-
Die vorliegende Erfindung betrifft eine Schaltungsanordnung, die zum Betreiben von Leuchtmitteln, insbesondere zum Betreiben einer oder mehrerer LEDs vorgesehen ist. Die Schaltungsanordnung weist hierbei eine mit Spannung versorgbare und mittels wenigstens eines Schalters getaktete Schaltung auf, die einen Konverter bildet, der eine Eingangsspannung in einen für den Betrieb der Leuchtmittel geeigneten ausgangsseitigen Strom umsetzt. Ferner betrifft die vorliegende Erfindung ein Betriebsgerät zum Betreiben von Leuchtmitteln.
-
Leuchtdioden bzw. LEDs haben sich gegenüber klassischen Lichtquellen wie Glühbirnen und/oder Leuchtstofflampen zwischenzeitlich in allen Bereichen der Beleuchtungstechnologie durchgesetzt. Neben ihrer in der Regel höheren Lebensdauer zeichnen sich Leuchtdioden insbesondere dadurch aus, dass sie effizient angesteuert und hinsichtlich ihrer Lichtabgabe beeinflusst werden können. Dies ermöglicht nicht nur ein komfortables Dimmen einzelner LEDs, sondern auch die Möglichkeit, durch Kombinieren der Lichtabgabe unterschiedlich farbiger LEDs Mischlicht eines nahezu beliebigen Farbtons bzw. einer beliebigen Farbtemperatur zu erzeugen.
-
Grundsätzlich ist aus dem Stand der Technik bereits bekannt, LED-Module mit einer oder mehreren LEDs ausgehend von einer Konstantstromquelle mit elektrischer Leistung zu versorgen. Sollen hierbei die LEDs gedimmt werden, so kommt bspw. zusätzlich eine sog. PWM-Modulation zum Einsatz, bei der die Konstantstromregelung in den Einschaltzeitdauern eines PWM-Impulszugs durchgeführt wird. Auch hier ist jedoch erforderlich, dass die üblicherweise eingangsseitig anliegende Versorgungswechselspannung in einen geeigneten Gleichstrom für den LED-Betrieb umgesetzt wird. Beim Dimmen wird dann lediglich das Tastverhältnis des PWM-Signals entsprechend modifiziert.
-
Zur Bereitstellung einer geeigneten Versorgungsspannung bzw. eines entsprechenden Stroms für die LED-Last kommt die bereits erwähnte Konstantstromquelle zum Einsatz, die oftmals in Form eines sog. aktiv getakteten DC-DC-Konverters ausgeführt ist. Diesem DC-DC-Konverter ist wiederum üblicherweise eine ebenfalls aktiv getaktete sog. PFC-Schaltung (Power Factor Correction Circuit bzw. Leistungsfaktorkorrekturschaltung) vorgeschaltet, welche die eingangsseitig zugeführte Versorgungswechselspannung in eine Gleichspannung umsetzt, die dann die Eingangsspannung für den DC-DC-Konverter bildet. Während die Hauptaufgabe des DC-DC-Konverters also darin besteht, den ausgangsseitig angeschlossenen LEDs einen - idealerweise konstanten - Strom geeigneter Höhe zur Verfügung zu stellen, besteht die Aufgabe der Leistungsfaktorkorrekturschaltung in erster Linie darin, die Leistungsaufnahme aus dem Stromversorgungsnetz dahingehend zu optimieren, dass in das Netz zurück wirkende Oberschwingungen, die dort zu Störungen führen können, vermieden werden. Hierzu wird die Leistungsfaktorkorrekturschaltung derart betrieben, dass die Leistungsaufnahme im Wesentlichen dem üblicherweise sinusförmigen Verlauf der Versorgungsspannung entspricht, wodurch ein niedriger Wert für die sog. Total Harmonic Distortion (THD) erzielt wird.
-
Beide zuvor genannten Aufgabenstellungen verfolgen unterschiedliche Ziele, weshalb - wie bereits erwähnt - Betriebsgeräte zum Betreiben von LEDs oftmals separate Komponenten aufweisen, die einerseits eine PFC-Schaltung und andererseits einen DC-DC-Konverter bilden. Die Anzahl der Bauteile der Schaltungsanordnung wird hierdurch jedoch erhöht, weshalb entsprechende Betriebsgeräte eher im höheren Preissegment angesiedelt sind.
