WO2010142756A1 - Élément rayonnant d'antenne - Google Patents

Élément rayonnant d'antenne Download PDF

Info

Publication number
WO2010142756A1
WO2010142756A1 PCT/EP2010/058137 EP2010058137W WO2010142756A1 WO 2010142756 A1 WO2010142756 A1 WO 2010142756A1 EP 2010058137 W EP2010058137 W EP 2010058137W WO 2010142756 A1 WO2010142756 A1 WO 2010142756A1
Authority
WO
WIPO (PCT)
Prior art keywords
dipole
radiating
elements
support
plane
Prior art date
Application number
PCT/EP2010/058137
Other languages
English (en)
Inventor
Sébastien CHAINON
Jean-Pierre Harel
Aurélien Hilary
Original Assignee
Alcatel Lucent
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent filed Critical Alcatel Lucent
Priority to BRPI1010726A priority Critical patent/BRPI1010726A2/pt
Priority to JP2012514474A priority patent/JP2012529826A/ja
Priority to CN201080025894XA priority patent/CN102804495A/zh
Priority to US13/376,543 priority patent/US20120146872A1/en
Priority to EP10725107A priority patent/EP2441119A1/fr
Publication of WO2010142756A1 publication Critical patent/WO2010142756A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/22Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of a single substantially straight conductive element
    • H01Q19/24Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of a single substantially straight conductive element the primary active element being centre-fed and substantially straight, e.g. H-antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Definitions

