EP2415331B1 - Procédé et générateur de faisceau pour la production de jets de plasma en faisceau - Google Patents

Procédé et générateur de faisceau pour la production de jets de plasma en faisceau Download PDF

Info

Publication number
EP2415331B1
EP2415331B1 EP10716497.2A EP10716497A EP2415331B1 EP 2415331 B1 EP2415331 B1 EP 2415331B1 EP 10716497 A EP10716497 A EP 10716497A EP 2415331 B1 EP2415331 B1 EP 2415331B1
Authority
EP
European Patent Office
Prior art keywords
voltage
beam generator
working gas
power supply
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10716497.2A
Other languages
German (de)
English (en)
Other versions
EP2415331A1 (fr
Inventor
Michael Bisges
Uwe Hartmann
Holger Schneidereit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Relyon Plasma GmbH
Original Assignee
Reinhausen Plasma GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reinhausen Plasma GmbH filed Critical Reinhausen Plasma GmbH
Publication of EP2415331A1 publication Critical patent/EP2415331A1/fr
Application granted granted Critical
Publication of EP2415331B1 publication Critical patent/EP2415331B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/36Circuit arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid

Definitions

  • the invention relates to a jet generator for generating a collimated plasma jet by arc discharge with supply of a flowing working gas with two in the flow of the working gas spaced electrodes and a voltage source for generating a voltage between the electrodes, wherein the voltage source is a voltage pulse with an ignition voltage for the arc discharge and generates a pulse frequency that causes the arc to extinguish between each successive voltage pulses.
  • the invention relates to a method for activating and coating substrate surfaces with a beam generator according to the invention.
  • a collimated plasma jet used in which a plasma jet is generated by applying a voltage in a nozzle tube between two electrodes by means of a non-thermal discharge from a working gas.
  • the working gas is preferably under atmospheric pressure.
  • air is used as the working gas.
  • the pre-treatment and cleaning by means of plasma has numerous advantages, of which in particular the high degree of degreasing, the environmental friendliness, the suitability for almost all Materials that stand out for their low operating costs and excellent integration into the various production processes.
  • a generic beam generator for generating a collimated plasma jet which has a cup-shaped housing made of plastic with a lateral supply for the working gas.
  • a nozzle tube made of ceramic is held in the housing coaxially a nozzle tube made of ceramic is held.
  • a pin electrode made of copper is centrally arranged, which protrudes into the nozzle tube.
  • the outer periphery of the nozzle tube is surrounded outside the cup-shaped housing by a jacket of electrically conductive material, which forms a ring electrode at the free end of the nozzle tube.
  • the annular electrode delimits a nozzle opening whose diameter is smaller than the inner diameter of the nozzle tube, so that a certain constriction is achieved at the outlet of the nozzle tube.
  • a disadvantage of the known jet generator is the high thermal load of the surfaces to be treated.
  • the voltage source requires a very high ignition voltage in the order of 10 to 30 kV.
  • Another disadvantage is the low efficiency. This is due in particular to a low degree of ionization in the plasma.
  • the working gas exiting the jet generator has a high temperature, while the electrons have a fairly low temperature.
  • engineered non-thermal plasmas usually have a low degree of ionization.
  • the invention is based on the object to provide a beam generator of the type mentioned above, which generates in particular a non-thermal plasma with low temperatures exiting the jet generator plasma jet and for activation and coating of substrate surfaces using a plasma jet can be used, which is particularly suitable for powder coating process temperature-sensitive substrate surfaces. Furthermore, a compact design of the beam generator is desired. Finally, a method for activating and coating substrate surfaces using the beam generator is provided.
  • a compact design of the jet generator with simultaneous homogeneous flow of the working gas is achieved in that one electrode is formed as a pin electrode and an electrode as an annular electrode, concentric with the Pin electrode is a hollow cylindrical, insulated from the pin electrode sheath of electrically conductive material is disposed on one end side of the annular electrode defining a nozzle opening whose diameter is smaller than the diameter of the hollow cylindrical shell and at the opposite end of the supply for the Working gas is arranged.
