EP2415331B1 - Method and beam generator for creating a bundled plasma beam - Google Patents

Method and beam generator for creating a bundled plasma beam Download PDF

Info

Publication number
EP2415331B1
EP2415331B1 EP10716497.2A EP10716497A EP2415331B1 EP 2415331 B1 EP2415331 B1 EP 2415331B1 EP 10716497 A EP10716497 A EP 10716497A EP 2415331 B1 EP2415331 B1 EP 2415331B1
Authority
EP
European Patent Office
Prior art keywords
voltage
beam generator
working gas
power supply
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10716497.2A
Other languages
German (de)
French (fr)
Other versions
EP2415331A1 (en
Inventor
Michael Bisges
Uwe Hartmann
Holger Schneidereit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Relyon Plasma GmbH
Original Assignee
Reinhausen Plasma GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reinhausen Plasma GmbH filed Critical Reinhausen Plasma GmbH
Publication of EP2415331A1 publication Critical patent/EP2415331A1/en
Application granted granted Critical
Publication of EP2415331B1 publication Critical patent/EP2415331B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/36Circuit arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid

Definitions

  • the invention relates to a jet generator for generating a collimated plasma jet by arc discharge with supply of a flowing working gas with two in the flow of the working gas spaced electrodes and a voltage source for generating a voltage between the electrodes, wherein the voltage source is a voltage pulse with an ignition voltage for the arc discharge and generates a pulse frequency that causes the arc to extinguish between each successive voltage pulses.
  • the invention relates to a method for activating and coating substrate surfaces with a beam generator according to the invention.
  • a collimated plasma jet used in which a plasma jet is generated by applying a voltage in a nozzle tube between two electrodes by means of a non-thermal discharge from a working gas.
  • the working gas is preferably under atmospheric pressure.
  • air is used as the working gas.
  • the pre-treatment and cleaning by means of plasma has numerous advantages, of which in particular the high degree of degreasing, the environmental friendliness, the suitability for almost all Materials that stand out for their low operating costs and excellent integration into the various production processes.
  • a generic beam generator for generating a collimated plasma jet which has a cup-shaped housing made of plastic with a lateral supply for the working gas.
  • a nozzle tube made of ceramic is held in the housing coaxially a nozzle tube made of ceramic is held.
  • a pin electrode made of copper is centrally arranged, which protrudes into the nozzle tube.
  • the outer periphery of the nozzle tube is surrounded outside the cup-shaped housing by a jacket of electrically conductive material, which forms a ring electrode at the free end of the nozzle tube.
  • the annular electrode delimits a nozzle opening whose diameter is smaller than the inner diameter of the nozzle tube, so that a certain constriction is achieved at the outlet of the nozzle tube.
  • a disadvantage of the known jet generator is the high thermal load of the surfaces to be treated.
  • the voltage source requires a very high ignition voltage in the order of 10 to 30 kV.
  • Another disadvantage is the low efficiency. This is due in particular to a low degree of ionization in the plasma.
  • the working gas exiting the jet generator has a high temperature, while the electrons have a fairly low temperature.
  • engineered non-thermal plasmas usually have a low degree of ionization.
  • the invention is based on the object to provide a beam generator of the type mentioned above, which generates in particular a non-thermal plasma with low temperatures exiting the jet generator plasma jet and for activation and coating of substrate surfaces using a plasma jet can be used, which is particularly suitable for powder coating process temperature-sensitive substrate surfaces. Furthermore, a compact design of the beam generator is desired. Finally, a method for activating and coating substrate surfaces using the beam generator is provided.
  • a compact design of the jet generator with simultaneous homogeneous flow of the working gas is achieved in that one electrode is formed as a pin electrode and an electrode as an annular electrode, concentric with the Pin electrode is a hollow cylindrical, insulated from the pin electrode sheath of electrically conductive material is disposed on one end side of the annular electrode defining a nozzle opening whose diameter is smaller than the diameter of the hollow cylindrical shell and at the opposite end of the supply for the Working gas is arranged.
  • the jet generator according to the invention can be used for activating and coating substrate surfaces using a plasma jet, since at least one inlet for the introduction of powders, in particular with particle sizes of 10 nm to 100 ⁇ m, is arranged in the region of the nozzle opening.
  • the electrons of the plasma jet sputter the powder particles fed in and melt them due to the still relatively high temperature there, in particular the high electron temperature, of the plasma. Due to the energy consumption for the melting and on the way of the plasma to the nozzle opening, it comes to a cooling, so that the fine-grained, the coating of the substrate surface forming powder relatively cool reaches the substrate surface.
  • the jet generator according to the invention is therefore particularly suitable for powder coating processes of temperature-sensitive substrate surfaces.
  • the bundled plasma jet in the flowing working gas is generated by an arc discharge.
  • the arc represents a gas discharge between the two spaced-apart electrodes to which a sufficiently high voltage is applied to generate by impact ionization required for the gas discharge high current density.
  • the gas discharge forms the plasma in which the heavy particles are partially ionized.
  • the ignition voltage is the electrical voltage required to initiate the gas discharge between the two electrodes.
  • the ignition voltage is generated by the voltage source or derived from the voltage source from a primary source.
  • DC and AC voltage sources but preferably DC voltage sources, come into consideration for the invention.
  • the decisive factor is that the voltage source generates a voltage pulse which causes the arc to extinguish between two consecutive voltage pulses.
  • voltage pulse means that the voltage delivered by the voltage initially rises from a lower value, preferably zero, to a maximum value which is greater than or equal to the ignition voltage and shortly thereafter returns to the lower value, preferably zero, decreases.
  • the periodic sequence of voltage pulses is called the voltage pulse.
  • the voltage falls far below the required ignition voltage, so that with each voltage pulse of the arc extinguished until the ignition voltage is reached again in the next voltage pulse and a new arc discharge takes place between the electrodes.
  • a low temperature of the effluent working gas from the jet generator is generated at high electrode temperatures.
  • the sudden discharge of the electrons when the high ignition voltage is reached generates a large number of highly accelerated electrons in the plasma which have a high electron temperature.
  • After reaching or exceeding the ignition voltage flows between the two electrodes for a very short period of time from one nanosecond to 1000 nanoseconds a current with a maximum current intensity of 10 to 1000 amperes.
  • the resulting high current density has a positive effect the so-called pinch effect.
  • the pinch effect refers to the contraction of the high electric current plasma into a thin, compressed plasma tube or filament due to the interaction of the plasma stream with the magnetic field generated by it.
  • the voltage source is designed to generate a pulse frequency of the voltage pulse, preferably in a range between 10 kHz to 100 kHz, in particular in a range between 20 kHz to 70 kHz. At these pulse frequencies, it is ensured that the plasma generation and the plasma jet are not interrupted. By this measure, an uninterrupted activation and coating, in particular with powder, of substrate surfaces can be made with the jet generator according to the invention.
  • the maintenance of the plasma jet despite extinction of the arc with simultaneously very low heat load of the substrate surface is preferably achieved with pulse frequencies in the range between 20 kHz to 70 kHz.
  • the distance between the electrodes of the jet generator and the pressure of the working gas is determined so that the aforementioned currents in the plasma are achieved at ignition voltages between 2 kV to 10 kV.
  • the basis for the determination of the electrode spacing is the Paschen law, according to which the ignition voltage is a function of the product of the gas pressure of the working gas and the impact distance, that is the distance between the electrodes.
  • correction parameters must be taken into account in the calculation.
  • the voltage pulses generated by the voltage source may be the same or alternating.
  • a preferred embodiment of the voltage source is characterized in that the voltage source has a power supply unit with a connection for an output voltage and two outputs for the voltage converted in the power supply unit, wherein at least one capacitor is connected in parallel with the outputs and connected to the power supply unit via at least one resistor connected is.
  • one of the outputs can be connected to ground potential and the common ground can be used as reference potential and connection for the capacitor.
  • the power supply is an assembly that converts the input voltage provided by the power supply into the output voltage required by the beam generator.
  • the circuit of capacitor and resistor forces the extinction of the arc, in which the power output from the power supply is stored in the capacitor.
  • the power delivered by the power supply is initially stored by the capacitor until the ignition voltage for the arc discharge is reached. Upon reaching the ignition voltage, it comes to gas discharge and the energy stored in the capacitor flows within a nanosecond to 1000 nanoseconds with a high current intensity of 10 amps to 1000 amps. Due to the at least one charging resistor, via which the at least one capacitor is connected to the power supply, not enough current flows to maintain the fed from the capacitor arc. As a result, the arc extinguishes automatically and the charging of the capacitor for the next voltage pulse starts again.
  • the power supply of the voltage source is preferably designed as a switching power supply.
  • the switching power supply is characterized by the fact that deviating from conventional power supplies with 50- or 60-Hz transformer, the Mains voltage is converted into an AC voltage much higher frequency and after the transformation is finally not rectified.
  • the operation of the transformer with higher frequency has the consequence that at the same power, the mass of the transformer can be significantly reduced.
  • switching power supplies are more compact and lighter with the same performance. Furthermore, their efficiency is higher than conventional power supplies.
  • the capacitor of the voltage source in the form of a shielded cable run in which a first electrode connecting the voltage source electrical line is surrounded by an insulator which covers at least part of an electrically conductive shield, which is part of the electrically conductive Connection between the voltage source and the other electrode is, wherein the shield encloses an outer insulator.
  • the capacitance of the capacitor is preferably in a range of 1 nF to 200 ⁇ F
  • the jet generator according to the invention has as a means for generating a turbulent flow of the working gas a sleeve inserted from the front side into the hollow cylindrical shell surrounding the pin electrode of electrically insulating material, on the surface of which at least one arranged as a helix web is arranged, which is between the inner wall of hollow cylindrical shell and the surface of the sleeve forms a channel for the working gas.
  • the pitch of the helical land can effectively influence the temperature of the plasma jet. A larger slope cools the plasma jet stronger, while a smaller slope leads to a warmer plasma jet.
  • the residence time of the working gas at the same flow rate due to the shorter flow path through the jet generator shorter is the residence time of the working gas at the same flow rate due to the shorter flow path through the jet generator shorter, whereby the cooling effect of the working gas is amplified.
  • the residence time of the working gas at the same flow rate due to the longer flow path through the jet generator is longer, whereby the cooling effect of the working gas is reduced.
  • the sleeve forming the duct for the working gas fixes the pole electrode in the electrically conductive jacket and ensures the required electrical separation between the pole electrode and the jacket.
  • the sleeve is not only easy to install, but also leads to the desired compact dimensions of the pin-shaped jet generator.
  • the inlets for the powder are located on a conically tapered in the direction of the annular electrode portion of the hollow cylindrical shell of the jet generator.
  • the substrate temperature increase during and after the coating process with the fine-grained powder is well below 100 degrees Celsius. Nevertheless, a good adhesion of the applied powder is achieved when using the jet generator according to the invention.
  • the substrate surface needs no special pretreatment. The surface cleaning is carried out by the plasma jet of the jet generator itself.
  • the powders are, for example, metals, ceramics, thermoplastics or mixtures thereof, which are applied as functional layers, such as protective, wear or insulating layers.
  • the beam generator (1) for producing a collimated plasma jet (2) comprises two electrodes (4, 5) arranged in the flow of a working gas (3) and a voltage source (6) for generating a voltage between the electrodes (4, 5).
  • the working gas (3) is channeled in a hollow cylindrical jacket (7).
  • the electrodes (4, 5) at a distance (8) are arranged to each other.
  • the voltage source (6) has a switched-mode power supply (9) with a connection (10) for the input voltage, in particular the mains voltage, and two outputs (11, 12) for the voltage converted in the switched-mode power supply (9). Parallel to the outputs (11, 12), a capacitor (13) is connected, which is connected to the switching power supply (9) via a resistor (14), also referred to as a charging resistor.
  • the line voltage applied to the connection (10) is first rectified by a rectifier (15). Subsequently, the DC voltage from an inverter (16), also referred to as an inverter, converted into an AC voltage much higher frequency before it is fed to the primary winding of a transformer (17). The on the secondary side of the transformer (17) tapped, compared to the mains voltage higher voltage is fed to a further rectifier (18) rectifying the transformed AC voltage.
  • an inverter (16) also referred to as an inverter
  • the power delivered by the switched-mode power supply (9) is first stored by the capacitor (13) until, between the electrodes (4, 5), the ignition voltage (19) for the formation of the arc is applied between the electrodes (4, 5).
  • the ignition voltage (19) for the formation of the arc is applied between the electrodes (4, 5).
  • the air gap (8) between the electrodes (4, 5) becomes conductive and the total stored in the capacitor (13) energy flows within about 10 ns, as from the current / time diagram in FIG. 4 can be seen from. In this case, the voltage between the electrodes (4, 5) collapses and drops to a lower value near 0 volts.
  • the resistor (14) of the switching power supply (9) does not flow enough charge to maintain the arc.
  • the resistor (14) is to be dimensioned such that less power flows from the switched-mode power supply to the capacitor (13) than simultaneously flows out via the arc between the electrodes (4, 5). This has the consequence that the arc between each two successive voltage pulses extinguished before it is ignited again with the reaching of the ignition voltage (19) in the next voltage pulse (21).
  • the pulse frequency is preferably in a range between 1 kHz to 100 kHz, in the illustrated embodiment at 60 kHz.
  • FIG. 2 shows a further embodiment of a jet generator (1).
  • a first electrode is designed as a pin electrode (22), while the second electrode arranged at a spacing (8) is designed as an annular electrode (23).
  • the jacket (7) of electrically conductive material is arranged concentrically with the pin electrode (22) and insulated from the pin electrode (22). At the end face opposite the annular electrode (23), the feed (24) for the working gas (3) is arranged.
  • the supply for the working gas (3) has a sleeve (25) of electrically insulating material which is inserted into the hollow cylindrical jacket (7) and has a pin electrode (22) on the surface of which a web (26) designed as a helix is arranged. between the inner wall (27) of the hollow cylindrical shell (7) and the surface (28) of the sleeve (25) forms a channel for the working gas (3).
  • the working gas passing through the helix thus enters the annulus between the pin electrode (22) and the inner wall (27) of the jacket (7) in a turbulent flow. This turbulence leads to a particularly advantageous bundling and channeling of the plasma jet (2), which itself along the pin electrode (22) in the direction of the annular electrode (23) therethrough.
  • FIG. 3 a shows a jet generator (1) accordingly FIG. 2 in which the switched-mode power supply (9) is indicated merely by a symbol for the sake of clarity.
  • the capacitor is how out FIG. 3 b recognizable, in this embodiment formed in that the electrode (22) to the switching power supply (9) connecting electrical line (29) by an insulator (30) is surrounded, at least over a partial length (31) an electrically conductive shield (32 ), which is part of the electrically conductive connection between the switching power supply (9) and the further electrode (23).
  • the shield (32) in turn encases an outer insulator (33).
  • FIG. 3 c the capacitance (34) formed by the shield (32) and the electrical line (29) is shown as an equivalent circuit diagram. It can be seen that through the partially shielded cable, parallel to the outputs of the switched-mode power supply, there is a capacitor which is connected to the switching power supply (9) via the resistor (14).
  • FIG. 5 finally shows a beam generator (1) accordingly Figures 2 and 3 , which is intended according to the invention for coating a substrate surface (35) with fine-grained powders.
  • the hollow cylindrical jacket (7) has an end face conically tapered in the direction of the annular electrode (23) portion (36) in which two inlets (37) are arranged. At each of the two inlets (37) sets a line (38) for the fine-grained powder to which a powder / gas stream (39) is supplied. Via the inlets (37), the powder particles (40) enter the plasma jet (2), with which they leave the jet generator (1) through the ring electrode (23).
  • the deposited on the substrate surface layer (43) is in FIG. 5 indicated.

