EP2425681A1 - Treiberschaltung für eine led - Google Patents
Treiberschaltung für eine ledInfo
- Publication number
- EP2425681A1 EP2425681A1 EP10725007A EP10725007A EP2425681A1 EP 2425681 A1 EP2425681 A1 EP 2425681A1 EP 10725007 A EP10725007 A EP 10725007A EP 10725007 A EP10725007 A EP 10725007A EP 2425681 A1 EP2425681 A1 EP 2425681A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- led
- driver circuit
- switch
- circuit
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005347 demagnetization Effects 0.000 claims abstract description 14
- 238000012544 monitoring process Methods 0.000 claims description 32
- 238000004804 winding Methods 0.000 claims description 15
- 239000003990 capacitor Substances 0.000 claims description 11
- 238000009499 grossing Methods 0.000 claims description 10
- 230000001419 dependent effect Effects 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 230000008859 change Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000012432 intermediate storage Methods 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/37—Converter circuits
- H05B45/3725—Switched mode power supply [SMPS]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/37—Converter circuits
- H05B45/3725—Switched mode power supply [SMPS]
- H05B45/382—Switched mode power supply [SMPS] with galvanic isolation between input and output
Definitions
- the invention relates to a driver circuit for an LED according to the preamble of patent claim 1 and a method for driving an LED according to the preamble of patent claim 19.
- Such driver circuits are used in lighting systems to achieve a colored or flat lighting of rooms, paths or escape routes.
- the bulbs are driven by operating devices and activated as needed.
- organic or inorganic light emitting diodes LED are used as the light source.
- light-emitting diodes are also increasingly being used as the light source.
- the efficiency and luminous efficacy of light-emitting diodes is being increased more and more so that they are already being used in various general lighting applications.
- light emitting diodes are point sources of light and emit highly concentrated light.
- the solution according to the invention for a device for operating LEDs is based on the idea that a driver circuit for an LED has a connection for a mains voltage, a filter circuit and a rectifier, an inductance and a switch.
- the inductor has a primary winding and a secondary winding coupled thereto.
- the inductor is magnetized when the switch is closed, and the inductor is demagnetized when the switch is open, and at least during the demagnetization phase, the current through the inductor feeds the LED.
- the switch-off duration of the switch may depend on the detected amplitude of the current through the LED.
- the switch-off duration of the switch may additionally or alternatively be dependent on the degaussing current.
- bypass circuit connected through a rectifier to the mains voltage terminal and deactivated when current flows through the rectifier into the inductor and the switch and / or the latch.
- a bypass circuit is disabled whenever a current flows into the driver circuit for an LED. A current in the driver circuit for an LED flows whenever over the
- Rectifier a current flows through the inductor and the switch or into the buffer element.
- a decoupling element or a current monitoring element can serve as a current detector.
- the rectifier via which the bypass circuit is connected to the connection for a mains voltage, can either be the same rectifier, via which a current flows into the inductance and the switch or the buffer element, or there can be another rectifier in parallel to this first rectifier be.
- the solution according to the invention also relates to a luminous means for an LED, with a base for the use of the luminous means in a commercial lamp base, comprising a driver circuit according to the invention are formed.
- the invention also relates to a method for driving an LED, wherein the LED is driven via a driver circuit, and the driver circuit is fed from a terminal for a mains voltage via a filter circuit (L1) and a rectifier (GR1), and the driver circuit is a buffer element, an inductance (L2) and a switch (S1), wherein a bypass circuit (R40, Q4) present at the output of the rectifier (GR1) is deactivated when a current flows via the rectifier (GR1) in drive circuit.
- L1 filter circuit
- GR1 rectifier
- S1 switch
- FIG. 1 shows a basic embodiment of a device according to the invention for operating LED.
- FIG. 2 shows an embodiment of a device according to the invention
- Fig. 3 shows a further embodiment of an inventive
- Fig. 4 shows a further embodiment of an inventive
- the driver circuit for an LED has a terminal for a mains voltage, a filter circuit (L1) and a rectifier (GR1), an inductance (L2) and a switch (S1).
- the rectifier (GR1) is followed by a buffer element (C1), this preferably only for filtering out high-frequency
- the buffer element (C1) may be a capacitor, preferably a filter capacitor.
