EP2409361A1 - Antenne a double ailettes - Google Patents

Antenne a double ailettes

Info

Publication number
EP2409361A1
EP2409361A1 EP10708783A EP10708783A EP2409361A1 EP 2409361 A1 EP2409361 A1 EP 2409361A1 EP 10708783 A EP10708783 A EP 10708783A EP 10708783 A EP10708783 A EP 10708783A EP 2409361 A1 EP2409361 A1 EP 2409361A1
Authority
EP
European Patent Office
Prior art keywords
antenna
layer
antenna according
ground plane
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10708783A
Other languages
German (de)
English (en)
Inventor
Jean-Philippe Coupez
Zied Charaabi
Jérémie Hemery
Christian Person
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMT Atlantique Bretagne
Original Assignee
IMT Atlantique Bretagne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMT Atlantique Bretagne filed Critical IMT Atlantique Bretagne
Publication of EP2409361A1 publication Critical patent/EP2409361A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Definitions

  • the present invention relates to broadband antennas and more particularly to those that can be mounted on the base stations of a wireless communications network.
  • Antenna is an essential part of a wireless communications network.
  • dipoles of total length equal to half a wavelength typically consist of two collinear strands and are excited via a balun. Both strands are positioned parallel to the reflective plane.
  • the invention provides a broadband antenna solution, comprising several degrees of freedom in its settings and can be achieved in a simple and low cost.
  • the invention relates to a broadband antenna comprising: a ground plane; at least one set comprising: a layer of dielectric material disposed perpendicularly to the ground plane, the layer having a thickness; a first metal element disposed on one side of the layer; a second metal element disposed on a face of the layer opposite to the face where the first metal element is arranged so that the metal elements are not opposite each other; a feed line associated with one of the two metal elements, the feed line extending from the edge of the metal element closest to a central axis of symmetry of the antenna to the ground plane.
  • the antenna may further have the following characteristics:
  • the feed line consists of a first section extending from the metal element parallel to the ground plane, a second section connected to the first section and extending from the first section perpendicular to the ground plane towards the ground plane; ground plane;
  • the second section comprises a first zone and a second zone, the second zone being of greater width than the first zone so as to ensure a capacitive function.
  • the supply line is made of material with the metal element with which it is associated.
  • the metal elements are geometry selected from the following group: rectangular geometry or fin type geometry, narrow at the base connected to the ground plane and flared at the end above the ground plane.
  • the layer of dielectric material is air or consists of a substrate.
  • the supply lines are connected to an excitation probe forming antenna supply means.
  • the invention relates to a base station comprising at least one broadband antenna according to the first aspect of the invention.
  • FIG. 1 illustrates a first embodiment of an antenna according to the invention
  • FIG. 2 illustrates a second embodiment of an antenna according to the invention
  • FIG. 3 illustrates a third embodiment of an antenna according to the invention
  • FIGS. 4a and 4b respectively illustrate the levels of adaptation in a cartesian and Smith abacus for the antenna according to the second embodiment of the invention
  • FIGS. 5a, 5b and 5c illustrate the diagrams in co (solid line) and in cross-polarization (dotted line) in the plane E at the frequencies 2 GHz, 2.5 GHz and 3 GHz for the antenna according to the second embodiment of the invention;
  • FIGS. 6a, 6b and 6c illustrate the diagrams in co (solid line) and in cross-polarization (dotted line) in the plane H at the frequencies 2 GHz, 2.5 GHz and 3 GHz for the antenna according to the second embodiment of the invention;
  • FIG. 7 illustrates the gain obtained in the 2 GHz band at 3 GHz for the antenna according to the second embodiment of the invention
  • FIGS. 8a and 8b respectively illustrate the levels of adaptation in a cartesian and Smith abacus for the first of the two nested antennas according to the third embodiment of the invention
  • FIGS. 9a, 9b and 9c illustrate the diagrams in co (solid line) and in cross-polarization (dashed line) in plane E at 2 GHz, 2.5 GHz and 3 GHz frequencies for the first of the two nested antennas according to the third embodiment of the invention
  • FIGS. 10a, 10b and 10c illustrate the diagrams in co (solid line) and in cross-polarization (dotted line) in the plane H at the frequencies 2 GHz, 2.5 GHz and 3 GHz for the first of the two nested antennas according to the third embodiment of the invention
  • FIG. 11 illustrates the gain of the first of the two nested antennas according to the third embodiment of the invention.
  • FIGS. 12a and 12b respectively illustrate the adaptation levels in a Cartesian and Smith abacus for the second of the two nested antennas according to the third embodiment of the invention
  • FIGS. 13a, 13b and 13c illustrate the diagrams in co (solid line) and in cross-polarization (dashed line) in plane E at the frequencies 2 GHz, 2.5 GHz and 3 GHz for the second of the two nested antennas according to the third embodiment of the invention
  • FIGS. 14a, 14b and 14c illustrate the diagrams in co (solid line) and in cross-polarization (dotted line) in the H plane at 2 GHz, 2.5 GHz and 3 GHz frequencies for the second of the two nested antennas according to the third embodiment of the invention
  • FIG. 15 illustrates the gain of the second of the two nested antennas according to the third embodiment of the invention.
  • FIG. 1 illustrates a broadband antenna comprising a ground plane P M and at least two metal elements 11, 12 connected to the plane P M of ground at their base and extending perpendicularly to the ground plane.
  • the metal elements have a small thickness of the order of a few microns or tens of microns (for elements etched on premetallized substrate) or even a few hundred microns (for an embodiment of the elements in cut metal pattern type technology).
  • the antenna further comprises a feed line 21.
  • This feed line is preferably a 50-ohm micro-ribbon line of known type which uses one of the two metal elements as the reference ground plane for this line.
  • the antenna comprises an axis ⁇ of central symmetry.
  • the metal elements are disjoint and the space between them forms a central coupling slot (the slot is arranged at the central axis of symmetry of the antenna).
  • this antenna is defined a set E1 formed by the metal elements and the power line.
  • This set E1 comprises in particular a layer of dielectric material disposed perpendicularly to the ground plane (P M ).