Description

Die Erfindung betrifft einen Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls durch Lichtbogenentladung unter Zufuhr eines strömenden Arbeitsgases mit zwei im Strom des Arbeitsgases im Abstand zueinander angeordneten Elektroden sowie einer Spannungsquelle zur Erzeugung einer Spannung zwischen den Elektroden, wobei die Spannungsquelle einen Spannungspuls mit einer Zündspannung für die Lichtbogenentladung und einer Pulsfrequenz erzeugt, der den Lichtbogen zwischen zwei aufeinander folgenden Spannungsimpulsen jeweils verlöschen lässt. Außerdem betrifft die Erfindung ein Verfahren zur Aktivierung und Beschichtung von Substratoberflächen mit einem erfindungsgemäßen Strahlgenerator.The invention relates to a jet generator for generating a collimated plasma jet by arc discharge with supply of a flowing working gas with two in the flow of the working gas spaced electrodes and a voltage source for generating a voltage between the electrodes, wherein the voltage source is a voltage pulse with an ignition voltage for the arc discharge and generates a pulse frequency that causes the arc to extinguish between each successive voltage pulses. Moreover, the invention relates to a method for activating and coating substrate surfaces with a beam generator according to the invention.

Wenn Werkstückoberflächen beschichtet, lackiert oder geklebt werden sollen, ist häufig eine Vorbehandlung erforderlich, durch die Verunreinigungen von der Oberfläche entfernt werden und/oder durch die die Molekülstruktur so verändert wird, dass die Oberfläche mit Flüssigkeiten, wie Kleber, Lacken und dergleichen besser benetzt werden kann.When workpiece surfaces are to be coated, painted or glued, pretreatment is often required to remove contaminants from the surface and / or alter the molecular structure to better wet the surface with liquids such as adhesives, paints and the like can.

Zur Oberflächenbehandlung- und -reinigung kommen Strahlgeneratoren zur Erzeugung eines gebündelten Plasmastrahls zum Einsatz, bei denen unter Anlegen einer Spannung in einem Düsenrohr zwischen zwei Elektroden mittels einer nicht-thermischen Entladung aus einem Arbeitsgas ein Plasmastrahl erzeugt wird. Dabei steht das Arbeitsgas vorzugsweise unter atmosphärischem Druck. In bevorzugter Weise wird Luft als Arbeitsgas verwendet.For surface treatment and cleaning beam generators are used to produce a collimated plasma jet used in which a plasma jet is generated by applying a voltage in a nozzle tube between two electrodes by means of a non-thermal discharge from a working gas. The working gas is preferably under atmospheric pressure. Preferably, air is used as the working gas.