-
Darüber hinaus ist allerdings auch bekannt, einfacher aufgebaute Betriebsgeräte bzw. Schaltungsanordnungen einzusetzen, bei denen eine einzige aktiv getaktete Schaltung beide genannten Aufgabenstellungen erfüllen soll. Derartige Schaltungen werden oftmals als sog. Single Stage-Flyback-Konverter bezeichnet, beruhen also auf der Topologie eines Flyback-Konverters bzw. Sperrwandlers, der eingangsseitig unmittelbar mit der ggf. gleichgerichteten Versorgungswechselspannung versorgt ist und ausgangsseitig den Betriebsstrom für die angeschlossenen LEDs zur Verfügung stellt. Derartige Geräte sind deutlich kostengünstiger zu realisieren, da die Anzahl der erforderlichen Komponenten geringer ist. Andererseits ist dann in diesem Fall immer eine Abwägung dahingehend zu treffen, ob die Betriebsweise des Flyback-Konverters derart ausgelegt wird, dass eher das Verhalten hinsichtlich der Total Harmonic Distortion (THD) verbessert wird oder bevorzugt eine konstante Regelung des Ausgangsstroms zur Versorgung der LEDs angestrebt wird. Letztendlich wird bei einer entsprechenden Auslegung des Flyback-Konverters zumindest eine der beiden Aufgabenstellungen nicht optimal erfüllt werden können.
-
Ausgehend von der oben beschriebenen Situation liegt der vorliegenden Erfindung deshalb die Aufgabenstellung zugrunde, bei einer entsprechenden Schaltungsanordnung zum Betreiben von Leuchtmitteln das Verhalten der Schaltungsanordnung zu optimieren.
-
Die Aufgabe wird durch eine Schaltungsanordnung, welche zum Betreiben von Leuchtmitteln, insbesondere zum Betreiben einer oder mehrerer LEDs vorgesehen ist und die Merkmale des Anspruchs 1 aufweist, gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
-
Gemäß der vorliegenden Erfindung wird vorgeschlagen, das Verhalten des Konverters an die aktuelle Amplitude der Eingangsspannung anzupassen. Bekanntlicherweise wird das Verhalten einer getakteten Schaltung in erster Linie durch die entsprechende zeitliche Ansteuerung des Schalters bestimmt, wobei dieser in verschiedenen Betriebsarten betrieben werden kann. Dabei ist nunmehr vorgesehen, abhängig von der aktuellen Amplitude der Eingangsspannung den Schalter entsprechend einer der zur Verfügung stehenden Betriebsarten anzusteuern.
-
Erfindungsgemäß wird dementsprechend eine Schaltungsanordnung zum Betreiben von Leuchtmitteln, insbesondere einer oder mehrerer LEDs vorgeschlagen, die aufweist:
- a) eine mit Spannung versorgbare und mittels wenigstens eines Schalters getaktete Schaltung, die einen Konverter bildet, welcher die Eingangsspannung in einen für den Betrieb der Leuchtmittel vorgesehenen ausgangsseitigen Betriebsstrom umsetzt, sowie
- b) eine Steuerschaltung zum Ansteuern des Schalters,
wobei die Steuerschaltung
- i. dazu ausgebildet ist, den Schalter entsprechend zwei verschiedener Betriebsarten anzusteuern,
- ii. einen Eingang zum Zuführen eines die Amplitude der Eingangsspannung wiedergebenden Signals aufweist, sowie
- iii. abhängig von der aktuellen Amplitude der Eingangsspannung dem Schalter entsprechend einer der beiden Betriebsarten ansteuert.