- the inductance (L2) preferably has a primary winding (L2p) and a secondary winding (L2s) coupled thereto.
- the inductance (L2) is magnetized when the switch is closed, and the inductance (L2) is demagnetized when the switch S1 is opened, and at least during the phase of
- Demagnetization feeds the current through the inductor (L2) to the LED.
- the switch S1 is always opened only when the current through the switch S1 has reached a predetermined threshold.
- the current through the switch S1 can be detected by means of a current detection Ip (for example, a current shunt).
- the current detection Ip can also be done directly at the switch S1 (for example, in a so-called. SENSE FET, which contains an integrated monitoring of the current).
- no time limit of the switch-on time duration is predetermined, but an infinite switch-on time of the switch S1 is also possible.
- the turn-off duration of the switch S1 may be dependent on the detected amplitude of the current through the LED.
- the feedback of the detection of the amplitude of the current through the LED is carried out electrically isolated (ie, the control loop for the dependence of the switch-off of the switch S1).
- the switch-off duration can, however, also be fixed, for example (fixed).
- the switch-off duration of the switch S1 can, for example, also be directly or indirectly dependent on the degaussing current.
- the switch S1 can be switched on whenever a demagnetization of the inductance (L2) is detected. However, a switch-on can always take place only when the inductance (L2) is de-magnetized, and a certain period of time can also be between the time of demagnetization and the restart.
- the driver circuit may be connected to a commercial dimmer, and the switch S1 may be closed during the phases in which the dimmer cuts off a portion of the phase to pass a residual current across the inductor and the switch S1 and thus load the dimmer , This residual current through the switch S1 is preferably limited by the predetermined threshold in order to avoid overloading of the switch S1.
- the inductance (L2) may be transformer (L2p, L2s), which serves as a potential-separating member.
- the driver circuit can be transmitted by high-frequency clocking of the switch (S1) energy via the inductance (L2) to the light source (LED).
- the switch (S1) may be, for example, a field-effect transistor, such as a MOSFET, or a bipolar transistor.
- the monitoring of the current amplitude of the supply voltage Vin can be done by a monitoring circuit U1.
- the monitoring circuit U1 can be, for example, an integrated circuit (for example an ASIC, microcontroller or DSP). Depending on the monitoring of the current amplitude of the supply voltage Vin, the monitoring circuit U1 can specify the threshold value for the opening of the switch S1.
- the threshold value is preferably specified as already mentioned on the basis of the monitoring of the current amplitude of the supply voltage Vin.
- only two values can be preset as a threshold value, the lower threshold value being given below a specific value when a supply voltage Vin is present, and the upper threshold value being specified when the supply voltage Vin is exceeded.
- a plurality of threshold values are stored in a kind of table and these are specified according to the specifications of the table for different voltage ranges of the supply voltage Vin.
- the monitoring circuit UI can detect, for example, the intermediate storage element C1 or the (positive) output of the rectifier GR1 or, if present, before the decoupling element or the voltage difference across the
- the voltage is measured by means of a voltage divider which picks up the voltage across the buffer element C1 or at the (positive) output of the rectifier GR1 and reduces it to a potential which can be evaluated by the monitoring circuit U1.
- the monitoring circuit U1 can also be designed (for example in high-voltage technology) so that it can directly detect the voltage across the buffer element C1 or at the (positive) output of the rectifier GR1.
- the monitoring circuit U1 can also control the switch S1.
- the monitoring circuit U1 can, on the one hand, monitor the current through the switch S1 by means of a current detection Ip (for example a current shunt) and, in addition, monitor the current amplitude of the supply voltage Vin.
- the control of the switch (S1) may be dependent on further monitoring, for example, by monitoring the demagnetization of the inductance L2, the detected voltage of the LED or the detected amplitude of the current through the LED.
- all feedbacks or monitors on the secondary side are electrically isolated, i. the feedback of the detected on the output side (secondary side) signals to the monitoring circuit U1 via a potential separation (for example by means of opto-coupler or transformer).
- the switch-off duration of the switch S1 depends on the detected amplitude of the current through the LED.
- the predetermined threshold may depend on the current amplitude of the supply voltage. In a simple variant, for example, if the supply voltage exceeds a certain value, an increase of the threshold value can take place.
