WO2011020404A1 - 支持多跳的中继通信系统及该系统的接入方法 - Google Patents

支持多跳的中继通信系统及该系统的接入方法 Download PDF

Info

Publication number
WO2011020404A1
WO2011020404A1 PCT/CN2010/075606 CN2010075606W WO2011020404A1 WO 2011020404 A1 WO2011020404 A1 WO 2011020404A1 CN 2010075606 W CN2010075606 W CN 2010075606W WO 2011020404 A1 WO2011020404 A1 WO 2011020404A1
Authority
WO
WIPO (PCT)
Prior art keywords
host node
core network
relay
gateway
relay node
Prior art date
Application number
PCT/CN2010/075606
Other languages
English (en)
French (fr)
Inventor
黄亚达
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/389,523 priority Critical patent/US9380637B2/en
Priority to EP10809537.3A priority patent/EP2453590A4/en
Publication of WO2011020404A1 publication Critical patent/WO2011020404A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support

Definitions

  • the present invention relates to a service transmission technology in a relay link of a Long Term Evolution (LTE) system, and in particular, to a relay communication system supporting multiple hops, and an access method of a relay communication system supporting multiple hops.
  • LTE Long Term Evolution
  • FIG. 1 is a schematic structural diagram of a cellular wireless communication system.
  • a cellular wireless communication system is mainly composed of a user equipment (UE, User Equipment), a wireless access network, and a core network (CN, Core Network).
  • a network composed of a base station, or a base station, and a base station controller is called a Radio Access Network (RAN), and is responsible for management of access layer transactions such as radio resources.
  • RAN Radio Access Network
  • the core network is responsible for non-access layer transactions such as location updates, etc.
  • the core network is the anchor point of the user plane.
  • a UE is a variety of devices that can communicate with a cellular wireless communication network, such as a mobile phone or a laptop.
  • the wireless coverage of a fixed base station network is limited for a variety of reasons, such as blocking of wireless signals by various building structures, which may cause coverage holes in the coverage of the wireless network.
  • the communication quality of the UE is poor at the cell edge, and the error rate of the wireless transmission is increased.
  • a wireless network node called a trunk
  • Relay is a site that has the function of relaying data and possibly controlling information over other links between other network nodes, also called Relay Node/Relay Station.
  • 2 is a schematic structural diagram of a cellular radio communication system including a relay.
  • a UE directly served by a base station is called a macro UE, and a UE served by a relay is called a relay UE.
  • the interface between each network element is defined as follows: Direct link: The wireless link between the base station and the UE, including the uplink and downlink (DL/UL downlink/uplink) direct transmission link.
  • Access link The link between the Relay and the UE, including the DL/UL access link.
  • Backhaul link The radio link between the base station and the relay, including the DL/UL trunk link.
  • Relay can relay data through multiple methods, such as directly amplifying the received base station to send wireless signals, or receiving data sent by the base station for corresponding processing, which may be demodulated or decoded, and then forwarded to the terminal, or base station and The relay cooperates to send data to the terminal, and the Relay also relays the data sent from the terminal to the base station.
  • the UE cannot distinguish between the cell under the relay and the fixed base station, that is, the relay itself is a cell from the perspective of the UE, and there is no difference between the cell and the cell under the base station.
  • a cell may be referred to as a relay cell.
  • the relay cell has its own physical cell identity (PCI, Physical Cell Identity), and broadcasts the same as the normal d and the area.
  • PCI Physical Cell Identity
  • the relay cell can separately allocate the scheduling radio resource to the UE.
  • the radio resource scheduling of the base station participating in the relay can be independent.
  • the base station that Relay connects through the backhaul link is called the donor base station (DNB/DeNB, Donor NodeB/eNodeB).
  • the interface and protocol stack between the relay cell and the Relay UE are the same as those between the normal base station cell and the UE.
  • FIG. 3 is a schematic structural diagram of a cellular wireless communication system based on LTE.
  • the LTE system uses an Internet Protocol (IP)-based flat architecture, and is evolved by a universal terrestrial radio access network (E- UTRAN, Evolved Universal Terrestrial Radio Access Network (IPC), Evolved Packet Core (EPC) node includes and other supporting nodes, wherein the EPC node includes: Mobility Management Entity (MME), Serving Gateway (S) -GW, Serving Gateway), Packet Data Network Gateway (P-GW, PDN Gateway)
  • MME Mobility Management Entity
  • S Serving Gateway
  • P-GW Packet Data Network Gateway
  • PDN Gateway Packet Data Network Gateway
  • the S-GW is responsible for the transmission, forwarding, and routing of the UE user plane data.
  • the eNBs are logically connected to each other through the X2 interface, and are used to support the mobility of the UE in the entire network to ensure seamless handover of users.
  • the GW is a node that connects the EPC and the packet data network, such as the Internet. It is responsible for the allocation of the IP address of the UE, and the IP data packet is filtered into a Service Data Flow by the service type and bound to the corresponding transport bearer.
  • Each eNB is connected to the core network of the System Architecture Evolution (SAE) through the S1 interface, that is, it is connected to the MME through the control plane S1-MME interface, and is connected to the S-GW through the user plane S1-U interface, and the S1 interface supports Multipoint connection between eNB and MME and S-GW.
  • the MME and the S-GW are connected by the S11 interface.
  • the S-GW and the P-GW are connected to each other by the S5 interface.
  • the S5 interface does not exist.
  • the eNBs are connected through the X2 port.
  • Each eNB transmits signaling and data to the UE through a Uu interface (originally defined as a radio interface between the UTRAN and the UE). After the introduction of the relay, the wireless interface between the relay and the eNB is the Un interface.
  • the interface between the Relay and the UE and the eNB and the UE are the same, so it is also the Uu interface.
  • the main object of the present invention is to provide a relay communication system supporting multiple hops, and an access method for a relay communication system supporting multiple hops, which can implement data transmission in a communication system of multi-hop relay.
  • the transmission method is flexible.
  • a multi-hop relay communication system includes a host node, at least one host node, and a core network, the host node providing a wireless access connection to at least one host node, and providing the at least one host node and core as a gateway Communication between networks.
  • the host node comprises a relay or a base station; and the host node is a relay.
  • the host node when the host node acts as a proxy, the host node is regarded as a core network for the host node, and the host node is regarded as a host node for the core network; the host node receives the message of the proxy and forwards it to the target network element of the proxy.
  • the host node acts as a gateway, and converts the received protocol/protocol stack message into a message of the protocol/protocol stack to be sent, and sends the message.
  • the protocol/protocol stack in the message and the bearer part of the protocol/protocol to be sent are not converted by the protocol.
  • the donor node provides a wireless access connection for a user terminal connected to the host node.
  • the wireless access connection is a wireless access connection based on a wireless cellular technology, including a global mobile communication system GSM, a universal mobile communication system UMTS, and a long term evolution LTE.
  • GSM global mobile communication system
  • UMTS universal mobile communication system
  • LTE long term evolution
  • An access method for a multi-hop relay communication system comprising:
  • the host node resides on the host node and establishes an air interface connection with the host node;
  • the host node establishes a connection with the core network through the host node;
  • the host node acts as a gateway to forward data between the host node and the core network; the host node serves as a core network gateway serving the host node; and as the core network gateway, the MME establishes a connection with the host node and allocates an address;
  • the host node applies for establishing a channel and applying for an address to the core network element serving the host node.
  • the host node comprises a relay or a base station; and the host node is a relay.
  • the air interface connection establishment process is an RRC connection establishment process; and the core network connection establishment process is an attach process.
  • the core network gateway comprises an SGW or / and a PGW.
  • the host node establishes a channel to the core network element serving the host node and applies for an address, which is triggered when the host node acts as a core network gateway, controlled by the MME, and the host node establishes a connection and allocates an address. of.
  • An access method for a multi-hop relay communication system comprising:
  • the host node resides on the host node and establishes an air interface connection with the host node;
  • the host node establishes a connection with the core network through the host node;
  • the host node acts as a proxy.
  • the host node is treated as the core network.
  • the host node is treated as the host node; the host node acts as the core network gateway and serves the host node.