  • the present invention relates to the field of telecommunications antennas transmitting radio waves in the microwave domain by means of radiating elements.
  • radiating elements of various forms.
  • One particular known is an element formed of two orthogonal polarized dipoles ⁇ 45 °, called "butterfly" type. These elements have advantages in terms of radio frequency performance, industrialization capacity, cost and robustness. This is why these elements are widely used for applications below 2.5 GHz. For higher frequency bands where there are very important constraints on the dimensions of the radiating elements and their assembly, this type of element has shown its limits due to its size and its mechanical properties.
  • radiating elements printed on a dielectric substrate are used.
  • This solution has the advantage of allowing a precise and repetitive manufacture, and of being usable for different frequency bands.
  • these radiating elements have shortcomings in terms of bandwidth ("bandwidth" in English) and beamwidth, particularly in the horizontal plane, particularly when the ground plane on which the elements are placed.
  • radiating is of limited size (less than the wavelength ⁇ o relative to the operating frequency of the antenna).
  • the new services are more demanding in terms of bandwidth, require the highest possible gain and very high isolation levels between radiating elements in a more compact environment.
  • One solution for broadening the bandwidth of the radiating elements is to optimize their shape, which gives them broad band properties and better stability of the radiation pattern.
  • the environment of the radiating element has also been improved: improvement of the shape of the ground plane ("ground plane" in English) and side walls, addition of particular shapes to optimize the radiation pattern (stability, beamwidth, cross polarization level) and coupling (between radiating elements or between radiating element columns).
  • the present invention therefore aims to provide an improved antenna compared to those of the prior art from the point of view of radio frequency performance, reliability and cost.
  • Another object of the invention is to propose a multipolarized antenna
  • the invention also proposes an antenna radiating element whose bandwidth is widened and the gain increased compared to the radiating elements known from the prior art.
  • the invention also proposes a simple and easy method to implement for the manufacture of antenna radiating elements.
  • the object of the present invention is an antenna comprising at least one antenna radiating element comprising
  • At least one dipole comprising a foot and arms, printed on one of the faces of a plane support with a high dielectric constant
  • At least one conductive line feeding the dipole, printed on the dipole support
  • At least one parasitic element printed on the dipole support and arranged parallel to the dipole arms, - At least one parasitic element is disposed in a plane which is perpendicular to the plane of the support carrying the radiating element and parallel to the arms of the dipole of the radiating element, the parasitic element being interposed between the rows of radiating elements.
  • parasitic element is meant a conductive element disposed above a dipole, which is not powered directly or indirectly through the dipole. He is often referred to as the "director”. An increase of the gain and the width of the bandwidth is obtained by the addition of parasitic elements above the dipoles. Special attention is paid to the shape of the radiating elements
  • the antenna comprises two crossed dipoles, respectively comprising two collinear arms, and at least one parasitic element associated with each dipole, the dipoles and the parasitic elements being printed on a support comprising orthogonal planes.
  • the radiating elements of the antenna are printed side by side on a common plane support so as to form a row.
  • the parasitic elements are fractal pattern.
  • the radiating elements are fractal pattern.
  • the antenna comprises at least two superimposed parasitic elements printed on the support of the dipole parallel to the arms of the dipole.
  • the antenna further comprises a disturbing element is disposed in a plane which is perpendicular to the plane of the support carrying the radiating element and parallel to the arms of the dipole of the radiating element, the disturbing element being interposed between the rows of radiating elements.
  • the elements The function of the interferers is to minimize the coupling between the radiating elements by introducing disturbances in the electromagnetic field.
  • the invention allows the improvement of the radio frequency performance of the antenna, in particular the improvement of the directivity, the increase of the bandwidth, the ability to multiband operation, and the improvement of the decoupling between adjacent columns of the antenna. elements.
  • the subject of the invention is also a method for manufacturing a radiating element of this antenna comprising at least one step of printing at least one dipole and at least one parasitic element on the same plane dielectric support, and a step of printing at least one interfering element on a dielectric plane support perpendicular to the plane of the support carrying the radiating element.
  • the manufacturing process has the advantage of being simple and easy to implement, to obtain a solid and cheap radiating element.
  • the radiating elements thus manufactured contribute to the assembly of more robust and more precise antennas despite the number of parasitic elements, and the addition of disturbing elements. .
  • FIGS. 1a, 1b and 1c show a diagrammatic front view of a vertically polarized radiating element comprising a parasitic element
  • FIG. 2a shows a partial view of an antenna comprising radiating elements similar to those of FIGS. 1a-1c, and FIG. 2b is a detailed view of one of these elements,
  • FIG. 3 shows in the ordinate the reflection factor I in deciblels as a function of the impedance F in ohms carried in abscissa
  • FIG. 4 is the radiation diagram in the vertical plane of the antenna of FIG. 2;
  • FIG. 5 is the radiation diagram in the horizontal plane of the antenna of FIG. 2;
  • FIG. 6 represents a schematic front view of a radiating element comprising several parasitic elements
  • FIGS. 7a-7h are diagrammatic front views of various vertically polarized radiating elements comprising a parasitic element
  • FIGS. 8a and 8b are diagrammatic front views of a vertically polarized radiating element comprising a parasitic element in the form of a parasitic element; fractal,
  • FIGS. 9a and 9b are a schematic view of the front and rear faces of a cross-polarized radiating element comprising a parasitic element
  • FIG. 10 shows a partial view of an antenna comprising the cross-polarizing radiating elements similar to those of FIGS. 9a and 9b,
  • FIG. 11 represents a schematic perspective view of an array of cross-polarized radiating elements comprising dipoles and fractal-shaped parasitic elements
  • FIG. 12 is a diagrammatic perspective view of an array of cross-polarized radiating elements comprising staggered elements displaced in a first variant
  • FIG. 13 is a schematic perspective view of an array of radiating elements comprising staggered elements staggered according to a second variant
  • FIG. 14 is a diagrammatic perspective view of an array of vertically polarized plane radiating elements in which disturbing elements are placed between the rows of radiating elements according to a first variant
  • FIG. 15 shows a schematic perspective view of an embodiment of an array of vertically polarized plane radiating elements in which disruptive elements are placed between the rows of radiating elements according to a second variant.
  • FIG. 1 to 1 c is shown an embodiment of an alignment of radiating elements 1 vertically polarized plane.
  • the radiating element 1 comprises a dipole 2 half-wave, composed of two half-dipoles separated by a slot 3 each having a foot 4 supporting an arm 5.
  • the two arms 5 of the dipole 2 define a radiating line.
  • this radiating line is surmounted by another radiating line formed by a parasitic element 6 or "director", which is not electrically connected with the dipole 2.
  • the dipole 2 is fed by a conductive line 7 connected to a balun ("balun" in English) not shown.
  • the dipole 2 microstrip type ("stripline” in English) and the parasitic element 6 are printed on one of the faces (fig.ib) of a substrate 8 with a low dielectric constant ⁇ r (1 ⁇ r ⁇ 5), such as for example a reference glass and teflon plate " TLX-08 "of the company” TACONIC ".
  • the conductive line 7 is printed on the opposite face (fig.ic) of the dielectric support 8.
  • FIG. 2a and 2b there is shown a portion of an antenna 20 comprising a row of twelve radiating elements 21 of the type shown in Figures 1a-1c.
  • the radiating elements 21 are printed on a substrate 22 forming a printed circuit (PCB) 23.
  • the printed circuit 23 is fixed on a reflector 24, forming a ground plane ("ground plane" in English), in the shape of a U and reduced surface area.
  • the distance between the lateral flanges 25 forming the walls of the reflector is, for example, 0.5 ⁇ 0 , where ⁇ 0 is the wavelength of the operating frequency of the antenna, for a very small antenna. compact.
  • An enlarged representation of a radiating element 21 is given in FIG. 2b.
  • Each radiating element 21 comprises a dipole 26 whose arms 27, in the extension of one another, have a total length L 1 .
  • the arms 27 of the dipole 26, span L 1 are surmounted by a parasitic element 28 of length L 2 less than the length L 1 .
  • the ratio R of the lengths L 2 ZL 1 is here, for example, 0.65.
  • the combination of a dipole 26 and a parasitic element 28 makes it possible to obtain improved radiofrequency performances, in particular the bandwidth width.
  • the reflection factor I in decibels is represented by the curve 30 in FIG. 3 as a function of the impedance F in ohms.
  • the antenna In the 3.3-3.8GHz frequency band of WIMAX applications (14% of the frequency bandwidth), the antenna must operate with a ROS stationary wave ratio of 1.37, which corresponds to the right of reference 31 in full line. The operation of the antenna in the frequency range considered is satisfactory because the curve 30 is entirely below the reference line 31, and more particularly in the frequency range 3.51-3.69 GHz.
  • the vertical radiofrequency radiation diagram (curve 40 in solid lines) shows the intensity of the radiation R in the vertical plane in dBi as a function of the angle A of radiation in degrees.
  • a beam width, at half power (R -3dBi) in main polarization, 6 degrees is reached in the vertical plane.
  • the curve 41 (in dashed lines) is at a very low level, at a level about 33 dB below what is observed in the main polarization.
  • the horizontal radiofrequency radiation pattern (curve 50 in solid lines) is shown in FIG. 5.
  • the intensity of the radiation R in the horizontal plane in dBi is given as a function of the angle A of radiation in degrees.
  • the width of the beam is close to 90 ° in the horizontal plane.
  • the curve 51 in dashed lines is at a very low level, at a level about 33 dB below what is observed in the main polarization.
  • FIG 6 there is shown another embodiment of an alignment of radiating elements 60 vertically polarized.
  • the radiating element 60 comprises a half-wave dipole 61 composed of two separate half-dipoles each comprising a foot 62 supporting an arm 63, fed by a conductive line 64.
  • the two arms 63 of the dipoles 61 define a radiating line.
  • this radiating line is surmounted by two other radiating lines respectively formed by a lower parasitic element 65 and by a parasitic element 66 upper.
  • the parasitic elements 65, 66 superimposed are not electrically connected to each other, nor are they connected to the dipole 61.
  • the radiating element 60 is printed on a support 67 which is a dielectric substrate.
  • Figures 7a to 7h give examples of shapes that can take a broadband radiating element, having a dipole surmounted by a parasitic element, printed on a dielectric support. For each example, there is shown a dipole surmounted by a single parasitic element. It is understood that these forms are also valid for radiating elements comprising two or more parasitic elements.
  • Figures 7a and 7b show a radiating element 70 whose dipoles have a flared shape, known under the name "bow tie” ("bow tie” in English); in Figure 7b, parasitic element 71 also adopts this form.
  • Figures 7c and 7d show a radiating element 72 whose dipoles have a bulbous shape at the ends, known as the "dog bone” ("dogbone” in English); in Figure 7d, the parasitic element 73 also adopts this form.
  • Figures 7e and 7f show a radiating element 74 whose dipoles have a curved shape, known as the "wings"("wings" in English); in FIG. 7f, parasitic element 75 also adopts this shape.
  • Figures 7g and 7h show radiating elements 76, 77 having dipoles whose foot is separated into two parts by a slot 78, 79 bevel which is in a direction inverted respectively in the two figures. This type of beveled slot
  • the technique of printing on a support also makes it possible to produce radiating elements 80, 81 from a fractal pattern as illustrated in FIG. 8, in order to improve the bandwidth and the multifrequency behavior.
  • the parasitic element 82 of the radiating element 80 takes up a fractal pattern.
  • the parasitic element 83 of the radiating element 81 takes up a fractal pattern and the two arms 84 also take a fractal pattern, for example. It becomes possible to simply obtain any kind of shape for radiating elements in two dimensions.
  • the use of a fractal pattern is particularly advantageous in the case of broadband or multiband type applications.
  • FIG. 9 schematically represents a radiating element 90 printed on a support 91 composed of two orthogonal planes 92, 93.
  • the radiating element 90 comprises two interdigitally polarized dipoles 94, 95 ⁇ 45 °.
  • the intersection Odes dipoles 94, 95 at their respective slot coincides with the intersection of the planes 92, 93 of the support 91.
  • the dipoles 94, 95 are each surmounted by a parasitic element 96, 97.
  • a dipole 94, 95 comprises a foot 98 and an arm 99 collinear conductors printed on a face 92a, 93a of a plane 92, 93 of the support 91.
  • the dipole 94, 95 is fed by a conductive line 100 printed on the face 92b , 93b opposite of plan 92.
  • the radiating element 90 implanted on the reflector 99 of an antenna is shown in perspective in FIG. 10. It is thus possible in a simple manner to obtain any kind of shape for three-dimensional radiating elements.
  • FIG 11 represents an array of cross-polarized radiating elements.
  • Each radiating element 110 comprises two dipoles 111, two parasitic elements 112 and two conductive lines for feeding the dipoles (not visible).
  • Each orthogonal plane 113, 114 of the support is extended to serve as a support for printing the adjacent radiating element.
  • the dipoles 111 comprise arms 115 made using a fractal pattern.
  • the parasitic element 112 placed above the dipoles 111 is also made from a fractal pattern. It is thus possible to obtain, in a simple and flexible manner, all kinds of configurations associating radiating elements supported in three dimensions. Such an arrangement has the advantage of good mechanical strength through the interlocking planes into each other.
  • FIG. 12 A particularly advantageous configuration for reducing the beamwidth in the horizontal plane is shown in FIG. 12. Additional parasitic elements 120 are added in a horizontal plane 121 placed above the orthogonal planes 122, 123 of the support, parallel to the arms of the dipoles. The dipoles 124 surmounted by a parasitic element 125 are printed on the parallel planes 123 of the support to form rows of parallel dipoles 124. In particular, the presence of the additional parasitic elements 120 on either side of the vertical plane 123 bearing the parasitic elements 125 surmounting the radiating line formed by the dipoles 124.
  • the horizontal plane 121 may notably be a fixed plastic part. on the support 122, 123, and on which the additional parasitic elements 120 have been printed. Of course additional parasitic elements 120, or directors, can adopt all the previously mentioned forms.
  • the addition of the horizontal plane 121 also has the advantage of stiffening the network of radiating elements and contributing to the mechanical strength of the antenna.
  • FIG. 13 shows a particular embodiment of additional parasitic elements 130 in the case of cross-polarization radiating elements ⁇ 45 °.
  • the parasitic elements 130 are here in the form of a potent cross, and arranged on a horizontal plane 131 above the intersection of the orthogonal planes 132, 133 of the dielectric support on which are printed the dipoles 134 surmounted by a parasitic element 135.
  • the main axes 136, 137 of the potent cross coincide respectively with the orthogonal planes 132, 133 of the dielectric support.
  • This technique of printing on a dielectric support makes it possible to produce multiband antennas comprising radiating elements 140 aligned in parallel rows.
  • the radiating elements 140 are printed on parallel planes 141 of the row support.
  • the planes 142 forming columns, perpendicular to the planes 141, carry disturbing elements 143 whose function is to minimize the coupling between the parallel rows of radiating elements by introducing disturbances in the electromagnetic field.
  • the disturbing elements 143 are metallic and they are interposed in the dielectric support forming the columns in the plane 142. This configuration is particularly advantageous for systems requiring high isolation between rows of elements, such as a MIMO application.
  • disturbing elements 150 here in the form of a cross, can be printed on a horizontal plane 151 also carrying parasitic elements 152.
  • the horizontal plane 151 is disposed above the intersection of the planes 153 forming columns and orthogonal planes 154 forming rows of radiating elements printed on the dielectric support, that is to say the dipoles 155 surmounted by a parasitic element 156.
  • the present invention is not limited to the described embodiments, but it is capable of many variants accessible to those skilled in the art without departing from the spirit of the invention.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