  • Each metal element is disposed on one side of the dielectric material layer.
  • the metal elements are in particular arranged so that they are not opposite each other.
  • the thickness of the dielectric layer is of the order of a few hundred microns to a few mm.
  • the supply line is connected at its lower end to an excitation probe 31 which passes through the ground plane pierced for this purpose.
  • the probe is preferably a 50 ⁇ coaxial probe whose outer conductor 32 is connected to the ground plane.
  • the feed line is constituted by a first 21 'stretch extending from the metal element 1 1 to which it is associated parallel to the ground plane and a second 21 "section connected to the first section extending from the first 21 'section perpendicular to the ground plane.
  • This feed line further comprises on the second 21 "section a zone 21 '" having a width greater than the width of the first
  • This zone 21'" is preferably positioned near the point of connection with the excitation probe 50 ⁇ .
  • the metallic elements as well as the power line can be printed collectively on a dielectric substrate.
  • the substrate is of course perpendicular to the ground plane and plays the role of the layer of dielectric material described so far.
  • the assembly formed by the metal element 1 1 and the supply line is printed on one side of the substrate so that the metal element 12 printed on the other side acts as a ground plane for the feeder.
  • FIG. 1 A first embodiment of the antenna is illustrated in FIG. 1
  • the metal elements 1 1, 12 are rectangular.
  • the metal elements are flared from the ground plane.
  • the flare is rectilinear and preferably perpendicular to the edge closest to the axis ⁇ of central symmetry of the antenna.
  • the metal elements are generally trapezoidal and each form a fin. Such metal elements have many possibilities for geometry.
  • these elements correspond to convex surface patterns, flared by going from their base to their summit.
  • Third embodiment correspond to convex surface patterns, flared by going from their base to their summit.
  • FIG. 1 A third embodiment is illustrated in FIG. 1
  • the antenna comprises four metal elements and the antenna is of bipolarization type.
  • first E1 set and a second E2 set each formed by two metal elements and the associated power line.
  • the first E1 set corresponds to a first P layer of dielectric material and the second set corresponds to a second layer P 'of dielectric material.
  • the two layers P, P 'of dielectric material are perpendicular to each other and the metal elements 1 1, 12, 13, 14 on each layer are identical.
  • the layers of dielectric material are made of identical materials.
  • the metal elements are nested perpendicularly at the central coupling slots, without any contact between them.
  • This embodiment can be seen as the nesting of two antennas of the second embodiment described above.
  • the nested metal elements are identical and only the position of the point of connection of the power line on the metallic element coplanar to this line, as well as the position and the dimensions of the capacitive line adaptation zone, differ.
  • each antenna With respect to the external circuits, each antenna remains excited at the lower end of the supply line by a 50 ⁇ coaxial cable external, for example. This makes it possible to operate this structure according to two linear polarizations crossed perpendicularly. Performances First prototype An antenna according to the second embodiment has been produced and characterized experimentally.
  • This antenna operates in a frequency band centered on 2.5 GHz.
  • This substrate is positioned perpendicularly to the lower ground-shaped plane of square shape, in which a hole has been made so as to be able to mount the 50 ⁇ coaxial cable ensuring the external supply of the antenna.
  • Figures 4a and 4b show the levels of adaptation respectively in a Cartesian coordinate system and Smith's abacus. It can be noted that this adaptation remains below -10 dB over a wide frequency band, ranging from
  • FIGS. 5a, 5b and 5c illustrate the diagrams in co (solid line) and in cross-polarization (dashed line) in the plane E (that is to say the plane comprising the antenna substrate and perpendicular to the ground plane) at 2 GHz, 2.5 GHz and 3 GHz frequencies.
  • the plane E that is to say the plane comprising the antenna substrate and perpendicular to the ground plane
  • FIGS. 5a, 5b and 5c illustrate the diagrams in co (solid line) and in cross-polarization (dashed line) in the plane E (that is to say the plane comprising the antenna substrate and perpendicular to the ground plane) at 2 GHz, 2.5 GHz and 3 GHz frequencies.
  • this level of cross-polarization in the main axis remains more than 25dB lower than that of co- polarization.
  • This low cross-polarization value is also maintained on
  • FIGS. 6a, 6b and 6c show the radiation patterns in co (solid line) and in cross-polarization (dashed lines) in the plane H of the antenna (ie ie the plane perpendicular to the antenna substrate and the ground plane).
  • the conclusions on the cross-polarization levels are quite equivalent to the results obtained in the plane E.
  • Figure 7 illustrates the gain obtained in the 2 GHz band at 3 GHz. This gain has a maximum value of 6.6dBi at a frequency of 2.2 GHz.
  • one of the two antennas hereinafter referred to as the "first antenna” is strictly identical to that described in the second embodiment.
  • the other antenna called the “second antenna” differs from the previous one only by a position of the connection point of the higher 50 ⁇ ⁇ -band line and by a slight modification of the capacitive line adaptation zone.
  • FIGS. 8 to 11 respectively illustrate the adaptation in a Cartesian coordinate system (FIG. 8a) and Smith's abacus (FIG. 8b), the co-and cross-polarization radiation diagrams in FIG. plane E (FIGS. 9a, 9b, 9c) and in the plane H (FIGS. 10a, 10b, 10c) and the gain of the antenna (FIG. 11).
  • the performances are completely in line with those obtained for a single antenna (see performance of the first prototype).
  • FIGS. 12 to 15 respectively illustrate the adaptation in a Cartesian coordinate system (FIG. 12a) and Smith's abacus (FIG. 12b), the radiation diagrams in FIG. cross-polarization in the plane E (FIGS. 13a, 13b, 13c) and in the plane H (FIGS. 14a, 14b, 14c) and the gain of the antenna (FIG. 15).
  • Figure 16 finally illustrates the coupling level between the first and the second antenna, in the band 2GHz to 3GHz. As can be seen, the insulation between the two antennas remains excellent, since over the whole of this frequency band, the coupling remains always less than -3OdB.
  • the antenna described above may also be used in the context of a satellite link or implemented in a base station of a communications network and may be used in frequency bands between 10 and 15 GHz.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