Die Vorbehandlung und Reinigung mittels Plasma hat zahlreiche Vorteile, von denen insbesondere der hohe Entfettungsgrad, die Umweltfreundlichkeit, die Eignung für nahezu sämtliche Materialien, die geringen Betriebskosten sowie die hervorragende Integration in die unterschiedlichen Fertigungsabläufe hervorzuheben sind.The pre-treatment and cleaning by means of plasma has numerous advantages, of which in particular the high degree of degreasing, the environmental friendliness, the suitability for almost all Materials that stand out for their low operating costs and excellent integration into the various production processes.

Aus der EP 0 761 415 B9 sowie der DE 195 32 412 C2 ist ein gattungsgemäßer Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls bekannt, der ein topfförmiges Gehäuse aus Kunststoff mit einer seitlichen Zufuhr für das Arbeitsgas aufweist. In dem Gehäuse ist koaxial ein Düsenrohr aus Keramik gehalten. Im Inneren des topfförmigen Gehäuses ist mittig eine Stiftelektrode aus Kupfer angeordnet, die in das Düsenrohr hineinragt. Der äußere Umfang des Düsenrohrs ist außerhalb des topfförmigen Gehäuses von einem Mantel aus elektrisch leitendem Material umgeben, der am freien Ende des Düsenrohres eine Ringelektrode ausbildet. Die Ringelektrode begrenzt zugleich eine Düsenöffnung, deren Durchmesser kleiner als der Innendurchmesser des Düsenrohres ist, so dass am Aüslass des Düsenrohrs eine gewisse Einschnürung erreicht wird.From the EP 0 761 415 B9 as well as the DE 195 32 412 C2 a generic beam generator for generating a collimated plasma jet is known, which has a cup-shaped housing made of plastic with a lateral supply for the working gas. In the housing coaxially a nozzle tube made of ceramic is held. In the interior of the pot-shaped housing, a pin electrode made of copper is centrally arranged, which protrudes into the nozzle tube. The outer periphery of the nozzle tube is surrounded outside the cup-shaped housing by a jacket of electrically conductive material, which forms a ring electrode at the free end of the nozzle tube. At the same time, the annular electrode delimits a nozzle opening whose diameter is smaller than the inner diameter of the nozzle tube, so that a certain constriction is achieved at the outlet of the nozzle tube.

Ein Nachteil des bekannten Strahlgenerators besteht in der hohen thermischen Belastung der zu behandelnden Oberflächen. Die Spannungsquelle benötigt eine sehr hohe Zündspannung in einer Größenordnung von 10 bis 30 kV. Nachteilig ist auch der geringe Wirkungsgrad. Verantwortlich hierfür ist insbesondere ein geringer Ionisierungsgrad im Plasma. Darüber hinaus weist das aus dem Strahlgenerator austretende Arbeitsgas eine hohe Temperatur auf, während die Elektronen eine recht geringe Temperatur aufweisen. Für den Betrieb von Strahlgeneratoren zur Oberflächenbehandlung wird jedoch die Erzeugung nichtthermischer Plasmen angestrebt, bei denen die Elektronen eine viel höhere Temperatur als die Schwereteilchen (Moleküle, Atome, Ionen) aufweisen. Technisch hergestellte, nichtthermische Plasmen haben jedoch üblicherweise einen geringen Ionisierungsgrad.A disadvantage of the known jet generator is the high thermal load of the surfaces to be treated. The voltage source requires a very high ignition voltage in the order of 10 to 30 kV. Another disadvantage is the low efficiency. This is due in particular to a low degree of ionization in the plasma. In addition, the working gas exiting the jet generator has a high temperature, while the electrons have a fairly low temperature. However, for the operation of jet generators for surface treatment, it is desirable to produce non-thermal plasmas in which the electrons have a much higher temperature than the heavy particles (molecules, atoms, ions). However, engineered non-thermal plasmas usually have a low degree of ionization.

Aus der US 6 225 743 B1 ist bereits ein Verfahren zur Erzeugung von Plasma mit einem Plasmaerzeuger zur Behandlung von Objekten bekannt, bei dem ein Lichtbogen zwischen einer Anode und einer Kathode gezündet und mit diesem Gase ionisiert werden, wobei der Lichtbogen mit Spannungspulsen betrieben wird. In den Pausen zwischen den Spannungspulsen wird die an der Strecke Anode-Kathode anliegende Spannung unter die Brennspannung des Lichtbogens abgesenkt, sodass der Lichtbogen in diesen Pausen erlischt. Obwohl die Plasmaimpulse eine sehr hohe Temperatur aufweisen, sollen auch relativ empfindliche Materialien die Plasmaimpulse ohne Schaden zu nehmen, vertragen.From the US Pat. No. 6,225,743 B1 There is already known a method for producing plasma with a plasma generator for the treatment of objects, in which an arc between an anode and a cathode is ignited and ionized with this gas, wherein the arc is operated with voltage pulses. In the pauses between the voltage pulses, the voltage applied to the anode-cathode path is lowered below the arc voltage of the arc, so that the arc extinguishes during these pauses. Although the plasma pulses have a very high temperature, even relatively sensitive materials are said to tolerate the plasma pulses without harm.

Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zu Grunde, einen Strahlgenerator der eingangs erwähnten Art zu schaffen, der insbesondere ein nichtthermisches Plasma mit geringen Temperaturen des aus dem Strahlgenerator austretenden Plasmastrahls erzeugt und sich zur Aktivierung und Beschichtung von Substratoberflächen unter Verwendung eines Plasmastrahls einsetzen lässt, der insbesondere auch für Pulverbeschichtungsverfahren temperaturempfindlicher Substratoberflächen geeignet ist. Des Weiteren wird eine kompakte Bauform des Strahlgenerators angestrebt. Schließlich soll ein Verfahren zur Aktivierung und Beschichtung von Substratoberflächen unter Verwendung des Strahlgenerators angegeben werden.Based on this prior art, the invention is based on the object to provide a beam generator of the type mentioned above, which generates in particular a non-thermal plasma with low temperatures exiting the jet generator plasma jet and for activation and coating of substrate surfaces using a plasma jet can be used, which is particularly suitable for powder coating process temperature-sensitive substrate surfaces. Furthermore, a compact design of the beam generator is desired. Finally, a method for activating and coating substrate surfaces using the beam generator is provided.

Diese Aufgabe wird durch einen Strahlgenerator mit den Merkmalen des Anspruchs 1 und ein Verfahren mit den Merkmalen des Anspruchs 13 gelöst.This object is achieved by a beam generator having the features of claim 1 and a method having the features of claim 13.

Eine kompakte Bauform des Strahlgenerators bei gleichzeitig homogener Strömung des Arbeitsgases wird dadurch erreicht, dass eine Elektrode als Stiftelektrode und eine Elektrode als ringförmige Elektrode ausgebildet ist, konzentrisch zu der Stiftelektrode ein hohlzylindrischer, gegenüber der Stiftelektrode isolierter Mantel aus elektrisch leitendem Material angeordnet ist, an dessen einer Stirnseite die ringförmige Elektrode angeordnet ist, die eine Düsenöffnung begrenzt, deren Durchmesser kleiner als der Durchmesser des hohlzylindrischen Mantels ist und an dessen gegenüberliegender Stirnseite die Zufuhr für das Arbeitsgas angeordnet ist.A compact design of the jet generator with simultaneous homogeneous flow of the working gas is achieved in that one electrode is formed as a pin electrode and an electrode as an annular electrode, concentric with the Pin electrode is a hollow cylindrical, insulated from the pin electrode sheath of electrically conductive material is disposed on one end side of the annular electrode defining a nozzle opening whose diameter is smaller than the diameter of the hollow cylindrical shell and at the opposite end of the supply for the Working gas is arranged.

Der erfindungsgemäße Strahlgenerator lässt sich zur Aktivierung und Beschichtung von Substratoberflächen unter Verwendung eines Plasmastrahls einsetzen, da im Bereich der Düsenöffnung mindestens ein Einlass für die Einspeisung von Pulvern, insbesondere mit Partikelgrößen von 10 nm bis 100 µm angeordnet ist. Die Elektronen des Plasmastrahls zersputtern die eingespeisten Pulverpartikel und schmelzen diese aufgrund der dort noch relativ hohen Temperatur, insbesondere der hohen Elektronentemperatur, des Plasmas auf. Durch den Energieverbrauch für das Aufschmelzen und auf dem weiteren Weg des Plasmas zur Düsenöffnung kommt es zu einer Abkühlung, so dass das feinkörnige, die Beschichtung der Substratoberfläche bildende Pulver relativ kühl auf die Substratoberfläche gelangt. Der erfindungsgemäße Strahlgenerator ist daher insbesondere auch für Pulverbeschichtungsverfahren temperaturempfindlicher Substratoberflächen geeignet.The jet generator according to the invention can be used for activating and coating substrate surfaces using a plasma jet, since at least one inlet for the introduction of powders, in particular with particle sizes of 10 nm to 100 μm, is arranged in the region of the nozzle opening. The electrons of the plasma jet sputter the powder particles fed in and melt them due to the still relatively high temperature there, in particular the high electron temperature, of the plasma. Due to the energy consumption for the melting and on the way of the plasma to the nozzle opening, it comes to a cooling, so that the fine-grained, the coating of the substrate surface forming powder relatively cool reaches the substrate surface. The jet generator according to the invention is therefore particularly suitable for powder coating processes of temperature-sensitive substrate surfaces.

