EP2425681B1 - Treiberschaltung für eine led - Google Patents

Treiberschaltung für eine led Download PDF

Info

Publication number
EP2425681B1
EP2425681B1 EP10725007.8A EP10725007A EP2425681B1 EP 2425681 B1 EP2425681 B1 EP 2425681B1 EP 10725007 A EP10725007 A EP 10725007A EP 2425681 B1 EP2425681 B1 EP 2425681B1
Authority
EP
European Patent Office
Prior art keywords
circuit
switch
driver circuit
inductance
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10725007.8A
Other languages
English (en)
French (fr)
Other versions
EP2425681A1 (de
Inventor
Michael Zimmermann
Eduardo Pereira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic GmbH and Co KG
Original Assignee
Tridonic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic GmbH and Co KG filed Critical Tridonic GmbH and Co KG
Publication of EP2425681A1 publication Critical patent/EP2425681A1/de
Application granted granted Critical
Publication of EP2425681B1 publication Critical patent/EP2425681B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/382Switched mode power supply [SMPS] with galvanic isolation between input and output

Definitions

  • the invention relates to a driver circuit for an LED according to the preamble of patent claim 1 and a method for driving an LED according to the preamble of patent claim 19.
  • Such driver circuits are used in lighting systems to achieve a colored or flat lighting of rooms, paths or escape routes.
  • the bulbs are driven by operating devices and activated as needed.
  • organic or inorganic light emitting diodes LED are used as the light source.
  • light-emitting diodes are also increasingly being used as the light source.
  • the efficiency and luminous efficacy of light-emitting diodes is being increased more and more so that they are already being used in various general lighting applications.
  • light emitting diodes are point sources of light and emit highly concentrated light.
  • a brightness change is often possible only with a complex control circuit, a simple connection to standard dimmers is not given, as it comes in conjunction with most dimmers to a flicker of light, or the dimmer does not work.
  • the solution according to the invention for a device for operating LEDs is based on the idea that a driver circuit for an LED has a connection for a mains voltage, a filter circuit and a rectifier, an inductance and a switch.
  • the inductor has a primary winding and a secondary winding coupled thereto.
  • the inductor is magnetized when the switch is closed, and the inductor is demagnetized when the switch is open, and at least during the demagnetization phase, the current through the inductor feeds the LED.
  • the switch-off duration of the switch may depend on the detected amplitude of the current through the LED.
  • the switch-off duration of the switch may additionally or alternatively be dependent on the degaussing current.
  • bypass circuit connected through a rectifier to the mains voltage terminal and deactivated when current flows through the rectifier into the inductor and the switch and / or the latch.
  • a bypass circuit is disabled whenever a current flows into the driver circuit for an LED.
  • a current flows into the driver circuit for an LED whenever a current flows through the inductor and the switch or into the buffer element via the rectifier.
  • a decoupling element or a current monitoring element can serve as a current detector.
  • the rectifier via which the bypass circuit is connected to the connection for a mains voltage, can either be the same rectifier, via which a current flows into the inductance and the switch or the buffer element, or there can be another rectifier in parallel to this first rectifier be.
  • the solution according to the invention also relates to a luminous means for an LED, with a base for the use of the luminous means in a commercial lamp base, comprising a driver circuit according to the invention are formed.
  • the invention also relates to a method for driving an LED, wherein the LED is driven via a driver circuit, and the driver circuit is fed from a terminal for a mains voltage via a filter circuit (L1) and a rectifier (GR1), and the driver circuit is a buffer element, an inductance (L2) and a switch (S1), wherein a bypass circuit (R40, Q4) provided at the output of the rectifier (GR1) is deactivated when a current flows through the rectifier (GR1) in driving circuit.
  • a bypass circuit R40, Q4
  • the driver circuit for an LED has a terminal for a mains voltage, a filter circuit (L1) and a rectifier (GR1), an inductance (L2) and a switch (S1).
  • the rectifier (GR1) is followed by a buffer element (C1), which preferably serves only to filter out high-frequency voltage changes and does not greatly smooth the voltage at the output of the rectifier (GR1).
  • the buffer element (C1) may be a capacitor, preferably a filter capacitor.
  • the inductance (L2) preferably has a primary winding (L2p) and a secondary winding (L2s) coupled thereto.
  • the inductance (L2) is magnetized when the switch is closed, and the inductance (L2) is demagnetized when the switch S1 is opened, and at least during the demagnetization phase, the current through the inductance (L2) feeds the LED.
  • the switch S1 is always opened only when the current through the switch S1 has reached a predetermined threshold.
  • the current through the switch S1 can be detected by means of a current detection Ip (for example, a current shunt).
  • the current detection Ip can also be done directly at the switch S1 (for example, in a so-called. SENSE FET, which contains an integrated monitoring of the current).
  • no time limit of the switch-on time duration is predetermined, but an infinite switch-on time of the switch S1 is also possible.
  • the switch-off duration of the switch S1 may be dependent on the detected amplitude of the current through the LED.
  • the feedback of the detection of the amplitude of the current through the LED is carried out electrically isolated (i.e., the control loop for the dependence of the switch-off duration of the switch S1).
  • the switch-off duration can, however, also be fixed, for example (fixed).
  • the switch-off duration of the switch S1 can, for example, also be directly or indirectly dependent on the degaussing current.
  • the switch S1 can be switched on whenever a demagnetization of the inductance (L2) is detected. However, a switch-on can always take place only when the inductance (L2) is de-magnetized, and a certain period of time can also be between the time of demagnetization and the restart.
  • the driver circuit may be connected to a commercial dimmer, and the switch S1 may be closed during the phases in which the dimmer cuts off a portion of the phase to pass a residual current across the inductor and the switch S1 and thus load the dimmer , This residual current through the switch S1 is preferably limited by the predetermined threshold in order to avoid overloading of the switch S1.
  • the inductance (L2) may be transformer (L2p, L2s), which serves as a potential-separating member.
  • the driver circuit can be transmitted by high-frequency clocking of the switch (S1) energy via the inductance (L2) to the light source (LED).
  • the switch (S1) may be, for example, a field-effect transistor, such as a MOSFET, or a bipolar transistor.
  • the monitoring of the current amplitude of the supply voltage Vin can be done by a monitoring circuit U1.
  • the monitoring circuit U1 can be, for example, an integrated circuit (for example an ASIC, microcontroller or DSP). Depending on the monitoring of the current amplitude of the supply voltage Vin, the monitoring circuit U1 can specify the threshold value for the opening of the switch S1.
  • the threshold value is preferably specified as already mentioned on the basis of the monitoring of the current amplitude of the supply voltage Vin.
  • only two values can be preset as a threshold value, the lower threshold value being given below a specific value when a supply voltage Vin is present, and the upper threshold value being specified when the supply voltage Vin is exceeded.
  • a plurality of threshold values are stored in a kind of table and these are specified according to the specifications of the table for different voltage ranges of the supply voltage Vin.
  • the monitoring circuit U1 can detect, for example, over the buffer element C1 or at the (positive) output of the rectifier GR1 or else, if present, before the decoupling element or the voltage difference across the decoupling element (preferably by a respective voltage measurement in front of and behind the decoupling element).
  • the voltage is measured by means of a voltage divider which picks up the voltage across the buffer element C1 or at the (positive) output of the rectifier GR1 and reduces it to a potential which can be evaluated by the monitoring circuit U1.
  • the monitoring circuit U 1 can also be designed (for example in high-voltage technology) so that it can directly detect the voltage across the buffer element C1 or at the (positive) output of the rectifier GR1.
  • the monitoring circuit U1 can also control the switch S1.
  • the monitoring circuit U1 can, on the one hand, monitor the current through the switch S1 by means of a current detection Ip (for example a current shunt) and, in addition, monitor the current amplitude of the supply voltage Vin.
  • the control of the switch (S1) may be dependent on further monitoring, for example, by monitoring the demagnetization of the inductance L2, the detected voltage of the LED or the detected amplitude of the current through the LED.
  • all feedbacks or monitors on the secondary side are electrically isolated, i. the feedback of the detected on the output side (secondary side) signals to the monitoring circuit U1 via a potential separation (for example by means of opto-coupler or transformer).
  • the switch-off duration of the switch S1 depends on the detected amplitude of the current through the LED.
  • the predetermined threshold may depend on the current amplitude of the supply voltage. In a simple variant, for example, if the supply voltage exceeds a certain value, an increase of the threshold value can take place.
  • the secondary winding L2s magnetically coupled to the primary winding L2p is connected to a rectifier (D2) and a smoothing circuit (C2) to which the LED can be connected.
  • the rectifier (D2) on the secondary winding L2s of the transformer can be formed by a diode D2 or by a full-wave rectifier.
  • the inductance L2 can feed a smoothing circuit during its demagnetization, this smoothing circuit can be, for example, a capacitor C2 or an LC (capacitor inductance C2-L3) or CLC (capacitor-inductance capacitor C2-L3-C3) filter.
  • the secondary side with the smoothing circuit (C2) is preferably designed so that a constant current supply of the LED is made possible.