  • the jet generator according to the invention can be used for activating and coating substrate surfaces using a plasma jet, since at least one inlet for the introduction of powders, in particular with particle sizes of 10 nm to 100 ⁇ m, is arranged in the region of the nozzle opening.
  • the electrons of the plasma jet sputter the powder particles fed in and melt them due to the still relatively high temperature there, in particular the high electron temperature, of the plasma. Due to the energy consumption for the melting and on the way of the plasma to the nozzle opening, it comes to a cooling, so that the fine-grained, the coating of the substrate surface forming powder relatively cool reaches the substrate surface.
  • the jet generator according to the invention is therefore particularly suitable for powder coating processes of temperature-sensitive substrate surfaces.
  • the bundled plasma jet in the flowing working gas is generated by an arc discharge.
  • the arc represents a gas discharge between the two spaced-apart electrodes to which a sufficiently high voltage is applied to generate by impact ionization required for the gas discharge high current density.
  • the gas discharge forms the plasma in which the heavy particles are partially ionized.
  • the ignition voltage is the electrical voltage required to initiate the gas discharge between the two electrodes.
  • the ignition voltage is generated by the voltage source or derived from the voltage source from a primary source.
  • DC and AC voltage sources but preferably DC voltage sources, come into consideration for the invention.
  • the decisive factor is that the voltage source generates a voltage pulse which causes the arc to extinguish between two consecutive voltage pulses.
  • voltage pulse means that the voltage delivered by the voltage initially rises from a lower value, preferably zero, to a maximum value which is greater than or equal to the ignition voltage and shortly thereafter returns to the lower value, preferably zero, decreases.
  • the periodic sequence of voltage pulses is called the voltage pulse.
  • the voltage falls far below the required ignition voltage, so that with each voltage pulse of the arc extinguished until the ignition voltage is reached again in the next voltage pulse and a new arc discharge takes place between the electrodes.
  • a low temperature of the effluent working gas from the jet generator is generated at high electrode temperatures.
  • the sudden discharge of the electrons when the high ignition voltage is reached generates a large number of highly accelerated electrons in the plasma which have a high electron temperature.
  • After reaching or exceeding the ignition voltage flows between the two electrodes for a very short period of time from one nanosecond to 1000 nanoseconds a current with a maximum current intensity of 10 to 1000 amperes.
  • the resulting high current density has a positive effect the so-called pinch effect.
  • the pinch effect refers to the contraction of the high electric current plasma into a thin, compressed plasma tube or filament due to the interaction of the plasma stream with the magnetic field generated by it.
  • the voltage source is designed to generate a pulse frequency of the voltage pulse, preferably in a range between 10 kHz to 100 kHz, in particular in a range between 20 kHz to 70 kHz. At these pulse frequencies, it is ensured that the plasma generation and the plasma jet are not interrupted. By this measure, an uninterrupted activation and coating, in particular with powder, of substrate surfaces can be made with the jet generator according to the invention.
  • the maintenance of the plasma jet despite extinction of the arc with simultaneously very low heat load of the substrate surface is preferably achieved with pulse frequencies in the range between 20 kHz to 70 kHz.
  • the distance between the electrodes of the jet generator and the pressure of the working gas is determined so that the aforementioned currents in the plasma are achieved at ignition voltages between 2 kV to 10 kV.
  • the basis for the determination of the electrode spacing is the Paschen law, according to which the ignition voltage is a function of the product of the gas pressure of the working gas and the impact distance, that is the distance between the electrodes.
  • correction parameters must be taken into account in the calculation.
  • the voltage pulses generated by the voltage source may be the same or alternating.
  • a preferred embodiment of the voltage source is characterized in that the voltage source has a power supply unit with a connection for an output voltage and two outputs for the voltage converted in the power supply unit, wherein at least one capacitor is connected in parallel with the outputs and connected to the power supply unit via at least one resistor connected is.
  • one of the outputs can be connected to ground potential and the common ground can be used as reference potential and connection for the capacitor.