Der gebündelte Plasmastrahl in dem strömenden Arbeitsgas wird durch eine Lichtbogenentladung erzeugt. Der Lichtbogen stellt eine Gasentladung zwischen den beiden im Abstand zueinander angeordneten Elektroden dar, an denen eine ausreichend hohe Spannung anliegt, um durch Stoßionisation die für die Gasentladung erforderliche hohe Stromdichte zu erzeugen. Die Gasentladung bildet das Plasma in dem die Schwereteilchen teilweise ionisiert sind.The bundled plasma jet in the flowing working gas is generated by an arc discharge. The arc represents a gas discharge between the two spaced-apart electrodes to which a sufficiently high voltage is applied to generate by impact ionization required for the gas discharge high current density. The gas discharge forms the plasma in which the heavy particles are partially ionized.

Die Zündspannung ist die elektrische Spannung, die erforderlich ist, um die Gasentladung zwischen den beiden Elektroden einzuleiten. Die Zündspannung wird von der Spannungsquelle erzeugt oder von der Spannungsquelle aus einer Primärquelle abgeleitet. Für die Erfindung kommen grundsätzlich Gleich- und Wechselspannungsquellen, vorzugsweise jedoch Gleichspannungsquellen in Betracht. Entscheidend ist jedoch, dass die Spannungsquelle einen Spannungspuls erzeugt, der den Lichtbogen zwischen zwei aufeinander folgenden Spannungsimpulsen jeweils verlöschen lässt. Dabei ist mit Spannungsimpuls gemeint, dass die von der Spannung abgegebene Spannung zunächst von einem unteren Wert, vorzugsweise Null, ausgehend auf einen Höchstwert, der größer oder.gleich der Zündspannung ist, ansteigt und kurze Zeit später wieder auf den unteren Wert, vorzugsweise Null, absinkt. Die periodische Folge von Spannungsimpulsen wird als Spannungspuls bezeichnet.The ignition voltage is the electrical voltage required to initiate the gas discharge between the two electrodes. The ignition voltage is generated by the voltage source or derived from the voltage source from a primary source. In principle, DC and AC voltage sources, but preferably DC voltage sources, come into consideration for the invention. The decisive factor, however, is that the voltage source generates a voltage pulse which causes the arc to extinguish between two consecutive voltage pulses. In this case, voltage pulse means that the voltage delivered by the voltage initially rises from a lower value, preferably zero, to a maximum value which is greater than or equal to the ignition voltage and shortly thereafter returns to the lower value, preferably zero, decreases. The periodic sequence of voltage pulses is called the voltage pulse.

Während jedes Spannungsimpulses fällt die Spannung weit unter die erforderliche Zündspannung, so dass mit jedem Spannungsimpuls der Lichtbogen verlöscht, bis im nächsten Spannungsimpuls die Zündspannung wieder erreicht wird und eine neue Lichtbogenentladung zwischen den Elektroden erfolgt. Durch das mit jedem Spannungsimpuls erzwungene Verlöschen des Lichtbogens wird bei hohen Elektrodentemperaturen eine geringe Temperatur des ausströmenden Arbeitsgases aus dem Strahlgenerator erzeugt. Durch das schlagartige Abfließen der Elektronen beim Erreichen der hohen Zündspannung wird eine große Zahl hochbeschleunigter Elektronen im Plasma generiert die eine hohe Elektronentemperatur aufweisen. Nach Erreichen bzw. Überschreiten der Zündspannung fließt zwischen den beiden Elektroden für einen sehr kurzen Zeitraum von einer Nanosekunde bis 1000 Nanosekunden ein Strom mit einer maximalen Stromstärke in Höhe von 10 bis 1000 Ampere. Die hieraus resultierende hohe Stromdichte wirkt sich positiv auf den so genannten Pinch-Effekt aus. Der Pinch-Effekt bezeichnet das Zusammenziehen des von einem hohen elektrischen Strom durchflossenen Plasmas zu einem dünnen, komprimierten Plasmaschlauch oder -faden in Folge der Wechselwirkung des Plasmastroms mit dem von ihm erzeugten Magnetfeld.During each voltage pulse, the voltage falls far below the required ignition voltage, so that with each voltage pulse of the arc extinguished until the ignition voltage is reached again in the next voltage pulse and a new arc discharge takes place between the electrodes. By extinguishing the arc forced with each voltage pulse, a low temperature of the effluent working gas from the jet generator is generated at high electrode temperatures. The sudden discharge of the electrons when the high ignition voltage is reached generates a large number of highly accelerated electrons in the plasma which have a high electron temperature. After reaching or exceeding the ignition voltage flows between the two electrodes for a very short period of time from one nanosecond to 1000 nanoseconds a current with a maximum current intensity of 10 to 1000 amperes. The resulting high current density has a positive effect the so-called pinch effect. The pinch effect refers to the contraction of the high electric current plasma into a thin, compressed plasma tube or filament due to the interaction of the plasma stream with the magnetic field generated by it.

Die Spannungsquelle ist zur Erzeugung einer Pulsfrequenz des Spannungspulses, bevorzugt in einem Bereich zwischen 10 kHz bis 100 kHz, insbesondere in einem Bereich zwischen 20 kHz bis 70 kHz ausgebildet. Bei diesen Pulsfrequenzen ist sichergestellt, dass die Plasmaerzeugung und der Plasmastrahl nicht unterbrochen werden. Durch diese Maßnahme kann eine unterbrechungsfreie Aktivierung und Beschichtung, insbesondere mit Pulver, von Substratoberflächen mit dem erfindungsgemäßen Strahlgenerator vorgenommen werden. Die Aufrechterhaltung des Plasmastrahls trotz Verlöschen des Lichtbogens bei gleichzeitig sehr geringer Wärmebelastung der Substratoberfläche wird vorzugsweise mit Pulsfrequenzen in dem Bereich zwischen 20 kHz bis 70 kHz erreicht.The voltage source is designed to generate a pulse frequency of the voltage pulse, preferably in a range between 10 kHz to 100 kHz, in particular in a range between 20 kHz to 70 kHz. At these pulse frequencies, it is ensured that the plasma generation and the plasma jet are not interrupted. By this measure, an uninterrupted activation and coating, in particular with powder, of substrate surfaces can be made with the jet generator according to the invention. The maintenance of the plasma jet despite extinction of the arc with simultaneously very low heat load of the substrate surface is preferably achieved with pulse frequencies in the range between 20 kHz to 70 kHz.

Der Abstand zwischen den Elektroden des Strahlgenerators und der Druck des Arbeitsgases wird so bestimmt, dass die vorgenannten Stromstärken im Plasma bei Zündspannungen zwischen 2 kV bis 10 kV erreicht werden. Die Grundlage für die Ermittlung des Elektrodenabstandes ist das Paschen-Gesetz, wonach die Zündspannung eine Funktion des Produktes aus dem Gasdruck des Arbeitsgases und der Schlagweite, das heißt dem Abstand zwischen den Elektroden ist. Abhängig von der Form der sich gegenüberstehenden Elektroden sowie dem verwendeten Arbeitsgas, vorzugsweise Luft, müssen Korrekturparameter bei der Berechnung berücksichtigt werden.The distance between the electrodes of the jet generator and the pressure of the working gas is determined so that the aforementioned currents in the plasma are achieved at ignition voltages between 2 kV to 10 kV. The basis for the determination of the electrode spacing is the Paschen law, according to which the ignition voltage is a function of the product of the gas pressure of the working gas and the impact distance, that is the distance between the electrodes. Depending on the shape of the opposing electrodes and the working gas used, preferably air, correction parameters must be taken into account in the calculation.

Die von der Spannungsquelle erzeugten Spannungsimpulse können gleich- oder wechselgerichtet sein.The voltage pulses generated by the voltage source may be the same or alternating.

Eine bevorzugte Ausführungsform der Spannungsquelle ist dadurch gekennzeichnet, dass die Spannungsquelle ein Netzteil mit einem Anschluss für eine Ausgangsspannung und zwei Ausgänge für die im Netzteil umgesetzte Spannung aufweist, wobei parallel zu den Ausgängen mindestens ein Kondensator geschaltet ist, der mit dem Netzteil über mindestens einen Widerstand verbunden ist. Wahlweise kann dabei einer der Ausgänge mit Erdpotential verbunden sein und die gemeinsame Erde als Bezugspotential und Anschluss für den Kondensator verwendet werden. Das Netzteil ist dabei eine Baugruppe, die die vom Stromnetz bereitgestellte Eingangsspannung in die von dem Strahlgenerator benötigte Ausgangsspannung umsetzt.A preferred embodiment of the voltage source is characterized in that the voltage source has a power supply unit with a connection for an output voltage and two outputs for the voltage converted in the power supply unit, wherein at least one capacitor is connected in parallel with the outputs and connected to the power supply unit via at least one resistor connected is. Optionally, one of the outputs can be connected to ground potential and the common ground can be used as reference potential and connection for the capacitor. The power supply is an assembly that converts the input voltage provided by the power supply into the output voltage required by the beam generator.