  • the driver circuit with the monitoring circuit U1 can also be designed so that the switch (S1) is also kept closed when the light-emitting means (LED) is not in operation or is only supplied with a supply voltage Vin which is far below the nominal supply voltage Vin is, and always opened only when the current through the switch (S1) has reached a predetermined threshold.
  • the switch (S1) can be kept in the closed state, unless it is turned off by a corresponding active control.
  • the active drive to turn off (open) the switch (S1) by bridging the hold circuit or by lowering the drive level for the control terminal of the switch (S1).
  • the holding circuit can also be designed such that, as soon as a low voltage is present at the input of the driver circuit, it already keeps the switch (S1) closed, while the driver circuit does not yet start up.
  • a light source for an LED can be formed, with a base for use of the light source in a commercially available lamp base, comprising a driver circuit according to the invention.
  • the invention is based on an embodiment according to Fig. 2 .
  • Fig. 3 and Fig. 4 explained with a driver circuit for an LED.
  • Fig. 1 explains a connection for a mains voltage, which is followed by a rectifier GR1 and a filter circuit L1 and a latch element. This is followed by an inductance L2 and a switch S1.
  • the inductance L2 is magnetized when the switch S1 is closed, and the inductance L2 is demagnetized when the switch S1 is opened, and at least during the demagnetization phase, the current through the inductance L2 feeds the LED.
  • the driver circuit can be constructed as a boost converter circuit or as a flyback converter circuit.
  • the flyback converter circuit or the boost converter circuit is designed to be isolated, ie, the clocked inductance L2 of the driver circuit has a secondary winding L2s, which is magnetically coupled to the primary winding L2p of the inductance L2.
  • a current detector preferably a unidirectional decoupling element, is included between the rectifier GR1 and the latching element C1.
  • the decoupling element can be formed as a current detector by a diode D1.
  • a full-wave rectifier DV1 as decoupling element.
  • the current detector By means of the current detector, the current flow through the rectifier (GR1) in the inductance (L2) and the switch (S1) and / or the buffer (filter capacitor) (C1) can be monitored.
  • bypass circuit R40, Q4 which is deactivated when the current detector (for example the decoupling element) passes a current.
  • a bypass circuit (R40, Q4) is always activated when a current flows into the driver circuit for an LED.
  • a current in the driver circuit for an LED always flows when a current flows through the rectifier GR1 via the inductance L2 and the switch S1 or into the intermediate storage element.
  • the decoupling member thus acts as a current detector.
  • This voltage across the decoupling element can be monitored. Due to this monitoring can be done by a monitoring circuit U1.
  • This monitoring circuit U1 may be, for example, an integrated circuit.
  • the monitoring circuit U1 may activate or deactivate the bypass circuit (R40, Q4) depending on the monitoring of the decoupling element as a current detector.
  • the monitoring circuit U1 can detect, for example, only the voltage before the decoupling element or the voltage difference across the decoupling element (preferably by a respective voltage measurement in front of and behind the decoupling element).
  • the monitoring circuit U1 can also control the switch S1.
  • the decoupling element as a current detector can be formed by a diode D1. However, it is also possible to use a full-wave rectifier DV1 as decoupling element. By means of the current detector, the current flow through the rectifier (GR1) in the inductance (L2) and the switch (S1) and / or the filter capacitor (C1) can be monitored.
  • the driver circuit may be connected to a commercial dimmer, and the bypass circuit (R40, Q4) may be activated during phases in which the dimmer cuts off a portion of the phase to provide residual current through the bypass circuit (R40, Q4) and the inductor L2 and to guide the switch S1 and thus to load the dimmer.
  • the buffer element can be realized, for example, by a valley fill circuit ( Fig. 3 ) or else through a filter capacitor (smoothing capacitor) C1 ( Fig. 2 ) are formed.
  • the switch S1 can be switched on whenever a demagnetization of the inductance L2 is detected. However, a switch-on can always take place only when the inductance L2 is de-magnetized, and a certain period of time can also be between the time of demagnetization and the restarting.
  • the switch S1 can be driven, for example, by an integrated circuit for a power factor correction.
  • the monitoring circuit U1 may include a power factor correction control circuit.
  • the inductance L2 may be a transformer L2p, L2s, which serves as a potential-separating member.
  • the primary winding L2p of the transformer is connected in series with the switch S1.
  • the secondary winding L2s magnetically coupled to the primary winding L2p is connected to a rectifier (D2) and a smoothing circuit (C2) to which the LED can be connected.
  • the rectifier (D2) on the secondary winding L2s of the transformer can be formed by a diode D2 or by a full-wave rectifier.
  • the on and / or off duration of the switch S1 may be dependent on the detected amplitude of the current through the LED. Preferably, however, the switch-on and / or switch-off duration of the switch S1 does not decrease to zero or close to zero. In a simple variant, for example, a limitation of the current through the LED can be done by limiting the duty cycle.
  • the inductance L2 can feed a smoothing circuit (C2) during its demagnetization, this smoothing circuit (C2) can be, for example, a capacitor C2 or an LC or CLC filter.
  • the bypass circuit (R40, Q4) may be formed by a resistor R40 in series with a switch Q4.
  • the bypass circuit can also have a current source (constant current source) as a bridging circuit.
  • a current source constant current source
  • An example of a current source (constant current source) is in Fig. 4 shown.
  • Fig. 4 only a section of the driver circuit according to the invention for a light source is shown.
  • the current detector is formed here by current monitoring element R34.
  • the monitoring circuit U1 formed by a transistor Q5 and a resistor R30 connected to an internal power supply Vcc
  • the bypass circuit is deactivated.
  • the current flow through the current monitor R34 is the current that flows through the rectifier (GR1) into the inductance (L2) and the switch (S1) or the buffer element.
  • Fig. 4 is the monitoring circuit U1 discrete, but it can also as in the examples of Fig. 2 and 3 be designed as an integrated circuit.
  • an integrated circuit as a monitoring circuit U1 further functions such as the control of the switch S1 can be integrated with.
  • the bypass circuit is according to Fig. 4 formed by a current source (constant current source).
  • the current source (constant current source) is formed in detail by the transistors Q4 and Q6 and the resistors R40, R27 and R29.
  • the bypass circuit may be as in Fig. 4 represented via a full-wave rectifier D3 via the filter circuit L2 to the terminal for a mains voltage, parallel to the rectifier GR1 be connected.
  • the rectifier via which the bypass circuit (R40, Q4) is connected to the mains voltage connection, can either be the same rectifier, via which a current flows into the inductance and the switch or the buffer element (ie the rectifier GR1, see FIG Fig. 2 and 3 ), or another rectifier D3 may be connected in parallel with this first rectifier GR1 (see Fig. 4 ) to be available.
  • a method for driving an LED is enabled, wherein the LED is driven via a driver circuit, and the driver circuit is fed from a terminal for a mains voltage via a filter circuit (L1) and a rectifier (GR1), and the driver circuit a latch element, a Inductance (L2) and a switch (S1), and wherein a bypass circuit (R40, Q4) provided at the output of the rectifier (GR1) is deactivated when a current flows through the rectifier (GR1) in driving circuit.
  • a light source for an LED can be constructed, with a base for the use of the light source in a commercially available lamp base, comprising a driver circuit according to the invention. It can also be the embodiment of the Fig. 1 with the Fig. 2 to 4 be combined.
  • the switch S1 can always remain closed as long as the current through the switch S1 has not reached a predetermined threshold value, in addition an activatable bridging circuit (R40, Q4) can be present, which is activated only if a sufficient current flow is detected by the current detector has been. In this way, two current paths are formed over which current can flow, and thus the bypass circuit (R40, Q4) can be designed to generate only small additional losses in its activation (as compared to a solution without a second current path through the device) Switch (S1)).
  • an activatable bridging circuit R40, Q4
  • a driver circuit for a luminous means comprising a connection for a mains voltage, a rectifier GR1 and a filter circuit, a buffer element (C1), an inductance L2 and a switch S1 can also be formed, wherein the high-frequency clocking of the Switch S1 energy can be transmitted via the inductance to the lamp, and at the output of the rectifier GR1, a bypass circuit (R40, Q4) may be arranged such that it is activated when the light-emitting device (LED) is not in operation. This can be the case, for example, if no mains voltage or only a low voltage is applied far below the mains voltage.
  • the bridging circuit (R40, Q4) can thus be designed so that it is only deactivated when the light source (LED) is operated.
  • the bridging circuit (R40, Q4) may be connected, for example, so that without activation (activation) of this bypass circuit (R40, Q4), a current flow through them, as soon as a voltage across the bypass circuit (R40, Q4) is applied.
  • the bridging circuit (R40, Q4) can also be embodied such that, as soon as a low voltage is present at the input of the driver circuit, it already keeps the switch (S1) closed while the driver circuit per se does not yet start up.
  • bypass circuit R40, Q4 can only be deactivated in the phases when a current flow through the current detector is detected.
  • the bypass circuit (R40, Q4) has a switchable element, such as a transistor (Q4), which can be driven and thus disable the bypass circuit (R40, Q4).
  • the deactivation of the bypass circuit (R40, Q4) can be done by the monitoring circuit U1. Under the operation of the lamp (LED) is to understand that the driver circuit for driving and powering the LED is not in operation.
  • the lighting means may, for example, also be a gas discharge lamp.
  • a light source for an LED with a base for use of the light source in a commercial lamp base, comprising a driver circuit according to the invention.