  • the host node is regarded as a core network, specifically:
  • the host node acts as a proxy for the core network MME and a proxy for the core network gateway; as the MME proxy, the host node is considered as the MME for the host node, and the host node is regarded as the host node for the MME. As a proxy for the core network gateway, for the MME, the host node is considered a core network gateway.
  • the host node when the host node acts as a core network gateway, it establishes a connection with the host node by controlling the MME, and allocates an address.
  • the core network gateway comprises an SGW or / and a PGW.
  • the host can be relayed (multi-hop) or the host base station (single or multi-hop).
  • the transit gateway is set as the user data, so that the interaction data between the user data and the EPC is forwarded through the set gateway (the host relay or the host base station), so as to support the UE access and implement the corresponding service. Or, set user data directly on the relay, host relay, and the host base station.
  • the data forwarding mode sent to the EPC realizes direct interaction (logically) between the user data and the EPC by setting the underlying forwarding configuration on the above network element.
  • the wireless subnet configuration between the relay, the relay and the host base station is flexible, the data transmission rate is fast, the supported bandwidth is wide, and the data transmission can be realized in the communication system of the multi-hop relay, and the transmission mode is compared. flexible.
  • FIG. 1 is a schematic structural diagram of a cellular wireless communication system
  • FIG. 2 is a schematic structural diagram of a cellular wireless communication system including a Relay
  • FIG. 3 is a schematic structural diagram of a cellular wireless communication system based on LTE
  • FIG. 4 is a schematic structural diagram of one of wireless relay multi-hop communication systems according to the present invention.
  • FIG. 5 is a schematic diagram of a protocol stack of a single relay system according to the present invention.
  • FIG. 6 is a schematic structural diagram of a second wireless relay multi-hop communication system according to the present invention.
  • FIG. 7 is a schematic diagram of a protocol stack of a relay system supporting multi-hop according to the present invention.
  • FIG. 8 is a schematic structural diagram of a third embodiment of a wireless relay multi-hop communication system according to the present invention.
  • FIG. 9 is a flow chart of the Relay access Donor Relay and the UE accessing the Relay connected by the Donor Relay in the multi-hop relay system of the present invention.
  • Figure 10 is a schematic diagram of a protocol stack of another single relay system
  • FIG. 11 is a schematic structural diagram of a communication system of the protocol stack shown in FIG. 10;
  • 12 is a schematic diagram of a protocol stack of another multi-hop relay system
  • FIG. 13 is a schematic structural diagram of a fourth wireless relay multi-hop communication system according to the present invention.
  • the basic idea of the present invention is: In the multi-hop communication system of the present invention, between the relays, between the relay and the host base station, through various wireless subnets, the host can be relayed (multi-hop) or The host base station (single-hop or multi-hop) is set as the transit gateway of the user data, thereby using the user data with
  • the interaction data between the EPCs is forwarded through these set gateways (the host relay or the donor base station), so as to support the UE access and implement the corresponding services.
  • the data forwarding mode in which the user data is directly forwarded to the EPC is set on the relay, the host relay, and the host base station, and the direct interaction between the user data and the EPC is implemented by logically setting the underlying forwarding configuration on the network element.
  • the wireless subnet configuration between the relay, the relay and the host base station is flexible, the data transmission rate is fast, the supported bandwidth is wide, and the data transmission can be realized in the communication system of the multi-hop relay, and the transmission mode is compared. flexible.
  • the communication system of the present example includes Relay 1 (Wireless Node RN 1 ) and Relay 2 (RN2), and Relay 1 is through a wireless interface.
  • the Relay of the eNB is connected to the eNB.
  • the eNB is also referred to as the Host eNB (Door eNB).
  • the Relay 2 is connected to the Relay 1 through the wireless interface.
  • the Relay 1 is a host and can be called a Donor Relay.
  • the Donor Relay node acts as a protocol conversion node, and converts the relay under it and the communication protocol of the host network element in which it resides.
  • this type of protocol conversion network element is called a gateway.
  • the DeNB is a gateway that connects the Relay and the MME or SGW/PGW of the core network.
  • FIG. 5 is a schematic diagram of a protocol stack of a single relay system according to the present invention, as shown in FIG. 5,
  • the UE is a separate base station, so the Relay encapsulates the UE's Service Protocol (APP) data into the Protocol Protocoll of the transport network (the transport network between the DeNB and the EPC), as is done by the normal eNB.
  • Protocoll is an IP-based protocol.
  • Protocoll's protocol stack structure is IP/SCTP/S1-AP from bottom to top.
  • Protocoll's protocol stack is IP/UDP/GTP from bottom to top.
  • U. Protocoll passes through the Un interface
  • the line carries the transmission, so the radio bearer protocol basically performs the work of the physical layer and the link layer.
  • the DeNB When the data packet arrives at the gateway, that is, the DeNB, the DeNB performs a conversion of the protocol below the link layer, that is, the radio bearer of the Un interface and the L1/L2 of the ground side are converted.
  • the protocol When the protocol is converted, the upper protocol stack does not change, and the gateway converts the source protocol stack into the target protocol stack according to the internal conversion relationship.
  • FIG. 6 is a schematic structural diagram of a wireless relay single-hop communication system according to the present invention.
  • the Relay is directly connected to the DeNB through a wireless subnet, and the wireless subnet includes a wireless cellular technology-based network such as global mobile communication.
  • GSM Global System for Mobile Communication
  • UMTS Universal Mobile Telecommunications System
  • the DeNB is connected to the EPC (MME, or SGW/PGW) through a wired transport network, such as an IP-based Internet.
  • the APP data of the UE arriving at the Relay is packaged into the Protocoll, for example, the tunneling protocol.
  • the packets of the Un interface are Unferred, IP, UDP, GTP-U, and APP from the bottom to the top according to the protocol stack.
  • the link layer will be converted to the L1/L2 protocol, and the other parts remain unchanged.
  • the gateway can use the saved routing information. For example, when the destination address of the IP is Relay, the DeNB converts the data packet of the transmission network into the Un packet.
  • FIG. 7 is a schematic diagram of a protocol stack of a relay system supporting multi-hop according to the present invention.
  • the protocol stack is a schematic diagram of two hops, and Relay2 is connected to Relayl, and Relayl is connected to the DeNB as a Donor Relay node.
  • Relayl provides protocol conversion below the link layer, and converts the Un radio bearer between Relay2 and Relayl to the Un radio bearer between Release and DeNB.
  • Relayl can decide whether to perform protocol conversion on the packet according to its saved routing relationship.
  • 8 is a schematic structural diagram of a third embodiment of a wireless relay multi-hop communication system according to the present invention. As shown in FIG.
  • the network elements shown in the figure are connected to the IP network. Connected, Relay2, Relayl, and DeNB are configured to forward the APP data of the UE directly to The forwarding mechanism of the EPC, when each network element forwards the APP data packet, the forwarding path is different, and the forwarding implementation manner between the network elements may also be different. For example, if Relayl receives a packet with a destination address of 10.10.10.7, it will forward it, and if it receives a packet of 10.10.10.5, it will handle it by itself. In this architecture, all network elements are in the same IP transport network. According to the IP routing relationship, any two network elements can communicate using any IP-based protocol. Protocoll is the transport protocol used by EPC, such as IP/SCTP/S1-AP, IP/UDP/GTP-C or IP/UDP/GTP-U of the user plane.
  • Protocoll is the transport protocol used by EPC, such as IP/SCTP/S1-AP, IP/UDP/GTP-C or IP/UD
  • FIG. 9 is a flowchart of the relay accessing the Donor Relay and the UE accessing the Relay connected through the Donor Relay in the multi-hop Relay system of the present invention.
  • this example does not show all the signalings - Part of the process is the same as the access process of the existing LTE system. This example will not describe each process in detail, and only the steps different from the existing process will be specifically described.
  • the Relay MME and the UE MME shown in FIG. 9 may be the same network element, and are separately illustrated here for convenience of description. Before Relay2 is connected to Donor Relay or Relayl, Relayl has access to the DeNB. See the multi-hop Relay communication system shown in Figure 6.
  • Relay2 resides as the UE under Relayl. After reading the system broadcast, the process shown in step 1 is shown.
  • the RRC connection process establishes an RRC connection. After the RRC connection is established, a signaling channel is established between Relayl and Relay2, and RRC signaling can be transmitted.