-
Gemäß einer bevorzugten Ausführungsform der Erfindung wird ein Amplitudenschwellenwert festgelegt und in denjenigen Zeitdauern, in denen die aktuelle Amplitude der Versorgungsspannung oberhalb dieses Schwellenwerts liegt, der Konverter in einer ersten Betriebsweise betrieben. Liegt hingegen die Amplitude der Versorgungsspannung unterhalb des Schwellenwerts, so erfolgt ein Betrieb des Konverters in einer zweiten Weise. Insbesondere kann hierbei vorgesehen sein, dass für den Fall, dass die Amplitude der Eingangsspannung unterhalb des vorgegebenen Schwellenwerts ist, der Konverter mit einer festen Einschaltzeitdauer für den Schalter betrieben wird. Ein Betrieb mit fester Einschaltdauer führt hierbei zu einer Verbesserung des THD-Werts wie auch des sog. Power Factors PF. Liegt hingegen die Amplitude der Eingangsspannung oberhalb des vorgegebenen Schwellenwerts, so erfolgt vorzugsweise eine sog. Peak-Regelung, welche die konstante bzw. rippelfreie Abgabe eines Ausgangstroms für die LEDs bevorzugt. In dieser Situation bzw. Phase wirkt der Konverter also primär als Konstantstromquelle während er hingegen in der anderen Phase, in der die Versorgungsspannung unterhalb des Amplitudenschwellenwerts liegt, in erster Linie die Funktion einer Leistungsfaktorkorrekturschaltung übernimmt. Die erfindungsgemäße Vorgehensweise führt also dazu, dass trotz einfachem Aufbau der Schaltungsanordnung beide an sich konkurrierenden Aufgabenstellungen in zufriedenstellender Weise erfüllt werden können.
-
Bei dem zum Einsatz kommenden Konverter handelt es sich wie bereits erwähnt vorzugsweise um einen sog. Flyback-Konverter. Die Höhe des Amplitudenschwellwerts kann hierbei vorzugsweise durch einen Benutzer entsprechend vorgegeben werden. Dies eröffnet die Möglichkeit, den Betrieb der Schaltungsanordnung wahlweise dahingehend zur verstellen, dass vorrangig eine der beiden Aufgabenstellungen erfüllt wird. Wird also durch den Verbraucher in erster Linie angestrebt, das Rückstrahlen von Oberwellen oder anderen Störungen in das Versorgungsnetz zu vermeiden, so kann der Amplitudenschwellwert in diesem Fall angehoben werden, um die Zeitdauer der Phase, in der eine diesem Ziel entsprechende Betriebsweise der Schaltungsanordnung vorliegt, zu erhöhen. Wird hingegen primär die Ausgabe eines rippelfreien Versorgungsstroms für die LEDs gewünscht, so kann der Amplitudenschwellwert entsprechend herabgesetzt werden.
-
Letztendlich kann also mit Hilfe der erfindungsgemäßen Lösung eine einfache und kostengünstig zu realisierende Schaltungsanordnung zur Verfügung gestellt werden, welche trotz ihres einfachen Aufbaus in zuverlässiger und effizienter Weise die eingangsseitig zur Verfügung gestellte Versorgungsspannung in einen für den LED-Betrieb geeigneten Strom umsetzt.
-
Nachfolgend soll die Erfindung anhand der beiliegenden Zeichnung näher erläutert werden. Es zeigen:
- 1 den grundsätzlichen Aufbau einer erfindungsgemäßen Schaltungsanordnung zum Betreiben einer mehrere LEDs aufweisenden Last und
- 2 eine schematische Darstellung zur Verdeutlichung des erfindungsgemäßen Gedankens des Betreibens der Schaltungsanordnung entsprechend unterschiedlicher Betriebsmodi.
-
1 zeigt in vereinfachter Darstellung eine erfindungsgemäß ausgestaltete Schaltungsanordnung, die allgemein mit dem Bezugszeichen 100 versehen ist. Die Schaltungsanordnung 100 wird eingangsseitig von einer Versorgungswechselspannung Vmains gespeist, die bspw. wie in Europa üblich eine Amplitude von 230V bei einer Frequenz von 50Hz aufweisen kann. Diese Versorgungswechselspannung Vmains wird durch die erfindungsgemäße Schaltungsanordnung 100 in einen zum Betreiben der ausgangsseitig angeschlossenen LEDs geeigneten Versorgungsstrom umgesetzt.