Description

  • Die Erfindung betrifft eine Treiberschaltung für eine LED gemäß dem Oberbegriff des Patentanspruchs 1 und ein Verfahren zur Ansteuerung einer LED gemäß dem Oberbegriff des Patentanspruchs 19.
  • Technisches Gebiet
  • Derartige Treiberschaltungen werden in Beleuchtungssystemen verwendet, um eine farbige oder flächige Beleuchtung von Räumen, Wegen oder auch Fluchtwegen zu erreichen. Üblicherweise werden dabei die Leuchtmittel von Betriebsgeräten angesteuert und bei Bedarf aktiviert. Für eine derartige Beleuchtung werden organische oder anorganische Leuchtdioden (LED) als Lichtquelle genutzt.
  • Stand der Technik
  • Zur Beleuchtung werden anstelle von Gasentladungslampen und Glühlampen immer häufiger auch Leuchtdioden als Lichtquelle eingesetzt. Die Effizienz und Lichtausbeute von Leuchtdioden wird immer stärker erhöht, so dass sie bei verschiedenen Anwendungen der Allgemeinbeleuchtung bereits zum Einsatz kommen. Allerdings sind Leuchtdioden Punktlichtquellen und strahlen stark gebündeltes Licht aus.
  • Heutige LED Beleuchtungssystem haben oft jedoch den Nachteil, dass aufgrund von Alterung oder durch Austausch einzelner LEDs oder LED Module sich die Farbabgabe oder die Helligkeit verändern kann. Zudem hat die Sekundäroptik einen Einfluss auf das Thermomanagement, da die Wärmeabstrahlung behindert wird. Zudem kann es aufgrund von Alterung und Wärmeeinwirkung zu einer Veränderung des Phosphors der LED kommen.
  • Eine Helligkeitsänderung ist oft nur mit einer aufwändigen Steuerschaltung möglich, eine einfache Anschlußmöglichkeit an handelsübliche Dimmer ist nicht gegeben, da es in Zusammenwirkung mit den meisten Dimmern zu einem Flackern des Lichtes kommt, oder die Dimmer gar nicht funktionieren.
  • Leuchtmittel, die einen störungsfreien und energiesparenden Betrieb durch ein Leuchtmittel mit Leuchtdioden ohne die oben genannten Nachteile bzw. unter einer deutlichen Reduzierung dieser Nachteile ermöglicht, sind bereits aus US 2007/0182347 und WO2005/115058 beispielsweise bekannt.
  • Darstellung der Erfindung
  • Es ist die Aufgabe der Erfindung, eine alternative Lösung bereitzustellen, insbesondere betreffend die Überwachung des Stromes, der durch den handelsüblichen Dimmer abschneidet wird. Diese Aufgabe wird für eine gattungsgemäße Vorrichtung erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1, gelöst. Besonders vorteilhafte Ausführungen der Erfindung sind in den Unteransprüchen beschrieben.
  • Die erfindungsgemäße Lösung für eine Vorrichtung zum Betreiben von LEDs (organische oder anorganische Leuchtdioden) beruht auf dem Gedanken, dass eine Treiberschaltung für eine LED einen Anschluss für eine Netzspannung, eine Filterschaltung und einen Gleichrichter, eine Induktivität und einen Schalter aufweist. Die Induktivität weist eine Primärwicklung und eine daran gekoppelte Sekundärwicklung auf.
  • Die Induktivität wird aufmagnetisiert, wenn der Schalter geschlossen ist, und die Induktivität wird entmagnetisiert, wenn der Schalter geöffnet ist, und zumindest während der Phase der Entmagnetisierung speist der Strom durch die Induktivität die LED.
  • Die Ausschaltdauer des Schalters kann von der erfassten Amplitude des Stromes durch die LED abhängig sein. Die Ausschaltdauer des Schalters kann zusätzlich oder alternativ vom Entmagnetisierungsstrom abhängig sein.
  • Es ist eine Überbrückungsschaltung vorhanden, die über einen Gleichrichter mit dem Anschluss für eine Netzspannung verbunden ist und die deaktiviert wird, wenn ein Strom über den Gleichrichter in die Induktivität und den Schalter und /oder das Zwischenspeicherelement fließt.
  • Es wird immer dann eine Überbrückungsschaltung deaktiviert, wenn ein Strom in die Treiberschaltung für eine LED fließt. Ein Strom in die Treiberschaltung für eine LED fließt immer dann, wenn über den Gleichrichter ein Strom über die Induktivität und den Schalter oder in das Zwischenspeicherelement fließt. Als Stromdetektor kann ein Entkoppelglied oder ein Stromüberwachungsglied dienen.
  • Der Gleichrichter, über den die Überbrückungsschaltung mit dem Anschluss für eine Netzspannung verbunden ist, kann entweder der gleiche Gleichrichter sein, über den ein Strom in die Induktivität und den Schalter oder das Zwischenspeicherelement fließt, oder es kann ein weiterer Gleichrichter parallel zu diesem ersten Gleichrichter vorhanden sein.
  • Die erfindungsgemäße Lösung betrifft auch ein Leuchtmittel für eine LED, mit einem Sockel zum Einsatz des Leuchtmittels in einen handelsüblichen Lampensockel, aufweisend eine erfindungsgemäße Treiberschaltung gebildet werden.
  • Die Erfindung betrifft auch ein Verfahren zur Ansteuerung einer LED, wobei die LED über eine Treiberschaltung angesteuert wird, und die Treiberschaltung aus einem Anschluss für eine Netzspannung über eine Filterschaltung (L1) und einen Gleichrichter (GR1) gespeist wird, und die Treiberschaltung ein Zwischenspeicherelement, eine Induktivität (L2) und einen Schalter (S1) aufweist,
    wobei eine am Ausgang des Gleichrichters (GR1) vorhandene Überbrückungsschaltung (R40, Q4) deaktiviert wird, wenn ein Strom über den Gleichrichter (GR1) in Treiberschaltung fließt.
  • Auf diese Weise ist es möglich, eine sehr gleichbleibende und gleichmäßige Ausleuchtung einer Fläche durch ein Leuchtmittel mit Leuchtdioden, die auf einfache Weise in der Helligkeit steuerbar ist, zu erreichen.
  • Beschreibung der bevorzugten Ausführungsbeispiele
  • Nachfolgend soll die Erfindung anhand der beigefügten Zeichnung näher erläutert werden. Es zeigen:
    • Fig. 1 zeigt eine grundsätzliche Ausgestaltung einer erfindungsgemäßen Vorrichtung zur Betreiben von LED
    • Fig. 2 zeigt eine Ausgestaltung einer erfindungsgemäßen Vorrichtung
    • Fig. 3 zeigt eine weitere Ausgestaltung einer erfindungsgemäßen Vorrichtung
    • Fig. 4 zeigt eine weitere Ausgestaltung einer erfindungsgemäßen Vorrichtung
  • Nachfolgend wird die grundsätzliche Schaltung zum Betreiben einer LED, die Basis für die Erfindung ist, anhand eines Ausführungsbeispiels gemäß Fig. 1 mit einer Treiberschaltung für eine LED erklärt.
  • Die Treiberschaltung für eine LED weist einen Anschluss für eine Netzspannung, eine Filterschaltung (L1) und einen Gleichrichter (GR1), eine Induktivität (L2) und einen Schalter (S1) auf. Auf den Gleichrichter (GR1) folgt ein Zwischenspeicherelement (C1), wobei dieses vorzugsweise nur zum Herausfiltern von hochfrequenten Spannungsänderungen dient und nicht eine starke Glättung der Spannung am Ausgang des Gleichrichters (GR1) vornimmt. Es kann sich bei dem Zwischenspeicherelement (C1) beispielsweise um einen Kondensator, vorzugsweise einen Filterkondensator, handeln. Die Induktivität (L2) weist vorzugsweise eine Primärwicklung (L2p) und eine daran gekoppelte Sekundärwicklung (L2s) auf.
  • Die Induktivität (L2) wird aufmagnetisiert, wenn der Schalter geschlossen ist, und die Induktivität (L2) wird entmagnetisiert, wenn der Schalter S1 geöffnet ist, und zumindest während der Phase der Entmagnetisierung speist der Strom durch die Induktivität (L2) die LED.