  • the power supply is an assembly that converts the input voltage provided by the power supply into the output voltage required by the beam generator.
  • the circuit of capacitor and resistor forces the extinction of the arc, in which the power output from the power supply is stored in the capacitor.
  • the power delivered by the power supply is initially stored by the capacitor until the ignition voltage for the arc discharge is reached. Upon reaching the ignition voltage, it comes to gas discharge and the energy stored in the capacitor flows within a nanosecond to 1000 nanoseconds with a high current intensity of 10 amps to 1000 amps. Due to the at least one charging resistor, via which the at least one capacitor is connected to the power supply, not enough current flows to maintain the fed from the capacitor arc. As a result, the arc extinguishes automatically and the charging of the capacitor for the next voltage pulse starts again.
  • the power supply of the voltage source is preferably designed as a switching power supply.
  • the switching power supply is characterized by the fact that deviating from conventional power supplies with 50- or 60-Hz transformer, the Mains voltage is converted into an AC voltage much higher frequency and after the transformation is finally not rectified.
  • the operation of the transformer with higher frequency has the consequence that at the same power, the mass of the transformer can be significantly reduced.
  • switching power supplies are more compact and lighter with the same performance. Furthermore, their efficiency is higher than conventional power supplies.
  • the capacitor of the voltage source in the form of a shielded cable run in which a first electrode connecting the voltage source electrical line is surrounded by an insulator which covers at least part of an electrically conductive shield, which is part of the electrically conductive Connection between the voltage source and the other electrode is, wherein the shield encloses an outer insulator.
  • the capacitance of the capacitor is preferably in a range of 1 nF to 200 ⁇ F
  • the jet generator according to the invention has as a means for generating a turbulent flow of the working gas a sleeve inserted from the front side into the hollow cylindrical shell surrounding the pin electrode of electrically insulating material, on the surface of which at least one arranged as a helix web is arranged, which is between the inner wall of hollow cylindrical shell and the surface of the sleeve forms a channel for the working gas.
  • the pitch of the helical land can effectively influence the temperature of the plasma jet. A larger slope cools the plasma jet stronger, while a smaller slope leads to a warmer plasma jet.
  • the residence time of the working gas at the same flow rate due to the shorter flow path through the jet generator shorter is the residence time of the working gas at the same flow rate due to the shorter flow path through the jet generator shorter, whereby the cooling effect of the working gas is amplified.
  • the residence time of the working gas at the same flow rate due to the longer flow path through the jet generator is longer, whereby the cooling effect of the working gas is reduced.
  • the sleeve forming the duct for the working gas fixes the pole electrode in the electrically conductive jacket and ensures the required electrical separation between the pole electrode and the jacket.
  • the sleeve is not only easy to install, but also leads to the desired compact dimensions of the pin-shaped jet generator.
  • the inlets for the powder are located on a conically tapered in the direction of the annular electrode portion of the hollow cylindrical shell of the jet generator.
  • the substrate temperature increase during and after the coating process with the fine-grained powder is well below 100 degrees Celsius. Nevertheless, a good adhesion of the applied powder is achieved when using the jet generator according to the invention.
  • the substrate surface needs no special pretreatment. The surface cleaning is carried out by the plasma jet of the jet generator itself.
  • the powders are, for example, metals, ceramics, thermoplastics or mixtures thereof, which are applied as functional layers, such as protective, wear or insulating layers.
  • the beam generator (1) for producing a collimated plasma jet (2) comprises two electrodes (4, 5) arranged in the flow of a working gas (3) and a voltage source (6) for generating a voltage between the electrodes (4, 5).
  • the working gas (3) is channeled in a hollow cylindrical jacket (7).
  • the electrodes (4, 5) at a distance (8) are arranged to each other.
  • the voltage source (6) has a switched-mode power supply (9) with a connection (10) for the input voltage, in particular the mains voltage, and two outputs (11, 12) for the voltage converted in the switched-mode power supply (9). Parallel to the outputs (11, 12), a capacitor (13) is connected, which is connected to the switching power supply (9) via a resistor (14), also referred to as a charging resistor.