- the secondary winding L2s magnetically coupled to the primary winding L2p is connected to a rectifier (D2) and a smoothing circuit (C2) to which the LED can be connected.
- the rectifier (D2) on the secondary winding L2s of the transformer can be formed by a diode D2 or by a full-wave rectifier.
- the inductance L2 can feed a smoothing circuit during its demagnetization, this smoothing circuit can be, for example, a capacitor C2 or an LC (capacitor inductance C2-L3) or CLC (capacitor-inductance capacitor C2-L3-C3) filter.
- the secondary side with the smoothing circuit (C2) is preferably designed so that a constant current supply of the LED is made possible.
- the driver circuit with the monitoring circuit U1 can also be designed so that the switch (S1) is also kept closed when the light-emitting means (LED) is not in operation or is only supplied with a supply voltage Vin which is far below the nominal supply voltage Vin is, and always opened only when the current through the switch (S1) has reached a predetermined threshold.
- the switch (S1) can be kept in the closed state, unless it is turned off by a corresponding active control.
- the active drive to turn off (open) the switch (S1) by bridging the hold circuit or by lowering the drive level for the control terminal of the switch (S1).
- the holding circuit can also be designed such that, as soon as a low voltage is present at the input of the driver circuit, it already keeps the switch (S1) closed, while the driver circuit does not yet start up.
- a light source for an LED can be formed, with a base for use of the light source in a commercially available lamp base, comprising a driver circuit according to the invention.
- the driver circuit agrees with the basic circuit forth with that of FIG. 1 and has, as already explained in Fig. 1, a connection for a mains voltage to which a rectifier GR1 and a
- the inductance L2 is magnetized when the switch S1 is closed, and the inductance L2 is demagnetized when the
- Switch S1 is open, and at least during the phase of
- Demagnetization feeds the current through the inductor L2, the LED.
- the driver circuit can be constructed as a boost converter circuit or as a flyback converter circuit.
- the flyback converter circuit or the boost converter circuit is designed to be isolated, ie, the clocked inductance L2 of the driver circuit has a secondary winding L2s, which is magnetically coupled to the primary winding L2p of the inductance L2.
- a current detector preferably a unidirectional decoupling element, is included between the rectifier GR1 and the latching element C1.
- the decoupling element can be formed as a current detector by a diode D1.
- a full-wave rectifier DV1 as decoupling element.
- the current detector By means of the current detector, the current flow through the rectifier (GR1) in the inductance (L2) and the switch (S1) and / or the buffer (filter capacitor) (C1) can be monitored.
- bypass circuit R40, Q4 which is deactivated when the current detector (for example the decoupling element) passes a current.
- a bypass circuit (R40, Q4) is always activated when a current flows into the driver circuit for an LED.
- a current in the driver circuit for an LED always flows when a current flows through the rectifier GR1 via the inductance L2 and the switch S1 or into the intermediate storage element.
- the decoupling member thus acts as a current detector.
- This monitoring circuit U1 may be, for example, an integrated circuit.
- the monitoring circuit U1 may activate or deactivate the bypass circuit (R40, Q4) depending on the monitoring of the decoupling element as a current detector.
- the monitoring circuit U1 can detect, for example, only the voltage before the decoupling element or the voltage difference across the decoupling element (preferably by a respective voltage measurement in front of and behind the decoupling element).
- the monitoring circuit U1 can also control the switch S1.
- the decoupling element as a current detector can be formed by a diode D1. However, it is also possible to use a full-wave rectifier DV1 as decoupling element. By means of the current detector, the current flow through the rectifier (GR1) in the inductance (L2) and the switch (S1) and / or the filter capacitor (C1) can be monitored.
- the driver circuit may be connected to a commercial dimmer, and the bypass circuit (R40, Q4) may be activated during phases in which the dimmer cuts off a portion of the phase to provide residual current through the bypass circuit (R40, Q4) and the inductor L2 and to guide the switch S1 and thus to load the dimmer.
- the buffer element can be formed, for example, by a valley FiII circuit (FIG. 3) or else by a filter capacitor (smoothing capacitor) C1 (FIG. 2).
- the switch S1 can be switched on whenever a demagnetization of the inductance L2 is detected. However, a switch-on can always take place only when the inductance L2 is de-magnetized, and a certain period of time can also be between the time of demagnetization and the restarting.
- the switch S1 can be driven, for example, by an integrated circuit for a power factor correction.
- the monitoring circuit U1 may include a power factor correction control circuit.
- the inductance L2 may be a transformer L2p, L2s, which serves as a potential-separating member.
- the primary winding L2p of the transformer is connected in series with the switch S1.
- the secondary winding L2s magnetically coupled to the primary winding L2p is connected to a rectifier (D2) and a smoothing circuit (C2) to which the LED can be connected.
- the rectifier (D2) on the secondary winding L2s of the transformer can be formed by a diode D2 or by a full-wave rectifier.
- the on and / or off duration of the switch S1 may be dependent on the detected amplitude of the current through the LED. Preferably, however, the switch-on and / or switch-off duration of the switch S1 does not decrease to zero or close to zero. In a simple variant, for example, a limitation of the current through the LED can be done by limiting the duty cycle.
- the inductance L2 can feed a smoothing circuit (C2) during its demagnetization, this smoothing circuit (C2) can be, for example, a capacitor C2 or an LC or CLC filter.
- the bypass circuit (R40, Q4) may be formed by a resistor R40 in series with a switch Q4.
- the bypass circuit can also have a current source (constant current source) as a bridging circuit.
- a current source constant current source
- FIG. 1 An example of a current source (constant current source) is shown in FIG.
- the current detector is formed here by current monitoring element R34.
- the monitoring circuit U1 formed by a transistor Q5 and a resistor R30 connected to an internal transistor Q5 can be used
- Power supply Vcc is connected) enable or disable the bypass circuit. As soon as sufficient current flow through the current detector (ie current monitor R34) is detected, the bypass circuit is deactivated.
- the current flow through the current monitor R34 is the current that flows through the rectifier (GR1) into the inductance (L2) and the switch (S1) or the buffer element.
- the monitoring circuit 111 is constructed discretely, but it can also be designed as an integrated circuit, as in the examples of FIGS. 2 and 3.
- an integrated circuit monitoring circuit U1 can more
- the bypass circuit is shown in FIG. 4 by a current source
- the current source (Constant current source) formed.
- the current source (constant current source) is formed in detail by the transistors Q4 and Q6 and the resistors R40, R27 and R29.
- the bypass circuit can be connected via a full-wave rectifier D3 via the filter circuit L2 to the connection for a mains voltage, parallel to the rectifier GR1.
- the rectifier via which the bypass circuit (R40, Q4) is connected to the connection for a mains voltage, can either be the same rectifier, via which a current flows into the inductance and the switch or the buffer element (ie the rectifier GR1, see FIG 2 and 3), or another rectifier D3 may be present in parallel with this first rectifier GR1 (see Fig. 4).
- a method for driving an LED is enabled, wherein the LED is driven via a driver circuit, and the driver circuit is fed from a terminal for a mains voltage via a filter circuit (L1) and a rectifier (GR1), and the driver circuit a latch element, a Inductance (L2) and a switch (S1), and wherein a bypass circuit (R40, Q4) provided at the output of the rectifier (GR1) is deactivated when a current flows through the rectifier (GR1) in driving circuit.
- a light source for an LED can be constructed, with a base for the use of the light source in a commercially available lamp base, comprising a driver circuit according to the invention.
- the embodiment of FIG. 1 can also be combined with that of FIGS. 2 to 4.
- the switch S1 can always remain closed as long as the current through the switch S1 has not reached a predetermined threshold value, in addition an activatable bridging circuit (R40, Q4) can be present, which is activated only if a sufficient current flow is detected by the current detector has been.
- the bypass circuit (R40, Q4) can be designed to generate only small additional losses in its activation (as compared to a solution without a second current path through the device) Switch (S1)).
- a driver circuit for a luminous means preferably for an LED, comprising a connection for a mains voltage, a rectifier GR1 and a filter circuit, a buffer element (C1), an inductance L2 and a switch S1 can also be formed, wherein the high-frequency clocking of the Switch S1 energy can be transmitted via the inductance to the lamp, and at the output of the rectifier GR1, a bypass circuit (R40, Q4) may be arranged such that it is activated when the light-emitting device (LED) is not in operation.
- a bypass circuit R40, Q4
- the bridging circuit (R40, Q4) can thus be designed so that it is only deactivated when the light source (LED) is operated.
- the bridging circuit (R40, Q4) may be connected, for example, so that without activation (activation) of this bypass circuit (R40, Q4), a current flow through them, as soon as a voltage across the bypass circuit (R40, Q4) is applied.
- the bridging circuit (R40, Q4) can also be embodied such that, as soon as a low voltage is present at the input of the driver circuit, it already keeps the switch (S1) closed while the driver circuit per se does not yet start up.
- bypass circuit R40, Q4 can only be deactivated in the phases when a current flow through the current detector is detected.
- the bypass circuit (R40, Q4) has a switchable element, such as a transistor (Q4), which can be driven and thus disable the bypass circuit (R40, Q4).
- the deactivation of the bypass circuit (R40, Q4) can be done by the monitoring circuit U1.
- the lamp (LED) is to understand that the driver circuit for driving and powering the LED is not in operation. In this state, it is possible that a low supply voltage Vin is present, but that is not sufficient that the driver circuit starts to power the LED, and in particular no high-frequency clocking of the switch (S1) takes place in this state by the driver circuit.
- the switch (S1) can be switched on by the driver circuit, but there is no fast (high-frequency) change between switching the switch (S1) on and off.)
- the applied supply voltage Vin may be sufficient to drive certain parts of the driver circuit as the bypass circuit or the hold circuit to activate.
- the lighting means may, for example, also be a gas discharge lamp.
- a light source for an LED with a base for use of the light source in a commercial lamp base, comprising a driver circuit according to the invention.
Landscapes
- Circuit Arrangement For Electric Light Sources In General (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT2142009 | 2009-04-03 | ||
AT17692009 | 2009-11-09 | ||
PCT/EP2010/002134 WO2010112238A1 (de) | 2009-04-03 | 2010-04-02 | Treiberschaltung für eine led |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2425681A1 true EP2425681A1 (de) | 2012-03-07 |
EP2425681B1 EP2425681B1 (de) | 2017-07-19 |
Family
ID=42562774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10725007.8A Active EP2425681B1 (de) | 2009-04-03 | 2010-04-02 | Treiberschaltung für eine led |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2425681B1 (de) |
CN (1) | CN102450100B (de) |
WO (1) | WO2010112238A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101762443B1 (ko) | 2011-03-24 | 2017-07-27 | 엘지이노텍 주식회사 | 드라이버 ic 입력단의 방전 경로 회로 |
KR101787762B1 (ko) * | 2011-08-09 | 2017-10-18 | 엘지이노텍 주식회사 | 드라이버 ic 입력단의 방전 경로 회로 |
US20130257297A1 (en) * | 2012-03-27 | 2013-10-03 | Ge Hungary Kft. | Lamp comprising high-efficiency light devices |
AT14041U1 (de) * | 2013-04-30 | 2015-03-15 | Tridonic Gmbh & Co Kg | Betriebsschaltung für Leuchtdioden mit Filterelement |
DE102016221741A1 (de) * | 2016-11-07 | 2018-05-09 | Tridonic Gmbh & Co Kg | Treiber für eine Leuchtdiode und Verfahren |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005115058A1 (en) * | 2004-05-19 | 2005-12-01 | Goeken Group Corp. | Dimming circuit for led lighting device with means for holding triac in conduction |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4236894B2 (ja) * | 2002-10-08 | 2009-03-11 | 株式会社小糸製作所 | 点灯回路 |
JP2006164727A (ja) * | 2004-12-07 | 2006-06-22 | Koito Mfg Co Ltd | 車両用灯具の点灯制御回路 |
JP2007080771A (ja) * | 2005-09-16 | 2007-03-29 | Nec Lighting Ltd | 照明用低圧電源回路、照明装置および照明用低圧電源出力方法 |
US7656103B2 (en) * | 2006-01-20 | 2010-02-02 | Exclara, Inc. | Impedance matching circuit for current regulation of solid state lighting |
US7649327B2 (en) * | 2006-05-22 | 2010-01-19 | Permlight Products, Inc. | System and method for selectively dimming an LED |
EP2247162B1 (de) * | 2007-06-15 | 2016-01-06 | Tridonic GmbH & Co KG | Betriebsgerät zum Betreiben einer Lichtquelle, insbesondere LED |
-
2010
- 2010-04-02 WO PCT/EP2010/002134 patent/WO2010112238A1/de active Application Filing
- 2010-04-02 CN CN201080024367.7A patent/CN102450100B/zh not_active Expired - Fee Related
- 2010-04-02 EP EP10725007.8A patent/EP2425681B1/de active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005115058A1 (en) * | 2004-05-19 | 2005-12-01 | Goeken Group Corp. | Dimming circuit for led lighting device with means for holding triac in conduction |