La pressente invention a pour objet une antenne (réseau) comprenant au moins un élément rayonnant (1). L' élément rayonnant (1) comprend au moins un dipole (2, 124), comportant un pied (4) et des bras (5), imprimé sur l'une des face d'un support (substrat, 8, 122 ) à constante diélectrique élevée. Le dipole (2, 124) est alimenté par au moins une ligne conductrice (7), imprimé sur le support ( 8, 122 ). Au moins un élément parasite ( directeur, 6, 125 ) est en outre imprimé sur le support ( 8, 122 ) du dipole ( 2, 124 ) et disposé parallèlement aux bras (5) du dipole ( 2, 124 ). Au moins un autre élément parasite suplémentaire (120) est disposé dans un plan horizontal (121) gui est perpendiculaire au plan du support ( 8, 122 ) portant l' élément rayonnant (1) et parallèle aux bras (5) du dipole (2, 124) de l' élément rayonnant (1). L'élément parasite supplémentaire (120) est intercalé entre les rangées d'éléments rayonnant (1).

Description

Elément rayonnant d'antenne
La présente invention se rapporte au domaine des antennes de télécommunications transmettant des ondes radioélectriques dans le domaine des hyperfréquences au moyen d'éléments rayonnants.
Pour les services de communication mobile GSM, DCS/PCS, UMTS, ..., il a été développé des éléments rayonnants de formes variées. On connait notamment un élément formé de deux dipôles croisés à polarisation orthogonale ± 45°, dit de type « papillon ». Ces éléments présentent des avantages en termes de performances radiofréquences, capacité d'industrialisation, coût et robustesse. C'est pourquoi ces éléments sont largement utilisés pour des applications en dessous de 2,5 GHz. Pour des bandes de fréquences plus élevées où interviennent des contraintes très importantes sur les dimensions des éléments rayonnants et leur assemblage, ce type d'élément a montré ses limites dues à sa taille et à ses propriétés mécaniques.
C'est pourquoi, pour les antennes WIMAX (bande de fréquences 2,3-2,7GHz et 3,3-3,8GHz) par exemple, on utilise des éléments rayonnant imprimés sur un substrat diélectrique. Cette solution a pour avantage de permettre une fabrication précise et répétitive, et d'être utilisable pour différentes bandes de fréquences. Cependant ces éléments rayonnants présentent des insuffisances en terme de bande passante ("bandwidth" en anglais) et de largeur de faisceau ("beamwidth" en anglais), notamment dans le plan horizontal, particulièrement lorsque le plan de masse sur lequel sont placés les éléments rayonnants est de taille limité (inférieur à la longueur d'onde λo relative à la fréquence de fonctionnement de l'antenne). Afin de satisfaire notamment les exigences liées au traitement numérique du signal, les nouveaux services sont plus exigeants en terme de bande passante, requièrent le gain le plus élevé possible et des niveaux d'isolation entre éléments rayonnants très importants dans un environnement plus compact.
Une solution pour élargir la bande passante des éléments rayonnants consiste à optimiser leur forme, ce qui leur confère des propriétés large bande et une meilleure stabilité du diagramme de rayonnement. L'environnement de l'élément rayonnant a également été amélioré : amélioration de la forme du plan de masse ("ground plane" en anglais) et des parois latérales, ajout de formes particulières de manière à optimiser le diagramme de rayonnement (stabilité, largeur de faisceau, niveau de polarisation croisée) et de couplage (entre éléments rayonnants ou entre colonnes d'éléments rayonnants).
Toutefois l'arrivée de nouveau services (multimédia, téléphonie 4G, système d'accès mobile large bande 2-66 GHz), nécessitant un fonctionnement multipolarisé dans des bandes de fréquences plus élevées et un environnement très réduit, ont montré les limites des éléments rayonnants existants, même ceux bénéficiant d'une forme optimisée. Or la demande des utilisateurs se fait pressante sur les antennes à haute directivité ayant une large bande passante. En outre les applications mobiles exigent des solutions très compactes présentant malgré tout un faible couplage entre éléments lorsque qu'elle comporte des colonnes adjacentes d'éléments rayonnants. Ces éléments ont donc encore besoin d'être perfectionnés au point de vue précision, solidité, coût et performances.
La présente invention a donc pour but de proposer une antenne améliorée par rapport à celles de l'art antérieur au point de vue des performances radiofréquences, de la fiabilité et du prix de revient.
L'invention a encore pour but de proposer une antenne multipolarisée
(verticalement, horizontalement ou orthogonalement ± 45°) très compacte dont le taux de couplage entre éléments rayonnants adjacents est moindre, malgré un encombrement réduit.
L'invention propose encore un élément rayonnant d'antenne dont la bande passante est élargie et le gain augmenté par rapport aux éléments rayonnants connus de l'art antérieur. L'invention propose aussi un procédé simple et facile à mettre en œuvre pour la fabrication d'éléments rayonnants d'antenne.
L'objet de la présente invention est une antenne comportant au moins un élément rayonnant d'antenne comprenant
- au moins un dipôle, comportant un pied et des bras, imprimé sur l'une des face d'un support plan à constante diélectrique élevée,
- au moins une ligne conductrice, alimentant le dipôle, imprimé sur le support du dipôle,
- au moins un élément parasite imprimé sur le support du dipôle et disposé parallèlement aux bras du dipôle, - au moins un élément parasite est disposé dans un plan qui est perpendiculaire au plan du support portant l'élément rayonnant et parallèle aux bras du dipôle de l'élément rayonnant, l'élément parasite étant intercalé entre les rangées d'éléments rayonnants.
On entend par élément parasite un élément conducteur, disposé au-dessus d'un dipôle, qui n'est pas alimenté, ni directement, ni indirectement par l'intermédiaire du dipôle. Il est souvent désigné par le terme "directeur". Une augmentation du gain et de la largeur de la bande passante est obtenue par l'addition d'éléments parasites au-dessus des dipôles. Une attention particulière est portée à la forme des éléments rayonnants
(disposition dipôle / élément parasite, formes courbes ou effilées, design fractal du dipôle par exemple) vis-à-vis de l'impédance large bande et de la stabilité du diagramme de rayonnement (polarisation croisée optimisée, rejet d'une bande de fréquence par exemple). L'élément rayonnant est suffisamment précis pour être utilisé dans les nouveaux services de télécommunication faisant appel, à des fréquences élevées, en particulier supérieures à 2,5 GHz. En particulier, la technique d'impression des éléments sur un support plan apporte une grande liberté et des propriétés nouvelles notamment pour les applications aux antennes sans fil. Selon une première variante, l'antenne comprend deux dipôles croisés, comportant respectivement deux bras colinéaires, et au moins un élément parasite associé à chaque dipôle, les dipôles et les éléments parasites étant imprimé sur un support comportant des plans orthogonaux.
Selon une deuxième variante, les éléments rayonnants de l'antenne sont imprimés côte à côte sur un support plan commun de manière à constituer une rangée. Selon une forme d'exécution, les éléments parasites sont à motif fractal. Selon une autre forme d'exécution, les éléments rayonnants sont à motif fractal. Selon un mode de réalisation, l'antenne comprend au moins deux éléments parasites superposés imprimés sur le support du dipôle parallèlement aux bras du dipôle.
Selon un autre mode de réalisation, l'antenne comprend en outre un élément perturbateur est disposé dans un plan qui est perpendiculaire au plan du support portant l'élément rayonnant et parallèle aux bras du dipôle de l'élément rayonnant, l'élément perturbateur étant intercalé entre les rangées d'éléments rayonnants. Les éléments perturbateurs ont pour fonction de minimiser le couplage entre les éléments rayonnants en introduisant des perturbations dans le champ électromagnétique.