  • the line voltage applied to the connection (10) is first rectified by a rectifier (15). Subsequently, the DC voltage from an inverter (16), also referred to as an inverter, converted into an AC voltage much higher frequency before it is fed to the primary winding of a transformer (17). The on the secondary side of the transformer (17) tapped, compared to the mains voltage higher voltage is fed to a further rectifier (18) rectifying the transformed AC voltage.
  • an inverter (16) also referred to as an inverter
  • the power delivered by the switched-mode power supply (9) is first stored by the capacitor (13) until, between the electrodes (4, 5), the ignition voltage (19) for the formation of the arc is applied between the electrodes (4, 5).
  • the ignition voltage (19) for the formation of the arc is applied between the electrodes (4, 5).
  • the air gap (8) between the electrodes (4, 5) becomes conductive and the total stored in the capacitor (13) energy flows within about 10 ns, as from the current / time diagram in FIG. 4 can be seen from. In this case, the voltage between the electrodes (4, 5) collapses and drops to a lower value near 0 volts.
  • the resistor (14) of the switching power supply (9) does not flow enough charge to maintain the arc.
  • the resistor (14) is to be dimensioned such that less power flows from the switched-mode power supply to the capacitor (13) than simultaneously flows out via the arc between the electrodes (4, 5). This has the consequence that the arc between each two successive voltage pulses extinguished before it is ignited again with the reaching of the ignition voltage (19) in the next voltage pulse (21).
  • the pulse frequency is preferably in a range between 1 kHz to 100 kHz, in the illustrated embodiment at 60 kHz.
  • FIG. 2 shows a further embodiment of a jet generator (1).
  • a first electrode is designed as a pin electrode (22), while the second electrode arranged at a spacing (8) is designed as an annular electrode (23).
  • the jacket (7) of electrically conductive material is arranged concentrically with the pin electrode (22) and insulated from the pin electrode (22). At the end face opposite the annular electrode (23), the feed (24) for the working gas (3) is arranged.
  • the supply for the working gas (3) has a sleeve (25) of electrically insulating material which is inserted into the hollow cylindrical jacket (7) and has a pin electrode (22) on the surface of which a web (26) designed as a helix is arranged. between the inner wall (27) of the hollow cylindrical shell (7) and the surface (28) of the sleeve (25) forms a channel for the working gas (3).
  • the working gas passing through the helix thus enters the annulus between the pin electrode (22) and the inner wall (27) of the jacket (7) in a turbulent flow. This turbulence leads to a particularly advantageous bundling and channeling of the plasma jet (2), which itself along the pin electrode (22) in the direction of the annular electrode (23) therethrough.
  • FIG. 3 a shows a jet generator (1) accordingly FIG. 2 in which the switched-mode power supply (9) is indicated merely by a symbol for the sake of clarity.
  • the capacitor is how out FIG. 3 b recognizable, in this embodiment formed in that the electrode (22) to the switching power supply (9) connecting electrical line (29) by an insulator (30) is surrounded, at least over a partial length (31) an electrically conductive shield (32 ), which is part of the electrically conductive connection between the switching power supply (9) and the further electrode (23).
  • the shield (32) in turn encases an outer insulator (33).
  • FIG. 3 c the capacitance (34) formed by the shield (32) and the electrical line (29) is shown as an equivalent circuit diagram. It can be seen that through the partially shielded cable, parallel to the outputs of the switched-mode power supply, there is a capacitor which is connected to the switching power supply (9) via the resistor (14).
  • FIG. 5 finally shows a beam generator (1) accordingly Figures 2 and 3 , which is intended according to the invention for coating a substrate surface (35) with fine-grained powders.
  • the hollow cylindrical jacket (7) has an end face conically tapered in the direction of the annular electrode (23) portion (36) in which two inlets (37) are arranged. At each of the two inlets (37) sets a line (38) for the fine-grained powder to which a powder / gas stream (39) is supplied. Via the inlets (37), the powder particles (40) enter the plasma jet (2), with which they leave the jet generator (1) through the ring electrode (23).
  • the deposited on the substrate surface layer (43) is in FIG. 5 indicated.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)