  • Der Schalter S1 wird stets nur dann geöffnet, wenn der Strom durch den Schalter S1 einen vorgegebenen Schwellenwert erreicht hat.
    Der Strom durch den Schalter S1 kann mittels einer Stromerfassung Ip (beispielsweise einen Stromshunt) erfasst werden.
  • Die Stromerfassung Ip kann aber auch direkt am Schalter S1 erfolgen (beispielsweise bei einem sog. SENSE FET, der eine integrierte Überwachung des Stromes enthält). Insbesondere ist keine zeitliche Begrenzung der Einschaltzeitdauer vorgegeben, sondern es ist auch eine unendliche Einschaltzeit des Schalters S1 möglich.
  • Die Äusschaltdauer des Schalters S1 kann von der erfassten Amplitude des Stromes durch die LED abhängig sein. Vorzugsweise ist die Rückführung der Erfassung der Amplitude des Stromes durch die LED potentialgetrennt ausgeführt (d.h. die Regelschleife für die Abhängigkeit der Ausschaltdauer des Schalters S1). Die Ausschaltdauer kann aber beispielsweise auch festgelegt sein (fix eingestellt).
  • Die Ausschaltdauer des Schalters S1 kann beispielsweise auch vom Entmagnetisierungsstrom direkt oder indirekt abhängig sein.
    Der Schalter S1 kann immer dann eingeschaltet werden, wenn eine Entmagnetisierung der Induktivität (L2) festgestellt wird. Ein Einschalten kann aber auch immer erst bei entmagnetisierter Induktivität (L2) erfolgen, zwischen dem Zeitpunkt der Entmagnetisierung und dem Wiedereinschalten kann auch eine gewisse Zeitspanne liegen.
  • Die Treiberschaltung kann an einen handelüblichen Dimmer angeschlossen werden, und der Schalter S1 kann während der Phasen, in denen der Dimmer einen Teil der Phase abschneidet, geschlossen sein, um einen Reststrom über die Induktivität und den Schalter S1 zu führen und somit den Dimmer zu belasten. Dieser Reststrom durch den Schalter S1 wird vorzugsweise durch den vorgegebenen Schwellenwert begrenzt, um eine Überlastung des Schalters S1 zu vermeiden.
    Die Induktivität (L2) kann Transformator (L2p, L2s) sein, der als potentialtrennendes Glied dient.
  • Es kann also die Treiberschaltung durch hochfrequentes Takten des Schalters (S1) Energie über die Induktivität (L2) an das Leuchtmittel (LED) übertragen werden. Der Schalter (S1) kann beispielsweise ein Feldeffekttransistor, wie beispielsweise ein MOSFET, oder ein Bipolartransistor sein.
  • Die Überwachung der aktuellen Amplitude der Versorgungsspannung Vin kann durch eine Überwachungsschaltung U1 erfolgen. Die Überwachungsschaltung U1 kann beispielsweise eine integrierte Schaltung (beispielsweise ein ASIC, Microcontroller oder DSP) sein. Die Überwachungsschaltung U1 kann abhängig von der Überwachung der aktuellen Amplitude der Versorgungsspannung Vin den Schwellenwert für das Öffnen des Schalters S1 vorgeben.
  • Der Schwellenwert wird vorzugsweise wie bereits erwähnt aufgrund der Überwachung der aktuellen Amplitude der Versorgungsspannung Vin vorgegeben. Als Schwellenwert können beispielsweise nur zwei Werte vorgegeben werden, wobei bei Anliegen einer Versorgungsspannung Vin unterhalb eines bestimmten Wertes der untere Schwellenwert vorgegeben wird und bei Überschreiten eines bestimmten Wertes für die Versorgungsspannung Vin der obere Schwellenwert vorgegeben wird. Es ist aber auch möglich, dass mehrere Schwellenwerte in einer Art Tabelle abgelegt sind und diese entsprechend den Vorgaben der Tabelle für verschiedene Spannungsbereiche der Versorgungsspannung Vin vorgegeben werden.
  • Die Überwachungsschaltung U1 kann beispielsweise über dem Zwischenspeicherelement C1 bzw. am (positiven) Ausgang des Gleichrichters GR1 erfassen oder auch, sofern vorhanden, vor dem Entkoppelglied oder den Spannungsunterschied über dem Entkoppelglied (vorzugsweise durch je eine Spannungsmessung vor und hinter dem Entkoppelglied) erfassen. In einer einfachen Variante erfolgt die Spannungsmessung mittels eines Spannungsteilers, der die Spannung über dem Zwischenspeicherelement C1 bzw. am (positiven) Ausgang des Gleichrichters GR1 abgreift und auf ein Potential herabsetzt, welches durch die Überwachungsschaltung U1 ausgewertet werden kann.
  • Die Überwachungsschaltung U 1 kann aber auch so ausgelegt sein (beispielsweise in Hochvolttechnologie), dass sie direkt die Spannung über dem Zwischenspeicherelement C1 bzw. am (positiven) Ausgang des Gleichrichters GR1 erfassen kann.
  • Die Überwachungsschaltung U1 kann auch den Schalter S1 ansteuern. In diesem Fall kann die Überwachungsschaltung U1 einerseits den Strom durch den Schalter S1 kann mittels einer Stromerfassung Ip (beispielsweise einen Stromshunt) überwachen und zusätzlich die aktuelle Amplitude der Versorgungsspannung Vin überwachen. Zusätzlich kann die Ansteuerung des Schalters (S1) von weiteren Überwachungen abhängig sein, beispielsweise von einer Überwachung der Entmagnetisierung der Induktivität L2, der erfassten Spannung der LED oder der erfassten Amplitude des Stromes durch die LED. Vorzugsweise sind alle Rückführungen oder Überwachungen auf der Sekundärseite potentialgetrennt ausgeführt, d.h. die Rückkopplung der auf der Ausgangsseite (Sekundärseite) erfassten Signale zur Überwachungsschaltung U1 erfolgt über eine Potentialtrennung (beispielsweise mittels Optokoppler oder Transformator). Vorzugsweise ist wie bereits erläutert die Ausschaltdauer des Schalters S1 von der erfassten Amplitude des Stromes durch die LED abhängig.
  • Der vorgegebene Schwellenwert kann von der aktuellen Amplitude der Versorgungsspannung abhängen. In einer einfachen Variante kann beispielweise, wenn die Versorgungsspannung einen gewissen Wert überschreitet, eine Erhöhung des Schwellenwertes erfolgen.
  • Die magnetisch an die Primärwicklung L2p gekoppelte Sekundärwicklung L2s ist mit einem Gleichrichter (D2) und einer Glättungsschaltung (C2) verbunden, an welche die LED angeschlossen werden können. Der Gleichrichter (D2) an der Sekundärwicklung L2s des Transformators kann durch eine Diode D2 oder auch durch einen Vollweggleichrichter gebildet werden.
  • Die Induktivität L2 kann bei ihrer Entmagnetisierung eine Glättungsschaltung speisen, diese Glättungsschaltung kann beispielsweise ein Kondensator C2 oder ein LC (Kondensator-Induktivität C2-L3) oder CLC (Kondensator-Induktivität -Kondensator C2-L3-C3) Filter sein. Die Sekundärseite mit der Glättungsschaltung (C2) ist vorzugsweise so ausgelegt, dass eine Konstantstromspeisung der LED ermöglicht wird.
  • Es kann die Treiberschaltung mit der Überwachungsschaltung U1 auch so ausgelegt sein, dass der Schalter (S1) auch geschlossen gehalten wird, wenn das Leuchtmittel (LED) nicht in Betrieb ist oder nur mit einer Versorgungsspannung Vin gespeist wird, die weit unterhalb der nominalen Versorgungsspannung Vin liegt, und stets nur dann geöffnet wird, wenn der Strom durch den Schalter (S1) einen vorgegebenen Schwellenwert erreicht hat. Beispielsweise durch eine Halteschaltung kann der Schalter (S1) im geschlossenen Zustand gehalten werden, sofern er nicht durch eine entsprechende aktive Ansteuerung ausgeschaltet wird. Beispielsweise kann die aktive Ansteuerung zum Ausschalten (Öffnen) des Schalters (S1) durch Überbrücken der Halteschaltung oder durch ein Herabziehen des Ansteuerpegels für den Steueranschluß des Schalters (S1) erfolgen.