Non-Patent Citations (2)
Title |
---|
RAND D ET AL: "Issues, Models and Solutions for Triac Modulated Phase Dimming of LED Lamps", POWER ELECTRONICS SPECIALISTS CONFERENCE, 2007. PESC 2007. IEEE, IEEE, PISCATAWAY, NJ, USA, 17 June 2007 (2007-06-17), pages 1398 - 1404, XP031218489, ISBN: 978-1-4244-0654-8 * |
See also references of WO2010112238A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN102450100A (zh) | 2012-05-09 |
WO2010112238A1 (de) | 2010-10-07 |
CN102450100B (zh) | 2015-07-22 |
EP2425681B1 (de) | 2017-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006006026B4 (de) | Beleuchtungssteuereinheit für eine Fahrzeugbeleuchtungsvorrichtung | |
DE112015006564T5 (de) | System und Verfahren zur Steuerung von Festkörperlampen | |
EP2829157B1 (de) | Betriebsschaltung für leuchtdioden, mit dimmsignal aus hochfrequent moduliertem impulspakete-signal, mit abgestimmten frequenzen | |
DE102011007229A1 (de) | Dimmbare LED-Stromversorgung mit Leistungsfaktorsteuerung | |
EP2425681B1 (de) | Treiberschaltung für eine led | |
DE112014002232B4 (de) | Betriebsschaltung für LED | |
WO2013090957A1 (de) | Betriebsgerät mit leistungsfaktorkorrektur und rippelbegrenzung durch betriebsänderung | |
WO2012045475A1 (de) | Betriebsschaltung für leuchtdioden | |
EP2523533B1 (de) | Betriebsschaltung für Leuchtdioden | |
EP2952061B1 (de) | Vorrichtung zum led betrieb | |
EP2425679B1 (de) | Treiberschaltung für eine led | |
EP2420108B1 (de) | Treiberschaltung für leds | |
AT12495U1 (de) | Fehlererkennung für leuchtdioden | |
DE102013211767A1 (de) | Betriebsschaltung für leuchtdioden | |
DE102017119999B4 (de) | Verfahren zur Vermeidung des Überschreitens von Stromgrenzwerten in einer lichtemittierenden Diode sowie Steuereinrichtung zur Durchführung des Verfahrens | |
DE102015210510A1 (de) | Schaltungsanordnung zum Betreiben mindestens eines ersten und eines zweiten LED-Strangs an einer Wechsel- oder einer Gleichspannungsquelle | |
EP2992738B1 (de) | Fehlererkennung für led | |
EP2510750B1 (de) | Treiberschaltung für eine led | |
DE102015217146A1 (de) | Getaktete Sperrwandlerschaltung | |
DE202018100418U1 (de) | Schaltungsanordnung zum Betreiben eines Leuchtmittels | |
DE202016107324U1 (de) | Schaltungsanordnung zum Betreiben von Leuchtmitteln | |
US20220338321A1 (en) | Solid-State Lighting With A Luminaire Phase-Dimming Driver | |
AT13981U1 (de) | Betriebsschaltung für Leuchtdioden | |
DE102011086446A1 (de) | Benutzersteuerung für eine LED | |
WO2011130770A1 (de) | Betriebsschaltung für leuchtdioden |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20111117 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20121220 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170407 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 911581 Country of ref document: AT Kind code of ref document: T Effective date: 20170815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010013884 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170719 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171019 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171020 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171019 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171119 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010013884 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
26N | No opposition filed |
Effective date: 20180420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20180516 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180430 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 502010013884 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180402 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20190426 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502010013884 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H05B0033080000 Ipc: H05B0045000000 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 911581 Country of ref document: AT Kind code of ref document: T Effective date: 20190402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100402 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170719 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220419 Year of fee payment: 13 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230427 Year of fee payment: 14 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230402 |