L'invention permet l'amélioration des performances radiofréquences de l'antenne, en particulier l'amélioration de la directivité, l'augmentation de la largeur de bande, l'aptitude au fonctionnement multibande, et l'amélioration du découplage entre colonnes adjacentes d'éléments.
L'invention a encore pour objet un procédé de fabrication d'un élément rayonnant de cette antenne comprenant au moins une étape d'impression d'au moins un dipôle et d'au moins un élément parasite sur un même support diélectrique plan, et une étape d'impression d'au moins un élément perturbateur sur un support plan diélectrique perpendiculaire au plan du support portant l'élément rayonnant.
Le procédé de fabrication a comme avantage d'être simple et facile à mettre en œuvre, permettant d'obtenir un élément rayonnant solide et bon marché. Les éléments rayonnants ainsi fabriqués contribuent à l'assemblage d'antennes plus robustes et plus précises malgré le nombre d'éléments parasites, et de l'addition d'éléments perturbateurs. .
D'autres caractéristiques et avantages de la présente invention apparaîtront au cours des exemples suivants de réalisation, donnés bien entendu à titre illustratif et non limitatif, et dans le dessin annexé sur lequel :
- les figures 1a, 1 b et 1 c représentent en vue schématique de face un élément rayonnant à polarisation verticale comportant un élément parasite,
- la figure 2a montre une vue partielle d'une antenne comportant des éléments rayonnants analogues à ceux des figures 1 a-1c, et la figure 2b est une vue détaillée de l'un de ces éléments,
- la figure 3 montre en ordonnée le facteur de réflexion I en déciblels en fonction de l'impédance F en ohms porté en abcisse,
- la figure 4 est le diagramme de rayonnement dans le plan vertical de l'antenne de la figure 2, - la figure 5 est le diagramme de rayonnement dans le plan horizontal de l'antenne de la figure 2,
Sur les figures 4 et 5, l'intensité du rayonnement R en dBi est donnée en ordonnée, et en abscisse l'angle A de rayonnement dans le plan considéré en degrés. - la figure 6 représente une vue schématique de face d'un élément rayonnant comportant plusieurs éléments parasites,
- les figures 7a-7h sont des vues schématiques de face de divers éléments rayonnants à polarisation verticale comportant un élément parasite, - les figures 8a et 8b sont des vues schématiques de face d'un élément rayonnant à polarisation verticale comportant un élément parasite à forme fractale,
- les figures 9a et 9b sont une vue schématique de face avant et arrière d'un élément rayonnant à polarisation croisée comportant un élément parasite,
- la figure 10 montrent une vue partielle d'une antenne comportant les éléments rayonnants à polarisation croisée analogues à ceux des figures 9a et 9b,
- la figure 11 représente une vue schématique en perspective d'un réseau d'éléments rayonnants à polarisation croisée comportant des dipôles et des éléments parasites à forme fractale,
- la figure 12 représente une vue schématique en perspective d'un réseau d'éléments rayonnants à polarisation croisée comportant des éléments parasites décalés selon une première variante, - la figure 13 représente une vue schématique en perspective d'un réseau d'éléments rayonnants comportant des éléments parasites décalés selon une deuxième variante,
- la figure 14 représente en vue schématique en perspective d'un réseau d'éléments rayonnants plans à polarisation verticale dans lequel des éléments perturbateurs sont placés entre les rangées d'éléments rayonnants selon une première variante,
- la figure 15 représente en vue schématique en perspective d'un mode de réalisation d'un réseau d'éléments rayonnants plans à polarisation verticale dans lequel des éléments perturbateurs sont placés entre les rangées d'éléments rayonnants selon une deuxième variante.
Sur les figures 1 a à 1 c est représenté un mode de réalisation d'un alignement d'éléments rayonnants 1 plan à polarisation verticale. L'élément rayonnant 1 comprend un dipôle 2 demi-onde, composé de deux demi-dipôles séparés par une fente 3 comportant chacun un pied 4 supportant un bras 5. Les deux bras 5 du dipôle 2 définissent une ligne rayonnante. Afin d'augmenter le gain et la largeur de bande, cette ligne rayonnante est surmontée d'une autre ligne rayonnante formée par un élément parasite 6 ou "directeur", qui n'est pas électriquement connecté avec le dipôle 2. Le dipôle 2 est alimenté par une ligne conductrice 7 relié à un symétriseur ("balun" en anglais) non représenté. Le dipôle 2 de type microruban ("stripline" en anglais) et l'élément parasite 6 sont imprimés sur l'une des faces (fig.i b) d'un substrat 8 à faible constante diélectrique εr (1 < εr < 5), comme par exemple une plaque de verre et téflon de référence "TLX-08" de la société " TACONIC ". La ligne conductrice 7 est imprimée sur la face opposée (fig.i c) du support diélectrique 8.
Sur les figures 2a et 2b, on a représenté une partie d'une antenne 20 comprenant une rangée de douze éléments rayonnants 21 du type de ceux représentés sur les figures 1a-1c. Les éléments rayonnants 21 sont imprimés sur un substrat 22 formant un circuit imprimé (PCB) 23. Le circuit imprimé 23 est fixé sur un réflecteur 24, formant plan de masse ("ground plane" en anglais), en forme d'un U et de surface réduite. Dans le cas présent la distance entre les rebords latéraux 25, formant parois du réflecteur, est par exemple de 0,5λ0, où λ0 est la longueur d'onde de la fréquence de fonctionnement de l'antenne, pour une antenne 20 très compacte. Une représentation agrandie d'un élément rayonnant 21 est donné sur la figure 2b. Chaque élément rayonnant 21 comprend un dipôle 26 dont les bras 27, dans le prolongement l'un de l'autre, ont une longueur totale L1. Les bras 27 du dipôle 26, d'envergure L1, sont surmontés d'un élément parasite 28 de longueur L2 inférieure à la longueur L1. Le rapport R des longueurs L2ZL1 vaut ici par exemple 0,65. La distance D entre le dipôle 26 et l'élément parasite 28 est comprise entre 0,07 et 0,1 1 de la longueur d'onde guidée λr telle que λr = λo/V~εr où εr est la constante diélectrique du substrat utilisé et λ0 est la longueur d'onde de la fréquence de fonctionnement de l'antenne. Dans le cas présent la combinaison d'un dipôle 26 et d'un élément parasite 28 permet d'obtenir des performances radiofréquences améliorées, en particulier la largeur de la bande passante.
Le facteur de réflexion I en décibels est représenté par la courbe 30 sur la figure 3 en fonction de l'impédance F en ohms. Dans la bande de fréquence 3,3-3,8GHz des applications WIMAX (14% de la largeur de bande de fréquence), l'antenne doit fonctionner avec un rapport d'onde stationnaire ROS de 1 ,37, ce qui correspond à la droite de référence 31 en trait plein. Le fonctionnement de l'antenne dans la gamme de fréquence considéré est satisfaisant car la courbe 30 se situe entièrement en dessous de la droite de référence 31 , et plus particulièrement dans la zone de fréquence 3,51-3,69GHz.
Sur la figure 4, le diagramme de rayonnement radiofréquence vertical (courbe 40 en trait plein) montre l'intensité du rayonnement R dans le plan vertical en dBi en fonction de l'angle A de rayonnement en degré. Une largeur de faisceau, à mi-puissance (R = -3dBi) en polarisation principale, de 6 degrés est atteinte dans le plan vertical. En polarisation croisée, la courbe 41 (en pointillés) est à un niveau très faible, à un niveau inférieur d'environ 33dB de ce que l'on observe en polarisation principale.
Le diagramme de rayonnement radiofréquence horizontal (courbe 50 en trait plein) est représenté sur la figure 5. L'intensité du rayonnement R dans le plan horizontal en dBi est donnée en fonction de l'angle A de rayonnement en degré. Malgré la faible surface du plan de masse 24 de l'antenne 20, la largeur du faisceau est proche de 90° dans le plan horizontal. En polarisation croisée, la courbe 51 (en pointillés) est à un niveau très faible, à un niveau inférieur d'environ 33dB de ce que l'on observe en polarisation principale.