-
Eingangsseitig weist die Schaltungsanordnung 100 zunächst einen beispielsweise als Brückengleichrichter ausgeführten Gleichrichter 1 auf, dem ggf. ein Glättungskondensator C1 nachgeordnet sein kann und der die Versorgungswechselspannung Vmains in eine gleichgerichtete Wechselspannung Vin umsetzt. Diese gleichgerichtete Wechselspannung Vin weist also ebenfalls einen sinusartigen Verlauf auf, der nunmehr allerdings lediglich aus positiven Halbwellen besteht. Die auf diese Art und Weise gleichgerichtete Versorgungswechselspannung Vin dient dann als Eingangsspannung für den eigentlichen Konverter 10, der im dargestellten Ausführungsbeispiel als sog. Flyback-Konverter 10 ausgeführt ist. Derartige Flyback-Konverter oder auch Sperrwandler sind bereits hinlänglich bekannt. Im Folgenden sollen deshalb in erster Linie die zur Realisierung der erfindungsgemäßen Lösung genutzten Komponenten und speziellen Maßnahmen näher beschrieben werden.
-
Wesentliche Komponenten des Flyback-Konverters 10 sind zunächst eine primärseitige Wicklung L1 sowie ein in Serie zu der Primärwicklung L1 positionierter Schalter SW. Dieser steuerbare Schalter SW ist bspw. in Form eines MOSFET-Transistors ausgeführt und wird durch eine nachfolgend noch näher beschriebene Steuerschaltung 50 angesteuert. Durch entsprechendes Ansteuern des Schalters SW kann dieser von einem leitenden in einen nicht leitenden Zustand überführt werden und dementsprechend ein Stromfluss durch die Primärwicklung L1 des Flyback-Konverters wahlweise ein- und ausgeschaltet werden.
-
Ausgangsseitig weist der Konverter 10 eine zweite Wicklung L2 auf, die mit der primärseitigen Wicklung L1 in bekannter Weise induktiv gekoppelt ist. Ein durch diese sekundärseitige Wicklung L2 fließender Strom dient dann als Versorgungsstrom Iout für die ausgangsseitige Last, welche insbesondere die LEDs beinhaltet. Im dargestellten Ausführungsbeispiel weist der ausgangsseitige Kreis eine Diode D1 in Serie zu der Wicklung L2 sowie eine Glättungskondensator C0 auf. Ferner sind Anschlüsse 21 und 22 zum Anschließen bspw. eines LED-Moduls 60 oder auch einzelner LEDs vorgesehen, wobei selbstverständlich der ausgangsseitige Kreis der Schaltungsanordnung auch anderweitig gestaltet sein könnte.
-
Um den LEDs den für den Betrieb erforderlichen Strom zur Verfügung zu stellen, wird mit Hilfe des Flyback-Konverters elektrische Leistung von der Primärwicklung L1 auf die Sekundärwicklung L2 übertragen. Dies wird durch alternierendes Ein- und Ausschalten des Schalters SW erzielt. Während einer Einschaltzeit Ton des Schalters SW wird die hierbei Primärwicklung L1 geladen und während der sich daran anschließenden Ausschaltzeit Toff des Schalters SW wieder entladen. Als Ergebnis hiervon wird ein Stromfluss in der Sekundärwicklung L2 erzielt, sobald die Spannung eine durch die Komponenten des Ausgangskreises vorgegebene Schwelle überschreitet und ein Stromfluss über die Diode D1 erfolgt. Dies entspricht der bekannten Funktionsweise eines Flyback-Konverters.
-
Das Ansteuern des Schalters SW erfolgt wie bereits erwähnt durch eine Steuerschaltung 50, welches ein entsprechendes Signal an den Schalter SW übermittelt. Die Steuerschaltung 50 bestimmt hier je nach aktuellem Betriebsmodus die Ein- und Ausschaltzeit des Schalters SW, wobei dies unter Berücksichtigung verschiedener aktueller Werte von Betriebsparametern der Schaltungsanordnung 100 erfolgt.
-
Ein erster Parameter ist hierbei der Stromfluss durch die Primärwicklung L1, wobei dieser im dargestellten Ausführungsbeispiel mit Hilfe eines in Serie zu der Primärwicklung L1 und dem Schalter SW positionierten Messwiderstands R1 erfasst und einem Eingang 51 der Steuereinheit 50 zur Verfügung gestellt wird.