Claims (13)

  1. Générateur de jet (1) pour la génération d'un jet de plasma non-thermique en faisceau par décharge d'arc avec alimentation d'un courant de gaz de travail (3) avec deux électrodes (22, 23) disposées à une certaine distance (8) l'une de l'autre dans le courant du gaz de travail (3) ainsi qu'une source de tension (6) pour la génération d'une tension entre les électrodes (22, 23), étant donné qu'une électrode est formée comme électrode en forme de broche (22) et la source de tension (6) génère une impulsion de tension avec une tension d'allumage (19) pour la décharge d'arc et une fréquence d'impulsion, impulsion de tension qui provoque chaque fois l'extinction de l'arc électrique entre deux impulsions de tension (21) successives, caractérisé en ce que
    - une gaine (7) de forme cylindrique creuse en matériau conducteur d'électricité isolée par rapport à l'électrode en forme de broche (22) est disposée concentriquement par rapport à l'électrode en forme de broche (22),
    - dont une électrode annulaire (23) est disposée à une face terminale, électrode (23) qui délimite une ouverture de buse (41) dont le diamètre est inférieur au diamètre de la gaine cylindrique creuse (7) et
    - le dispositif d'alimentation (24) pour le gaz de travail (3) est disposé à la face terminale opposée,
    - et au moins un conduit d'admission (37) est disposé au niveau de l'ouverture de buse (41) pour l'alimentation d'une poudre.
  2. Générateur de jet (1) selon la revendication 1, étant donné que la fréquence d'impulsion est située dans une plage de 10 kHz à 100 kHz.
  3. Générateur de jet (1) selon la revendication 2, étant donné que la fréquence d'impulsion est située dans une plage de 20 kHz à 70 kHz.
  4. Générateur de jet (1) selon l'une quelconque des revendications 1 à 3, étant donné que, après que la tension d'allumage (19) a été atteinte entre les deux électrodes (22, 23) en un période de temps de 1 ns à 1000 ns, un courant s'écoule avec une intensité maximale (20) de l'ordre de 10 A à 1000 A.
  5. Générateur de jet (1) selon l'une quelconque des revendications 1 à 4, étant donné que la tension d'allumage (19) est située entre 1 kV et 10 kV.
  6. Générateur de jet (1) selon l'une quelconque des revendications 1 à 5, étant donné que la source de tension (6) présente un bloc d'alimentation avec un connecteur (10) pour une tension d'entrée et deux sorties (11, 12) pour la tension d'entrée convertie dans le bloc d'alimentation, étant donné que, parallèlement aux sorties (11, 12), au moins un condensateur (13) raccordé au bloc d'alimentation par l'intermédiaire d'au moins une résistance (14) est mis en circuit.