L'invention concerne une antenne large bande comprenant : un plan (PM) de masse; au moins un ensemble comprenant : une couche (P) de matériau diélectrique disposée perpendiculairement au plan (PM) de masse, la couche ayant une épaisseur; un premier élément métallique (11) disposé sur une face de la couche (P); un second élément métallique (12) disposé sur une face de la couche (P) opposée à la face où est disposé le premier élément métallique de manière à ce que les éléments métalliques ne soient pas l'un en face de l'autre; une ligne d'alimentation associée à un des deux éléments métalliques, la ligne d'alimentation s'étendant à partir du bord de l'élément métallique le plus proche d'un axe (Δ) de symétrie central de l'antenne vers le plan (PM) de masse.

Description

ANTENNE A DOUBLE AILETTES
DOMAINE TECHNIQUE GENERAL
La présente invention est relative aux antennes large bande et plus particulièrement à celles pouvant être montées sur les stations de base d'un réseau de communications sans fil.
ETAT DE LA TECHNIQUE
L'antenne est un élément incontournable d'un réseau de communications sans fil.
On cherche donc des solutions d'antennes particulièrement performantes, notamment en termes de bande passante et de pureté de rayonnement, et présentant une faible complexité de réalisation.
On connaît classiquement des solutions d'antennes de type dipôle montées en regard d'un plan de masse jouant le rôle de réflecteur à une distance égale au quart de la longueur d'onde.
Ces dipôles de longueur totale égale à une demi longueur d'onde sont typiquement constitués de deux brins colinéaires et sont excités par l'intermédiaire d'un balun. Les deux brins sont positionnés parallèlement au plan réflecteur.
Toutefois, les antennes actuelles ne disposent pas de nombreux degrés de liberté quant à leurs réglages permettant d'obtenir de bonnes performances dans les bandes de fréquence désirées et sont complexes à réaliser.
PRESENTATION DE L'INVENTION
La présente invention propose une solution d'antenne large bande, comprenant plusieurs degrés de liberté quant à ses réglages et pouvant se réaliser de manière simple et à faible coût. Selon un premier aspect, l'invention concerne une antenne large bande comprenant : un plan de masse ; au moins un ensemble comprenant : une couche de matériau diélectrique disposée perpendiculairement au plan de masse, la couche ayant une épaisseur ; un premier élément métallique disposé sur une face de la couche ; un second élément métallique disposé sur une face de la couche opposée à la face où est disposé le premier élément métallique de manière à ce que les éléments métalliques ne soient pas l'un en face de l'autre ; une ligne d'alimentation associée à un des deux éléments métalliques, la ligne d'alimentation s'étendant à partir du bord de l'élément métallique le plus proche d'un axe de symétrie central de l'antenne vers le plan de masse. L'antenne peut en outre présenter les caractéristiques suivantes :
- Elle comprend un premier ensemble et un second ensemble, les couches de matériau diélectrique associées à chaque ensemble étant perpendiculaires entre elles ;
- la ligne d'alimentation est constituée d'un premier tronçon s'étendant de l'élément métallique parallèlement au plan de masse, d'un second tronçon connecté au premier tronçon et s'étendant du premier tronçon perpendiculairement au plan de masse vers le plan de masse ;
- le second tronçon comprend une première zone et une seconde zone, la seconde zone étant de largeur supérieure à la première zone de manière à assurer une fonction capacitive.
- la ligne d'alimentation est venue de matière avec l'élément métallique auquel elle est associée.
- les éléments métalliques sont à géométrie choisie parmi le groupe suivant : géométrie rectangulaire ou géométrie de type ailette, étroite à la base connectée au plan de masse et évasée à l'extrémité au dessus du plan de masse.
- la couche de matériau de diélectrique est de l'air ou constituée d'un substrat. - les lignes d'alimentations sont connectées à une sonde d'excitation formant moyen d'alimentation de l'antenne. Selon un second aspect, l'invention concerne une station de base comprenant au moins une antenne large bande selon le premier aspect de l'invention.
PRESENTATION DES FIGURES
D'autres caractéristiques et avantages de l'invention ressortiront encore de la description qui suit laquelle est purement illustrative et non limitative et doit être lue en regard des dessins annexés sur lesquels :
- la figure 1 illustre un premier mode de réalisation d'une antenne selon l'invention ;