  • Relay2 then initiates an attach (Attch) process (shown in step 2 of the figure). Attch is a non-access stratum (NAS, Non Access Stratum) layer protocol.
  • NAS Non Access Stratum
  • the Un interface carries RRC signaling to Relayl, and Relayl transmits the initial direct transmission message to Relay through the user plane transmission channel, radio bearer (A1). MME.
  • Relay2 is accessed as the UE, the NAS message can be regarded as APP, the radio bearer is an air interface signaling protocol, that is, RRC, and Protocoll is IP/SCTP/S1-AP.
  • RRC air interface signaling protocol
  • Protocoll IP/SCTP/S1-AP.
  • Relayl transfers the bearer of the NAS from the RRC signaling layer IP/SCTP/S1-AP and forwards it to its corresponding MME.
  • it is necessary to assign an IP address to Relay2 it is necessary to assign an IP address to Relay2, and update the routing relationship between Relayl and DeNB.
  • using existing protocol processes to complete the process, rather than defining a new protocol flow.
  • Relay2 notifies the MME in the signaling that the selected SGW/PGW is the eNB to which it is connected. In this scenario, it is the Donor Relay of Relay2, which is Relayl.
  • the MME can confirm the Relayl MME by using the other end of the S1-AP connection as the SGW/PGW, and send a GTP-C message, and request step 3 to create a default bearer (create default bearer), which includes allocating an IP address. It has only one IP address, and it also needs to be routed by the DeNB.
  • Relayl requires Multi-PDN to be activated, that is, multiple PDN connections can be activated.
  • Step 4 Packet Data Network
  • the connection request request to establish another PDN connection, allocate another IP, and request its corresponding eNB as the SGW/PGW.
  • the MME establishes a default bearer by step 5, and assigns the corresponding IP by using the DeNB as the SGW/PGW. Or the IP address is assigned by the local dynamic host configuration protocol (DHCP), and the routing relationship is saved.
  • DHCP local dynamic host configuration protocol
  • the corresponding eNB that is, the DeNB, which carries the response message of the Attach, and requests to establish a new EPS bearer, and the DeNB receives the configuration according to the required steps.
  • the configuration information in 7 is re-configured with the Un interface, the new EPS bearer's radio bearer (A2) is established, and the NAS's Attach response message is sent to Relayl through the message in step 7.
  • the routing table of the DeNB has the IP of Relayl and The newly assigned IP, and the Relayl IP can be assigned.
  • Relayl acts as the SGW/PGW to send the reply response message in step 3 to the MME corresponding to Relay2 (step 8), bringing the newly assigned IP address back, and After the MME of the relay2 receives the MME, it sends a UE context establishment to the eNB corresponding to Relay2, which is Relayl (Step 10). After receiving the UE context of S1, the Relayl reconfigures the Un connection in the air interface to establish a radio bearer (B1). The relay response message of Relay2 is carried, and the air interface user plane transmission channel of Relayl and Relay2 is established. At this point, Relay2 has a newly allocated IP, and both Relayl and DeNB have IP routing relationships, as shown in FIG.
  • Relay2 A separate IP with a transport network can connect to any network element in the network through the IP protocol.
  • the UE SGW/PGW can be established through the UE access process in steps 14 to 21, and the UE can enter the service network used by the APP, such as the Internet, through the UE SGW/PGW.
  • FIG. 10 is a protocol stack of another single relay system.
  • the difference from the protocol stack shown in FIG. 5 is that the degree of DeNB protocol conversion is extended to the transport layer, and the protocol below the transport layer is converted, that is, the protocol of the Un interface.
  • the wireless bearer is converted with Protocoll and L1/L2 on the ground side.
  • the transport layer here refers to a transport protocol used to transmit service data on the network side.
  • the gateway converts the source protocol stack into the target protocol stack according to the internal conversion relationship.
  • Protocol 2 indicates the protocol supported by the subnet between the Relay and the DeNB.
  • FIG. 11 is a schematic structural diagram of a communication system of the protocol stack shown in FIG. 10, the APP data of the UE arriving at the Relay is packaged into Protocol2, for example, a tunnel protocol, and the data packets of the Un interface are unstructured from bottom to top according to the protocol stack.
  • Protocol2 for example, a tunnel protocol
  • the APP will be converted into the L1/L2 protocol and Protocoll, and the APP part remains unchanged.
  • Protocoll is also a tunneling protocol.
  • the gateway can use the saved mapping information, for example, according to the mapping relationship of the IP+GTP-U TEID pair of the protocol stack, and convert the data on both sides of the network management.
  • Protocoll and Protocol2 do not have to be the same.
  • FIG. 12 is a schematic diagram of a protocol stack of another multi-hop Relay system, as shown in FIG. 12, Relayl As a Donor Relay node, the protocol conversion below the transport layer is provided, and the Un radio bearer and ProtocoB between Relay2 and Relay 1 are converted into the Un radio bearer and Protocol2 between Relay 1 and DeNB. Relayl can decide whether to perform protocol conversion on the data packet according to whether there is a match in the conversion relationship table saved by itself. As mentioned above, Donor Relay supports the conversion of homogeneous protocols and the conversion of heterogeneous protocols. 13 is a schematic structural diagram of a fourth wireless relay multi-hop communication system according to the present invention. As shown in FIG.
  • connection interfaces between the network elements shown in the figure form their own subnets, such as Relayl and Relay2.
  • the protocol used by the subnet can be used in the IP routing protocol because there are only two network elements in the subnet, and it can also be a peer-to-peer based protocol, such as using simple tunnel identification or flow identification to represent different data flows between points. Just fine.
  • the nodes between the two subnets do the translation of homogeneous or heterogeneous protocols.
  • FIG. 14 is a flowchart of a relay accessing a Donor Relay and a UE accessing a Relay connected through a Donor Relay in a multi-hop relay communication system according to the present invention.
  • this example does not show all signalings.
  • the Relay MME and the UE MME shown in the figure may be the same network element, and are only used to clearly separate them.
  • Relayl Before Relay2 is connected to Donor Relay or Relayl, Relayl has access to the DeNB, and the structure is shown in Figure 11.
  • Relay2 resides as the UE in Relayl. After reading the system broadcast, it initiates the RRC connection process of step 1 to establish an RRC connection.
  • Attch is a NAS layer protocol.
  • the Un interface carries RRC signaling to Relayl.
  • the Relayl transmits the S1 initial direct transmission message to the DeNB through the user plane transmission channel and the radio bearer (A1).
  • Relay2 is the UE, the NAS message can be regarded as APP, the radio bearer is an air interface signaling protocol, that is, RRC, and Protocol2 is IP/SCTP/S1-AP or S1-AP.
  • a mapping relationship of the corresponding protocol needs to be established between the network administrators in each subnet. In this example, a new correspondence needs to be added to the Relayl and the DeNB.
  • Such a cross-subnet protocol mapping relationship generally requires maintaining a correspondence table for a pair of protocol conversions, and different types of protocols need to be separated, for example, IP/UDP/GTP-U correspondence and IP/SCTP/S1-
  • the correspondence between APs should be maintained separately.
  • a Protocoll/2/3 metropolitan isomorphic network is taken as an example.
  • three sets of protocol pairs need to be converted, namely, IP/UDP/GTP-U of the user plane, and IP/SCTP of the control plane. /S1-AP, and the IP/UDP/GTP-C protocol of the control plane.
  • the eNB S1-AP ID 12
  • the attach request of the NAS layer carried in the signaling of the S-AP received by the MME is required to establish a local bearer. Therefore, the MME selects the corresponding eNB, that is, the DeNB, and establishes a bearer as the SGW/PGW, and sends the default bearer of the step 3 (target).
  • 10.10.10.1
  • source ⁇ 10 ⁇ 10 ⁇ 10 ⁇ 111, public GTP-C message)
  • carries the uplink TEID-C 111, and possible source UE related information, for example, the DeNB brought by the initial direct transmission of the UE
  • the S1-AP ID of the core network is 12, indicating that the UE is in the subnet mode, and the target network element is required to work in the proxy mode or carry the corresponding port mapping relationship.
  • Relay2 acts as the eNB
  • the SI Setup process begins and the eNB is established.
  • Relay2 considers Relayl to be the proxy of MME and SGW/PGW and neighboring eNBs, and sends the SI Setup message of step 8 to Relayl.
  • Relayl performs protocol conversion and then sends it to DeNB in subnet 1, and then DeNB. The conversion is sent to the real UE MME.
  • the transmission channels of C11, B11, All, and D11 are established through the UE access process in steps 11 to 17.
  • the protocol conversion relationship between the two gateways can be as shown in the following table.
  • the IP is omitted in the table. IP matching during the process may also be required. As shown in Table 1:
  • the transmission channel with the UE SGW/PGW can be established, and through the UE SGW/PGW, the UE can enter the service network used by the APP, such as the Internet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