  7. Générateur de jet (1) selon la revendication 6, étant donné que le bloc d'alimentation est un bloc d'alimentation secteur (9).
  8. Générateur de jet (1) selon la revendication 6 ou 7, étant donné que l'une des conduites électriques (29) reliant les électrodes (22, 23) au bloc d'alimentation (9) est enrobée d'un isolateur (30) enveloppé au moins sur une partie de sa longueur (31) par un blindage (32) conducteur d'électricité qui est partie intégrante de l'autre connexion conductrice d'électricité entre le bloc d'alimentation (9) et l'autre électrode (23), étant donné que le blindage (32) enrobe un isolateur extérieur (33).
  9. Générateur de jet (1) selon l'une quelconque des revendications 6 à 8, étant donné que la capacité du condensateur (13, 29, 30, 32) est située dans la plage de 10 nF à 200 µF.
  10. Générateur de jet (1) selon l'une quelconque des revendications 6 à 9, étant donné que le dispositif d'alimentation (24) pour le gaz de travail (3) présente des moyens pour la génération d'un courant tourbillonnaire du gaz de travail (3).
  11. Générateur de jet (1) selon la revendication 11, étant donné que les moyen de génération d'un courant tourbillonnaire du gaz de travail (3) comprennent une douille (25) en matériau électriquement isolant installée sur la face terminale dans la gaine cylindrique creuse (7) et supportant l'électrode en forme de broche (22), douille à la surface (28) de laquelle est disposée au moins une nervure (26), conçue comme hélice, qui forme entre la paroi intérieure (27) de la gaine cylindrique creuse (7) et la surface (28) de la douille (25) un canal pour le gaz de travail (3).
  12. Générateur de jet (1) selon la revendication 13, étant donné que la gaine cylindrique creuse (7) présente sur sa face terminale une section (36) qui s'effile coniquement en direction de l'électrode annulaire (23) et chaque conduit d'admission (37) est disposé dans cette section (36).
  13. Procédé d'activation et de revêtement de surfaces de substrat avec un générateur de jet (1) pour la génération d'un jet de plasma non-thermique en faisceau selon une ou plusieurs des revendications 1 à 12, caractérisé en ce que de la poudre d'une taille de particule de 10 nm à 100 µm est alimentée à l'aide du au moins un conduit d'admission (37).
EP10716497.2A 2009-04-02 2010-03-24 Procédé et générateur de faisceau pour la production de jets de plasma en faisceau Not-in-force EP2415331B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009015510A DE102009015510B4 (de) 2009-04-02 2009-04-02 Verfahren und Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls
PCT/EP2010/053816 WO2010112378A1 (fr) 2009-04-02 2010-03-24 Procédé et générateur de faisceau pour la production de jets de plasma en faisceau