Sur la figure 6, on a représenté un autre mode de réalisation d'un alignement d'éléments rayonnants 60 à polarisation verticale. L'élément rayonnant 60 comprend un dipôle 61 demi-onde, composé de deux demi-dipôles séparés comportant chacun un pied 62 supportant un bras 63, alimenté par une ligne conductrice 64. Les deux bras 63 des dipôles 61 définissent une ligne rayonnante. Afin d'augmenter le gain et la largeur de bande, cette ligne rayonnante est surmontée de deux autres lignes rayonnantes formée respectivement par un élément parasite 65 inférieur et par un élément parasite 66 supérieur. Les éléments parasites 65, 66 superposés ne sont pas électriquement reliés entre eux, et ne sont pas non plus connecté au dipôle 61. L'élément rayonnant 60 est imprimé sur un support 67 qui est un substrat diélectrique.
Les figures 7a à 7h donnent des exemples de formes que peut prendre un élément rayonnant large bande, comportant un dipôle surmonté d'un élément parasite, imprimé sur un support diélectrique. On a représenté pour chaque exemple un dipôle surmonté d'un seul élément parasite. Il est bien entendu que ces formes sont également valables pour des éléments rayonnants comprenant deux éléments parasites ou plus.
Les figures 7a et 7b montrent un élément rayonnant 70 dont les dipôles ont une forme évasée, connue sous l'appellation "nœud papillon" ("bow tie" en anglais) ; sur la figure 7b, l'élément parasite 71 adopte également cette forme.
Les figures 7c et 7d montrent un élément rayonnant 72 dont les dipôles ont une forme renflée aux extrémités, connue sous l'appellation "os de chien" ("dogbone" en anglais) ; sur la figure 7d, l'élément parasite 73 adopte également cette forme.
Les figures 7e et 7f montrent un élément rayonnant 74 dont les dipôles ont une forme courbe, connue sous l'appellation "ailes" ("wings" en anglais) ; sur la figure 7f, l'élément parasite 75 adopte également cette forme. Les figures 7g et 7h montrent des éléments rayonnants 76, 77 ayant des dipôles dont le pied est séparé en deux parties par une fente 78, 79 en biseau qui est dans un sens inversé respectivement sur les deux figures. Ce type de fente en biseau
("tapered slot" en anglais) est dit multi-sections car les fentes 78, 79 sont formées de plusieurs sections de largeur différentes.
La technique d'impression sur un support permet aussi de réaliser des éléments rayonnants 80, 81 à partir d'un motif fractal comme illustré sur la figure 8, afin d'améliorer la largeur de bande et le comportement multifréquence. Par exemple, l'élément parasite 82 de l'élément rayonnant 80 reprend un motif fractal. L'élément parasite 83 de l'élément rayonnant 81 reprend un motif fractal et les deux bras 84 reprennent également un motif fractal par exemple. Il devient possible d'obtenir de manière simple toute sorte de forme pour des éléments rayonnants en deux dimensions. L'utilisation d'un motif fractal est particulièrement avantageux dans le cas des applications types large bande ou multibande.
La figure 9 représente schématiquement un élément rayonnant 90 imprimé sur un support 91 composé de deux plans orthogonaux 92, 93. L'élément rayonnant 90 comprend deux dipôles 94, 95 croisés à polarisation orthogonale ± 45°. L'intersection Odes dipôles 94, 95 au niveau de leur fente respective coïncide avec l'intersection des plans 92, 93 du support 91. Les dipôles 94, 95 sont surmontés chacun d'un élément parasite 96, 97.
Un dipôle 94, 95 comporte un pied 98 et un bras 99 conducteurs colinéaires imprimés sur une face 92a, 93a d'un plan 92, 93 du support 91. Le dipôle 94, 95 est alimenté par une ligne conductrice 100 imprimée sur la face 92b, 93b opposée du plan 92.
L'élément rayonnant 90 implanté sur le réflecteur 99 d'une antenne est représenté en perspective sur la figure 10. On peut ainsi obtenir de manière simple toute sorte de forme pour des éléments rayonnants en trois dimensions.
La figure 1 1 représente un réseau d'éléments rayonnants à polarisation croisée. Chaque élément rayonnant 110 comprend deux dipôles 111 , deux éléments parasites 112 et deux lignes conductrices pour l'alimentation des dipôles (non visibles). Chaque plan orthogonal 113, 114 du support est prolongé de manière à servir de support pour l'impression de l'élément rayonnant adjacent. Les dipôles 111 comportent des bras 115 réalisés en utilisant un motif fractal. L'élément parasite 112 placé au- dessus des dipôles 111 est aussi réalisé à partir d'un motif fractal. On peut ainsi obtenir de manière simple et flexible toute sorte de configurations associant des éléments rayonnants supportés en trois dimensions. Un tel montage présente l'avantage d'une bonne tenue mécanique grâce à l'emboîtement des plans les uns dans les autres.
Une configuration particulièrement avantageuse pour réduire la largeur de faisceau dans le plan horizontal est représentée sur la figure 12. Des éléments parasites supplémentaires 120 sont ajoutés dans un plan horizontal 121 placé au-dessus des plans 122, 123 orthogonaux du support, parallèlement aux bras des dipôles. Les dipôles 124 surmontés d'un élément parasite 125 sont imprimés sur les plans 123 parallèles du support pour former des rangées de dipôles 124 parallèles. En particulier, on notera la présence des éléments parasites supplémentaires 120 de part et d'autre du plan vertical 123 portant les éléments parasites 125 surmontant la ligne rayonnante formée par les dipôles 124. Le plan horizontal 121 peut être notamment une pièce en matière plastique fixée sur le support 122, 123, et sur laquelle les éléments parasites supplémentaires 120 ont été imprimés. Bien entendu des éléments parasites supplémentaires 120, ou directeurs, peuvent adopter toutes les formes précédemment évoquées. L'ajout du plan horizontal 121 présente en outre l'avantage de rigidifier le réseau d'éléments rayonnants et de contribuer à la tenue mécanique de l'antenne.
La figure 13 montre une forme particulière de réalisation d'éléments parasites supplémentaires 130 dans le cas d'éléments rayonnants à polarisation croisée ±45°. Les éléments parasites 130 sont ici en forme de croix potencée, et disposés sur un plan horizontal 131 au-dessus de l'intersection des plans orthogonaux 132, 133 du support diélectrique sur lequel sont imprimés les dipôles 134 surmontés d'un élément parasite 135. Les axes principaux 136,137 de la croix potencée coïncident respectivement avec les plans orthogonaux 132, 133 du support diélectrique.
Cette technique d'impression sur un support diélectrique permet de réaliser des antennes multibandes comportant des éléments rayonnants 140 alignés en rangées parallèles. Dans l'exemple de la figure 14, les éléments rayonnants 140 sont imprimés sur des plans 141 parallèles du support formant rangées. Les plans 142 formant colonnes, perpendiculaires aux plans 141 , portent des éléments perturbateurs 143 qui ont pour fonction de minimiser le couplage entre les rangées parallèles d'éléments rayonnants en introduisant des perturbations dans le champ électromagnétique. Les éléments perturbateurs 143 sont métalliques et ils sont intercalés dans le support diélectrique formant les colonnes dans le plan 142. Cette configuration est particulièrement avantageuse pour les systèmes requérant une isolation élevée entre les rangées d'éléments, tel qu'une application MIMO.
Selon une variante représentée sur la figure 15, des éléments perturbateurs 150, ici en forme de croix, peuvent être imprimés sur un plan horizontal 151 portant également des éléments parasites 152. Le plan horizontal 151 est disposé au-dessus de l'intersection des plans 153 formant colonnes et des plans 154 orthogonaux formant rangées d'éléments rayonnants imprimés sur le support diélectrique, c'est-à-dire les dipôles 155 surmontés d'un élément parasite 156.
Bien entendu, la présente invention n'est pas limitée aux modes de réalisation décrits, mais elle est susceptible de nombreuses variantes accessibles à l'homme de l'art sans que l'on s'écarte de l'esprit de l'invention. En particulier, on pourra sans sortir du cadre de l'invention modifier la forme de l'élément rayonnant, ou celle des dipôles et/ou de l'élément parasite. On pourra aussi utiliser un support diélectrique de nature et de forme différente. Enfin, on pourra enfin envisager tout procédé d'impression compatible avec un fonctionnement radiofréquence.