Die Schaltung aus Kondensator und Widerstand erzwingt das Verlöschen des Lichtbogens, in dem die von dem Netzteil abgegebene Leistung in dem Kondensator zwischengespeichert wird. Die von dem Netzteil abgegebene Leistung, wird zunächst von dem Kondensator gespeichert, bis die Zündspannung für die Lichtbogenentladung erreicht wird. Beim Erreichen der Zündspannung kommt es zur Gasentladung und die im Kondensator gespeicherte Energie fließt innerhalb von einer Nanosekunde bis 1000 Nanosekunden mit einer hohen Stromstärke in Höhe von 10 Ampere bis 1000 Ampere ab. Durch den mindestens einen Ladewiderstand, über den der mindestens eine Kondensator mit dem Netzteil verbunden ist, fließt nicht genügend Strom nach, um den aus dem Kondensator gespeisten Lichtbogen aufrecht zu erhalten. In Folge dessen erlischt der Lichtbogen selbstständig und die Aufladung des Kondensators für den nächsten Spannungsimpuls beginnt erneut.The circuit of capacitor and resistor forces the extinction of the arc, in which the power output from the power supply is stored in the capacitor. The power delivered by the power supply is initially stored by the capacitor until the ignition voltage for the arc discharge is reached. Upon reaching the ignition voltage, it comes to gas discharge and the energy stored in the capacitor flows within a nanosecond to 1000 nanoseconds with a high current intensity of 10 amps to 1000 amps. Due to the at least one charging resistor, via which the at least one capacitor is connected to the power supply, not enough current flows to maintain the fed from the capacitor arc. As a result, the arc extinguishes automatically and the charging of the capacitor for the next voltage pulse starts again.

Im Interesse einer kompakten Bauform und einer weiteren Steigerung des Wirkungsgrades des erfindungsgemäßen Strahlgenerators ist das Netzteil der Spannungsquelle vorzugsweise als Schaltnetzteil ausgebildet. Das Schaltnetzteil zeichnet sich dadurch aus, dass abweichend zu herkömmlichen Netzteilen mit 50- bzw. 60-Hz-Transformator die Netzspannung in eine Wechselspannung wesentlich höherer Frequenz umgewandelt und nach der Transformation schließlich weder gleichgerichtet wird. Der Betrieb des Transformators mit höherer Frequenz hat zur Folge, dass bei gleicher Leistung die Masse des Transformators deutlich verringert werden kann. In Folge dessen sind Schaltnetzteile bei gleicher Leistung kompakter und leichter. Des Weiteren ist deren Wirkungsgrad höher als der konventioneller Netzteile.In the interest of a compact design and a further increase in the efficiency of the beam generator according to the invention, the power supply of the voltage source is preferably designed as a switching power supply. The switching power supply is characterized by the fact that deviating from conventional power supplies with 50- or 60-Hz transformer, the Mains voltage is converted into an AC voltage much higher frequency and after the transformation is finally not rectified. The operation of the transformer with higher frequency has the consequence that at the same power, the mass of the transformer can be significantly reduced. As a result, switching power supplies are more compact and lighter with the same performance. Furthermore, their efficiency is higher than conventional power supplies.

Besonders Platz sparend lässt sich der Kondensator der Spannungsquelle in Form eines abgeschirmten Kabels ausführen, in dem eine die erste Elektrode mit der Spannungsquelle verbindende elektrische Leitung von einem Isolator umgeben wird, den zumindest auf einer Teillänge eine elektrisch leitende Abschirmung ummantelt, die Bestandteil der elektrisch leitenden Verbindung zwischen der Spannungsquelle und der weiteren Elektrode ist, wobei die Abschirmung ein äußerer Isolator ummantelt.Particularly space-saving, the capacitor of the voltage source in the form of a shielded cable run, in which a first electrode connecting the voltage source electrical line is surrounded by an insulator which covers at least part of an electrically conductive shield, which is part of the electrically conductive Connection between the voltage source and the other electrode is, wherein the shield encloses an outer insulator.

Die Kapazität des Kondensators liegt vorzugsweise in einem Bereich von 1 nF bis 200 µFThe capacitance of the capacitor is preferably in a range of 1 nF to 200 μF

Eine weitere Reduktion der Temperatur des Arbeitsgases kann durch Strömungsoptimierung erreicht werden. Aus diesem Grund weist der erfindungsgemäße Strahlgenerator als Mittel zur Erzeugung einer Wirbelströmung des Arbeitsgases eine stirnseitig in den hohlzylindrischen Mantel eingesetzte, die Stiftelektrode umgebende Hülse aus elektrisch isolierendem Material auf, an deren Oberfläche mindestens ein als Wendel ausgestalteter Steg angeordnet ist, der zwischen der Innenwand des hohlzylindrischen Mantels und der Oberfläche der Hülse einen Kanal für das Arbeitsgas bildet. Durch die Steigung des wendelförmigen Stegs kann wirksam die Temperatur des Plasmastrahls beeinflusst werden. Eine größere Steigung kühlt den Plasmastrahl stärker ab, während eine geringere Steigung zu einem wärmeren Plasmastrahl führt. Bei einer größeren Steigung ist die Verweildauer des Arbeitsgases bei gleicher Strömungsgeschwindigkeit aufgrund des kürzeren Strömungsweges durch den Strahlgenerator kürzer, wodurch die Kühlwirkung des Arbeitsgases verstärkt wird. Bei geringerer Steigung des als Wendel ausgestalteten Steges ist die Verweildauer des Arbeitsgases bei gleicher Strömungsgeschwindigkeit aufgrund des längeren Strömungsweges durch den Strahlgenerator länger, wodurch die Kühlwirkung des Arbeitsgases reduziert wird.A further reduction of the temperature of the working gas can be achieved by flow optimization. For this reason, the jet generator according to the invention has as a means for generating a turbulent flow of the working gas a sleeve inserted from the front side into the hollow cylindrical shell surrounding the pin electrode of electrically insulating material, on the surface of which at least one arranged as a helix web is arranged, which is between the inner wall of hollow cylindrical shell and the surface of the sleeve forms a channel for the working gas. The pitch of the helical land can effectively influence the temperature of the plasma jet. A larger slope cools the plasma jet stronger, while a smaller slope leads to a warmer plasma jet. At a greater slope is the residence time of the working gas at the same flow rate due to the shorter flow path through the jet generator shorter, whereby the cooling effect of the working gas is amplified. At a lower pitch of the web designed as a helix, the residence time of the working gas at the same flow rate due to the longer flow path through the jet generator is longer, whereby the cooling effect of the working gas is reduced.

Die den Kanal für das Arbeitsgas ausbildende Hülse fixiert zugleich die Stiftelektrode in dem elektrisch leitenden Mantel und gewährleistet die erforderliche elektrische Trennung zwischen Stiftelektrode und Mantel. Die Hülse ist nicht nur montagefreundlich, sondern führt darüber hinaus zu den angestrebten kompakten Abmessungen des stiftförmigen Strahlgenerators.At the same time, the sleeve forming the duct for the working gas fixes the pole electrode in the electrically conductive jacket and ensures the required electrical separation between the pole electrode and the jacket. The sleeve is not only easy to install, but also leads to the desired compact dimensions of the pin-shaped jet generator.

Vorzugsweise befinden sich die Einlässe für das Pulver an einem sich konisch in Richtung der ringförmigen Elektrode verjüngenden Abschnitt des hohlzylindrischen Mantels des Strahlgenerators. Die Substrattemperaturerhöhung liegt während und nach dem Beschichtungsprozess mit dem feinkörnigen Pulver deutlich unterhalb von 100 Grad Celsius. Gleichwohl wird bei Verwendung des erfindungsgemäßen Strahlgenerators eine gute Haftung des aufgetragenen Pulvers erreicht. Die Substratoberfläche bedarf keiner speziellen Vorbehandlung. Die Oberflächenreinigung erfolgt durch den Plasmastrahl des Strahlgenerators selbst. Bei den Pulvern handelt es sich beispielsweise um Metalle, Keramiken, Thermoplaste oder auch deren Mischungen, die als Funktionsschichten, wie beispielsweise Schutz-, Verschleiß- oder Isolierschichten aufgetragen werden.Preferably, the inlets for the powder are located on a conically tapered in the direction of the annular electrode portion of the hollow cylindrical shell of the jet generator. The substrate temperature increase during and after the coating process with the fine-grained powder is well below 100 degrees Celsius. Nevertheless, a good adhesion of the applied powder is achieved when using the jet generator according to the invention. The substrate surface needs no special pretreatment. The surface cleaning is carried out by the plasma jet of the jet generator itself. The powders are, for example, metals, ceramics, thermoplastics or mixtures thereof, which are applied as functional layers, such as protective, wear or insulating layers.

Nachfolgend wird die Erfindung anhand der Figuren näher erläutert. Es zeigen:

Figur 1
eine schematische Darstellung eines ersten Ausführungsbeispiels eines Strahlgenerators,
Figur 2
ein zweites Ausführungsbeispiel eines Strahlgenerators,
Figur 3
ein drittes Ausführungsbeispiel eines Strahlgenerators,
Figur 4
eine schematische Darstellung des Verlaufs von Spannung und Strom der Spannungsquelle eines Strahlgenerators sowie
Figur 5
ein viertes Ausführungsbeispiel eines erfindungsgemäßen Strahlgenerators zur Pulverbeschichtung von Substratoberflächen.
The invention will be explained in more detail with reference to the figures. Show it:
FIG. 1
a schematic representation of a first embodiment of a jet generator,
FIG. 2
A second embodiment of a jet generator,
FIG. 3
A third embodiment of a jet generator,
FIG. 4
a schematic representation of the course of voltage and current of the voltage source of a jet generator and
FIG. 5
A fourth embodiment of a jet generator according to the invention for powder coating of substrate surfaces.