-
Ein entsprechendes Überwachen des durch die Primärwicklung L1 fließenden Stroms ist insbesondere dann erforderlich, wenn im Rahmen der Ansteuerung des Schalters SW durch die Steuereinheit 50 eine sog. Peak-Regelung stattfinden soll. Hierunter ist zu verstehen, dass nach einem Einschalten des Schalters SW des Flyback-Konverters dieser solange eingeschaltet - also leitend - bleibt, bis der ansteigende und durch die Primärwicklung L1 fließende Strom eine definierte Abschaltschwelle erreicht hat. Die Abschaltschwelle ist hierbei von der Höhe des ausgangsseitig gewünschten Stroms, also des Strom, mit dem die LEDs versorgt werden, abhängig. Wird diese Abschaltschwelle aufgrund des durch den Messwiderstand R1 erfassten Signals erkannt, so steuert die Steuerschaltung 50 den Schalter SW entsprechend so an, dass nunmehr ein Stromfluss über den Schalter SW unterbrochen wird und sich stattdessen die Primärwicklung L1 über das Netzwerk gebildet durch die Diode DSN, den Widerstand RSN und den Kondensator CSN entlädt, wobei gleichzeitig ein Stromfluss in der Sekundärwicklung L2 induziert wird. Der primärseitige Strom sinkt hierbei wieder ab, wobei dann vorzugsweise in einem sog. Borderline-Modus wieder ein Einschalten des Schalters SW erfolgt, sobald der Strom den Nullpunkt erreicht hat. Eine derartige Betriebsweise hat sich im Hinblick auf das zur Verfügungstellen eines konstanten und insbesondere rippelfreien Stroms zum Betreiben der LEDs bewährt.
-
Auf der anderen Seite allerdings führt ein entsprechendes Ansteuern des Schalters SW im Rahmen der zuvor beschriebenen Peak-Regelung zu einem Verhalten des Flyback-Konverters, welches bzgl. des Entstehens sog. Oberschwingungen, die als Störungen in des Stromversorgungsnetz zurückwirken, nachteilig ist. Hierfür wäre es im Gegensatz zur der oben beschriebenen Betriebsweise besser, den Flyback-Konverter in einem Betriebsmodus zu betreiben, bei dem der Schalter SW mit festen Einschaltzeitdauern betrieben wird, da in diesem Fall dann eine bessere Aufnahme der Leistung aus dem Stromversorgungsnetz erzielt werden kann.
-
Um die Vorteile beider Betriebsarten nutzen zu können, ist erfindungsgemäß vorgesehen, abhängig von der Höhe Eingangsspannung Vin des Konverters dessen Betriebsart zu modifizieren. Dies erfordert zunächst, dass die Steuerschaltung 50 in der Lage ist, die Amplitude der Eingangsspannung Vin für den Konverter zu erfassen. Hierzu kann beispielsweise ein weiterer Messwiderstand R2 vorgesehen sein, wobei die über diesen Messwiderstand abfallende Spannung dann als weiteres Eingangssignal eine Eingang 52 der Steuereinheit 50 zugeführt wird.
-
Weiterhin ist erfindungsgemäß vorgesehen, dass die Steuerschaltung 50 abhängig davon, ob der aktuelle Wert der Eingangsspannung Vin für den Konverter oberhalb oder unterhalb eines vorgegebenen Schwellenwerts liegt, den Schalter SW entweder entsprechend dem oben erwähnten Betriebsmodus, bei dem eine Peak-Regelung stattfindet, oder mit einer festen Einschaltzeitdauer betreibt. Insbesondere ist vorgesehen, dass in Phasen, in denen die Versorgungsspannung Vin des Konverters oberhalb des Schwellenwerts liegt, eine Peak-Regelung stattfindet. In den Zeiträumen hingegen, in denen die Amplitude der Eingangsspannung Vin unterhalb des vorgegebenen Schwellenwerts liegt, wird der SW Schalter mit festen Einschaltzeitdauern betrieben.