Claims

REVENDICATIONS
1. Antenne comportant au moins un élément rayonnant d'antenne comprenant
- au moins un dipôle, comportant un pied et des bras, imprimé sur l'une des face d'un support plan à constante diélectrique élevée, - au moins une ligne conductrice, alimentant le dipôle, imprimé sur le support du dipôle,
- au moins un élément parasite imprimé sur le support du dipôle et disposé parallèlement aux bras du dipôle, caractérisé en ce que au moins un élément parasite est disposé dans un plan qui est perpendiculaire au plan du support portant l'élément rayonnant et parallèle aux bras du dipôle de l'élément rayonnant, l'élément parasite étant intercalé entre les rangées d'éléments rayonnants.
2. Antenne selon la revendication 1 , comprenant deux dipôles croisés, comportant respectivement deux bras colinéaires, et au moins un élément parasite associé à chaque dipôle, les dipôles et les éléments parasites étant imprimé sur un support comportant des plans orthogonaux.
3. Antenne selon l'une des revendications 1 et 2, dans laquelle les éléments rayonnants sont imprimés côte à côte sur un support plan commun de manière à constituer une rangée.
4. Antenne selon l'une des revendications 1 à 3, dans laquelle les éléments parasites sont à motif fractal
5. Antenne selon l'une des revendications 1 à 3, dans laquelle les éléments rayonnants sont à motif fractal
6. Antenne selon l'une des revendications 1 à 5, comprenant au moins deux éléments parasites superposés imprimés sur le support du dipôle parallèlement aux bras du dipôle.
7. Antenne selon l'une des revendications 1 à 6, comprenant en outre au moins un élément perturbateur est disposé dans un plan qui est perpendiculaire au plan du support portant l'élément rayonnant et parallèle aux bras du dipôle de l'élément rayonnant, l'élément perturbateur étant intercalé entre les rangées d'éléments rayonnants.
8. Procédé de réalisation d'un élément rayonnant selon l'une des revendications 1 à 3, comprenant au moins une étape d'impression d'au moins un dipôle et d'au moins un élément parasite sur un même support diélectrique plan, et une étape d'impression d'au moins un élément perturbateur sur un support plan diélectrique perpendiculaire au plan du support portant l'élément rayonnant.
PCT/EP2010/058137 2009-06-11 2010-06-10 Élément rayonnant d'antenne WO2010142756A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI1010726A BRPI1010726A2 (pt) 2009-06-11 2010-06-10 elemento irradiador de antena.
JP2012514474A JP2012529826A (ja) 2009-06-11 2010-06-10 アンテナ放射素子
CN201080025894XA CN102804495A (zh) 2009-06-11 2010-06-10 天线辐射单元
US13/376,543 US20120146872A1 (en) 2009-06-11 2010-06-10 Antenna radiating element
EP10725107A EP2441119A1 (fr) 2009-06-11 2010-06-10 Élément rayonnant d'antenne