- la figure 2 illustre un second mode de réalisation d'une antenne selon l'invention ;
- la figure 3 illustre un troisième mode de réalisation d'une antenne selon l'invention ; - les figures 4a et 4b illustrent respectivement les niveaux d'adaptation dans un repère cartésien et sur abaque de Smith pour l'antenne selon le second mode de réalisation de l'invention ;
- les figures 5a, 5b et 5c illustrent les diagrammes en co (trait plein) et en cross-polarisation (trait en pointillés) dans le plan E aux fréquences 2 GHz, 2,5 GHz et 3 GHz pour l'antenne selon le second mode de réalisation de l'invention ;
- les figures 6a, 6b et 6c illustrent les diagrammes en co (trait plein) et en cross-polarisation (trait en pointillés) dans le plan H aux fréquences 2 GHz, 2,5 GHz et 3 GHz pour l'antenne selon le second mode de réalisation de l'invention ;
- la figure 7 illustre le gain obtenu dans la bande 2 GHz à 3 GHz pour l'antenne selon le second mode de réalisation de l'invention ;
- les figures 8a et 8b illustrent respectivement les niveaux d'adaptation dans un repère cartésien et sur abaque de Smith pour la première des deux antennes imbriquée selon le troisième mode de réalisation de l'invention ; - les figures 9a, 9b et 9c illustrent les diagrammes en co (trait plein) et en cross-polarisation (trait en pointillés) dans le plan E aux fréquences 2 GHz, 2,5 GHz et 3 GHz pour la première des deux antennes imbriquée selon le troisième mode de réalisation de l'invention ;
- les figures 10a, 10b et 10c illustrent les diagrammes en co (trait plein) et en cross-polarisation (trait en pointillés) dans le plan H aux fréquences 2 GHz, 2,5 GHz et 3 GHz pour la première des deux antennes imbriquée selon le troisième mode de réalisation de l'invention ;
- la figure 1 1 illustre le gain de la première des deux antennes imbriquée selon le troisième mode de réalisation de l'invention ;
- les figures 12a et 12b illustrent respectivement les niveaux d'adaptation dans un repère cartésien et sur abaque de Smith pour la seconde des deux antennes imbriquée selon le troisième mode de réalisation de l'invention ;
- les figures 13a, 13b et 13c illustrent les diagrammes en co (trait plein) et en cross-polarisation (trait en pointillés) dans le plan E aux fréquences 2 GHz, 2,5 GHz et 3 GHz pour la seconde des deux antennes imbriquée selon le troisième mode de réalisation de l'invention ;
- les figures 14a, 14b et 14c illustrent les diagrammes en co (trait plein) et en cross-polarisation (trait en pointillés) dans le plan H aux fréquences 2 GHz, 2,5 GHz et 3 GHz pour la seconde des deux antennes imbriquée selon le troisième mode de réalisation de l'invention ;
- la figure 15 illustre le gain de la seconde des deux antennes imbriquée selon le troisième mode de réalisation de l'invention ;
- la figure 16 illustre le niveau d'isolation entre les deux antennes imbriquées selon le troisième mode de réalisation de l'invention. DESCRIPTION DETAILLEE DE L'INVENTION
Structure de l'antenne
La figure 1 illustre une antenne large bande comprenant un plan PM de masse et au moins deux éléments métalliques 1 1 , 12 connectés au plan PM de masse au niveau de leur base et s'étendant perpendiculairement au plan de masse.
Les éléments métalliques ont une faible épaisseur de l'ordre de quelques μm ou dizaines de μm (pour des éléments gravés sur substrat prémétallisé) voire quelques centaines de μm (pour une réalisation des éléments en technologie de type motif métallique découpé).
L'antenne comprend en outre une ligne d'alimentation 21. Cette ligne d'alimentation est de préférence une ligne micro-ruban 50 Ω de type connu qui utilise l'un des deux éléments métalliques comme plan de masse de référence pour cette ligne. L'antenne comprend un axe Δ de symétrie central.
Les éléments métalliques sont disjoints et l'espace entre eux forme une fente de couplage centrale (la fente est disposée au niveau de l'axe de symétrie centrale de l'antenne).
Dans cette antenne on définit un ensemble E1 formé par les éléments métalliques et la ligne d'alimentation.
Cet ensemble E1 comprend notamment une couche de matériau diélectrique disposée perpendiculairement au plan (PM) de masse.
Chaque élément métallique est disposé sur une face de la couche de matériau diélectrique. Les éléments métalliques sont en particulier disposés de telle sorte qu'ile ne soient pas l'un en face de l'autre.
L'épaisseur de la couche de diélectrique est de l'ordre de quelques centaines de μm à quelques mm.