支持多跳的中继通信系统及该系统的接入方法 技术领域
本发明涉及长期演进( LTE , Long Term Evolution ) 系统中继链路中的 业务传输技术, 尤其涉及一种支持多跳的中继通信系统, 以及支持多跳的 中继通信系统的接入方法。 背景技术
图 1为蜂窝无线通讯系统的结构示意图, 如图 1所示, 蜂窝无线通讯 系统主要由用户终端 (UE, User Equipment )、 无线接入网和核心网 (CN, Core Network )组成。 基站、 或基站及基站控制器组成的网络称为无线接入 网(RAN, Radio Access Network ), 负责接入层事务如无线资源的管理。 基 站之间可以根据实际情况存在物理或者逻辑上的连接, 每个基站可以和一 个以上的核心网节点连接。 核心网负责非接入层事务如位置更新等, 核心 网是用户面的锚点。 UE是指可以和蜂窝无线通讯网络通讯的各种设备, 比 如移动电话或者笔记本电脑等。
在蜂窝无线通讯系统中, 固定基站网络的无线覆盖由于各种各样的原 因受到限制, 比如各种建筑结构对无线信号的阻挡等会造成在无线网络的 覆盖中存在覆盖漏洞。 另外一方面在小区的边缘地区, 由于无线信号强度 的减弱, 以及相邻小区的干扰, 导致 UE在小区边缘时, 通讯质量较差, 无 线传输的错误率增高。 为了提高数据率的覆盖率、 群组移动性、 临时网络 部署、 小区边缘地区的吞吐量以及新区域的覆盖, 有一种解决方案是在蜂 窝无线通讯系统引入一种无线网络节点, 称为中继 (Relay )。
Relay是具有在其他网络节点之间通过无线链路中继数据以及可能控 制信息功能的站点, 也叫中继节点 /中继站( Relay Node/Relay Station ) , 图 2为包含 Relay的蜂窝无线通讯系统的结构示意图, 如图 2所示, 其中基站 直接服务的 UE 叫宏 UE ( Macro UE ), Relay服务的 UE叫中继 UE ( Relay UE )。 各网元间的接口定义如下: 直传链路( direct link ): 基站与 UE之间 的无线链路, 包含上下行 ( DL/UL downlink/uplink ) 直传链路。 接入链路 ( access link ): Relay与 UE之间的链路, 包含 DL/UL接入链路。 回程链路 ( backhaul link ): 基站与 Relay之间的无线链路, 包含 DL/UL中继链路。
Relay可以通过多种方法中继数据, 比如直接放大接收到的基站发送无 线信号, 或者将基站发送的数据接收后进行对应的处理, 可以是解调或者 解码后, 再转发给终端, 或者基站和中继合作向终端发送数据, 相反 Relay 也会中继从终端向基站发送的数据。
在众多的中继类型中, 有一种中继的特点如下: UE无法区分中继和固 定基站下的小区, 即中继本身从在 UE看来, 就是一个小区, 跟基站下的小 区没有区别, 此类小区可以称为中继小区。 中继小区有自己的物理小区标 识( PCI , Physical Cell Identity ) , 和普通 d、区一样发送广播, 当 UE驻留在 中继小区中时, 中继小区可以单独分配调度无线资源给 UE使用,可以独立 于参与中继的基站的无线资源调度。 Relay通过 backhaul link连接的基站称 为赠与基站(DNB/DeNB, Donor NodeB/eNodeB )。 中继小区和 Relay UE 之间的接口及协议栈, 与普通基站小区和 UE之间相同。
图 3为基于 LTE的蜂窝无线通讯系统的结构示意图,如图 3所示, LTE 系统釆用基于互联网协议(IP, Internet Protocol )的扁平化架构, 由演进的 通用地面无线接入网( E-UTRAN, Evolved Universal Terrestrial Radio Access Network ), 演进型数据核心网 (EPC, Evolved Packet Core )节点包括及其 他支撑节点组成, 其中 EPC 节点包括: 移动管理单元 (MME, Mobility Management Entity ), 服务网关 ( S-GW, Serving Gateway ), 分组数据网络 网关 (P-GW, PDN Gateway )„ MME负责控制面信令, 包括移动性管理、 非接入层信令的处理、 用户的移动管理上下文的管理等控制面相关工作;
S-GW负责 UE用户面数据的传送、转发和路由切换等; eNB之间在逻辑上 通过 X2接口互相连接, 用于支持 UE在整个网络内的移动性, 保证用户的 无缝切换; P-GW是连接 EPC和包数据网如互联网的节点, 负责如 UE IP 地址的分配、 IP数据包按业务类型过滤成业务数据流( Service Data Flow ) 并绑定到对应的传输承载等。
每个 eNB通过 S1接口,连接到系统架构演进( SAE, System Architecture Evolution )核心网, 即通过控制平面 S1-MME接口与 MME相连, 通过用 户平面 S1-U接口与 S-GW相连, S1接口支持 eNB与 MME和 S-GW之间 的多点连接。 MME和 S-GW之间由 S 11接口相连, S-GW和 P-GW之间 由 S5接口相连, 也可以合并到一个网元, 此时 S5 接口不存在。 eNB之间 通过 X2口相连。 每个 eNB通过 Uu接口 (最初定义为 UTRAN与 UE之间 的无线接口)与 UE进行信令和数据的传输。 引入 Relay后, Relay和 eNB 之间的无线接口为 Un接口, Relay和 UE之间和 eNB和 UE之间的接口相 同, 所以也是 Uu口。
运营商通常会有几种原因, 如地面传输资源稀缺的原因部署 Relay, 或 者在灾难发生时地面传输都无法工作, 或者是短时间内的快速部署移动蜂 窝网络时, 单个 Relay无法满足广泛或者长距离布网的需求, 单个 Relay只 能部署在有地面传输资源的基站周围。 所以为了解决部署范围的问题, 引 入多跳 Relay的概念, 即 Relay接入 eNB后,还能继续作为后续 Relay的接 入节点, 从而形成一个多跳的结构。 发明内容
有鉴于此, 本发明的主要目的在于提供一种支持多跳的中继通信系统, 以及支持多跳的中继通信系统的接入方法, 能在多跳中继的通信系统中实 现数据传输, 传输方式比较灵活。 为达到上述目的, 本发明的技术方案是这样实现的:
一种支持多跳的中继通信系统, 包括宿主节点、 至少一个寄主节点和 核心网, 所述宿主节点向至少一个寄主节点提供无线接入连接, 并作为网 关提供所述至少一个寄主节点和核心网之间的通讯。
优选地, 所述的宿主节点包括中继或者基站; 所述寄主节点为中继。 优选地, 所述宿主节点作为代理时, 对于寄主节点, 宿主节点视作核 心网, 对于核心网, 宿主节点视作寄主节点; 所述宿主节点接收代理的消 息, 转发至代理的目标网元。
优选地, 所述宿主节点作为网关, 将接收到的协议 /协议栈的消息转换 成待发送的协议 /协议栈的消息, 并发送。
优选地, 在消息的转换过程中, 消息中的协议 /协议栈及待发送的协议 / 协议栈的承载部分不作协议转换。
优选地, 所述宿主节点为连接到寄主节点的用户终端提供无线接入连 接。
优选地, 所述无线接入连接为基于无线蜂窝技术是无线接入连接, 所 述无线蜂窝技术包括全球移动通讯系统 GSM、 通用移动通信系统 UMTS、 长期演进 LTE。
一种支持多跳的中继通信系统的接入方法, 包括:
寄主节点驻留于宿主节点并与宿主节点建立空口连接;
寄主节点通过宿主节点与核心网建立连接;
宿主节点作为网关转发寄主节点与核心网之间的数据; 宿主节点同时 作为服务于寄主节点的核心网网关;作为核心网网关时, 受控于 MME而建 立与寄主节点的连接, 并分配地址;
宿主节点向服务于宿主节点的核心网网元申请建立通道并申请地址。 优选地, 所述的宿主节点包括中继或者基站; 所述寄主节点为中继。 优选地, 所述的空口连接建立过程为 RRC连接建立过程; 所述的核心 网连接建立过程为附着过程。
优选地, 所述核心网网关包括 SGW或 /和 PGW。
优选地, 所述宿主节点向服务于宿主节点的核心网网元建立通道并申 请地址,是由所述宿主节点作为核心网网关时、受控于 MME要求和寄主节 点建立连接并分配地址时而触发的。
一种支持多跳的中继通信系统的接入方法, 包括:
寄主节点驻留于宿主节点并与宿主节点建立空口连接;
寄主节点通过宿主节点与核心网建立连接; 以及
宿主节点作为代理, 对于寄主节点, 宿主节点被视为核心网, 对于核 心网, 宿主节点被视为寄主节点; 宿主节点作为核心网网关, 服务于寄主 节点。
优选地, 宿主节点被视为核心网, 具体为:
宿主节点作为核心网 MME的代理和核心网网关的代理;作为 MME代 理时, 对于寄主节点, 宿主节点被视为 MME, 对于 MME, 宿主节点被视 为寄主节点。 作为核心网网关的代理时, 对于 MME, 宿主节点被视为核心 网网关。
优选地,所述宿主节点作为核心网网关时,受控于 MME而建立与所述 寄主节点的连接, 并分配地址。
优选地, 所述核心网网关包括 SGW或 /和 PGW。
