, 移动管理单元编码) 来发 送到对应的 MME。 对于下行 S 1 -AP控制信令的处理, 与本例中的上行 S 1 -AP控制信令的 处理类似, 分别由 Relay MME和 Relay Node的 Relay AP完成复用和解复用 的功能。 装置实施例一 才艮据本发明实施例, 提供了一种中继节点, 优选地, 该中继节点用于实 现上述方法实施例中的 Relay Node的功能。 图 17是该中继节点的框图, 如 图 17所示, 该中继节点包括: 第一接收模块 1、 复用模块 2、 第一传输模块 3和第二传输模块 4 , 第二接收模块 5、 解复用模块 6和第三传输模块 7, 其 中, 第一接收模块 1 ,用于接收来自终端的无线接入^载业务和 S 1-AP控制 信令; 复用模块 2 , 连接至接收模块 1 , 用于对接收模块 1接收的多个终端的 无线接入承载业务和 /或 S 1-AP控制信令进行复用; 优选地, 该复用模块用于 实现上述方法实施例中的三种复用操作; 第一传输模块 3 , 连接至复用模块 2 , 用于通过中继无线接入承载传输 经过复用模块 2进行复用后的无线接入承载业务和 /或 S 1-AP控制信令到服务 网关; 第二传输模块 4 , 连接至复用模块 2 , 用于通过控制面传输经过复用模 块进行复用后的 S 1-AP控制信令; 第二接收模块 5 , 用于接收来自核心网的中继无线接入 7 载业务; 解复用模块 6 , 连接至第二接收模块 5 , 对第二接收模块 5接收到的中 继无线接入^载业务进行解复用, 得到各个终端的无线接入业务数据; 第三传输模块 7 , 连接至解复用模块 6 , 用于将解复用后的终端的无线 接入 载业务通过空口发送到终端, 以完成空口的中继。 上述各模块的详细执行过程可以参考上述方法实施例中的相关描述,这 里不再赞述。 由以上描述可以看出, 通过复用模块对接收的数据进行复用操作后, 分 别由第一传输模块和第二传输模块通过中继无线接入承载传输到服务网关, 实现了空中中继的功能。 装置实施例二 根据本发明实施例, 提供了一种中继服务网关, 优选地, 该服务网关用 于实现上述方法实施例中的 Relay S-GW的功能。图 18是该服务网关的框图, 如图 18所示, 该服务网关包括: 接收模块 1、 解复用模块 2、 复用模块 3和 传输模块 4 , 其中, 接收模块 1 ,用于接收来自中继节点的经过复用的 S 1-AP控制信令和无 线接入承载业务; 解复用模块 2 , 连接至接收模块 1 , 用于对接收模块接收的经过复用的 S 1-AP控制信令和无线接入承载业务进行解复用; 复用模块 3 ,用于对来自核心网的要传输给中继节点的 S 1-AP控制信令 和无线接入承载业务进行复用, 生成中继无线接入承载业务; 传输模块 4 , 连接至复用模块 3 , 用于通过中继无线接入承载传输经过 所述复用模块进行复用后的无线接入承载业务和 /或 S 1-AP 控制信令到所述 中继节点。 装置实施例三 才艮据本发明实施例, 提供了一种移动管理网元, 优选地, 该移动管理网 元的框图, 如图 19所示, 该移动管理网元包括: 接收模块 1、 解复用模块 2、 复用模块 3和传输模块 4 , 其中, 接收模块 1 , 用于接收来自中继节点的经过复用的 S 1-AP控制信令; 解复用模块 2 , 连接至接收模块 1 , 用于对接收模块 1接收的经过复用 的 S 1-AP控制信令进行解复用操作, 得到各个终端的 S 1-AP控制信令; 复用模块 3 , 用于对多个终端 S 1-AP控制信令进行复用操作; 传输模块 4 , 连接至复用模块 3 , 用于通过控制面直传消息传输经过复 用模块进行复用后的 S 1-AP控制信令到中继节点。 上述各模块的详细执行过程可以参考上述方法实施例中的相关描述,这 里不再赘述。 系统实施例 根据本发明实施例, 提供了一种中继数据的传输系统, 包括上述装置实 施例一中的中继节点和装置实施例二中的中继月艮务网关,和 /或装置实施例三 中的移动管理网元。 综上所述, 通过本发明实施例可以完成空中 Relay功能, 向后兼容 R8 eNB, 这样全网的 eNB 可以支持 Relay Node, 完全支持移动或者游牧的 Relay Node, 完成空中中继的功能, 增强了网络的覆盖和吞吐量。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书 一种中继数据的传输方法, 应用于包括中继节点的系统, 其特征在于, 包括:
通过中继无线接入 载 载中继节点和中继月艮务网关之间的中继 无线接入 7 载业务, 来完成终端的无线接入 7 载业务的中继。 根据权利要求 1所述的方法, 其特征在于, 在承载所述中继无线接入承 载业务之前, 进一步包括:
所述中继节点或所述中继月艮务网关对多个终端的无线接入 7 载业 务进行复用, 得到待承载的所述中继无线接入承载业务。 根据权利要求 2所述的方法, 其特征在于, 在所述中继节点对多个终端 的无线接入承载业务进行复用、 以及所述中继无线接入承载承载所述中 继无线接入^载业务之后, 进一步包括:
所述中继服务网关接收承载的所述中继无线接入承载业务,并对接 收的所述中继无线接入承载业务进行解复用, 得到来自所述多个终端的 所述无线接入承载业务。 根据权利要求 2所述的方法, 其特征在于, 在所述中继服务网关对需要 发送给多个终端的无线接入承载业务进行复用、 以及所述中继无线接入 承载对所述中继无线接入承载业务进行承载之后, 进一步包括:
所述中继节点接收承载的所述中继无线接入承载业务,并对接收的 所述中继无线接入承载业务进行解复用, 得到需要发送给多个终端的所 述无线接入^载业务。 根据权利要求 2至 4中任一项所述的方法, 其特征在于, 进一步包括以 下之一: 所述中继节点或所述中继月艮务网关将为所述无线接入 7 载业务的无 线 载分配的隧道协议用户面协议地址作为进行复用和 /或解复用的标 识; 所述中继节点或所述中继服务网关将为每个无线接入承载分配的标 识作为进行复用和 /或解复用的标识;
所述中继节点或所述中继月艮务网关将为所述无线接入 载业务的 无线 载分配的隧道端点标识作为进行复用和 /或解复用的标识。
6. 根据权利要求 1所述的方法, 其特征在于, 所述中继无线接入承载还用 于在用户面或控制面传输终端的 S 1-AP控制信令。
7. 根据权利要求 6所述的方法, 其特征在于, 所述中继无线接入承载在用 户面传输终端的 S 1-AP控制信令包括:
所述中继节点或中继服务网关对多个终端的 S 1-AP 控制信令根据 各自的 S 1-AP标识进行复用, 以获得待 7 载的所述中继无线接入 7 载业 务。
8. 根据权利要求 6所述的方法, 其特征在于, 所述中继无线接入承载在控 制面传输终端的 S 1 -AP控制信令包括:
通过中继无线接入 7 载的控制面直传消息来传输终端的 S 1-AP 控 制信令, 其中, 将多个终端的 S 1-AP控制信令根据 S 1-AP标识进行复用 作为中继无线接入承载的控制面直传消息的一部分进行传输;
在所述中继节点进行复用操作的情况下,核心网移动管理单元进行 解复用操作; 或者, 在核心网移动管理单元进行复用操作的情况下, 所 述中继节点进行解复用操作。
9. 一种中继节点, 其特征在于, 包括: 第一接收模块, 用于接收来自终端的无线接入承载业务; 第二接收模块, 用于接收来自核心网的中继无线接入 7 载业务; 复用模块,用于对所述第一接收模块接收的多个终端的无线接入承 载业务和 /或 S 1-AP控制信令进行复用; 解复用模块, 用于对所述第二接收模块接收的经过复用的 S 1-AP 控制信令和 /或无线接入承载业务进行解复用;
第一传输模块,用于通过中继无线接入承载传输经过复用模块进行 复用后的无线接入 7 载业务和 /或 S 1-AP控制信令到月艮务网关;
第二传输模块,用于通过控制面传输所述经过复用模块进行复用后 的 S 1-AP控制信令; 第三传输模块,用于将解复用后的终端的无线接入承载业务通过空 口发送到终端。