-
Das erfindungsgemäße Konzept wird schematisch in 2 dargestellt, welche zunächst den Verlauf der gleichgerichteten Versorgungsspannung, die also die Eingangsspannung Vin für den Flyback-Konverter darstellt, zeigt. Aufgrund des sinusförmigen Verlaufs der Versorgungsspannung Vmains stellt die Eingangsspannung Vin also eine Reihenfolge von positiven Sinus-Halbwellen dar, wobei die Spannung alternierend den schematisch dargestellten Grenzwert über- und unterschreitet. Dieses Über- und Unterschreiten wird durch die Steuereinheit 50 auf Basis des mit Hilfe des Meßwiderstands erfassten Eingangssignals erkannt. Die Steuerschaltung 50 wird dann also für die Zeiträume τ2, in denen der Schwellenwert überschritten wird, eine Peak-Regelung durchführt. In den Zeiträumen τ1 hingegen, in denen die Versorgungsspannung den Schwellenwert unterschreitet, wird der Schalter SW mit einer vorgegebenen Einschaltzeit von bspw. 25µs betrieben. Dadurch, dass über den Zeitverlauf hinweg beide Betriebsmodi genutzt werden, wird einerseits sichergestellt, dass ausgangsseitig ein konstanter und möglichst rippelfreier Strom zur Versorgung der LEDs zur Verfügung gestellt wird, andererseits wird das Verhalten der gesamten Schaltungsanordnung hinsichtlich des Power Factors und der Total Harmonic Distortion verbessert. Die dargestellte Betriebsweise stellt also einen optimalen Kompromiss zum Betreiben eines Single Stage Flyback-Konverters dar.
-
Ob im Rahmen des Betreibens des Konverters das Hauptaugenmerk auf der Ausgabe eines rippelfreien Stroms oder auf einer Optimierung der Leistungsaufnahme aus dem Stromversorgungsnetz liegt, hängt davon ab, über welchen Zeitraum hinweg der erste oder der zweite Betriebsmodus aktiv ist. Die Darstellung von 2 zeigt hierbei unmittelbar, dass das Verhältnis modifiziert werden kann, indem der Schwellenwert angehoben oder abgesenkt wird. Ein erhöhter Schwellenwert führt bspw. dazu, dass über einen längeren Zeitraum hinweg der Flyback-Konverter entsprechend dem Betriebsmodus, in dem eine optimale Leistungsaufnahme erzielt wird, betrieben wird, während hingegen ein Absenken des Schwellenwerts dazu führt, dass das Hauptaugenmerk auf der Ausgabe eines konstanten rippelfreien Stroms für die LEDs liegt.
-
Dabei kann besonders bevorzugt vorgesehen sein, dass durch den Endverbraucher - z.B. innerhalb eines Bereichs von 25% bis 75% der maximalen Eingangsspannung Vin einstellbar ist, ob der eine oder der andere Betriebsmodus bevorzugt wird. Dies kann dadurch erfolgen, dass die Schaltungsanordnung 100 die externe Zuführung eines Signals ermöglicht, durch welches der Schwellenwert festgelegt wird. Ein die erfindungsgemäße Schaltungsanordnung beinhaltendes Betriebsgerät kann hierzu bspw. eine entsprechende Schnittstelle für eine drahtgebundene Übermittlung eines entsprechenden Signals oder auch für eine drahtlose Übermittlung aufweisen. Dieses wird dann als weiteres Eingangssignal einem dritten Eingang 53 der Steuerschaltung 50 zur Verfügung gestellt. Alternativ hierzu könnte auch unmittelbar an dem Gehäuse des Betriebsgeräts ein entsprechendes Eingabeelement - beispielsweise in Form eines Schiebers oder Drehschalters - vorhanden sein, über den der Verbraucher in einfacher Weise manuell eine der beiden Betriebsarten bevorzugen kann.
-
Letztendlich wird durch die erfindungsgemäße Lösung also eine Schaltungsanordnung zur Verfügung gestellt, welche trotz ihres einfachen Aufbaus und ihrer wenigen Komponenten ein optimiertes Betreiben von Leuchtmitteln ermöglicht. Weitere Vorteile werden hierbei dadurch erzielt, dass durch einen Verbraucher gezielt Einfluss auf das Betriebsverhalten genommen werden kann.