本发明的支持多跳的通信系统中, 中继之间、 中继与宿主基站之间通 过各种无线子网连接, 可以将宿主中继 (多跳 )或宿主基站(单跳或多跳) 设置为用户数据的中转网关, 以此将用户数据与 EPC之间的交互数据通过 这些设定的网关(宿主中继或宿主基站)转发, 从而达到支持 UE接入而实 现相应业务。 或者, 在中继、 宿主中继及宿主基站上设置用户数据直接转 发到 EPC的数据转发方式, 通过在上述网元上设置底层的转发配置实现用 户数据与 EPC的直接交互(逻辑上)。 本发明中继之间、 中继与宿主基站之 间的无线子网配置灵活, 数据传输速率较迅捷, 所支持带宽较宽, 能在多 跳中继的通信系统中实现数据传输, 传输方式比较灵活。 附图说明
图 1为蜂窝无线通讯系统的结构示意图;
图 2为包含 Relay的蜂窝无线通讯系统的结构示意图;
图 3为基于 LTE的蜂窝无线通讯系统的结构示意图;
图 4 为本发明无线中继多跳通信系统之一的结构示意图;
图 5 为本发明单 Relay系统的协议栈示意图;
图 6为本发明无线中继多跳通信系统之二的结构示意图;
图 7 为本发明支持多跳的 Relay系统的协议栈示意图;
图 8为本发明无线中继多跳通信系统之三的结构示意图;
图 9为本发明多跳 Relay系统中 Relay接入 Donor Relay以及 UE接入 经过 Donor Relay连接的 Relay的流程图;
图 10所示的是另一种单 Relay系统的协议栈示意图;
图 11是图 10所示协议栈的通信系统的结构示意图;
图 12是另一种多跳 Relay系统的协议栈示意图;
图 13为本发明无线中继多跳通信系统之四的结构示意图;
图 14为本发明多跳 Relay通信系统中 Relay接入 Donor Relay以及 UE 接入经过 Donor Relay连接的 Relay的流程图。 具体实施方式
本发明的基本思想是: 本发明的支持多跳的通信系统中, 中继之间、 中继与宿主基站之间通过各种无线子网连接, 可以将宿主中继 (多跳)或 宿主基站 (单跳或多跳)设置为用户数据的中转网关, 以此将用户数据与
EPC 之间的交互数据通过这些设定的网关 (宿主中继或宿主基站)转发, 从而达到支持 UE接入而实现相应业务。 或者, 在中继、 宿主中继及宿主基 站上设置用户数据直接转发到 EPC的数据转发方式, 通过在上述网元上设 置底层的转发配置实现用户数据与 EPC的直接交互(逻辑上)。本发明中继 之间、 中继与宿主基站之间的无线子网配置灵活, 数据传输速率较迅捷, 所支持带宽较宽, 能在多跳中继的通信系统中实现数据传输, 传输方式比 较灵活。
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
图 4 为本发明无线中继多跳通信系统之一的结构示意图,如图 4所示, 本示例的通信系统包括 Relay 1 (无线节点 RN 1 )和 Relay2 ( RN2 ) , Relay 1 为通过无线接口连接 eNB的 Relay,该 eNB又称为宿主 eNB ( Donor eNB ), Relay2通过无线接口连接 Relay 1 , 此时 Relay 1作为一个宿主, 可以称之为 宿主中继 (Donor Relay )。
多跳 Relay系统中, Donor Relay节点作为协议转换节点,将其下的 Relay 和其所在的宿主网元的通讯协议进行转换。 在现有的网络架构中, 这一类 的协议转换网元被称为网关( Gateway )。 在单 Relay系统中, DeNB就是一 个网关, 连接 Relay和核心网的 MME或 SGW/PGW。
图 5 为本发明单 Relay系统的协议栈示意图, 如图 5所示, Relay对于
UE来说是单独的基站, 所以 Relay就像普通的 eNB所做的一样会将 UE的 业务协议(APP )数据封装到传输网 (DeNB与 EPC之间的传输网 ) 的协 议 Protocoll 中去, 其中, Protocoll是基于 IP的协议, 例如对于控制面来 说 Protocoll 的协议栈结构由下至上是 IP/SCTP/S1-AP, 对于用户面来说 Protocoll的协议栈由下至上是 IP/UDP/GTP-U。 Protocoll通过 Un接口的无 线承载来传输, 所以无线承载的协议所完成的基本是物理层和链路层的工 作。 当数据包到达网关时, 也就是 DeNB时, DeNB将链路层以下的协议做 了一次转换,即 Un接口的无线承载和地面侧的 L1/L2做转换。协议转换时, 上层协议栈不发生变化, 网关根据内部转换关系, 将源协议栈转化为目标 协议栈。
图 6为本发明无线中继单跳通信系统之二的结构示意图, 如图 6所示, Relay直接与 DeNB之间通过无线子网连接,无线子网包括基于无线蜂窝技 术的网络如全球移动通讯系统 ( GSM , Global System for Mobile Communication )、 通用移动通信系统 ( UMTS , Universal Mobile Telecommunications System )及其演进网络等, 或者是长期演进系统等通讯 网络。 DeNB与 EPC ( MME, 或 SGW/PGW )之间通过有线传输网连接, 例如基于 IP的互联网等。 UE到达 Relay的 APP数据,被打包进 Protocoll , 例如是隧道协议, 在 Un接口的数据包按协议栈来看由下至上分别是 Un无 线承载、 IP、 UDP、 GTP-U和 APP, 数据包到达 DeNB后, 链路层以下会 被转换为 L1/L2协议, 其它部分保持不变。 转换时, 网关可以利用保存的 路由信息, 比如当 IP的目的地址是 Relay时, DeNB才会将传输网的数据 包转换为 Un的数据包。
图 7 为本发明支持多跳的 Relay系统的协议栈示意图, 如图 7所示, 该协议栈是两跳的示意图, Relay2与 Relayl连接, Relayl作为 Donor Relay 节点, 与 DeNB连接。其中, Relayl提供链路层以下的协议转换,将 Relay2 和 Relayl之间的 Un无线承载转换为 Relayl和 DeNB之间的 Un无线承载。 Relayl 可以根据自身保存的路由关系来决定是否要对数据包进行协议转 换。 图 8为本发明无线中继多跳通信系统之三的结构示意图, 如图 8所示, 从 DeNB与 EPC之间的传输网来看,图中所示网元之间 ^^于 IP网而连接 的, Relay2、 Relayl以及 DeNB上均配置了将 UE的 APP数据直接转发至 EPC的转发机制,各网元在进行 APP数据包转发时,所经的转发路径不同, 各网元之间的转发实现方式也可能不同。 例如, 如果 Relayl收到目的地址 是 10.10.10.7的数据包则转发, 收到 10.10.10.5的数据包则自己处理。 在这 种架构下, 所有的网元都处于同一个 IP传输网络内, 根据 IP的路由关系, 任何两个网元可以使用任何基于 IP的协议进行通讯。 而 Protocoll是 EPC 使用的传输协议, 如控制面的 IP/SCTP/S1-AP, IP/UDP/GTP-C或用户面的 IP/UDP/GTP-U„
图 9为本发明多跳 Relay系统中 Relay接入 Donor Relay以及 UE接入 经过 Donor Relay连接的 Relay的流程图, 如图 9所示, 本示例并没有将所 有的信令——示出, 大部分流程与现有 LTE系统的接入流程相同, 本示例 将不再对每一流程作出详细描述, 仅对与现有流程不同的步骤进行特别说 明。 图 9中所示的 Relay MME和 UE MME可能是同一个网元, 在此只是 为了描述方便而将其分开示意。 在 Relay2接入 Donor Relay即 Relayl前, Relayl已经接入 DeNB, 可参见图 6所示多跳 Relay通信系统, Relay2作 为 UE在 Relayl下驻留, 读取系统广播后, 发起图中步骤 1所示的 RRC连 接过程, 建立 RRC连接。 建立 RRC连接完成后, Relayl和 Relay2之间已 经建立了信令通道, 可以传输 RRC信令。 Relay2接着发起附着( Attch )过 程(图中步骤 2所示)。 Attch是非接入层 ( NAS , Non Access Stratum )层 协议, 在 Un接口先有 RRC信令的携带给 Relayl , 由 Relayl通过用户面传 输通道,无线承载( A1 ),发送 S1初始直传消息给 Relay MME。此时 Relay2 是作为 UE接入的, NAS消息可以认为是 APP, 无线承载为空口的信令协 议, 即 RRC, 而 Protocoll是 IP/SCTP/S1-AP。 Relayl作为 eNB的角色, 将 NAS 的承载由 RRC 信令转换层 IP/SCTP/S1-AP , 并转发给和它对应的 MME。 如图 8所示, 要建立该多跳 Relay通信系统, 需要分配给 Relay2一 个 IP地址, 并且更新 Relayl和 DeNB的路由关系。 为了减少对现有协议的 影响, 使用现有的协议流程去完成这个过程, 而非定义新的协议流程。 