10. —种中继月艮务网关, 其特征在于, 包括:
接收模块,用于接收来自中继节点的经过复用的 S 1-AP控制信令和 /或无线接入 7 载业务; 解复用模块, 用于对所述接收模块接收的经过复用的所述 S 1-AP 控制信令和 /或所述无线接入承载业务进行解复用;
复用模块, 用于对来自核心网的 S 1-AP控制信令和 /或无线接入承 载业务进行复用操作;
传输模块,用于通过中继无线接入承载传输经过所述复用模块进行 复用后的无线接入承载业务和 /或 S 1-AP控制信令到所述中继节点。
11. 一种移动管理网元, 其特征在于, 包括:
接收模块, 用于接收来自中继节点的经过复用的 S 1-AP控制信令; 解复用模块 ,用于对所述接收模块接收的经过复用的 S 1-AP控制信 令进行解复用操作;
复用模块, 用于对多个 S 1-AP控制信令进行复用操作; 传输模块,用于通过控制面直传消息传输经过所述复用模块进行复 用后的 S 1-AP控制信令到所述中继节点。
12. 一种中继数据的传输系统, 其特征在于, 包括: 中继节点和月艮务网关, 和 /或移动管理网元, 其中,
所述中继节点包括:
第一接收模块,用于接收来自终端的无线接入^载业和 SI-AP控制 信令;
第二接收模块, 用于接收来自核心网的中继无线接入 7 载业务; 复用模块,用于对所述第一接收模块接收的多个终端的无线接入承 载业务和 /或 S 1-AP控制信令进行复用; 解复用模块, 用于对所述第二接收模块接收的经过复用的 S 1-AP 控制信令和 /或无线接入承载业务进行解复用; 第一传输模块,用于通过中继无线接入承载传输经过复用模块进行 复用后的无线接入 7 载业务和 /或 S 1-AP控制信令到月艮务网关;
第二传输模块,用于通过控制面传输所述经过复用模块进行复用后 的 S 1-AP控制信令;
第三传输模块,用于将解复用后的终端的无线接入承载业务通过空 口发送到终端;
所述中继服务网关包括:
接收模块,用于接收来自中继节点的经过复用的 S 1-AP控制信令和 /或无线接入 7 载业务; 解复用模块, 用于对所述接收模块接收的经过复用的所述 S 1-AP 控制信令和 /或所述无线接入承载业务进行解复用;
复用模块, 用于对来自核心网的 S 1-AP控制信令和 /或无线接入承 载业务进行复用操作;
传输模块,用于通过中继无线接入承载传输经过所述复用模块进行 复用后的无线接入承载业务和 /或 S 1-AP控制信令到所述中继节点; 所述移动管理网元包括: 接收模块, 用于接收来自中继节点的经过复用的 S 1-AP控制信令; 解复用模块 ,用于对所述接收模块接收的经过复用的 S 1-AP控制信 令进行解复用操作;
复用模块, 用于对多个 S 1-AP控制信令进行复用操作;
传输模块,用于通过控制面直传消息传输经过所述复用模块进行复 用后的 S 1-AP控制信令到所述中继节点。
PCT/CN2010/071941 2009-04-28 2010-04-20 中继数据的传输方法、装置及系统 WO2010124572A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10769261.8A EP2427002B1 (en) 2009-04-28 2010-04-20 Method, device and system for transmitting relay data
US13/259,664 US9077430B2 (en) 2009-04-28 2010-04-20 Method, device and system for transmitting relay data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910137248.1 2009-04-28
CN200910137248.1A CN101877860B (zh) 2009-04-28 2009-04-28 中继节点、服务网关、中继数据的传输方法及系统