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0902840A FR2946805B1 (fr) 2009-06-11 2009-06-11 Element rayonnant d'antenne
FR0902840 2009-06-11

Publications (1)

Publication Number Publication Date
WO2010142756A1 true WO2010142756A1 (fr) 2010-12-16

Family

ID=41650520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/058137 WO2010142756A1 (fr) 2009-06-11 2010-06-10 Élément rayonnant d'antenne

Country Status (7)

Country Link
US (1) US20120146872A1 (fr)
EP (1) EP2441119A1 (fr)
JP (2) JP2012529826A (fr)
CN (1) CN102804495A (fr)
BR (1) BRPI1010726A2 (fr)
FR (1) FR2946805B1 (fr)
WO (1) WO2010142756A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2760080A1 (fr) * 2013-01-25 2014-07-30 BAE Systems PLC Réseau d'antenne dipôle
WO2014114932A1 (fr) * 2013-01-25 2014-07-31 Bae Systems Plc Réseau d'antennes dipolaires
US20140333501A1 (en) * 2011-09-22 2014-11-13 Alcatel Lucent Ultrabroadband antenna
EP2999050A4 (fr) * 2013-05-14 2017-01-04 KMW Inc. Antenne de radiocommunication à largeur de faisceau étroite
CN107611593A (zh) * 2017-07-13 2018-01-19 佛山市顺德区中山大学研究院 带耦合枝节的多频宽带偶极子天线
EP3691028A1 (fr) * 2019-02-01 2020-08-05 Nokia Shanghai Bell Co., Ltd. Élément de support permettant de former un réseau d'antennes dipolaires et réseau d'antennes dipolaires
CN112310630A (zh) * 2020-11-05 2021-02-02 西安电子科技大学 宽频带高增益印刷天线

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG188394A1 (en) * 2010-11-01 2013-04-30 Ericsson Telefon Ab L M Compact multi-column antenna
EP2887456B1 (fr) * 2012-08-13 2019-10-16 Kuang-Chi Innovative Technology Ltd. Unité d'antenne, ensemble antenne, ensemble multi-antennes et dispositif de connexion sans fil
WO2014070549A1 (fr) 2012-10-30 2014-05-08 P-Wave Holdings, Llc Antenne à double dipôle polarisé
CN104247150A (zh) * 2013-02-25 2014-12-24 华为技术有限公司 电磁耦极子天线
US20140354510A1 (en) * 2013-06-02 2014-12-04 Commsky Technologies, Inc. Antenna system providing simultaneously identical main beam radiation characteristics for independent polarizations
EP3739687B1 (fr) 2013-06-27 2022-04-13 Huawei Technologies Co., Ltd. Élément de rayonnement d'antenne et antenne
KR101551567B1 (ko) * 2014-03-12 2015-09-10 한국과학기술원 초소형 셀 기지국용 다중 대역, 이중 편파, 이중 빔 스위치 안테나 시스템 및 동작 방법
US9331390B2 (en) * 2014-03-26 2016-05-03 Laird Technologies, Inc. Antenna assemblies
CN104600422B (zh) * 2014-12-19 2017-11-10 康凯科技(杭州)股份有限公司 一种双极化共轴八木天线系统
US10148012B2 (en) * 2015-02-13 2018-12-04 Commscope Technologies Llc Base station antenna with dummy elements between subarrays
CN107534209A (zh) * 2015-02-19 2018-01-02 盖尔创尼克斯有限公司 宽带天线
FR3036543B1 (fr) * 2015-05-18 2017-05-12 Tdf Systeme antennaire a ondes de surface
WO2017020114A1 (fr) * 2015-07-31 2017-02-09 Communication Components Antenna Inc. Largeur de faisceau élargie pour antennes dipolaires au moyen d'éléments d'antennes unipolaires parasites
CN105406179B (zh) * 2015-11-06 2018-08-21 中国电子科技集团公司第三十八研究所 一种高增益端射共形天线
US11031815B2 (en) * 2016-04-04 2021-06-08 Tecflower Ag Wirelessly rechargeable energy store
US11128055B2 (en) * 2016-06-14 2021-09-21 Communication Components Antenna Inc. Dual dipole omnidirectional antenna
CN108155473B (zh) * 2016-12-06 2024-05-14 普罗斯通信技术(苏州)有限公司 馈电结构及基站天线
EP3616258B1 (fr) * 2017-04-26 2023-04-12 Sony Group Corporation Antenne à ondes millimétriques
EP3780277B1 (fr) * 2018-05-23 2022-10-19 Mitsubishi Electric Corporation Dispositif d'antenne et réseau d'antennes
EP3794674A1 (fr) 2018-06-29 2021-03-24 Nokia Shanghai Bell Co., Ltd. Structure d'antenne multibande
CN112335120B (zh) 2018-06-29 2023-09-19 上海诺基亚贝尔股份有限公司 多频带天线结构
CN110176668B (zh) 2019-05-22 2021-01-15 维沃移动通信有限公司 天线单元和电子设备
TWI713257B (zh) * 2019-08-23 2020-12-11 啓碁科技股份有限公司 天線系統
US20220285857A1 (en) * 2019-08-30 2022-09-08 Commscope Technologies Llc Base station antennas having low cost wideband cross-dipole radiating elements
CN111313159B (zh) * 2019-12-27 2021-07-16 中国航空工业集团公司西安飞机设计研究所 一种机载电小短波天线阻抗特性优化方法及宽带短波天线
WO2021248357A1 (fr) * 2020-06-10 2021-12-16 罗森伯格技术有限公司 Élément d'antenne 5g et antenne 5g
WO2024035810A1 (fr) * 2022-08-10 2024-02-15 Parsec Technologies, Inc. Systèmes d'antennes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3541559A (en) * 1968-04-10 1970-11-17 Westinghouse Electric Corp Antenna for producing circular polarization over wide angles
GB1268121A (en) * 1969-10-09 1972-03-22 Hermann Walter Ehrenspeck Improvements in and relating to directional antennas
US4097868A (en) * 1976-12-06 1978-06-27 The United States Of America As Represented By The Secretary Of The Army Antenna for combined surveillance and foliage penetration radar
WO1999043044A1 (fr) * 1998-02-20 1999-08-26 Ems Technologies, Inc. Systeme et procede pour accroitre la caracteristique d'isolation d'une antenne
US20050110682A1 (en) * 2003-11-21 2005-05-26 Allen Tran Wireless communications device pseudo-fractal antenna
WO2006079993A1 (fr) * 2005-01-31 2006-08-03 Southeast University Antenne microbande a dipoles imprimes et plots antiparasites a la masse