Publications (2)

Publication Number Publication Date
EP2415331A1 EP2415331A1 (fr) 2012-02-08
EP2415331B1 true EP2415331B1 (fr) 2013-05-08

Family

ID=42352744

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10716497.2A Not-in-force EP2415331B1 (fr) 2009-04-02 2010-03-24 Procédé et générateur de faisceau pour la production de jets de plasma en faisceau

Country Status (6)

Country Link
EP (1) EP2415331B1 (fr)
JP (1) JP5871789B2 (fr)
KR (1) KR101308884B1 (fr)
CN (1) CN102379163B (fr)
DE (1) DE102009015510B4 (fr)
WO (1) WO2010112378A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415644B (zh) * 2011-03-16 2016-11-09 埃卡特有限公司 涂层以及用于涂层的方法和装置
CN102523674B (zh) * 2011-11-30 2016-04-20 华中科技大学 手持式等离子体电筒
DE102012103498A1 (de) * 2012-04-20 2013-10-24 Reinhausen Plasma Gmbh Vorrichtung und Verfahren zum Kennzeichnen eines Substrats sowie Kennzeichnung hierfür
AT514555B1 (de) 2013-08-27 2015-02-15 Fronius Int Gmbh Verfahren und Vorrichtung zur Erzeugung eines Plasmastrahls
KR102297068B1 (ko) * 2014-02-25 2021-09-03 한국전자통신연구원 플라즈마 발생장치
DE102014103025A1 (de) * 2014-03-07 2015-09-10 Ernst-Moritz-Arndt-Universität Greifswald Verfahren zur Beschichtung eines Substrates, Verwendung des Substrats und Vorrichtung zur Beschichtung
CN103917035B (zh) * 2014-04-03 2017-04-19 华中科技大学 用非平衡等离子体处理颗粒和气体物质的装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH649518A5 (de) * 1979-08-02 1985-05-31 Bbc Brown Boveri & Cie Verfahren und schaltungsanordnung zur durchfuehrung von gasentladungsreaktionen.
DE4105407A1 (de) * 1991-02-21 1992-08-27 Plasma Technik Ag Plasmaspritzgeraet zum verspruehen von festem, pulverfoermigem oder gasfoermigem material
DE4127317C2 (de) * 1991-08-17 1999-09-02 Leybold Ag Einrichtung zum Behandeln von Substraten
EP0727504A3 (fr) * 1995-02-14 1996-10-23 Gen Electric Procédé de revêtement pour plasma pour améliorer la liaison de revêtements sur des substrats
DE19532412C2 (de) 1995-09-01 1999-09-30 Agrodyn Hochspannungstechnik G Vorrichtung zur Oberflächen-Vorbehandlung von Werkstücken
DE19616187B4 (de) * 1996-04-23 2004-03-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anregen elektrischer Gas-Entladungen mit Spannungspulsen
DE19717127A1 (de) * 1996-04-23 1998-10-29 Fraunhofer Ges Forschung Anregen elektrischer Entladungen mit Kurzzeit-Spannungspulsen
AT3549U1 (de) * 1998-05-04 2000-04-25 Inocon Technologie Gmbh Verfahren und einrichtung zum erzeugen von plasma
EP1248500A3 (fr) * 1998-05-26 2004-04-21 The Lincoln Electric Company Torche de soudage
DE19847774C2 (de) * 1998-10-16 2002-10-17 Peter Foernsel Vorrichtung zur Plasmabehandlung von stab- oder fadenförmigem Material
JP3357627B2 (ja) * 1999-04-09 2002-12-16 株式会社三社電機製作所 アーク加工装置用電源装置
JP4221847B2 (ja) * 1999-10-25 2009-02-12 パナソニック電工株式会社 プラズマ処理装置及びプラズマ点灯方法
WO2003071839A1 (fr) * 2002-02-20 2003-08-28 Matsushita Electric Works, Ltd. Dispositif et procédé de traitement au plasma
JP2006114450A (ja) * 2004-10-18 2006-04-27 Yutaka Electronics Industry Co Ltd プラズマ生成装置
JP2006278191A (ja) * 2005-03-30 2006-10-12 Iwasaki Electric Co Ltd プラズマジェット生成用電極
DE102007011235A1 (de) * 2007-03-06 2008-09-11 Plasma Treat Gmbh Verfahren und Vorrichtung zur Behandlung einer Oberfläche eines Werkstückes
DE102009004968B4 (de) * 2009-01-14 2012-09-06 Reinhausen Plasma Gmbh Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls

Also Published As

Publication number Publication date
JP2012522888A (ja) 2012-09-27
WO2010112378A1 (fr) 2010-10-07
CN102379163B (zh) 2014-06-11
EP2415331A1 (fr) 2012-02-08
CN102379163A (zh) 2012-03-14
JP5871789B2 (ja) 2016-03-01
DE102009015510B4 (de) 2012-09-27
KR20120004972A (ko) 2012-01-13
DE102009015510A1 (de) 2010-10-07
KR101308884B1 (ko) 2013-09-23