所 以在 Attch过程中, Relay2在信令中会通知 MME, 希望选择的 SGW/PGW 是其接入的 eNB, 在本场景中即是 Relay2的 Donor Relay, 也就是 Relayl。 MME可以通过 S1-AP连接的另一端来确认 Relayl„ MME把 Relayl 当作 SGW/PGW, 发送 GTP-C消息, 要求步骤 3建立默认承载(create default bearer ), 其中就包括分配一个 IP地址。 Relayl 自身只有一个 IP地址, 并且 也需要 DeNB路由才行。 Relayl要求支持 Multi-PDN,即可以激活多个 PDN 连接。作为 UE的角色,发起给其对应的 MME,发起步骤 4的 PDN ( Packet Data Network )连接请求, 请求建立另一个 PDN连接, 分配另一个 IP, 并 且要求其对应的 eNB作为 SGW/PGW。 MME通过步骤 5建立默认承载, 通过把 DeNB作为 SGW/PGW, 分配对应 IP。 DeNB 自身分配或者通过本 地的动态主机配置协议 ( DHCP, Dynamic Host Configuration Protocol )等 方式分配 IP地址, 并保存路由关系。 步骤 5结束后, MME通过步骤 6的 S1-AP的 E-RAB指派消息通知 UE即 Relayl对应的 eNB, 即 DeNB, 其中 携带 Attach的应答消息, 并要求建立新的 EPS bearer , DeNB收到后根据 需要的配置的步骤 7中的配置信息重配 Un接口,建立新的 EPS bearer的无 线承载(A2 ), 并将 NAS 的 Attach应答消息通过步骤 7 中的消息发送给 Relayl。 至此 DeNB的路由表里有 Relayl 的 IP和这个新分配的 IP, 并且 Relayl有 IP可以分配了。 Relayl作为 SGW/PGW的角色给 Relay2对应的 MME发送的步骤 3中的回复应答消息(步骤 8 ),将新分配的 IP地址带回, 并建立路由关系。 Relay2的 MME收到后, 向 Relay2对应的 eNB即 Relayl 发送 UE上下文建立 (步骤 10 )。 Relayl收到 S1的 UE上下文建立后, 在 空口重配置 Un连接, 建立无线承载( B1 ), 其中携带 Relay2的 attach响应 消息, 建立 Relayl和 Relay2的空口用户面传输通道。 至此 Relay2拥有新 分配的 IP, 并且 Relayl和 DeNB都有 IP的路由关系, 如图 8所示, Relay2 拥有传输网的独立 IP, 可以通过 IP协议, 连接网路中任何一个网元。 当 UE接入 Relay2时, 通过步骤 14至步骤 21的 UE接入过程, 可以建立起和 UE SGW/PGW的传输通道, 而通过 UE SGW/PGW, UE可以进入 APP使 用的业务网络, 例如互联网。
图 10所示的是另一种单 Relay系统的协议栈, 与图 5所述协议栈的区 别在于 DeNB协议转换的程度扩展到传输层, 传输层以下的协议做转换, 即 Un接口的 Protocol和无线承载与 Protocoll和地面侧的 L1/L2做转换。 这里的传输层是指在网络侧用于传输业务数据的传输协议。 协议转换时, 上层协议栈不发生变化, 网关根据的内部转换关系, 将源协议栈转化为目 标协议栈。 Protocol2表示 Relay与 DeNB之间子网所支持的协议。
图 11是图 10所示协议栈的通信系统的结构示意图, UE到达 Relay的 APP数据, 被打包进 Protocol2 , 例如是隧道协议, 在 Un接口的数据包按 协议栈来看由下至上分别是 Un无线承载、 IP、 UDP、 GTP-U和 APP, 数据 包到达 DeNB后, APP以下会被转换为 L1/L2协议和 Protocoll , APP部分 保持不变。 假设 Protocoll也是隧道协议。 转换时, 网关可以利用保存的映 射信息, 比如根据协议栈的 IP+GTP-U TEID对的映射关系, 将网管两侧的 数据进行转换。 例如, DeNB 从 Relay 收到目标 ΙΡ1=192.168.1.1 , 目标 TEID1=10的数据包, 根据保存的映射关系, 发现有匹配项, 将其转换成匹 配项为, 目标 IP2=10.10.10.112 , 目标 TEID2=20的数据包, 转发给核心网 的 SGW/PGW。 当然上述 Protocoll和 Protocol2不一定要相同的。对于异构 网络的网关, 比如 Protocol2是一个简化的隧道协议, 不需要承载在 IP上, 其隧道号 TID=128。 那么在网管内部的映射表就是 TID=128 对应目标 IP= 10.10.10.112 , 目标 TEID=20 ,那么数据包的转发,在 DeNB和 SGW/PGW 之间将会按照映射关系构造 Protocoll的 IP/UDP/GTP-U数据包。
图 12是另一种多跳 Relay系统的协议栈示意图, 如图 12所示, Relayl 作为 Donor Relay节点,提供的传输层以下的协议转换,将 Relay2和 Relay 1 之间的 Un无线承载和 ProtocoB转换为 Relay 1和 DeNB之间的 Un无线承 载和 Protocol2。 Relayl可以根据是否在自身保存的转换关系表中有匹配项 来决定是否对数据包进行协议转换。 如上所述, Donor Relay支持同构协议 的转换和异构协议的转换。 图 13为本发明无线中继多跳通信系统之四的结 构示意图, 如图 13所示, 可以认为图中所示的各网元之间的连接接口组成 自己的子网, 比如 Relayl和 Relay2之间的子网 1 , Relay2和 UE之间的子 网 2。 子网所用的协议可以 ^^于 IP的路由协议, 因为子网中只有两个网 元, 也可以是基于点对点的协议, 比如用简单的隧道标识或者流标识来表 示点对点之间的不同数据流即可。 两个子网间的节点做同构或者异构协议 的翻译工作。
图 14为本发明多跳 Relay通信系统中 Relay接入 Donor Relay以及 UE 接入经过 Donor Relay连接的 Relay的流程图, 如图 14所示, 本示例并没 有将所有的信令——示出, 大部分流程的现有 LTE系统的中的流程。 图中 所示的 Relay MME和 UE MME可能是同一个网元, 在此只是为了明确表 示将其分开。 在 Relay2接入 Donor Relay即 Relayl前, Relayl 已经接入 DeNB, 结构如图 11所示。 Relay2作为 UE先在 Relayl下驻留, 读取系统 广播后, 发起步骤 1的 RRC连接过程, 建立 RRC连接。 步骤 1完成后, Relayl和 Relay2之间已经建立了信令通道, 可以传输 RRC信令。 Relay2 接着发起步骤 2的 Attch过程。 Attch是 NAS层协议, 在 Un接口先有 RRC 信令的携带给 Relayl , 由 Relayl通过用户面传输通道, 无线承载(A1 ), 发送 S1初始直传消息给 DeNB。 此时 Relay2是 UE, NAS消息可以认为是 APP,无线承载为空口的信令协议,即 RRC,而 Protocol2是 IP/SCTP/S1-AP 或者 S1-AP。 Relayl作为 eNB的角色, 将 NAS的承载由 RRC信令转换成 IP/SCTP/S1-AP信令承载 (目标 ΙΡ=192· 168· 1· 1 , 源 ΙΡ=192· 168· 1·2, 公共 S 1消息) , 并在信令中携带下行目的 eNB S 1 -AP ID = 22, 并转发给 DeNB。 如图 13所示, 要建立该多跳 Relay架构, 需要在每个子网间的网管建立对 应协议的映射关系, 在本例中即需要在 Relayl和 DeNB上添加新的对应关 系。 这种跨子网的协议映射关系, 通常来说, 需要对一对协议转换维护对 应关系表, 不同类别的协议需要分开, 例如 IP/UDP/GTP-U 的对应关系和 IP/SCTP/S1-AP的对应关系要分开维护。本实施例以 Protocoll/2/3都釆用同 构网络为例, 在本例中需要对三组协议对进行转换, 分别是用户面的 IP/UDP/GTP-U, 控制面的 IP/SCTP/S1-AP, 和控制面的 IP/UDP/GTP-C协 议。 所述的协议转换对于异构网络时仅在对应关系的标识有所区别, 所以 在传递标识的信令稍作^ ί'爹改即可。 例如上述图 11 的过程中所描述。 DeNB 收到该信令后, 转换 IP/SCTP/S 1 -AP为新的协议包(目标 IP= 10.10.10.111 , 源 IP=10.10.10.1 ,公共 S1消息),并在信令中携带下行目的 eNB S1-AP ID = 12, 转发给 MME, 并在本地保存(ΙΡ=192· 168· 1·2, eNB Sl-AP ID = 22 ) 和 ( IP=10.10.10.1 , eNB Sl-AP ID = 12 ) 的对应关系, 用于下行 IP/SCTP/S 1-AP协议转换。 