  • Die Halteschaltung kann auch derart ausgeführt sein, dass sie, sobald eine geringe Spannung am Eingang der Treiberschaltung anliegt, bereits den Schalter (S1) geschlossen hält, während die Treiberschaltung an sich noch nicht anläuft.
  • Somit kann ein Leuchtmittel für eine LED gebildet werden, mit einem Sockel zum Einsatz des Leuchtmittels in einen handelsüblichen Lampensockel, aufweisend eine erfindungsgemäße Treiberschaltung.
  • Nachfolgend wird die Erfindung anhand eines Ausführungsbeispiels gemäß Fig. 2, Fig. 3 und Fig. 4 mit einer Treiberschaltung für eine LED erklärt.
  • Die Treiberschaltung stimmt von der Grundschaltung her mit der der Fig. 1 überein und weist wie bereits bei Fig. 1 erklärt einen Anschluss für eine Netzspannung, auf den ein Gleichrichter GR1 und eine Filterschaltung L1 sowie ein Zwischenspeicherelement folgen. Darauf folgt eine Induktivität L2 und einen Schalter S1.
    Die Induktivität L2 wird aufmagnetisiert, wenn der Schalter S1 geschlossen ist, und die Induktivität L2 entmagnetisiert wird, wenn der Schalter S1 geöffnet ist, und zumindest während der Phase der Entmagnetisierung speist der Strom durch die Induktivität L2 die LED.
  • Die Treiberschaltung kann als Hochsetzsteller-Schaltung oder auch als Sperrwandler-Schaltung aufgebaut sein. Vorteilhafterweise ist die Sperrwandler-Schaltung oder die Hochsetzsteller-Schaltung potentialgetrennt ausgeführt, d.h. die getaktete Induktivität L2 der Treiberschaltung weist eine Sekundärwicklung L2s auf, die magnetisch an die Primärwicklung L2p der Induktivität L2 gekoppelt ist.
  • Ein Stromdetektor, vorzugsweise ein unidirektionales Entkoppelglied, ist zwischen dem Gleichrichter GR1 und dem Zwischenspeicherelement C1 enthalten.
  • Gemäß den Beispielen der Fig. 2 und 3 kann das Entkoppelglied als Stromdetektor durch eine Diode D1 gebildet werden. Es kann aber auch ein Vollweggleichrichter DV1 als Entkoppelglied dienen.
    Mittels des Stromdetektors kann der Stromfluß über den Gleichrichter (GR1) in die Induktivität (L2) und den Schalter (S1) und / oder den Zwischenspeicher (Filterkondensator) (C1) überwacht werden.
  • Am Ausgang des Gleichrichters GR1 ist eine Überbrückungsschaltung (R40, Q4) vorhanden, die deaktiviert wird, wenn der Stromdetektor (beispielsweise das Entkoppelglied) einen Strom durchlässt.
  • Es wird also immer dann eine Überbrückungsschaltung (R40, Q4) aktiviert wird, wenn ein Strom in die Treiberschaltung für eine LED fließt. Ein Strom in die Treiberschaltung für eine LED fließt immer dann, wenn über den Gleichrichter GR1 ein Strom über die Induktivität L2 und den Schalter S1 oder in das Zwischenspeicherelement fließt. Das Entkoppelglied wirkt somit als Stromdetektor.
  • Sobald ein Strom über den Gleichrichter GR1 ein Strom über die Induktivität L2 und den Schalter S1 oder in das Zwischenspeicherelement fließt, fällt über dem Entkoppelglied eine Spannung ab, die nur geringfügig höher als die Spannung über dem Zwischenspeicherelement ist (also die Spannung hinter dem Entkoppelglied). Diese Spannung über dem Entkoppelglied kann überwacht werden. Aufgrund dieser Überwachung kann durch eine Überwachungsschaltung U1 erfolgen. Diese Überwachungsschaltung U1 kann beispielsweise eine integrierte Schaltung sein.
  • Die Überwachungsschaltung U1 kann abhängig von der Überwachung des Entkoppelgliedes als Stromdetektor die Überbrückungsschaltung (R40, Q4) aktivieren oder deaktiveren.
  • Die Überwachungsschaltung U1 kann beispielsweise nur die Spannung vor dem Entkoppelglied oder den Spannungsunterschied über dem Entkoppelglied (vorzugsweise durch je eine Spannungsmessung vor und hinter dem Entkoppelglied) erfassen.
  • Die Überwachungsschaltung U1 kann auch den Schalter S1 ansteuern.
  • Das Entkoppelglied als Stromdetektor kann durch eine Diode D1 gebildet werden. Es kann aber auch ein Vollweggleichrichter DV1 als Entkoppelglied dienen. Mittels des Stromdetektors kann der Stromfluß über den Gleichrichter (GR1) in die Induktivität (L2) und den Schalter (S1) und / oder den Filterkondensator (C1) überwacht werden.
  • Die Treiberschaltung kann an einen handelüblichen Dimmer angeschlossen werden, und die Überbrückungsschaltung (R40, Q4) kann während der Phasen aktiviert sein, in denen der Dimmer einen Teil der Phase abschneidet, um einen Reststrom über die Überbrückungsschaltung (R40, Q4) sowie die Induktivität L2 und den Schalter S1 zu führen und somit den Dimmer zu belasten.
  • Das Zwischenspeicherelement kann beispielsweise durch eine Valley Fill Schaltung (Fig. 3) oder aber auch durch einen Filterkondensator (Glättungskondensator) C1 (Fig. 2) gebildet werden.
  • Der Schalter S1 kann immer dann eingeschaltet werden, wenn eine Entmagnetisierung der Induktivität L2 festgestellt wird. Ein Einschalten kann aber auch immer erst bei entmagnetisierter Induktivität L2 erfolgen, zwischen dem Zeitpunkt der Entmagnetisierung und dem Wiedereinschalten kann auch eine gewisse Zeitspanne liegen.
  • Der Schalter S1 kann beispielsweise durch einen integrierten Schaltkreis für eine Leistungsfaktorkorrektur angesteuert werden. Die Überwachungsschaltung U1 kann eine Steuerschaltung für eine Leistungsfaktorkorrektur enthalten.
  • Die Induktivität L2 kann ein Transformator L2p, L2s sein, der als potentialtrennendes Glied dient. Dabei ist die Primärwicklung L2p des Transformators in Serie mit dem Schalter S1 verbunden. Die magnetisch an die Primärwicklung L2p gekoppelte Sekundärwicklung L2s ist mit einem Gleichrichter (D2) und einer Glättungsschaltung (C2) verbunden, an welche die LED angeschlossen werden können. Der Gleichrichter (D2) an der Sekundärwicklung L2s des Transformators kann durch eine Diode D2 oder auch durch einen Vollweggleichrichter gebildet werden.
  • Die Ein- und / oder Ausschaltdauer des Schalters S1 kann von der erfassten Amplitude des Stromes durch die LED abhängig sein. Vorzugsweise sinkt die Ein- und / oder Ausschaltdauer des Schalters S1 aber nicht auf Null oder nahe Null ab. In einer einfachen Variante kann beispielweise eine Begrenzung des Stromes durch die LED durch eine Begrenzung der Einschaltdauer erfolgen.
  • Die Induktivität L2 kann bei ihrer Entmagnetisierung eine Glättungsschaltung (C2) speisen, diese Glättungsschaltung (C2) kann beispielsweise ein Kondensator C2 oder ein LC oder CLC Filter sein. Die Überbrückungsschaltung (R40, Q4) kann durch einen Widerstand R40 in Serie mit einem Schalter Q4 gebildet werden.
  • Die Überbrückungsschaltung kann aber auch als Überbrückungsschaltung eine Stromquelle (Konstantstromquelle) aufweisen. Ein Beispiel für eine Stromquelle (Konstantstromquelle) ist in Fig. 4 dargestellt.
  • In Fig. 4 ist nur ein Ausschnitt der erfindungsgemäßen Treiberschaltung für ein Leuchtmittel dargestellt.