La ligne d'alimentation est connectée à son extrémité inférieure à une sonde 31 d'excitation qui traverse le plan de masse percé à cet effet. La sonde est de préférence une sonde coaxiale 50 Ω dont le conducteur 32 extérieur est connecté au plan de masse. La ligne d'alimentation est constituée par un premier 21 ' tronçon s'étendant de l'élément métallique 1 1 auquel elle est associée parallèlement au plan de masse et d'un second 21 " tronçon connecté au premier tronçon s'étendant du premier 21 ' tronçon perpendiculairement vers le plan de masse.
Cette ligne d'alimentation comprend en outre sur le second 21 " tronçon une zone 21 '" ayant une largeur supérieure à la largeur du premier
21 ' et du second 21 " tronçon de manière à assurer un effet capacitif d'adaptation. Cette zone 21 '" est de préférence positionnée à proximité du point de connexion avec la sonde d'excitation 50 Ω.
Les éléments métalliques ainsi que la ligne d'alimentation peuvent être imprimés collectivement sur un substrat diélectrique.
Le substrat est bien entendu perpendiculaire au plan de masse et joue le rôle de la couche de matériau diélectrique décrite jusqu'ici. Dans ce cas, l'ensemble formé par l'élément métallique 1 1 et la ligne d'alimentation est imprimé sur une face du substrat en sorte que l'élément métallique 12 imprimé sur l'autre face fasse office de plan de masse pour la ligne d'alimentation.
Premier mode de réalisation Un premier mode de réalisation de l'antenne est illustré sur la figure 1
(décrit de manière générale précédemment).
Dans ce mode de réalisation, les éléments métalliques 1 1 , 12 sont rectangulaires.
Second mode de réalisation Un second mode de réalisation de l'antenne est illustré sur la figure 2.
Dans ce mode de réalisation, les éléments métalliques sont évasés à partir du plan de masse.
L'évasement est rectiligne et de préférence perpendiculaire pour le bord le plus près de l'axe Δ de symétrie central de l'antenne. Les éléments métalliques sont de forme générale trapézoïdale et forment chacun une ailette. De tels éléments métalliques présentent de très nombreuses possibilités pour la géométrie.
De manière générale, ces éléments correspondent à des motifs de surface convexe, évasés en allant de leur base vers leur sommet. Troisième mode de réalisation
Un troisième mode de réalisation est illustré sur la figure 3.
Dans ce mode de réalisation, l'antenne comprend quatre éléments métalliques et l'antenne est de type bipolarisation.
Elle comprend notamment un premier E1 ensemble et un second E2 ensemble chacun formé par deux éléments métalliques et la ligne d'alimentation associée.
Le premier E1 ensemble correspond à une première P couche de matériau diélectrique et le second ensemble correspond à une seconde couche P' de matériau diélectrique. Les deux couches P, P' de matériau diélectrique sont perpendiculaires entre-elles et les éléments métalliques 1 1 , 12, 13, 14 sur chaque couche sont identiques.
Les couches de matériau diélectrique sont en matériaux identiques.
En d'autres termes, dans ce mode de réalisation, les éléments métalliques sont imbriqués perpendiculairement au niveau des fentes de couplage centrales, sans aucun contact entre eux.
On peut voir ce mode de réalisation comme l'imbrication de deux antennes du second mode de réalisation décrit précédemment.
Les éléments métalliques imbriqués sont identiques et seule la position du point de connexion de la ligne d'alimentation sur l'élément métallique coplanaire à cette ligne, ainsi que la position et les dimensions de la zone de ligne capacitive d'adaptation, diffèrent.
Les hauteurs distinctes, associées à ces points de connexion sur les éléments, permettent de combiner les deux antennes sans contact électrique entre celles-ci. Vis-à-vis des circuits extérieurs, chaque antenne reste excitée à l'extrémité inférieure de la ligne d'alimentation par un câble coaxial 50 Ω externe, par exemple. Ceci permet de faire fonctionner cette structure suivant deux polarisations linéaires croisées perpendiculairement. Performances Premier prototype Une antenne selon le second mode de réalisation a été réalisée et caractérisée expérimentalement.
Cette antenne fonctionne dans une bande de fréquence centrée sur 2,5 GHz.
Les deux éléments métalliques ainsi que la ligne d'excitation micro-ruban 50 Ω supportant le tronçon de ligne capacitive d'adaptation, sont imprimés collectivement sur un substrat diélectrique de permittivité diélectrique εr = 2,55 et d'épaisseur h = 800 μm.
Ce substrat est positionné perpendiculairement au plan de masse inférieur de forme carrée, dans lequel a été réalisé un perçage de manière à pouvoir monter le câble coaxial 50 Ω assurant l'alimentation externe de l'antenne.