Publications (1)

Publication Number Publication Date
WO2010124572A1 true WO2010124572A1 (zh) 2010-11-04

Family

ID=43020302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071941 WO2010124572A1 (zh) 2009-04-28 2010-04-20 中继数据的传输方法、装置及系统

Country Status (4)

Country Link
US (1) US9077430B2 (zh)
EP (1) EP2427002B1 (zh)
CN (1) CN101877860B (zh)
WO (1) WO2010124572A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100260126A1 (en) * 2009-04-13 2010-10-14 Qualcomm Incorporated Split-cell relay packet routing
CN107371154B (zh) 2011-09-29 2021-06-01 北京三星通信技术研究有限公司 一种实现mdt测量匿名汇报的方法
CN102740283B (zh) * 2012-06-20 2015-02-04 北京傲天动联技术股份有限公司 Lte系统中的网关设备及其数据分流方法
JP5965061B2 (ja) 2012-06-30 2016-08-03 ▲ホア▼▲ウェイ▼技術有限公司Huawei Technologies Co.,Ltd. データ伝送方法、ネットワーク要素デバイスおよび通信システム
CN103582075B (zh) 2012-08-03 2020-04-03 北京三星通信技术研究有限公司 一种rn支持多种无线接入系统的方法
WO2014022857A1 (en) * 2012-08-03 2014-02-06 Huawei Technologies Co., Ltd. System and method to support multiple radio access technology relays with a unified backhaul transport network
CN103945559B (zh) * 2013-01-18 2019-02-15 中兴通讯股份有限公司 网络接入系统及方法
CN104969653B (zh) * 2013-04-07 2019-07-26 华为技术有限公司 无线回程链路的建立方法和设备
BR112015027639B1 (pt) * 2013-05-10 2024-02-06 Telefonaktiebolaget Lm Ericsson (Publ) Método realizado em um primeiro nó de rede, primeiro nó de rede,método realizado em um segundo nó de rede, segundo nó de rede e meios de armazenamento não transitórios legíveis por computador relacionados
US9877155B1 (en) * 2013-11-11 2018-01-23 Numerex Corp. System and method for employing base stations to track mobile devices
WO2015089457A1 (en) * 2013-12-13 2015-06-18 M87, Inc. Methods and systems of secure connections for joining hybrid cellular and non-cellular networks
US9538563B2 (en) * 2014-10-13 2017-01-03 At&T Intellectual Property I, L.P. System and methods for managing a user data path
KR102301818B1 (ko) * 2015-03-12 2021-09-15 삼성전자 주식회사 무선 통신 시스템에서 상향링크 커버리지 제어 방법 및 장치
US10148340B1 (en) * 2016-03-30 2018-12-04 Sprint Communications Company L.P. Multi-core communication system to serve wireless relays and user equipment
CN108886692A (zh) * 2016-03-31 2018-11-23 富士通株式会社 无线通信系统、无线设备、中继节点以及基站
CN108141895B (zh) * 2016-03-31 2021-02-12 华为技术有限公司 用户设备ue接入网络的方法、网络设备及第一ue
CN108617011B (zh) * 2016-12-20 2020-10-13 普天信息技术有限公司 一种基于长期演进系统中继节点的数据传输方法和系统
US20190394816A1 (en) * 2017-02-22 2019-12-26 Lg Electronics Inc. Method for transmitting and receiving data through relay in wireless communication system and apparatus therefor
US10631346B2 (en) * 2017-08-08 2020-04-21 Qualcomm Incorporated Communicating remote and local data in a wireless fronthaul
CN109982449B (zh) * 2017-12-27 2021-05-25 电信科学技术研究院 一种通过无线回程网络传输数据的方法和设备
CN108347752A (zh) * 2018-02-07 2018-07-31 北京佰才邦技术有限公司 数据传输方法及网络设备
CN110366206A (zh) * 2018-03-26 2019-10-22 华为技术有限公司 一种信息传输方法和装置
CN110351747B (zh) * 2018-04-04 2024-03-01 北京三星通信技术研究有限公司 用于配置中继节点的方法和设备
US11239898B1 (en) * 2019-11-19 2022-02-01 T-Mobile Innovations Llc Relaying data to multiple access points
CN114390633B (zh) * 2020-10-16 2024-05-14 中国移动通信有限公司研究院 一种信号中继传输方法、装置、设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1964225A (zh) * 2005-11-11 2007-05-16 上海贝尔阿尔卡特股份有限公司 一种无线接入控制方法、中继站和基站
CN101365239A (zh) * 2007-08-09 2009-02-11 华为技术有限公司 数据转发的方法、演进基站和长期演进网络
WO2009049683A1 (en) * 2007-10-19 2009-04-23 Nokia Corporation A relay, and a related method
CN101651950A (zh) * 2009-09-09 2010-02-17 新邮通信设备有限公司 一种长期演进网络中的业务实现方法、设备及系统
CN101656983A (zh) * 2009-08-27 2010-02-24 新邮通信设备有限公司 长期演进增强技术中Un接口承载复用的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7006508B2 (en) * 2000-04-07 2006-02-28 Motorola, Inc. Communication network with a collection gateway and method for providing surveillance services
US7380022B2 (en) * 2001-12-28 2008-05-27 Motorola, Inc. Method and apparatus for transmitting wired data voice over IP data and wireless data through a common IP core network
US7336631B2 (en) * 2002-03-29 2008-02-26 Mitsubishi Denki Kabushiki Kaisha Radio network system and radio communication control method
US20050213580A1 (en) 2004-03-24 2005-09-29 Georg Mayer System and method for enforcing policies directed to session-mode messaging
US20070070959A1 (en) * 2005-09-23 2007-03-29 Almeroth Kevin C Infrastructure mesh networks
JP5181472B2 (ja) 2006-04-21 2013-04-10 日本電気株式会社 通信制御方法
JP5016065B2 (ja) * 2007-03-01 2012-09-05 トムソン ライセンシング マルチホップ無線ネットワークにおいてアクセス・ポイント又は中継ノードを選択する方法及び装置
FI20075631A0 (fi) * 2007-09-10 2007-09-10 Nokia Siemens Networks Oy Menetelmä, radiojärjestelmä ja tukiasema
JP5088091B2 (ja) * 2007-10-29 2012-12-05 富士通株式会社 基地局装置、通信方法及び移動通信システム
FI20070995A0 (fi) * 2007-12-19 2007-12-19 Nokia Siemens Networks Oy Verkkosolmujen skaalautuva käyttöönotto
PT2272272T (pt) * 2008-04-30 2016-07-15 ERICSSON TELEFON AB L M (publ) Utilização da própria ligação de rádio como uma ligação de transporte para algumas das estações base em lte
CN101383775B (zh) * 2008-10-10 2011-05-18 北京邮电大学 在ofdm协同/中继系统中多业务混合传输的实现方法
US8964781B2 (en) * 2008-11-05 2015-02-24 Qualcomm Incorporated Relays in a multihop heterogeneous UMTS wireless communication system
TWI385976B (zh) * 2009-01-19 2013-02-11 Univ Nat Taiwan Science Tech 允入控制器及其方法與其多躍式無線骨幹網路系統