Der Strahlgenerator (1) zur Erzeugung eines gebündelten Plasmastrahls (2) umfasst zwei im Strom eines Arbeitsgases (3) angeordnete Elektroden (4, 5) sowie eine Spannungsquelle (6) zur Erzeugung einer Spannung zwischen den Elektroden (4, 5). Das Arbeitsgas (3) wird in einem hohlzylindrischen Mantel (7) kanalisiert. In dem von dem Mantel (7) umschlossenen Hohlraum sind die Elektroden (4, 5) im Abstand (8) zueinander angeordnet.The beam generator (1) for producing a collimated plasma jet (2) comprises two electrodes (4, 5) arranged in the flow of a working gas (3) and a voltage source (6) for generating a voltage between the electrodes (4, 5). The working gas (3) is channeled in a hollow cylindrical jacket (7). In the cavity (7) enclosed by the cavity, the electrodes (4, 5) at a distance (8) are arranged to each other.

Die Spannungsquelle (6) weist ein Schaltnetzteil (9) mit einem Anschluss (10) für die Eingangsspannung, insbesondere die Netzspannung, und zwei Ausgänge (11, 12) für die im Schaltnetzteil (9) umgesetzte Spannung auf. Parallel zu den Ausgängen (11, 12) ist ein Kondensator (13) geschaltet, der mit dem Schaltnetzteil (9) über einen Widerstand (14), auch als Ladewiderstand bezeichnet, verbunden ist.The voltage source (6) has a switched-mode power supply (9) with a connection (10) for the input voltage, in particular the mains voltage, and two outputs (11, 12) for the voltage converted in the switched-mode power supply (9). Parallel to the outputs (11, 12), a capacitor (13) is connected, which is connected to the switching power supply (9) via a resistor (14), also referred to as a charging resistor.

In dem Schaltnetzteil (9) wird die am Anschluss (10) anliegende Netzspannung zunächst von einem Gleichrichter (15) gleichgerichtet. Anschließend wird die Gleichspannung von einem Wechselrichter (16), auch als Inverter bezeichnet, in eine Wechselspannung wesentlich höherer Frequenz umgewandelt, bevor diese der Primärwicklung eines Transformators (17) zugeführt wird. Die an der Sekundärseite des Transformators (17) abgegriffene, gegenüber der Netzspannung höhere Spannung wird einem weiteren Gleichrichter (18) zugeführt, der die transformierte Wechselspannung gleichrichtet.In the switched-mode power supply (9), the line voltage applied to the connection (10) is first rectified by a rectifier (15). Subsequently, the DC voltage from an inverter (16), also referred to as an inverter, converted into an AC voltage much higher frequency before it is fed to the primary winding of a transformer (17). The on the secondary side of the transformer (17) tapped, compared to the mains voltage higher voltage is fed to a further rectifier (18) rectifying the transformed AC voltage.

Die Arbeitsweise des Strahlgenerators (1) wird nachfolgend unter Bezugnahme auf Figur 4 näher erläutert:

  • Figur 4 zeigt in der linken Bildhälfte in einem Spannungs-/Zeitdiagramm die Ausprägung eines Spannungsimpulses (21) sowie in einem darunter dargestellten Strom-/Zeitdiagramm den Verlauf des sich im Plasma einstellenden Stromes des Strahlgenerators (1).
The operation of the jet generator (1) will be described below with reference to FIG. 4 explained in more detail:
  • FIG. 4 shows in the left half of the diagram in a voltage / time diagram, the expression of a voltage pulse (21) and in a current / time diagram shown below the course of the adjusting in the plasma current of the beam generator (1).

Die von dem Schaltnetzteil (9) abgegebene Leistung wird zunächst von dem Kondensator (13) gespeichert, bis zwischen den Elektroden (4, 5) die Zündspannung (19) für die Ausbildung des Lichtbogens zwischen den Elektroden (4, 5) anliegt. Beim Erreichen der Zündspannung (19) wird die Luftstrecke (8) zwischen den Elektroden (4, 5) leitfähig und die gesamte in dem Kondensator (13) gespeicherte Energie fließt innerhalb von etwa 10 ns, wie aus dem Strom-/Zeitdiagramm in Figur 4 ersichtlich, ab. Dabei bricht die Spannung zwischen den Elektroden (4, 5) zusammen und fällt auf einen unteren Wert nahe 0 Volt ab.The power delivered by the switched-mode power supply (9) is first stored by the capacitor (13) until, between the electrodes (4, 5), the ignition voltage (19) for the formation of the arc is applied between the electrodes (4, 5). Upon reaching the ignition voltage (19), the air gap (8) between the electrodes (4, 5) becomes conductive and the total stored in the capacitor (13) energy flows within about 10 ns, as from the current / time diagram in FIG. 4 can be seen from. In this case, the voltage between the electrodes (4, 5) collapses and drops to a lower value near 0 volts.

Mit Erreichen der Zündspannung (19) fließt ein Maximalstrom (20) in dem Lichtbogen zwischen den Elektroden (4, 5). Durch den Widerstand (14) fließt von dem Schaltnetzteil (9) nicht genügend Ladung nach, um den Lichtbogen aufrecht zu erhalten. Hierzu ist der Widerstand (14) so zu bemessen, dass weniger Leistung vom Schaltnetzteil zum Kondensator (13) fließt, als gleichzeitig über den Lichtbogen zwischen den Elektroden (4, 5) abfließt. Dies hat zur Folge, dass der Lichtbogen zwischen zwei aufeinander folgenden Spannungsimpulsen jeweils verlöscht, bevor er mit dem Erreichen der Zündspannung (19) im nächsten Spannungsimpuls (21) wieder gezündet wird. Die Pulsfrequenz liegt vorzugsweise in einem Bereich zwischen 1 kHz bis 100 kHz, im dargestellten Ausführungsbeispiel bei 60 kHz.When the ignition voltage (19) is reached, a maximum current (20) flows in the arc between the electrodes (4, 5). Through the resistor (14) of the switching power supply (9) does not flow enough charge to maintain the arc. For this purpose, the resistor (14) is to be dimensioned such that less power flows from the switched-mode power supply to the capacitor (13) than simultaneously flows out via the arc between the electrodes (4, 5). This has the consequence that the arc between each two successive voltage pulses extinguished before it is ignited again with the reaching of the ignition voltage (19) in the next voltage pulse (21). The pulse frequency is preferably in a range between 1 kHz to 100 kHz, in the illustrated embodiment at 60 kHz.

Figur 2 zeigt ein weiteres Ausführungsbeispiel eines Strahlgenerators (1). Soweit dieser mit dem Strahlgenerator (1) nach Figur 1 übereinstimmt, wird auf die dortigen Ausführungen Bezug genommen. Unterschiede ergeben sich hinsichtlich der Anordnung der Elektroden innerhalb des Mantels (7). Eine erste Elektrode ist als Stiftelektrode (22) ausgebildet, während die im Abstand (8) dazu angeordnete zweite Elektrode als ringförmige Elektrode (23) ausgebildet ist. Der Mantel (7) aus elektrisch leitendem Material ist konzentrisch zu der Stiftelektrode (22) angeordnet und gegenüber der Stiftelektrode (22) isoliert. An der der ringförmigen Elektrode (23) gegenüberliegenden Stirnseite ist die Zufuhr (24) für das Arbeitsgas (3) angeordnet. Die Zufuhr für das Arbeitsgas (3) weist eine stirnseitig in den hohlzylindrischen Mantel (7) eingesetzte, die Stiftelektrode (22) halternde Hülse (25) aus elektrisch isolierendem Material auf, an deren Oberfläche ein als Wendel ausgestalteter Steg (26) angeordnet ist, der zwischen der Innenwand (27) des hohlzylindrischen Mantels (7) und der Oberfläche (28) der Hülse (25) einen Kanal für das Arbeitsgas (3) bildet. Das die Wendel durchlaufende Arbeitsgas tritt damit in einer Wirbelströmung in den Ringraum zwischen Stiftelektrode (22) und Innenwand (27) des Mantels (7) ein. Diese Wirbelströmung führt zu einer besonders vorteilhaften Bündelung und Kanalisierung des Plasmastrahls (2), der sich entlang der Stiftelektrode (22) in Richtung der ringförmigen Elektrode (23) durch diese hindurch erstreckt. FIG. 2 shows a further embodiment of a jet generator (1). As far as this with the beam generator (1) after FIG. 1 is consistent, reference is made to the statements there. Differences arise with regard to the arrangement of the electrodes within the jacket (7). A first electrode is designed as a pin electrode (22), while the second electrode arranged at a spacing (8) is designed as an annular electrode (23). The jacket (7) of electrically conductive material is arranged concentrically with the pin electrode (22) and insulated from the pin electrode (22). At the end face opposite the annular electrode (23), the feed (24) for the working gas (3) is arranged. The supply for the working gas (3) has a sleeve (25) of electrically insulating material which is inserted into the hollow cylindrical jacket (7) and has a pin electrode (22) on the surface of which a web (26) designed as a helix is arranged. between the inner wall (27) of the hollow cylindrical shell (7) and the surface (28) of the sleeve (25) forms a channel for the working gas (3). The working gas passing through the helix thus enters the annulus between the pin electrode (22) and the inner wall (27) of the jacket (7) in a turbulent flow. This turbulence leads to a particularly advantageous bundling and channeling of the plasma jet (2), which itself along the pin electrode (22) in the direction of the annular electrode (23) therethrough.