Les figures 4a et 4b donnent les niveaux d'adaptation respectivement dans un repère cartésien et sur abaque de Smith. On peut noter que cette adaptation reste inférieure à -10 dB sur une large bande de fréquence, allant de
2 GHz à plus de 3 GHz, ce qui correspond à une bande passante relative supérieure à 40 %.
En ce qui concerne les caractéristiques en rayonnement, les figures 5a, 5b et 5c illustrent les diagrammes en co (trait plein) et en cross- polarisation (trait en pointillés) dans le plan E (c'est-à-dire le plan comprenant le substrat de l'antenne et perpendiculaire au plan de masse), et cela aux fréquences 2 GHz, 2,5 GHz et 3 GHz. Sur ces différentes courbes, on peut constater de bonnes performances en rayonnement en fonction de la fréquence, avec, en particulier, un très faible niveau de cross-polarisation dans l'axe de rayonnement principal de l'antenne (c'est-à-dire dans la direction û = 0°). Sur toute la bande 2GHz à 3GHz, ce niveau de cross- polarisation dans l'axe principal reste inférieur de plus de 25dB à celui de co- polarisation. Cette faible valeur de cross-polarisation est par ailleurs maintenue sur un angle d'ouverture dans le plan E relativement important.
De même que pour les figures précédentes, les figures 6a, 6b et 6c donnent les diagrammes de rayonnement en co (trait plein) et en cross- polarisation (traits en pointillés) dans le plan H de l'antenne (c'est-à-dire le plan perpendiculaire au substrat de l'antenne et au plan de masse). Dans ce cas, les conclusions sur les niveaux de cross-polarisation sont tout à fait équivalentes aux résultats obtenus dans le plan E.
La figure 7 illustre le gain obtenu dans la bande 2 GHz à 3 GHz. Ce gain présente une valeur maximale de 6,6dBi à une fréquence de 2,2 GHz.
Second prototype
Un exemple de solution de type bipolarisation, basée sur deux antennes croisées perpendiculairement, comme cela est présenté sur la figure 3, a également été réalisé et caractérisé expérimentalement (voir troisième mode de réalisation).
Pour cette structure, l'une des deux antennes, appelée par la suite « première antenne », est rigoureusement identique à celle décrite dans le second mode de réalisation. L'autre antenne, appelée « seconde antenne », ne se distingue de la précédente que par une position du point de connexion de la ligne μruban 50 Ω plus élevée et par une légère modification de la zone de ligne capacitive d'adaptation.
En termes de distribution du champ électrique on obtient pour chacune des deux antennes imbriquées la même distribution que pour chaque antenne pris séparément. Dans le cas où seule la première antenne est excitée les figures 8 à 11 illustrent respectivement l'adaptation dans un repère cartésien (figure 8a) et sur abaque de Smith (figure 8b), les diagrammes de rayonnement en co et cross- polarisation dans le plan E (figures 9a, 9b, 9c) et dans le plan H (figures 10a, 10b, 10c) et le gain de l'antenne (figure 11 ). Comme pour la distribution du champ électrique sur l'antenne, les performances sont tout à fait conformes à celles obtenues pour une seule antenne (voir performance du premier prototype).
De manière similaire, dans le cas où seule la seconde antenne est excitée, les figures 12 à 15 illustrent respectivement l'adaptation dans un repère cartésien (figure 12a) et sur abaque de Smith (figure 12b), les diagrammes de rayonnement en co et cross-polarisation dans le plan E (figures 13a, 13b, 13c) et dans le plan H (figures 14a, 14b, 14c) et le gain de l'antenne (figure 15).
Même si cette seconde antenne diffère légèrement de la première, les réponses obtenues sont toujours très conformes à celles illustrées sur les figures 8 à 1 1. On en conclut que les performances électriques sont donc tout à fait comparables que l'on soit sur l'une ou l'autre polarisation.
La figure 16 illustre enfin le niveau de couplage entre la première et la seconde antenne, sur la bande 2GHz à 3GHz. Comme on peut le constater, l'isolation entre les deux antennes reste excellente, puisque, sur l'ensemble de cette bande de fréquence, le couplage demeure toujours inférieur à -3OdB.
Pour cette structure de type bipolarisation combinant deux antennes, le très fort niveau d'isolation entre celles-ci constitue l'un des avantages majeurs de la solution proposée.
L'antenne décrite ci-dessus peut aussi être utilisée dans le cadre d'une liaison satellite ou être implémentée dans une station de base d'un réseau de communications et elle peut être utilisée sur des bandes de fréquence comprises entre 10 et 15 GHz.