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1964225A (zh) * 2005-11-11 2007-05-16 上海贝尔阿尔卡特股份有限公司 一种无线接入控制方法、中继站和基站
CN101365239A (zh) * 2007-08-09 2009-02-11 华为技术有限公司 数据转发的方法、演进基站和长期演进网络
WO2009049683A1 (en) * 2007-10-19 2009-04-23 Nokia Corporation A relay, and a related method
CN101656983A (zh) * 2009-08-27 2010-02-24 新邮通信设备有限公司 长期演进增强技术中Un接口承载复用的方法
CN101651950A (zh) * 2009-09-09 2010-02-17 新邮通信设备有限公司 一种长期演进网络中的业务实现方法、设备及系统

Also Published As

Publication number Publication date
CN101877860A (zh) 2010-11-03
US20120039240A1 (en) 2012-02-16
US9077430B2 (en) 2015-07-07
EP2427002B1 (en) 2015-02-18
EP2427002A1 (en) 2012-03-07
EP2427002A4 (en) 2013-11-20
CN101877860B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2010124572A1 (zh) 中继数据的传输方法、装置及系统
JP6721090B2 (ja) ユーザー装置(ue)および方法
US9504079B2 (en) System and method for communications in communications systems with relay nodes
US8730918B2 (en) Handover method based on mobile relay and mobile wireless relay system
CN101877915B (zh) 一种长期演进系统中继站的数据传输方法和系统
JP7039712B2 (ja) ノードおよび通信方法
JP7483898B2 (ja) 通信方法及び装置
CN109729566A (zh) 一种信息传输方法和设备
WO2011020404A1 (zh) 支持多跳的中继通信系统及该系统的接入方法
WO2011023101A1 (zh) 一种无线连接的gtp-u实体间传输数据的方法和装置
TW201129217A (en) Base station and attaching method thereof
WO2012019467A1 (zh) 获取邻接基站/中继节点接口信息的方法及无线中继系统
WO2011020413A1 (zh) 一种应用于无线中继的传输系统及传输方法
WO2014032311A1 (zh) 回程链路的信息传输方法及系统、代理设备、接入设备
WO2013189443A2 (zh) 一种家庭基站中获取标识和地址匹配关系的方法、系统及网关
WO2023010364A1 (zh) 集成的接入和回传的通信装置以及方法
WO2014205838A1 (zh) 数据转发方法、中继节点设备及网络系统
US20240031880A1 (en) Integrated access and backhaul donor migration methods and systems
US20240324039A1 (en) Managing connections to multiple centralized units
WO2024207363A1 (zh) 信号的收发方法、装置和通信系统
CN102647806B (zh) Ip报文处理方法、系统和设备
WO2023113680A1 (en) Radio access nodes and methods for setting up a connection in a wireless communications network
WO2012041123A1 (zh) 一种承载复用的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13259664

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010769261

Country of ref document: EP