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686536A (en) * 1985-08-15 1987-08-11 Canadian Marconi Company Crossed-drooping dipole antenna
JPH08162846A (ja) * 1994-11-30 1996-06-21 Matsushita Electric Works Ltd プリントアンテナ
JP2701782B2 (ja) * 1995-03-15 1998-01-21 日本電気株式会社 ショートバックファイア型アンテナ
FI990395A (fi) * 1999-02-24 2000-08-25 Nokia Networks Oy Laitteisto antennien keskinäisten häiriöiden vaimentamiseksi
JP3734666B2 (ja) * 2000-02-28 2006-01-11 三菱電機株式会社 アンテナ装置及びこれを用いたアレーアンテナ
JP3623714B2 (ja) * 2000-03-30 2005-02-23 株式会社エヌ・ティ・ティ・ドコモ 広帯域アンテナ及びアレイアンテナ装置
US7015860B2 (en) * 2002-02-26 2006-03-21 General Motors Corporation Microstrip Yagi-Uda antenna
US6747606B2 (en) * 2002-05-31 2004-06-08 Radio Frequency Systems Inc. Single or dual polarized molded dipole antenna having integrated feed structure
JP2005533446A (ja) * 2002-07-15 2005-11-04 フラクトゥス・ソシエダッド・アノニマ マルチレベルで成形された素子及び空間充填して成形された素子を使用するアンダーサンプリングされたマイクロストリップアレー

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3541559A (en) * 1968-04-10 1970-11-17 Westinghouse Electric Corp Antenna for producing circular polarization over wide angles
GB1268121A (en) * 1969-10-09 1972-03-22 Hermann Walter Ehrenspeck Improvements in and relating to directional antennas
US4097868A (en) * 1976-12-06 1978-06-27 The United States Of America As Represented By The Secretary Of The Army Antenna for combined surveillance and foliage penetration radar
WO1999043044A1 (fr) * 1998-02-20 1999-08-26 Ems Technologies, Inc. Systeme et procede pour accroitre la caracteristique d'isolation d'une antenne
US20050110682A1 (en) * 2003-11-21 2005-05-26 Allen Tran Wireless communications device pseudo-fractal antenna
WO2006079993A1 (fr) * 2005-01-31 2006-08-03 Southeast University Antenne microbande a dipoles imprimes et plots antiparasites a la masse

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140333501A1 (en) * 2011-09-22 2014-11-13 Alcatel Lucent Ultrabroadband antenna
EP2760080A1 (fr) * 2013-01-25 2014-07-30 BAE Systems PLC Réseau d'antenne dipôle
WO2014114932A1 (fr) * 2013-01-25 2014-07-31 Bae Systems Plc Réseau d'antennes dipolaires
US10186768B2 (en) 2013-01-25 2019-01-22 Bae Systems Plc Dipole antenna array
EP2999050A4 (fr) * 2013-05-14 2017-01-04 KMW Inc. Antenne de radiocommunication à largeur de faisceau étroite
US10224643B2 (en) 2013-05-14 2019-03-05 Kmw Inc. Radio communication antenna having narrow beam width
CN107611593A (zh) * 2017-07-13 2018-01-19 佛山市顺德区中山大学研究院 带耦合枝节的多频宽带偶极子天线
CN107611593B (zh) * 2017-07-13 2023-09-29 佛山市顺德区中山大学研究院 带耦合枝节的多频宽带偶极子天线
EP3691028A1 (fr) * 2019-02-01 2020-08-05 Nokia Shanghai Bell Co., Ltd. Élément de support permettant de former un réseau d'antennes dipolaires et réseau d'antennes dipolaires
US11228117B2 (en) 2019-02-01 2022-01-18 Nokia Shanghai Bell Co., Ltd. Support member for forming an array of dipole antennas, and an array of dipole antennas
CN112310630A (zh) * 2020-11-05 2021-02-02 西安电子科技大学 宽频带高增益印刷天线

Also Published As

Publication number Publication date
BRPI1010726A2 (pt) 2016-03-15
JP2012529826A (ja) 2012-11-22
CN102804495A (zh) 2012-11-28
FR2946805A1 (fr) 2010-12-17
JP2014212562A (ja) 2014-11-13
US20120146872A1 (en) 2012-06-14
EP2441119A1 (fr) 2012-04-18
FR2946805B1 (fr) 2012-03-30

Similar Documents

Publication Publication Date Title
WO2010142756A1 (fr) Élément rayonnant d&#39;antenne
EP2692018B1 (fr) Structures antennaires associant des métamatériaux
EP2441117B1 (fr) Antenne multibande à polarisation croisée
EP0825673B1 (fr) Antenne plane à éléments superposés court-circuités
FR2966986A1 (fr) Element rayonnant d&#39;antenne
EP1038333B1 (fr) Antenne a plaque
FR2761532A1 (fr) Antenne-reseau a dipoles a microrubans a cavites
FR2810164A1 (fr) Perfectionnement aux antennes source d&#39;emission/reception d&#39;ondes electromagnetiques pour systemes de telecommunications par satellite
EP1690317B1 (fr) Antenne en reseau multi-bande a double polarisation
EP2710676B1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
FR2863111A1 (fr) Antenne en reseau multi-bande a double polarisation
EP3843202B1 (fr) Cornet pour antenne satellite bi-bande ka a polarisation circulaire
EP1228552A1 (fr) Antenne imprimee bi-bande
EP2430705B1 (fr) Antenne multifaisceaux compacte
EP1550183A2 (fr) Element rayonnant large bande a double polarisation, de forme generale carree
EP1466384A1 (fr) Dispositif pour la reception et/ou l emission d ondes e lectromagnetiques a diversite de rayonnement
EP1181744B1 (fr) Antenne a polarisation verticale
EP1516393B1 (fr) Dispositif rayonnant bi-bande a double polarisation
EP2316149B1 (fr) Element rayonnant compact a faibles pertes
WO2010106073A1 (fr) Antenne a double ailettes
EP0991135A1 (fr) Antenne sélective à commutation en fréquence
EP0831550B1 (fr) Antenne-réseau polyvalente
FR2980647A1 (fr) Antenne ultra-large bande
EP2889955B1 (fr) Structure antennaire compacte pour télécommunications par satellites
WO2012095358A1 (fr) Antenne microruban a double polarisation et a double bande

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025894.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10725107

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010725107

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012514474

Country of ref document: JP

Ref document number: 9212/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13376543

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1010726

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1010726

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111212