  • Der Stromdetektor wird hier durch Stromüberwachungsglied R34 gebildet. Abhängig vom Stromfluß durch das Stromüberwachungsglied R34 kann die Überwachungsschaltung U1 (gebildet durch einen Transistor Q5 und einen Widerstand R30, der mit einer internen Spannungsversorgung Vcc verbunden ist) die Überbrückungsschaltung aktivieren oder deaktivieren. Sobald ein ausreichender Stromfluß durch den Stromdetektor (also das Stromüberwachungsglied R34) festgestellt wird, wird die Überbrückungsschaltung deaktiviert. Der Stromfluß durch das Stromüberwachungsglied R34 (Stromdetektor) ist der Strom, der über den Gleichrichter (GR1) in die Induktivität (L2) und den Schalter (S1) oder das Zwischenspeicherelement fließt.
  • In dem Beispiel gemäß Fig. 4 ist die Überwachungsschaltung U1 diskret aufgebaut, sie kann aber auch wie bei den Beispielen der Fig. 2 und 3 als integrierte Schaltung ausgeführt sein. Bei dem Einsatz einer integrierten Schaltung als Überwachungsschaltung U1 können weitere Funktionen wie beispielsweise die Ansteuerung des Schalters S1 mit integriert werden.
  • Die Überbrückungsschaltung wird gemäß Fig. 4 durch eine Stromquelle (Konstantstromquelle) gebildet.
  • Die Stromquelle (Konstantstromquelle) wird im Einzelnen durch die Transistoren Q4 und Q6 sowie die Widerstände R40, R27 und R29 gebildet.
  • Die Überbrückungsschaltung kann wie in Fig. 4 dargestellt über einen Vollweggleichrichter D3 über die Filterschaltung L2 mit dem Anschluss für eine Netzspannung, parallel zu dem Gleichrichter GR1, verbunden sein.
  • Der Gleichrichter, über den die Überbrückungsschaltung (R40, Q4) mit dem Anschluss für eine Netzspannung verbunden ist, kann entweder der gleiche Gleichrichter sein, über den ein Strom in die Induktivität und den Schalter oder das Zwischenspeicherelement fließt (also der Gleichrichter GR1, siehe Fig. 2 und 3), oder es kann ein weiterer Gleichrichter D3 parallel zu diesem ersten Gleichrichter GR1 (siehe Fig. 4) vorhanden sein.
  • Somit wird ein Verfahren zur Ansteuerung einer LED ermöglicht, wobei die LED über eine Treiberschaltung angesteuert wird, und die Treiberschaltung aus einem Anschluss für eine Netzspannung über eine Filterschaltung (L1) und einen Gleichrichter (GR1) gespeist wird, und die Treiberschaltung ein Zwischenspeicherelement, eine Induktivität (L2) und einen Schalter (S1) aufweist, und wobei eine am Ausgang des Gleichrichters (GR1) vorhandene Überbrückungsschaltung (R40, Q4) deaktiviert wird, wenn ein Strom über den Gleichrichter (GR1) in Treiberschaltung fließt.
  • Somit kann ein Leuchtmittel für eine LED aufgebaut werden, mit einem Sockel zum Einsatz des Leuchtmittels in einen handelsüblichen Lampensockel, aufweisend eine erfindungsgemäße Treiberschaltung. Es kann auch die Ausführungsform der Fig. 1 mit der der Fig. 2 bis 4 kombiniert werden.
  • Zum einen kann der Schalter S1 immer geschlossen bleiben, solange der Strom durch den Schalter S1 einen vorgegebenen Schwellenwert nicht erreicht hat, zusätzlich kann eine aktivierbare Überbrückungsschaltung (R40, Q4) vorhanden sein, die nur aktiviert wird, wenn durch den Stromdetektor ein ausreichender Stromfluß detektiert wurde. Auf diese Weise werden zwei Strompfade gebildet, über die ein Strom fließen kann, und somit kann die Überbrückungsschaltung (R40, Q4) so ausgelegt werden, dass sie nur geringe zusätzliche Verluste bei ihrer Aktivierung erzeugt (im Vergleich zu einer Lösung ohne zweiten Strompfad durch den Schalter (S1)).
  • Es kann auch eine Treiberschaltung für ein Leuchtmittel, vorzugsweise für eine LED, aufweisend einen Anschluss für eine Netzspannung, einen Gleichrichter GR1 und eine Filterschaltung, ein Zwischenspeicherelement (C1), eine Induktivität L2 und einen Schalter S1, gebildet werden, wobei durch hochfrequentes Takten des Schalters S1 Energie über die Induktivität an das Leuchtmittel übertragen werden kann, und am Ausgang des Gleichrichters GR1 kann eine Überbrückungsschaltung (R40, Q4) derart angeordnet sein, dass diese aktiviert ist, wenn das Leuchtmittel (LED) nicht in Betrieb ist.
    Dies kann beispielsweise der Fall sein, wenn keine Netzspannung oder nur eine geringe Spannung weit unterhalb der Netzspannung anliegt. Die Überbrückungsschaltung (R40, Q4) kann also so ausgelegt sein, dass sie nur deaktiviert wird, wenn ein Betrieb des Leuchtmittels (LED) erfolgt. Die Überbrückungsschaltung (R40, Q4) kann beispielsweise so verschaltet sein, dass ohne Ansteuerung (Aktivierung) dieser Überbrückungsschaltung (R40, Q4) ein Stromfluß durch diese erfolgt, sobald eine Spannung über der Überbrückungsschaltung (R40, Q4) anliegt.
  • Die Überbrückungsschaltung (R40, Q4) kann beispielsweise auch derart ausgeführt sein, dass sie, sobald eine geringe Spannung am Eingang der Treiberschaltung anliegt, bereits den Schalter (S1) geschlossen hält, während die Treiberschaltung an sich noch nicht anläuft.
  • Auf diese Weise kann auch eine bessere Kompatibilität zu sogenannten Netzfreischaltern erreicht werden. Netzfreischalter erkennen, wenn keine Last eingeschaltet ist (also kein nennenswerter Strom durch eine Last fließt), und trennen für diesen Fall den entsprechenden Stromkreis vom Netz. Um ein Wiedereinschalten einer Last (d.h. eines Verbrauchers) zu erkennen, schalten sie üblicherweise eine Spannung mit einem geringen Pegel von beispielsweise 20V auf. Die Überbrückungsschaltung (R40, Q4), die ja aktiviert wäre (da das Leuchtmittel abgeschaltet wurde), würde beim Zuschalten des Leuchtmittels eine Last darstellen, die ausreicht, um den Netzfreischalter auf eine Netzspeisung durchzuschalten.
  • Zusätzlich kann die Überbrückungsschaltung (R40, Q4) während des Betriebes des Leuchtmittels nur in den Phasen deaktiviert werden, wenn ein Stromfluß durch den Stromdetektor festgestellt wird.
  • Vorzugsweise weist die Überbrückungsschaltung (R40, Q4) ein schaltbares Element wie beispielsweise einen Transistor (Q4) auf, der angesteuert werden kann und somit die Überbrückungsschaltung (R40, Q4) deaktivieren kann. Die Deaktivierung der Überbrückungsschaltung (R40, Q4) kann durch die Überwachungsschaltung U1 erfolgen.
    Unter dem ein Betrieb des Leuchtmittels (LED) ist zu verstehen, dass die Treiberschaltung zur Ansteuerung und Energiespeisung der LED nicht in Betreib ist.
  • In diesem Zustand ist es aber möglich, dass eine geringe Versorgungsspannung Vin anliegt, die aber nicht ausreicht, dass die Treiberschaltung zur Speisung der LED anläuft, und insbesondere findet in diesem Zustand keine hochfrequente Taktung des Schalters (S1) durch die Treiberschaltung statt. (Wobei der Schalter (S1) durch die Treiberschaltung eingeschaltet werden kann, es findet aber kein schneller (hochfrequenter) Wechsel zwischen Ein - und Ausschalten des Schalters (S1) statt.) Die anliegende Versorgungsspannung Vin kann allerdings ausreichend sein, um bestimmte Teile der Treiberschaltung wie die Überbrückungsschaltung oder die Halteschaltung zu aktivieren.
  • Das Leuchtmittel kann beispielsweise aber auch eine Gasentladungslampe sein.
  • Es kann somit gemäß der Erfindung ein Leuchtmittel für eine LED, mit einem Sockel zum Einsatz des Leuchtmittels in einen handelsüblichen Lampensockel, aufweisend eine erfindungsgemäße Treiberschaltung gebildet werden.

Claims (13)

  1. Treiberschaltung für eine LED, aufweisend einen Anschluss für eine Netzspannung, eine Filterschaltung (L1) und einen Gleichrichter (GR1) ein Zwischenspeicherelement, einen Schalter (S1) und eine Induktivität (L2) mit einer Primärwicklung (L2p) und einer daran gekoppelten Sekundärwicklung (L2s),
    wobei die Induktivität (L2) aufmagnetisiert wird, wenn der Schalter (S1) geschlossen ist, und die Induktivität (L2) entmagnetisiert wird, wenn der Schalter (S1) geöffnet ist, und zumindest während der Phase der Entmagnetisierung der Strom durch die Induktivität (L2) die LED speist, wobei die Treiberschaltung an einen handelüblichen Dimmer angeschlossen werden kann, wobei am Ausgang des Gleichrichters (GR1) eine parallel gekoppelte Überbrückungsschaltung (R40, Q4) vorhanden ist, die deaktiviert wird, wenn ein Strom über den Gleichrichter (GR1) in die Induktivität (L2) und den Schalter (S1) und / oder das Zwischenspeicherelement fließt und die Überbrückungsschaltung (R40, Q4) während der Phasen aktiviert ist, in denen der Dimmer einen Teil der Phase abschneidet, um einen Reststrom über die Überbrückungsschaltung (R40, Q4) zu führen und somit den Dimmer zu belasten,
    dadurch gekennzeichnet, dass ein Stromdetektor zwischen der Überbrückungsschaltung (R40, Q4) und dem Zwischenspeicherelement (C1) enthalten ist, und mittels des Stromdetektors der oben genannte Strom über den Gleichrichter (GR1) in die Induktivität (L2) und den Schalter (S1) und / oder das Zwischenspeicherelement (C1) überwacht werden kann.
  2. Treiberschaltung für eine LED, nach Anspruch 1, dadurch gekennzeichnet,
    das der Stromdetektor durch ein Entkoppelglied (D1), insbesondere durch eine Diode, gebildet wird.
  3. Treiberschaltung für eine LED, nach Anspruch 1,
    dadurch gekennzeichnet,
    das der Stromdetektor durch ein Stromüberwachungsglied (R34) gebildet wird.
  4. Treiberschaltung für eine LED, nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass das Zwischenspeicherelement durch einen Filterkondensator (C1) gebildet wird.
  5. Treiberschaltung für eine LED, nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass das Zwischenspeicherelement durch eine Valley Fill Schaltung gebildet wird.
  6. Treiberschaltung für eine LED, nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass der Schalter (S1) immer dann eingeschaltet wird, wenn eine Entmagnetisierung der Induktivität (L2) festgestellt wird.
  7. Treiberschaltung für eine LED, nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass ein Einschalten des Schalters (S1) immer erst bei entmagnetisierter Induktivität (L2) erfolgt.
  8. Treiberschaltung für eine LED, nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    dass die Induktivität (L2) als potentialtrennendes Glied dient.
  9. Treiberschaltung für eine LED, nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet,
    dass die Ein- und / oder Ausschaltdauer des Schalters (S1) von der erfassten Amplitude des Stromes durch die LED abhängig ist.
  10. Treiberschaltung für eine LED, nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet,

    dass die Induktivität (L2) bei ihrer Entmagnetisierung eine Glättungsschaltung (C2) speist.
  11. Treiberschaltung für eine LED, nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet,
    dass die tJberbrückungsschaltung (R40, Q4) durch einen Widerstand (R40) in Serie mit einem Schalter (Q4) gebildet wird.
  12. Treiberschaltung für eine LED, nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet,
    dass die Überbrückungsschaltung (R40, C4) eine Stromquelle aufweist.
  13. Leuchtmittel für eine LED, mit einem Sockel zum Einsatz des Leuchtmittels in einen handelsüblichen Lampensockel, aufweisend eine Treiberschaltung nach einem der vorhergehenden Ansprüche.
EP10725007.8A 2009-04-03 2010-04-02 Treiberschaltung für eine led Active EP2425681B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT2142009 2009-04-03
AT17692009 2009-11-09
PCT/EP2010/002134 WO2010112238A1 (de) 2009-04-03 2010-04-02 Treiberschaltung für eine led

Publications (2)

Publication Number Publication Date
EP2425681A1 EP2425681A1 (de) 2012-03-07
EP2425681B1 true EP2425681B1 (de) 2017-07-19

Family

ID=42562774

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10725007.8A Active EP2425681B1 (de) 2009-04-03 2010-04-02 Treiberschaltung für eine led

Country Status (3)

Country Link
EP (1) EP2425681B1 (de)
CN (1) CN102450100B (de)
WO (1) WO2010112238A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101762443B1 (ko) * 2011-03-24 2017-07-27 엘지이노텍 주식회사 드라이버 ic 입력단의 방전 경로 회로
KR101787762B1 (ko) * 2011-08-09 2017-10-18 엘지이노텍 주식회사 드라이버 ic 입력단의 방전 경로 회로
US20130257297A1 (en) * 2012-03-27 2013-10-03 Ge Hungary Kft. Lamp comprising high-efficiency light devices
AT14041U1 (de) * 2013-04-30 2015-03-15 Tridonic Gmbh & Co Kg Betriebsschaltung für Leuchtdioden mit Filterelement
DE102016221741A1 (de) * 2016-11-07 2018-05-09 Tridonic Gmbh & Co Kg Treiber für eine Leuchtdiode und Verfahren

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005115058A1 (en) * 2004-05-19 2005-12-01 Goeken Group Corp. Dimming circuit for led lighting device with means for holding triac in conduction

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4236894B2 (ja) * 2002-10-08 2009-03-11 株式会社小糸製作所 点灯回路
JP2006164727A (ja) * 2004-12-07 2006-06-22 Koito Mfg Co Ltd 車両用灯具の点灯制御回路
JP2007080771A (ja) * 2005-09-16 2007-03-29 Nec Lighting Ltd 照明用低圧電源回路、照明装置および照明用低圧電源出力方法
US7656103B2 (en) * 2006-01-20 2010-02-02 Exclara, Inc. Impedance matching circuit for current regulation of solid state lighting
US7649327B2 (en) * 2006-05-22 2010-01-19 Permlight Products, Inc. System and method for selectively dimming an LED
CN101715655B (zh) * 2007-06-15 2012-04-25 赤多尼科阿特可两合股份有限公司 用于驱动光源尤其是led的驱动器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005115058A1 (en) * 2004-05-19 2005-12-01 Goeken Group Corp. Dimming circuit for led lighting device with means for holding triac in conduction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAND D ET AL: "Issues, Models and Solutions for Triac Modulated Phase Dimming of LED Lamps", POWER ELECTRONICS SPECIALISTS CONFERENCE, 2007. PESC 2007. IEEE, IEEE, PISCATAWAY, NJ, USA, 17 June 2007 (2007-06-17), pages 1398 - 1404, XP031218489, ISBN: 978-1-4244-0654-8 *

Also Published As

Publication number Publication date
EP2425681A1 (de) 2012-03-07
CN102450100B (zh) 2015-07-22
CN102450100A (zh) 2012-05-09
WO2010112238A1 (de) 2010-10-07

Similar Documents

Publication Publication Date Title
DE102006006026B4 (de) Beleuchtungssteuereinheit für eine Fahrzeugbeleuchtungsvorrichtung
DE102011007229A1 (de) Dimmbare LED-Stromversorgung mit Leistungsfaktorsteuerung
DE112015006564T5 (de) System und Verfahren zur Steuerung von Festkörperlampen
EP2829157B1 (de) Betriebsschaltung für leuchtdioden, mit dimmsignal aus hochfrequent moduliertem impulspakete-signal, mit abgestimmten frequenzen
EP2425681B1 (de) Treiberschaltung für eine led
DE112014002232B4 (de) Betriebsschaltung für LED
WO2013090957A1 (de) Betriebsgerät mit leistungsfaktorkorrektur und rippelbegrenzung durch betriebsänderung
EP2837265B1 (de) Wandler für ein leuchtmittel, led-konverter und verfahren zum betreiben eines llc-resonanzwandlers
WO2012045475A1 (de) Betriebsschaltung für leuchtdioden
EP2523533B1 (de) Betriebsschaltung für Leuchtdioden
EP2952061B1 (de) Vorrichtung zum led betrieb
EP2425679B1 (de) Treiberschaltung für eine led
DE112015006565T5 (de) Festkörperbeleuchtungs-Treiberschaltung mit Vorschaltgerät-Kompatibilität
EP2420108B1 (de) Treiberschaltung für leds
AT12495U1 (de) Fehlererkennung für leuchtdioden
DE102013211767A1 (de) Betriebsschaltung für leuchtdioden
DE102017119999B4 (de) Verfahren zur Vermeidung des Überschreitens von Stromgrenzwerten in einer lichtemittierenden Diode sowie Steuereinrichtung zur Durchführung des Verfahrens
EP2510750B1 (de) Treiberschaltung für eine led
DE102015210510A1 (de) Schaltungsanordnung zum Betreiben mindestens eines ersten und eines zweiten LED-Strangs an einer Wechsel- oder einer Gleichspannungsquelle
EP2992738B1 (de) Fehlererkennung für led
DE102015217146A1 (de) Getaktete Sperrwandlerschaltung
DE202018100418U1 (de) Schaltungsanordnung zum Betreiben eines Leuchtmittels
EP3086626B1 (de) Betriebsschaltung, leuchte und verfahren zum erfassen eines steuersignals
DE102011086446A1 (de) Benutzersteuerung für eine LED
WO2011130770A1 (de) Betriebsschaltung für leuchtdioden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121220

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170407

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 911581

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010013884

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170719

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171019

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171020

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171019

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010013884

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

26N No opposition filed

Effective date: 20180420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20180516

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502010013884

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180402

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190426

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502010013884

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045000000

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 911581

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100402

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170719

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220419

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230427

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230402