Figur 3 a zeigt einen Strahlgenerator (1) entsprechend Figur 2, bei dem das Schaltnetzteil (9) der Übersichtlichkeit halber lediglich durch ein Symbol angedeutet ist. Der Kondensator wird, wie aus Figur 3 b erkennbar, bei diesem Ausführungsbeispiel dadurch gebildet, dass eine die Elektrode (22) mit dem Schaltnetzteil (9) verbindende elektrische Leitung (29) von einem Isolator (30) umgeben wird, den zumindest auf einer Teillänge (31) eine elektrisch leitende Abschirmung (32) umgibt, die Bestandteil der elektrisch leitenden Verbindung zwischen dem Schaltnetzteil (9) und der weiteren Elektrode (23) ist. Die Abschirmung (32) ummantelt wiederum ein äußerer Isolator (33). FIG. 3 a shows a jet generator (1) accordingly FIG. 2 in which the switched-mode power supply (9) is indicated merely by a symbol for the sake of clarity. The capacitor is how out FIG. 3 b recognizable, in this embodiment formed in that the electrode (22) to the switching power supply (9) connecting electrical line (29) by an insulator (30) is surrounded, at least over a partial length (31) an electrically conductive shield (32 ), which is part of the electrically conductive connection between the switching power supply (9) and the further electrode (23). The shield (32) in turn encases an outer insulator (33).

In Figur 3 c ist die durch die Abschirmung (32) und die elektrische Leitung (29) gebildete Kapazität (34) als Ersatzschaltbild dargestellt. Es ist erkennbar, dass durch das teilweise abgeschirmte Kabel parallel zu den Ausgängen des Schaltnetzteils ein Kondensator liegt, der mit dem Schaltnetzteil (9) über den Widerstand (14) verbunden ist.In FIG. 3 c the capacitance (34) formed by the shield (32) and the electrical line (29) is shown as an equivalent circuit diagram. It can be seen that through the partially shielded cable, parallel to the outputs of the switched-mode power supply, there is a capacitor which is connected to the switching power supply (9) via the resistor (14).

Figur 5 zeigt schließlich einen Strahlgenerator (1) entsprechend Figuren 2 und 3, der erfindungsgemäß für eine Beschichtung einer Substratoberfläche (35) mit feinkörnigen Pulvern bestimmt ist. Der hohlzylindrische Mantel (7) weist stirnseitig einen sich konisch in Richtung der ringförmigen Elektrode (23) verjüngenden Abschnitt (36) auf, in dem zwei Einlässe (37) angeordnet sind. An jedem der beiden Einlässe (37) setzt eine Leitung (38) für das feinkörnige Pulver an, der ein Pulver-/Gasstrom (39) zugeführt wird. Über die Einlässe (37) gelangen die Pulverpartikel (40) in den Plasmastrahl (2), mit dem sie durch die Ringelektrode (23) den Strahlgenerator (1) verlassen. In dem der Strahlgenerator (1) mit auf die Substratoberfläche (35) ausgerichteter Düsenöffnung (41) in Richtung (42) bewegt wird, werden die Pulverpartikel (40) auf der Substratoberfläche (35) abgeschieden. Die auf der Substratoberfläche abgeschiedene Schicht (43) ist in Figur 5 angedeutet. FIG. 5 finally shows a beam generator (1) accordingly Figures 2 and 3 , which is intended according to the invention for coating a substrate surface (35) with fine-grained powders. The hollow cylindrical jacket (7) has an end face conically tapered in the direction of the annular electrode (23) portion (36) in which two inlets (37) are arranged. At each of the two inlets (37) sets a line (38) for the fine-grained powder to which a powder / gas stream (39) is supplied. Via the inlets (37), the powder particles (40) enter the plasma jet (2), with which they leave the jet generator (1) through the ring electrode (23). In which the beam generator (1) with aligned on the substrate surface (35) In the nozzle opening (41) in the direction (42) is moved, the powder particles (40) are deposited on the substrate surface (35). The deposited on the substrate surface layer (43) is in FIG. 5 indicated.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

Nr.No. Bezeichnungdescription Nr.No. Bezeichnungdescription 11 Strahlgeneratorray generator 2929 elektrische Leitungelectrical line 22 Plasmastrahlplasma jet 3030 Isolatorinsulator 33 Arbeitsgasworking gas 3131 Teillängepartial length 44 Elektrodeelectrode 3232 Abschirmungshielding 55 Elektrodeelectrode 3333 äußerer Isolatorouter insulator 66 Spannungsquellevoltage source 3434 Kapazitätcapacity 77 Mantelcoat 3535 Substratoberflächesubstrate surface 88th Abstanddistance 3636 konischer Abschnittconical section 99 SchaltnetzteilSwitching Power Supply 3737 Einlassinlet 1010 Anschlussconnection 3838 Leitungmanagement 1111 Ausgangoutput 3939 Pulver-/GasstromPowder / gas stream 1212 Ausgangoutput 4040 Pulverpartikelpowder particles 1313 Kondensatorcapacitor 4141 Düsenöffnungnozzle opening 1414 Widerstandresistance 4242 Richtungdirection 1515 Gleichrichterrectifier 4343 abgeschiedene Schichtdeposited layer 1616 Wechselrichterinverter 1717 Transformatortransformer 1818 Gleichrichterrectifier 1919 Zündspannungignition 2020 Maximalstrommaximum current 2121 Spannungsimpulsvoltage pulse 2222 Stiftelektrodepin electrode 2323 ringförmige Elektrodeannular electrode 2424 Zufuhr für ArbeitsgasFeed for working gas 2525 Hülseshell 2626 Stegweb 2727 Innenwandinner wall 2828 Oberflächesurface

Claims (13)

  1. Beam generator (1) for the generation of a bundled non-thermal plasma beam by means of arc discharge under a feed of a flowing working gas (3), having two electrodes (22, 23) arranged in the flow of the working gas (3) at a distance (8) from one another and a voltage source (6) for the generation of a voltage between the electrodes (22, 23), wherein one electrode is formed as a pin electrode (22) and the voltage source (6) generates a voltage pulse with an ignition voltage (19) for the arc discharge and generates a pulse frequency which causes the respective arcs between two consecutive voltage pulses (21) to be cancelled, characterized in that
    - a hollow cylindrical sheath (7) made of electrically conducting material which is insulated against the pin electrode (22) and arranged concentrically with respect to the pin electrode (22),
    - at whose one end face is arranged an annular electrode (23) which delimits a nozzle opening (41) whose diameter is less than the diameter of the hollow cylindrical sheath (7) and
    - at whose opposite end face is arranged the intake (24) for the working gas (3),
    - and in the region of the nozzle opening (41) there is arranged at least one inlet (37) for the feeding of a powder.
  2. Beam generator (1) according to Claim 1, wherein the pulse frequency lies in a range between 10 kHz - 100 kHz.
  3. Beam generator (1) according to Claim 2, wherein the pulse frequency lies in a range between 20 kHz - 70 kHz.
  4. Beam generator (1) according to any one of the Claims 1 to 3, wherein after reaching the ignition voltage (19) a current with a maximum amperage (20) of 10 A - 1000 A flows between the two electrodes (22, 23) within a period of 1 ns - 1000 ns.
  5. Beam generator (1) according to any one of the Claims 1 to 4, wherein the ignition voltage (19) is between 1 kV - 10 kV.
  6. Beam generator (1) according to any one of the Claims 1 to 5, wherein the voltage source (6) has a power supply unit with a connector (10) for an input voltage and two outputs (11, 12) for the input voltage converted in the power supply unit, wherein at least one capacitor (13) is connected in parallel to the outputs, which capacitor (13) is connected to the power supply unit by way of at least one resistor (14).
  7. Beam generator (1) according to Claim 6, wherein the power supply unit is a switched power supply unit (9).
  8. Beam generator (1) according to Claim 6 or 7, wherein one of the electrical leads (29) connecting the electrodes (22, 23) to the power supply unit (9) is enclosed by an insulator (30) which is sheathed at least on a partial length (31) by an electrically conducting screen (32) which is a component of the other electrically conducting connection between the power supply unit (9) and the further electrode (23), wherein the screen (32) sheaths an external insulator (33).
  9. Beam generator (1) according to any one of the Claims 6 to 8, wherein the capacity of the capacitor (13, 29, 30, 32) lies within the range of 10 nF - µF 200.
  10. Beam generator (1) according to any one of the Claims 6 to 9, wherein the intake (24) for the working gas (3) has means for creating a turbulent flow of the working gas (3).
  11. Beam generator (1) according to Claim 11, wherein the means for creating a turbulent flow of the working gas (3) comprises, inserted into the end face of the hollow cylindrical sheath (7), a sleeve (25) supporting the pin electrode (22) made of electrically insulating material on whose surface (28) is arranged at least one rib (26) shaped as a spiral, which rib (26) forms a channel for the working gas (3) between the internal wall (27) of the hollow cylindrical sheath (7) and the surface (28) of the sleeve (25).
  12. Beam generator (1) according to Claim 13, wherein the hollow cylindrical sheath (7) has on its end face a section (36) tapering conically in the direction of the annular electrode (23) and each inlet (37) is arranged in this section (36).
  13. Method for activating and coating substrate surfaces with a beam generator (1) for the generation of a bundled non-thermal plasma beam according to one or more of the Claims 1 to 12, characterized in that powder with a particle size of 10 nm to 100 µm is fed in through the at least one inlet (37).
EP10716497.2A 2009-04-02 2010-03-24 Method and beam generator for creating a bundled plasma beam Not-in-force EP2415331B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009015510A DE102009015510B4 (en) 2009-04-02 2009-04-02 Method and beam generator for generating a collimated plasma jet
PCT/EP2010/053816 WO2010112378A1 (en) 2009-04-02 2010-03-24 Method and beam generator for creating a bundled plasma beam

Publications (2)

Publication Number Publication Date
EP2415331A1 EP2415331A1 (en) 2012-02-08
EP2415331B1 true EP2415331B1 (en) 2013-05-08

Family

ID=42352744

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10716497.2A Not-in-force EP2415331B1 (en) 2009-04-02 2010-03-24 Method and beam generator for creating a bundled plasma beam

Country Status (6)

Country Link
EP (1) EP2415331B1 (en)
JP (1) JP5871789B2 (en)
KR (1) KR101308884B1 (en)
CN (1) CN102379163B (en)
DE (1) DE102009015510B4 (en)
WO (1) WO2010112378A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2686460A1 (en) * 2011-03-16 2014-01-22 Reinhausen Plasma GmbH Coating, and method and device for coating
CN102523674B (en) * 2011-11-30 2016-04-20 华中科技大学 Handheld plasma electric torch
DE102012103498A1 (en) * 2012-04-20 2013-10-24 Reinhausen Plasma Gmbh Device and method for identifying a substrate and identification thereof
AT514555B1 (en) 2013-08-27 2015-02-15 Fronius Int Gmbh Method and device for generating a plasma jet
KR102297068B1 (en) * 2014-02-25 2021-09-03 한국전자통신연구원 Apparatus for generating plasma
DE102014103025A1 (en) * 2014-03-07 2015-09-10 Ernst-Moritz-Arndt-Universität Greifswald Method for coating a substrate, use of the substrate and device for coating
CN103917035B (en) * 2014-04-03 2017-04-19 华中科技大学 Device for handling particles and gaseous material using non equilibrium plasma

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH649518A5 (en) * 1979-08-02 1985-05-31 Bbc Brown Boveri & Cie METHOD AND CIRCUIT ARRANGEMENT FOR CARRYING OUT GAS DISCHARGE REACTIONS.
DE4105407A1 (en) * 1991-02-21 1992-08-27 Plasma Technik Ag PLASMA SPRAYER FOR SPRAYING SOLID, POWDER-SHAPED OR GAS-SHAPED MATERIAL
DE4127317C2 (en) * 1991-08-17 1999-09-02 Leybold Ag Device for treating substrates
EP0727504A3 (en) * 1995-02-14 1996-10-23 Gen Electric Plasma coating process for improved bonding of coatings on substrates
DE19532412C2 (en) 1995-09-01 1999-09-30 Agrodyn Hochspannungstechnik G Device for surface pretreatment of workpieces
DE19616187B4 (en) * 1996-04-23 2004-03-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Excitation of electrical gas discharges with voltage pulses
DE19717127A1 (en) * 1996-04-23 1998-10-29 Fraunhofer Ges Forschung Excitation of gas discharge with short voltage pulses
AT3549U1 (en) * 1998-05-04 2000-04-25 Inocon Technologie Gmbh METHOD AND DEVICE FOR PRODUCING PLASMA
EP0961527A1 (en) * 1998-05-26 1999-12-01 The Lincoln Electric Company Welding torch
DE19847774C2 (en) * 1998-10-16 2002-10-17 Peter Foernsel Device for the plasma treatment of rod-shaped or thread-like material
JP3357627B2 (en) * 1999-04-09 2002-12-16 株式会社三社電機製作所 Power supply for arc processing equipment
JP4221847B2 (en) * 1999-10-25 2009-02-12 パナソニック電工株式会社 Plasma processing apparatus and plasma lighting method
AU2003211351A1 (en) * 2002-02-20 2003-09-09 Haiden Laboratory Inc. Plasma processing device and plasma processing method
JP2006114450A (en) * 2004-10-18 2006-04-27 Yutaka Electronics Industry Co Ltd Plasma generating device
JP2006278191A (en) * 2005-03-30 2006-10-12 Iwasaki Electric Co Ltd Plasma jet generating electrode
DE102007011235A1 (en) * 2007-03-06 2008-09-11 Plasma Treat Gmbh Method and device for treating a surface of a workpiece
DE102009004968B4 (en) * 2009-01-14 2012-09-06 Reinhausen Plasma Gmbh Beam generator for generating a collimated plasma jet

Also Published As

Publication number Publication date
DE102009015510A1 (en) 2010-10-07
KR101308884B1 (en) 2013-09-23
DE102009015510B4 (en) 2012-09-27
JP2012522888A (en) 2012-09-27
JP5871789B2 (en) 2016-03-01
CN102379163A (en) 2012-03-14
WO2010112378A1 (en) 2010-10-07
KR20120004972A (en) 2012-01-13
CN102379163B (en) 2014-06-11
EP2415331A1 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
EP2415331B1 (en) Method and beam generator for creating a bundled plasma beam
EP0761415B1 (en) Method for improving the wettability of the surface of articles
DE102006012100B3 (en) Apparatus for generating a plasma jet
EP2130414B1 (en) Device and method for generating a plasma beam
EP3430864B1 (en) Plasma nozzle and method of using the plasma nozzle
EP1872637A1 (en) Plasma coating device and method
DE102011002183B4 (en) Apparatus and method for plasma-based production of nanoscale particles and / or for coating surfaces
AT4668U1 (en) METHOD AND DEVICE FOR WELDING
DE102008028166B4 (en) Apparatus for generating a plasma jet
EP1513625B1 (en) Method and device for treating the outer surface of a metal wire, particularly for carrying out a coating pretreatment
DE102010020591A1 (en) Plasma generator and methods for generating and using an ionized gas
DE10320805B4 (en) Device for processing cylindrical, at least one electrically conductive wire having substrates
DE19849894C1 (en) Pulsed plasma source for a gas-filled particle accelerator
DE102013106315B4 (en) Method and apparatus for generating a physical plasma
DE1640824A1 (en) Connection for high voltage coaxial cable
DE10044764A1 (en) Arrangement for plasma welding and/or plasma cutting has nozzle opening with high temperature resistant surface with electrical conducting properties at least near plasma jet outlet
DE19727882A1 (en) Pulsed high power plasma generation device for cleaning thin dielectric substrates
AT3633U1 (en) DEVICE FOR PLASMA WELDING
WO2016041900A1 (en) Internal treatment method and device, in particular for coating the inside of a pipe
CH265033A (en) High vacuum electric discharge apparatus.
WO2012143024A1 (en) Device and method for the plasma-assisted production of nanoscale particles and/or for coating surfaces
DE102010064135A1 (en) Electric arc spraying, comprises melting wire-shaped spray material in electric arc by electrical current, and atomizing gas stream and applying on work piece by spraying in the form of particle stream
DD241206A1 (en) DEVICE FOR ELECTROSTATIC AND FRICTIONAL ELECTRIC COATING OF OBJECTS
DD149548A1 (en) POWER SUPPLY FOR DESTROYING SOURCES
DE1244626B (en) Injection device for fusible material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BISGES, MICHAEL

Inventor name: SCHNEIDEREIT, HOLGER

Inventor name: HARTMANN, UWE

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 611616

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010003287

Country of ref document: DE

Effective date: 20130704

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPOT

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130819

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130908

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130809

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130808

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130808

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010003287

Country of ref document: DE

Effective date: 20140211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010003287

Country of ref document: DE

Representative=s name: REICHERT & KOLLEGEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010003287

Country of ref document: DE

Representative=s name: REICHERT & LINDNER PARTNERSCHAFT PATENTANWAELT, DE

Effective date: 20140908

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010003287

Country of ref document: DE

Representative=s name: REICHERT & KOLLEGEN, DE

Effective date: 20140908

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010003287

Country of ref document: DE

Owner name: MASCHINENFABRIK REINHAUSEN GMBH, DE

Free format text: FORMER OWNER: REINHAUSEN PLASMA GMBH, 93057 REGENSBURG, DE

Effective date: 20140908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140324

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MASCHINENFABRIK REINHAUSEN GMBH, DE

Free format text: FORMER OWNER: REINHAUSEN PLASMA GMBH, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20141030 AND 20141105

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140324

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: MASCHINENFABRIK REINHAUSEN GMBH, DE

Effective date: 20150210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010003287

Country of ref document: DE

Representative=s name: REICHERT & LINDNER PARTNERSCHAFT PATENTANWAELT, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 611616

Country of ref document: AT

Kind code of ref document: T

Owner name: MASCHINENFABRIK REINHAUSEN GMBH, DE

Effective date: 20150803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100324

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20170321

Year of fee payment: 8

Ref country code: CH

Payment date: 20170322

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170322

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180325

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200320

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200320

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210526

Year of fee payment: 12

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 611616

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210324

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010003287

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001