Claims

REVENDICATIONS
1. Antenne large bande comprenant - un plan (PM) de masse ; - au moins un ensemble comprenant : o une couche (P) de matériau diélectrique disposée perpendiculairement au plan (PM) de masse, la couche ayant une épaisseur ; o un premier élément métallique (1 1 ) disposé sur une face de la couche (P) ; o un second élément métallique (12) disposé sur une face de la couche (P) opposée à la face où est disposé le premier élément métallique de manière à ce que les éléments métalliques ne soient pas l'un en face de l'autre ; le premier et le second élément métallique étant à surface convexe. o une ligne d'alimentation associée à un des deux éléments métalliques, la ligne d'alimentation s'étendant à partir du bord de l'élément métallique le plus proche d'un axe (Δ) de symétrie central de l'antenne vers le plan (PM) de masse.
2. Antenne selon la revendication 1 comprenant un premier (E1 ) ensemble et un second (E2) ensemble, les couches (P, P') de matériau diélectrique associées à chaque ensemble étant perpendiculaires entre elles.
3. Antenne selon l'une des revendications précédentes dans laquelle la ligne d'alimentation est constituée d'un premier tronçon s'étendant de l'élément métallique parallèlement au plan de masse, d'un second tronçon connecté au premier tronçon et s'étendant du premier tronçon perpendiculairement au plan de masse vers le plan de masse.
4. Antenne selon la revendication 3 dans laquelle le second tronçon comprend une première zone et une seconde zone, la seconde zone étant de largeur supérieure à la première zone de manière à assurer une fonction capacitive.
5. Antenne selon l'une des revendications précédentes dans laquelle la ligne d'alimentation est venue de matière avec l'élément métallique auquel elle est associée.
6. Antenne selon l'une des revendications précédentes dans laquelle les éléments métalliques sont à géométrie choisie parmi le groupe suivant :
- géométrie rectangulaire ;
- géométrie de type ailette, étroite à la base connectée au plan de masse et évasée à l'extrémité au dessus du plan de masse.
7. Antenne selon l'une des revendications précédentes dans laquelle la couche de matériau de diélectrique est de l'air ou constituée d'un substrat.
8. Antenne selon l'une des revendications précédentes dans laquelle les lignes d'alimentions sont connectées à une sonde (31 ) d'excitation formant moyen d'alimentation de l'antenne.
9. Station de base d'un réseau de communications sans fil comprenant au moins une antenne selon l'une des revendications précédentes.
EP10708783A 2009-03-17 2010-03-16 Antenne a double ailettes Withdrawn EP2409361A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0951677A FR2943465A1 (fr) 2009-03-17 2009-03-17 Antenne a double ailettes
PCT/EP2010/053398 WO2010106073A1 (fr) 2009-03-17 2010-03-16 Antenne a double ailettes

Publications (1)

Publication Number Publication Date
EP2409361A1 true EP2409361A1 (fr) 2012-01-25

Family

ID=40801772

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10708783A Withdrawn EP2409361A1 (fr) 2009-03-17 2010-03-16 Antenne a double ailettes

Country Status (7)