MME收到的 Sl-AP的信令中携带的 NAS层的 attach请求, 要求建立本地承载, 所以 MME选对应的 eNB, 即 DeNB, 作 为 SGW/PGW建立承载,发送步骤 3的建立默认 bearer(目标 ΙΡ=10.10.10.1 , 源 ΙΡ=10· 10· 10· 111 , 公共 GTP-C消息), 并携带上行 TEID-C=111 , 以及可 能的源 UE相关信息, 例如 UE初始直传的 DeNB 带给核心网的 S1-AP ID=12, 表明该 UE是通过子网方式上来, 要求目标网元已代理方式工作, 或者携带对应端口映射关系。 DeNB收到该 GTP-C消息后, 发现 UE是子 网方式, 作为 SGW/PGW的代理, 或者根据对应端口映射关系, 将协议转 化为子网 1的 GTP-C数据包 (目标 ΙΡ=192· 168· 1·2, 源 ΙΡ=192.168.1.1 , 公 共 GTP-C 消息), 并携带上行 TEID-C=121 , 发送给 Relayl , 并保存上行 GTP-C的对应关系 ( IP=10.10.10.111 , TEID-C=111 )与 ( IP=192.168.1.2, TEID-C=121)。 Relayl收到该数据包后, 步骤 4建立默认 bearer, 并反馈分 配的 IP 地址是 192·168·1·2 , 携带下行 TEID-C=122 , 发送(目标 IP=192.168.1.1, 源 ΙΡ=192·168·1·1 , TEID-C=121)给 DeNB, DeNB收到后, 根据之前建立的上行 GTP-C 转换关系, 将数据包转化为(目标 IP=10.10.10.111, 源 ΙΡ=10·10·10·1, TEID-C=111), 将并建立下行 GTP-C的 对应关系 (IP=192.168.1.2, TEID-C=122 )与( ΙΡ=10· 10· 10· 1 , TEID-C=112 ), MME 收到应答消息后, 发送 SI 消息在步骤 5 建立 UE 上下文(目标 IP=10.10.10.1,源 IP=10.10.10.111, eNB Sl-AP ID=22 ),其中携带上行 MME S 1 -AP ID= 11。 DeNB收到该消息后, 根据之前的下行 S 1 AP转换关系, 将 数据包转换为(目标 IP=192.168.1.2,源 IP=192.168.1.1, eNB Sl-AP ID=12 ), 其中携带上行 MME Sl-AP ID=11, 并本地保存下行 Sl-AP 对应关系 (IP=10.10.10.1, S1-AP=11 ) 与 (ΙΡ=192·168·1·2, S1-AP=11 )„ Relayl, 收到步骤 6的 UE上下文建立消息后, 则在步骤 7的空口重配置 Relay2, 建立无线承载( B1 )。 至此 Relay2作为 UE角色完成接入。 通过 Attach相 应消息, Relay2的 IP是 192.168.1.2。 子网 2也建立起来了。 网络拓朴如图 15所示。
之后 Relay2作为 eNB的角色, 开始 SI Setup流程, 建立 eNB。 在子网 2内, Relay2认为 Relayl就是 MME和 SGW/PGW和相邻 eNB的代理, 将 步骤 8的 SI Setup消息发送给 Relayl, Relayl进行协议转换后在子网 1中 发送给 DeNB , 再由 DeNB转换后发到真实的 UE MME。
通过步骤 11至步骤 17的 UE接入过程, 建立 Cll, Bll, All, D11 的传输通道, 在其中两个网关的协议转换关系可以如下表所示, 其中 IP在 表中省略, 在匹配表项过程中 IP匹配可能也是需要的。 如表 1所示:
DeNB Relayl 下行 IP/SCTP/S1AP ID 1011->1021 1021->1031 上行 IP/SCTP/S1AP ID 1022->1012 1032->1022
上行 IP/UDP/GTP-C TEID 1121->1111 1131->1121
下行 IP/UDP/GTP-C TEID 1112->1122 1122->1132
上行 IP/UDP/GTP-U TEID 1221->1211 1231->1221
下行 IP/UDP/GTP-U TEID 1212->1222 1222->1232
表 1
可以建立起和 UE SGW/PGW的传输通道, 而通过 UE SGW/PGW, UE 可以进入 APP使用的业务网络, 例如互联网。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种支持多跳的中继通信系统, 包括宿主节点、 至少一个寄主节点 和核心网, 其特征在于, 所述宿主节点向至少一个寄主节点提供无线接入 连接, 并作为网关或代理提供所述至少一个寄主节点和核心网之间的通讯。
2、 根据权利要求 1所述的系统, 其特征在于, 所述的宿主节点包括中 继或者基站; 所述寄主节点为中继。
3、 根据权利要求 1所述的系统, 其特征在于, 所述宿主节点作为代理 时, 对于寄主节点, 宿主节点视作核心网, 对于核心网, 宿主节点视作寄 主节点; 所述宿主节点接收代理的消息, 转发至代理的目标网元。
4、根据权利要求 1所述的系统, 其特征在于, 所述宿主节点作为网关, 将接收到的协议 /协议栈的消息转换成待发送的协议 /协议栈的消息, 并发 送。
5、 根据权利要求 4所述的系统, 其特征在于, 在消息的转换过程中, 消息中的协议 /协议栈及待发送的协议 /协议栈的承载部分不作协议转换。
6、 根据权利要求 1所述的系统, 其特征在于, 所述宿主节点为连接到 寄主节点的用户终端提供无线接入连接。
7、 根据权利要求 1或 6所述的系统, 其特征在于, 所述无线接入连接 为基于无线蜂窝技术是无线接入连接; 所述无线蜂窝技术包括全球移动通 讯系统 GSM、 通用移动通信系统 UMTS、 长期演进 LTE。
8、 一种支持多跳的中继通信系统的接入方法, 其特征在于, 所述方法 包括:
寄主节点驻留于宿主节点并与宿主节点建立空口连接;
寄主节点通过宿主节点与核心网建立连接;
宿主节点作为网关转发寄主节点与核心网之间的数据; 宿主节点同时 作为服务于寄主节点的核心网网关; 作为核心网网关时, 受控于移动管理 实体 MME而建立与寄主节点的连接, 并分配地址;
宿主节点向服务于宿主节点的核心网网元申请建立通道并申请地址。
9、 根据权利要求 8所述的方法, 其特征在于, 所述的宿主节点包括中 继或者基站; 所述寄主节点为中继。
10、 根据权利要求 8所述的方法, 其特征在于, 所述的空口连接建立 过程为 RRC连接建立过程; 所述的核心网连接建立过程为附着过程。
11、 根据权利要求 9或 10所述的方法, 其特征在于, 所述核心网网关 包括服务网关 SGW或 /和分组数据网络网关 PGW。
12、 根据权利要求 8所述的方法, 其特征在于, 所述宿主节点向服务 于宿主节点的核心网网元建立通道并申请地址, 是由所述宿主节点作为核 心网网关时、 受控于 MME要求和寄主节点建立连接并分配地址时而触发 的。
13、 一种支持多跳的中继通信系统的接入方法, 其特征在于, 所述方 法包括:
寄主节点驻留于宿主节点并与宿主节点建立空口连接;
寄主节点通过宿主节点与核心网建立连接;
宿主节点作为代理, 对于寄主节点, 宿主节点被视为核心网, 对于核 心网, 宿主节点被视为寄主节点; 宿主节点作为核心网网关, 服务于寄主 节点。
14、 根据权利要求 13所述的方法, 其特征在于, 宿主节点被视为核心 网, 具体为:
宿主节点作为核心网 MME的代理和核心网网关的代理;作为 MME代 理时, 对于寄主节点, 宿主节点被视为 MME, 对于 MME, 宿主节点被视 为寄主节点; 作为核心网网关的代理时, 对于 MME, 宿主节点被视为核心 网网关。
15、 根据权利要求 13所述的方法, 其特征在于, 所述宿主节点作为核 心网网关时, 受控于 MME而建立与所述寄主节点的连接, 并分配地址。
16、 根据权利要求 13所述的方法, 其特征在于, 所述核心网网关包括 SGW或 /和 PGW。
PCT/CN2010/075606 2009-08-18 2010-07-30 支持多跳的中继通信系统及该系统的接入方法 WO2011020404A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/389,523 US9380637B2 (en) 2009-08-18 2010-07-30 Relay communication system supporting multiple hops and access method thereof
EP10809537.3A EP2453590A4 (en) 2009-08-18 2010-07-30 Relay communication system supporting multiple hops and access method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910162689.7 2009-08-18
CN2009101626897A CN101998657A (zh) 2009-08-18 2009-08-18 支持多跳的中继通信系统及该系统的接入方法