Similar Documents

Publication Publication Date Title
EP2415331B1 (fr) Procédé et générateur de faisceau pour la production de jets de plasma en faisceau
EP0761415B1 (fr) Procédé pour augmenter la mouillabilité de la surface d'objets
DE102006012100B3 (de) Vorrichtung zur Erzeugung eines Plasma-Jets
EP2130414B1 (fr) Dispositif et procédé pour générer un jet de plasma
EP3430864B1 (fr) Buse plasma et procede d'utilisation de la buse plasma
EP1872637A1 (fr) Dispositif et procede de revetement par jet de plasma
DE102011002183B4 (de) Vorrichtung und Verfahren zur plasmagestützten Herstellung nanoskaliger Partikel und/oder zur Beschichtung von Oberflächen
AT4668U1 (de) Verfahren und einrichtung zum schweissen
DE102008028166B4 (de) Vorrichtung zur Erzeugung eines Plasma-Jets
EP1513625B1 (fr) Procede et dispositif de traitement de la surface exterieure d'un fil metallique, notamment en tant que pretraitement de revetement
DE102010020591A1 (de) Plasmagenerator sowie Verfahren zur Erzeugung und Anwendung eines ionisierten Gases
DE10320805B4 (de) Vorrichtung zur Bearbeitung von zylindrischen, zumindest eine elektrisch leitende Ader aufweisenden Substraten
DE19849894C1 (de) Gepulste Plasmaquelle für einen gasgefüllten Teilchenbeschleuniger
DE102013106315B4 (de) Verfahren und Vorrichtung zum Erzeugen eines physikalischen Plasmas
DE1640824A1 (de) Anschluss fuer Hochspannungs-Koaxialkabel
DE10044764A1 (de) Vorrichtung zum Plasmaschweißen und/oder Plasmaschneiden
DE19727882A1 (de) Verfahren und Vorrichtung zur Erzeugung hochangeregter Plasmen mittels gepulster Funkenentladung
AT3633U1 (de) Einrichtung zum plasmaschweissen
WO2016041900A1 (fr) Procédé et dispositif de traitement interne, en particulier d'application d'un revêtement interne, pour un tuyau
CH265033A (de) Elektrischer Hochvakuum-Entladungsapparat.
WO2012143024A1 (fr) Dispositif et procédé de production assistée par plasma de particules à l'échelle nanométrique et/ou de formation de revêtement sur des surfaces
DE102010064135A1 (de) Verfahren und Vorrichtung zum Lichtbogenspritzen
DD241206A1 (de) Vorrichtung zum elektrostatischen und reibungselektrischen beschichten von gegenstaenden
DD149548A1 (de) Stromzufuehrung fuer zerstaeubungsquellen
DE1244626B (de) Spritzvorrichtung fuer schmelzbares Material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BISGES, MICHAEL

Inventor name: SCHNEIDEREIT, HOLGER

Inventor name: HARTMANN, UWE

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 611616

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010003287

Country of ref document: DE

Effective date: 20130704

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPOT

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130819

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130908

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130809

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130808

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130808

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010003287

Country of ref document: DE

Effective date: 20140211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010003287

Country of ref document: DE

Representative=s name: REICHERT & KOLLEGEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010003287

Country of ref document: DE

Representative=s name: REICHERT & LINDNER PARTNERSCHAFT PATENTANWAELT, DE

Effective date: 20140908

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010003287

Country of ref document: DE

Representative=s name: REICHERT & KOLLEGEN, DE

Effective date: 20140908

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010003287

Country of ref document: DE

Owner name: MASCHINENFABRIK REINHAUSEN GMBH, DE

Free format text: FORMER OWNER: REINHAUSEN PLASMA GMBH, 93057 REGENSBURG, DE

Effective date: 20140908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140324

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MASCHINENFABRIK REINHAUSEN GMBH, DE

Free format text: FORMER OWNER: REINHAUSEN PLASMA GMBH, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20141030 AND 20141105

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140324

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: MASCHINENFABRIK REINHAUSEN GMBH, DE

Effective date: 20150210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010003287

Country of ref document: DE

Representative=s name: REICHERT & LINDNER PARTNERSCHAFT PATENTANWAELT, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 611616

Country of ref document: AT

Kind code of ref document: T

Owner name: MASCHINENFABRIK REINHAUSEN GMBH, DE

Effective date: 20150803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100324

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20170321

Year of fee payment: 8

Ref country code: CH

Payment date: 20170322

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170322

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180325

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200320

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200320

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210526

Year of fee payment: 12

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 611616

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210324

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010003287

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001