Country Link
US (1) US20120112967A1 (fr)
EP (1) EP2409361A1 (fr)
JP (1) JP5620974B2 (fr)
KR (1) KR20120009452A (fr)
CN (1) CN102439792A (fr)
FR (1) FR2943465A1 (fr)
WO (1) WO2010106073A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140111396A1 (en) * 2012-10-19 2014-04-24 Futurewei Technologies, Inc. Dual Band Interleaved Phased Array Antenna
KR102424647B1 (ko) * 2020-09-21 2022-07-26 주식회사 에이스테크놀로지 기지국 안테나용 저손실 광대역 방사체
KR102373096B1 (ko) * 2021-02-18 2022-03-11 엘아이지넥스원 주식회사 광대역 보우타이 다이폴 안테나 구조

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537226A (ja) * 1991-07-31 1993-02-12 Mitsubishi Electric Corp プリント・ダイポールアンテナ
US5966102A (en) * 1995-12-14 1999-10-12 Ems Technologies, Inc. Dual polarized array antenna with central polarization control
US6072439A (en) * 1998-01-15 2000-06-06 Andrew Corporation Base station antenna for dual polarization
JP4073130B2 (ja) * 1999-09-30 2008-04-09 株式会社ケンウッド クロスダイポールアンテナ
JP3734666B2 (ja) * 2000-02-28 2006-01-11 三菱電機株式会社 アンテナ装置及びこれを用いたアレーアンテナ
GR1003738B (el) * 2001-02-02 2001-12-14 Ιντρακομ Α.Ε. Ελληνικη Βιομηχανια Τηλεπικοινωνιων Και Συστηματων. Συστημα τυπωμενης κεραιας ευρεου φασματος συχνοτητων.
US7132995B2 (en) * 2003-12-18 2006-11-07 Kathrein-Werke Kg Antenna having at least one dipole or an antenna element arrangement similar to a dipole
JP4608209B2 (ja) * 2003-12-26 2011-01-12 Necアンテン株式会社 アンテナ
JP4155359B2 (ja) * 2004-04-20 2008-09-24 電気興業株式会社 無指向性アンテナ
GB2424765B (en) * 2005-03-29 2007-07-25 Csa Ltd A dipole antenna
JP2007281784A (ja) * 2006-04-05 2007-10-25 Ykc:Kk 自己補対アンテナ
JP2008048193A (ja) * 2006-08-17 2008-02-28 Konica Minolta Holdings Inc アンテナ装置
FR2909486A1 (fr) * 2006-12-01 2008-06-06 Thomson Licensing Sas Antenne multi secteurs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010106073A1 *

Also Published As

Publication number Publication date
JP2012521128A (ja) 2012-09-10
WO2010106073A1 (fr) 2010-09-23
KR20120009452A (ko) 2012-02-01
CN102439792A (zh) 2012-05-02
US20120112967A1 (en) 2012-05-10
FR2943465A1 (fr) 2010-09-24
JP5620974B2 (ja) 2014-11-05

Similar Documents

Publication Publication Date Title
EP0924797B1 (fr) Antenne multifréquence réalisée selon la technique des microrubans, et dispositif incluant cette antenne
EP2692018B1 (fr) Structures antennaires associant des métamatériaux
EP2710676B1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
WO2010142756A1 (fr) Élément rayonnant d'antenne
FR3070224A1 (fr) Antenne plaquee presentant deux modes de rayonnement differents a deux frequences de travail distinctes, dispositif utilisant une telle antenne
EP2643886B1 (fr) Antenne planaire a bande passante elargie
EP1690317A1 (fr) Antenne en reseau multi-bande a double polarisation
EP3235058B1 (fr) Antenne fil-plaque ayant un toit capacitif incorporant une fente entre la sonde d'alimentation et le fil de court-circuit
EP1346442B1 (fr) Antenne imprimee pastille compacte
EP1550183A2 (fr) Element rayonnant large bande a double polarisation, de forme generale carree
EP2409361A1 (fr) Antenne a double ailettes
CA2683048C (fr) Antenne a elements rayonnants inclines
FR2950745A1 (fr) Element rayonnant d'antenne a double polarisation
EP3692598B1 (fr) Antenne à substrat ferromagnétique dispersif partiellement saturé
EP2432072B1 (fr) Symétriseur large bande sur circuit multicouche pour antenne réseau
FR2901062A1 (fr) Dispositif rayonnant a cavite(s) resonnante(s) a air a fort rendement de surface, pour une antenne reseau
FR2980647A1 (fr) Antenne ultra-large bande
EP1376758A1 (fr) Antenne pastille compacte avec un moyen d'adaptation
Schreider Antennes à très large bande passante et de très faible épaisseur-Application à l'intégration d'antennes dans des structures de porteurs dans la bande 100MHz-1GHz
EP1399990A1 (fr) Antenne imprimee a large bande et a plusieurs elements rayonnants
EP3092680A1 (fr) Antenne planaire
EP1873864A1 (fr) Antenne symétrique en technologie micro-ruban
FR2830987A1 (fr) Perfectionnement aux antennes-sources alimentees par guide d'ondes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151001