Publications (1)

Publication Number Publication Date
WO2011020404A1 true WO2011020404A1 (zh) 2011-02-24

Family

ID=43606634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075606 WO2011020404A1 (zh) 2009-08-18 2010-07-30 支持多跳的中继通信系统及该系统的接入方法

Country Status (4)

Country Link
US (1) US9380637B2 (zh)
EP (1) EP2453590A4 (zh)
CN (1) CN101998657A (zh)
WO (1) WO2011020404A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130085A1 (zh) * 2011-03-29 2012-10-04 华为技术有限公司 与网管系统建立连接的方法、设备及通信系统

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010028974A1 (de) * 2010-05-12 2011-11-17 Vodafone Holding Gmbh Bereitstellung einer Ende-zu-Ende-Verbindung von einer Endeinheit in ein Netz
EP2697991B1 (en) * 2011-04-12 2019-12-11 Telefonaktiebolaget LM Ericsson (publ) Sending user plane traffic in a mobile communications network
CN105163398B (zh) * 2011-11-22 2019-01-18 华为技术有限公司 连接建立方法和用户设备
US8924581B1 (en) * 2012-03-14 2014-12-30 Amazon Technologies, Inc. Managing data transfer using streaming protocols
US9119184B2 (en) * 2012-03-31 2015-08-25 Tejas Networks Limited Method and system of transmitting a bearer resource request message from a UE to a MME for setting up an EPS bearer in a LTE network
US10051686B2 (en) 2012-05-04 2018-08-14 Qualcomm Incorporated Charging over a user-deployed relay
US9100255B2 (en) 2013-02-19 2015-08-04 Futurewei Technologies, Inc. Frame structure for filter bank multi-carrier (FBMC) waveforms
EP3032871B1 (en) * 2013-09-04 2023-01-04 Huawei Technologies Co., Ltd. Data transmission method, device and system
BR112016020504A2 (pt) * 2014-03-07 2018-07-03 Huawei Technologies Co., Ltd. “nó de retransmissão rn, enób doador denb e método de comunicação”.
CN105594283B (zh) * 2014-09-10 2019-07-23 华为技术有限公司 数据传输链路建立装置、方法及通信系统
EP3214805B1 (en) * 2014-11-28 2020-09-02 Huawei Technologies Co., Ltd. Method and device for transmitting control signalling
US10772145B2 (en) * 2017-03-29 2020-09-08 Qualcomm Incorporated Autonomous formation for backhaul networks
US11233722B2 (en) * 2017-12-12 2022-01-25 Futurewei Technologies, Inc. System and method for network topology management
US11785570B2 (en) 2017-12-18 2023-10-10 Koninklijke Kpn N.V. Method of, and devices for, establishing a signalling connection between a remote user equipment, UE, and a telecommunication network via a relay capable UE
US11432225B2 (en) 2018-01-11 2022-08-30 Telefonaktiebolaget Lm Ericsson (Publ) Packet forwarding in integrated access backhaul (IAB) networks
JP7073509B2 (ja) 2018-02-11 2022-05-23 オッポ広東移動通信有限公司 移動体通信システム、方法及び装置
KR102322381B1 (ko) * 2018-02-14 2021-11-10 주식회사 케이티 릴레이 노드에서 rrc 메시지를 처리하는 방법 및 그 장치
US10595354B1 (en) * 2018-02-22 2020-03-17 Sprint Spectrum L.P. Communicating with a wireless device via at least two access nodes
CN110475368B (zh) 2018-05-10 2022-12-20 中兴通讯股份有限公司 信息传输方法及装置
KR20210003155A (ko) 2018-05-22 2021-01-11 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 접속 방법 및 전송점

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188800A (zh) * 2006-06-14 2008-05-28 中兴通讯圣迭戈有限公司 无线通信中的有效消息应答
WO2009009511A2 (en) * 2007-07-06 2009-01-15 Zte (Usa) Inc. Resource allocation in wireless multi-hop relay networks

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI108326B (fi) * 1999-04-19 2001-12-31 Nokia Corp Wireless Application Protocol -protokollan käyttäminen pakettikytkentäisessä radiotietoliikennejärjestelmässä
TW200733774A (en) * 2006-01-30 2007-09-01 Interdigital Tech Corp Wireless communication method and system for performing dual mode paging
US8855138B2 (en) * 2008-08-25 2014-10-07 Qualcomm Incorporated Relay architecture framework
US8902805B2 (en) * 2008-10-24 2014-12-02 Qualcomm Incorporated Cell relay packet routing
US8964781B2 (en) * 2008-11-05 2015-02-24 Qualcomm Incorporated Relays in a multihop heterogeneous UMTS wireless communication system
JP5355788B2 (ja) * 2009-06-17 2013-11-27 インターデイジタル パテント ホールディングス インコーポレイテッド 中継ノードとのハンドオーバを実施するための方法および装置
JP4932933B2 (ja) * 2010-10-06 2012-05-16 株式会社エヌ・ティ・ティ・ドコモ 無線通信を中継する中継局及び中継方法
US9154987B2 (en) * 2010-12-30 2015-10-06 Nokia Solutions And Networks Oy Relay-to-relay interference coordination in a wireless communication network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188800A (zh) * 2006-06-14 2008-05-28 中兴通讯圣迭戈有限公司 无线通信中的有效消息应答
WO2009009511A2 (en) * 2007-07-06 2009-01-15 Zte (Usa) Inc. Resource allocation in wireless multi-hop relay networks

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"RAN3 LTE-A Rapporteur, LTE-A RAN3 Baseline Document", 3GPP TSG RAN WG3 MEETING #64 R3-091447, 4 May 2009 (2009-05-04) - 8 May 2009 (2009-05-08), XP050341769 *
NTT DOCOMO: "Relay Requirements", 3GPP TSG-RAN2#66 R2-093281, 4 May 2009 (2009-05-04), pages 1 - 2, XP050340953 *
ZTE: "Discussion of Multi-hop Relay", 3GPP TSG-RAN WG2 MEETING #67 R2-095011, 24 August 2009 (2009-08-24) - 28 August 2009 (2009-08-28), pages 1 - 4, XP050389685 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130085A1 (zh) * 2011-03-29 2012-10-04 华为技术有限公司 与网管系统建立连接的方法、设备及通信系统
US9131473B2 (en) 2011-03-29 2015-09-08 Huawei Technologies Co., Ltd. Method, device, and communication system for establishing connection with network management system

Also Published As

Publication number Publication date
US9380637B2 (en) 2016-06-28
EP2453590A1 (en) 2012-05-16
EP2453590A4 (en) 2017-05-31
CN101998657A (zh) 2011-03-30
US20120140701A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
WO2011020404A1 (zh) 支持多跳的中继通信系统及该系统的接入方法
US10015832B2 (en) System and method for communications in communications systems with relay nodes
EP2427002B1 (en) Method, device and system for transmitting relay data
US8730918B2 (en) Handover method based on mobile relay and mobile wireless relay system
JP5801430B2 (ja) フェムトセルを含む無線通信ネットワークにおけるローカルipアクセスサポート方法及び装置
JP5599781B2 (ja) 簡易化したローカル経路指定
KR101531531B1 (ko) 이동통신 시스템에서 단말의 로컬 패킷 데이터 망 접속 서비스 방법
WO2011000193A1 (zh) 一种无线中继系统中终端的移动性管理方法及系统
WO2012019467A1 (zh) 获取邻接基站/中继节点接口信息的方法及无线中继系统
WO2011023101A1 (zh) 一种无线连接的gtp-u实体间传输数据的方法和装置
WO2010124641A1 (zh) 一种长期演进系统及其数据传输方法
JP6213576B2 (ja) 移動通信システム、ゲートウェイ装置、コアネットワーク装置、通信方法
WO2011020413A1 (zh) 一种应用于无线中继的传输系统及传输方法
WO2013189443A2 (zh) 一种家庭基站中获取标识和地址匹配关系的方法、系统及网关
WO2014075644A1 (zh) 本地ip访问连接释放的方法及装置、移动管理单元、无线侧网元
WO2011098001A1 (zh) 切换小区时避免路径转换的方法、系统和设备
WO2015021597A1 (en) Traffic offload in small cell systems
KR101648523B1 (ko) Pdn 게이트웨이 기능을 가지도록 확장된 펨토 기지국을 포함하는 네트워크 구조에서 효율적인 로컬 ip 액세스 데이터 경로의 설정을 지원하는 방법과 절차 및 장치
KR101665934B1 (ko) 다중 무선전송기술이 적용된 무선 백홀 시스템에서의 데이터 라우팅 방법
WO2023113680A1 (en) Radio access nodes and methods for setting up a connection in a wireless communications network
JP2019029964A (ja) 多重無線伝送技術が適用された無線バックホールシステムにおけるデータルーティング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809537

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13389523

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010809537

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE