EP1228552A1 - Antenne imprimee bi-bande - Google Patents

Antenne imprimee bi-bande

Info

Publication number
EP1228552A1
EP1228552A1 EP00977654A EP00977654A EP1228552A1 EP 1228552 A1 EP1228552 A1 EP 1228552A1 EP 00977654 A EP00977654 A EP 00977654A EP 00977654 A EP00977654 A EP 00977654A EP 1228552 A1 EP1228552 A1 EP 1228552A1
Authority
EP
European Patent Office
Prior art keywords
bands
radiating element
antenna
antennas
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00977654A
Other languages
German (de)
English (en)
Inventor
Patrice Les Jardins de Cimiez Brachat
Jean-Pierre Blot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP1228552A1 publication Critical patent/EP1228552A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas

Definitions

  • the present invention relates to an elementary printed antenna in plated technology for a network for receiving and / or transmitting telecommunications signals, capable of radiating duplex radioelectric fields in polarization, that is to say operating in bi-polarization, and in two frequency bands.
  • Such an antenna is for example intended to operate in the first frequency band of a cellular radio telecommunications network according to the DCS-1800 standard and in a second frequency band for a cellular radiocommunication system according to the GSM-900 standard.
  • a microstrip antenna comprises two dielectric layers between which is provided a ground conductor plane and on the external faces of which are arranged respectively a microstrip of microwave power line and a radiant element.
  • the radiating element comprises several parallel conducting strips of different lengths extending perpendicular to a coupling slot formed in the ground conducting plane.
  • 2 N conductive strips are distributed symmetrically with respect to an axis transverse to the slot and thus constitute 2 N dipoles excited symmetrically by the slot and resonating at N frequencies.
  • a dual-band antenna is formed by two stacked quarter-wave elements, short-circuited along opposite lateral planes, or a common lateral plane.
  • the antennas described in these two articles offer bandwidths less than 10% for a TOS standing wave rate less than 1.5, for average frequencies of the order of a few gigahertz.
  • the object of the present invention is to design a printed antenna operating in two frequency bands with a standing wave rate of less than 1.5 over more than 10% of the bandwidth in each of the bands, and with field polarizations. electromagnetic which are crossed in the two bands so as not to disturb signals in one band by signals in the other band.
  • a printed antenna according to the invention comprises, in a manner known by European patent EP-B-484 241 in the name of the applicant and the article entitled "Dual-Polarization Slot-Coupled Printed Antennas Fed by Stripline” by P. Brachat et al ., IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, Vol. 43, No.
  • a first dielectric layer a second dielectric layer, a first microwave power supply line having a first microstrip arranged on an external face of the first layer and a ground conductive plane disposed between the first and second layers, and a first radiating element disposed on another face of the second layer and comprising several first narrow conductive strips extending perpendicular to a first coupling slot formed in the conductive plane for coupling the first line d power to the first radiating element.
  • an antenna according to the invention also comprises a second microwave feed line constituted by a second microstrip arranged on the external face of the first layer perpendicular to the first microstrip and by said ground conductive plane, a third dielectric layer having a face disposed against the first radiating element, and a second radiating element disposed on another face of the third layer and comprising several second narrow conductive strips crossing perpendicularly by superposition the first conductive strips 6 ⁇ and extending perpendicular to a second coupling slot formed in the ground conductive plane for coupling the second supply line to the second radiating element .
  • the antenna according to the invention operates at two different frequencies with two respective orthogonal polarizations.
  • the first element radiates in the frequency band of the DCS 1800 radiotelephony network and the second element radiates in the frequency band of the GSM radiotelephony network.
  • the antenna according to the invention retains the bandwidth performance of the known antenna according to EP-B-484241 and the purity in polarization thanks to the concept of grid formed by the first bands and the second bands to constitute the first and second radiating elements.
  • the perpendicular arrangement of the first bands relative to the second bands avoids any disturbance of the polarized radio field emitted by the first element relative to the polarized radio field emitted by the second element.
  • the printed antenna according to the invention is compact since the two supply lines have a common ground conducting plane including the two coupling slots and microstrips arranged on the same face of the first dielectric layer, and the strips radiating elements cross by superposition.
  • the invention also relates to an antenna array comprising several first antennas whose first shorter bands are parallel to each other and whose second bands are also parallel to each other.
  • this array of antennas In order for this array of antennas to have cross polarizations in each of the two frequency bands, it must include several second antennas, the first shorter bands and the second bands of which extend coplanar and respectively perpendicular to the first bands and to the second bands of the first antennas.
  • FIG. 1 is a top view of a printed antenna dual-band elementary according to a preferred embodiment of the invention
  • - Figure 2 is a sectional view of the dual-band antenna taken along the broken line II-II in Figure 1
  • Figure 3 is a top view at levels of supply lines and a ground plane with coupling slots in the dual-band antenna of Figures 1 and 2;
  • - Figure 4 is a top view of a first radiating element of reduced size, associated with a higher frequency band, included in the dual-band antenna of Figures 1 and 2;
  • Figure 5 is a top view of a second radiating element of larger size, associated with a lower frequency band, included in the dual-band antenna of Figures 1 and 2;
  • - Figure 6 is a schematic perspective view of a one-dimensional array with two columns of elementary printed antennas according to the invention for crossed radiated fields in each of two frequency bands;
  • - Figure 7 is a schematic perspective view of a two-dimensional array with elementary printed antennas according to the invention.
  • an elementary dual-band printed antenna according to a preferred embodiment of the invention illustrated substantially on scale 1 in Figures 1 to 5 indicates by way of example digital values for an antenna intended to operate in a first frequency band B_, called the upper band, between 1710 MHz and 1880 MHz corresponding to radiotelephone communications according to the DCS-1800 standard, and in a second band B2, called the lower band, between 890 MHz and 960 MHz for radiotelephone communications according to the GSM standard.
  • the antenna has four levels of electrical conductors N_ ⁇ to N 2 separated by the three dielectric layers and shown in superposition in Figure 1.
  • the level N_ ⁇ on the underside of the antenna comprises two perpendicular microstrips 4 and 42 for microwave supply lines respectively in the frequency bands Bi (upper band) and B2 (lower band).
  • the microstrips 4 ⁇ and 4 2 can extend to the level of a "crossing" point O of the perpendicular longitudinal axes A] A ⁇ and A 2 A 2 of symmetry of the radiating elements l and 7.
  • the level Nn between the first and second dielectric layers 1 and 2 has a plane ground conductor 5 in which are formed a first coupling slot 6 extending perpendicular to the first microstrip 4 and symmetrically with respect thereto and a second coupling slot 62 extending perpendicular to the second microstrip 42 and symmetrically with respect to it this one.
  • the first slot 6 ⁇ has a length of 28.7 mm and is shorter than the second slot 6 2 which has a length of 59 mm.
  • the microstrips 4 ⁇ and 4 2 extend respectively beyond the coupling slots 6 ⁇ and 6 2 substantially over less than a quarter of the respective wavelengths.
  • the third level Ni also shown in FIG.
  • the fourth level N2 also shown in FIG. 5 comprises a second striated radiating element composed of four narrow parallel metal strips 72 extending perpendicularly to and above the second slot 62 to which they are coupled, crossing over the bands 1, and equally distributed symmetrically with respect to a plane of axial symmetry A2A2 longitudinal to the second microstrip 42 "Thus, the second bands 72 are perpendicular to the first bands 1.
  • a fourth thin dielectric layer 8 covers the metal strips 1 ⁇ on the third dielectric layer 3 in order to serve as a protective cover for the antenna.
  • the printed antenna according to the invention thus combines in a compact manner two sub-antennas operating respectively in the frequency bands B_ and B2.
  • the printed antenna typically extends over a maximum length of 130 mm along the longitudinal axis of the metal strips 72 and over a maximum width of 80 mm along the longitudinal axis of the metal strips 1.
  • the first sub-antenna is formed by the microstrip supply line 4 adapted to 50 ⁇ , the coupling slot 61 and the metal strips of radiating element 1.
  • This first sub-antenna operates in the upper frequency band B and with an electric field polarization radiated by the first sub-antenna parallel to the metal bands 7 ⁇ , that is to say perfectly perpendicular to the coupling slot 6 ⁇ .
  • the five bands 7 ⁇ are inscribed in a rectangle 58 mm in length and 50 mm in width spaced two by two by 0.75 mm.
  • the second printed sub-antenna consists of the microstrip supply line 42 adapted to 50 ⁇ , the slot 62 and the metal strips of radiating element 72.
  • the second sub-antenna operates in the lower band B 2 and with a electric field polarization parallel to the metal bands 72, that is to say perpendicular to the coupling slot 62, and therefore perfectly perpendicular to the polarized electric field produced by the first sub-antenna.
  • the radio field in the second band B2 produced by the second sub-antenna is perfectly orthogonal to the radio field in the band Bi produced by the first sub-antenna, which avoids any mutual disturbance of the radio fields from one band to another.
  • each strip B 2 has a length of 114 mm and a width of 10 mm and is 2 mm apart from another strip.
  • the microstrips, ground plane and metal strips in the levels N_ ⁇ to N 2 are etched on the faces of the respective dielectric layers.
  • each of the coupling slots 6 ⁇ and 62 has a U shape respectively symmetrical to the longitudinal axes of the microstrips 4 ⁇ and 42 and thus each have two lateral branches 61 ⁇ , 6I 2 parallel to the conductive strips of the respective radiating element 7 ⁇ , 72 and having respective lengths of 9 mm and 18.2 mm, as shown in FIG. 3.
  • This contributes to reducing the size of the radiating element with bands 7 ⁇ , 7 2 , and to limiting the radiation thereof towards the ground plane 5 while guaranteeing a relatively wide frequency band B ⁇ B 2 .
  • the strips 7 ⁇ do not cover the second slot 6 2 under penalty of short-circuiting the second radiating element operating in the lower frequency band B 2 .
  • the strips 7 2 do not completely cover the striated strips 7 ⁇ , in particular their longitudinal ends, under penalty of short-circuiting the first radiating element operating in the upper strip Bx- This imposes a very strong constraint on the width of the strips 7 2 which normally is imposed by the size of the coupling slot 6 2 - This size is of the order of half the wavelength. To keep the length of the slots as short as possible, the coupling slots are bent.
  • the two most distant conducting strips in the second radiating element 72 are doubled along a part of their length which does not overlap with the strips 7 ⁇ , by two additional lateral conducting strips 8 respectively superimposed on the lateral branches 6I2 of the second coupling slot 62.
  • This arrangement of lateral bands 8 also contributes to widening the frequency band B 2 and ensuring correct coupling between the line 2 and the radiating element 7 2 for the frequency band B 2 .
  • the printed antenna according to the invention described above offered a standing wave rate of less than 1.5 over more than 10% of bandwidth in each of the two bands B and B2, a decoupling between the polarized fields radiated in the two bands of the order of at least - 30 dB thanks in particular to the spatial filtering introduced by the two polarization grids formed by the metal bands 7 ⁇ and 72, and almost symmetrical radiation patterns in the planes main respectively perpendicular to the planes of the grids with metal bands 7 ⁇ and 72 and passing through their axes of symmetry AxAx and A2A 2 .
  • the radioelectric performances of the elementary printed antenna described above are preserved when several elementary printed antennas according to the invention are juxtaposed to form a double polarization array for each of the operating frequency bands B and B2.
  • the supply lines, such as the lines 4 ⁇ and 42, are advantageously arranged, opposite the radiating elements constituted by the grids with metal bands 7 ⁇ and 72 relative to the ground plane 5 to avoid any mutual parasitic radiation between signals transmitted in the Bx and B2 bands.
  • an antenna array comprises a column 0 ⁇ of first elementary printed antennas oriented in the same way and a column C 2 of second elementary antennas oriented in the same way and perpendicular to the orientation of the first antennas, or more generally alternating columns 0 ⁇ and C 2 whose etching levels N_ ⁇ to N 2 are common, as shown in Figure 2.
  • the first bands 7 ⁇ of the first antennas are arranged vertically so as to radiate an electric field vertically polarized and are thus supplied by a common supply line with microstrip 4V ⁇ , and the second strips 72 of the first antennas are arranged horizontally so as to radiate a horizontally polarized electric field and are supplied by a common supply line with microstrip 4H ⁇ .
  • the first bands 7 of the second antennas are arranged horizontally and are supplied by a common supply line with microstrip H2 in order to radiate an electric field polarized horizontally and therefore crossed perpendicularly with the electric field radiated by the bands 7 ⁇ in the first column Cx for operation in the first frequency band commune B; also in the second column C 2 , the second bands 7 2 of the second antennas are arranged perpendicular to the second bands 72 included in the first column Cx so as to radiate a vertically polarized electric field crossed perpendicularly with the electric field radiated by the bands 72 in the first column 0 ⁇ for operation in the second common frequency band B2, the bands 72 in column C 2 being supplied by a common microstrip supply line 4V2- Each microstrip supply line supplying the respective elementary antennas is tree-like and constitutes a power distributor at each node.
  • This first type of network shown in FIG. 6 can constitute, for example, an antenna for a bi-polarization and bi-band base station for both the GSM and DCS radiotelephony networks.
  • this presents directional diagrams in elevation and wide in azimuth for two orthogonal polarizations respectively horizontal and vertical, or at - 45 ° and + 45 ° relative to the horizontal.
  • an array of antennas with double polarization and with two frequency bands can comprise several parallel columns 0 ⁇ and C 2 alternated on a plane.
  • Such a two-dimensional array of antennas can constitute, for example an antenna for a ground reception station in a cellular radiocommunication system with a constellation of geostationary or non-geostationary satellites.
  • microstrip supply lines microwave
  • triplate lines stripline
  • coaxial lines coaxial lines.
  • an additional dielectric layer is provided against the underside of the first dielectric layer 1, below the etching level N_ ⁇ , with reference to FIG. 2, and a reflective ground conductor plane is printed on the underside of the additional dielectric layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

L'antenne imprimée est compacte et comprend, en superposition par des couches diélectriques, deux lignes d'alimentation ayant des microrubans perpendiculaires (41, 42), un plan de masse, un premier élément rayonnant comportant plusieurs bandes conductrices (71) perpendiculaires à une première fente de couplage (61) ménagée dans le plan de masse, et un deuxième élément rayonnant superposé au premier élément et comportant plusieurs bandes conductrices (72) croisant par superposition les premières bandes et perpendiculaires à une deuxième fente de couplage (62) ménagée dans le plan de masse. Par exemple, les éléments (71, 72) rayonnent dans les bandes de fréquence de radiotéléphonie DCS-1800 et GSM avec des champs parfaitement orthogonaux.

Description

Antenne imprimée bi-bande
La présente invention concerne une antenne imprimée élémentaire en technologie plaquée pour un réseau de réception et/ou d'émission de signaux de télécommunications, capable de rayonner des champs radioélectriques duplexés en polarisation, c'est-à- dire fonctionnant en bi-polarisation, et dans deux bandes de fréquence. Une telle antenne est par exemple destinée à fonctionner dans la première bande de fréquence d'un réseau cellulaire de radiotélécommunications selon la norme DCS-1800 et dans une deuxième bande de fréquence pour un système cellulaire de radiocommunications selon la norme GSM-900.
Selon l'article intitulé "Multifrequency Opération of Microstrip Antennas Using Aperture Coupled Parallel Resonators" de Frédéric Croq et David M. Pozar, IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, Vol. 40, No. 11, Novembre 1992, pages 1367 à 1374, une antenne à microruban comporte deux couches diélectriques entre lesquelles est prévu un plan conducteur de masse et sur les faces externes desquelles sont disposées respectivement un microruban de ligne d'alimentation hyperfrequence et un élément rayonnant. L'élément rayonnant comporte plusieurs bandes conductrices parallèles de différentes longueurs s 'étendant perpendiculairement à une fente de couplage ménagée dans le plan conducteur de masse. En général, 2 N bandes conductrices sont réparties symétriquement par rapport à un axe transversal à la fente et constituent ainsi 2 N dipôles excités symétriquement par la fente et résonnant à N fréquences. Selon l'article intitulé "Dual-Frequency and Broad-Band Antennas with Stac ed Quarter Wavelength Eléments" de Lakhdar Zaïd et al., IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, Vol. 47, No. 4, Avril 1999, pages 654 à 660, une antenne bi-bande est formée de deux éléments quart-d'onde empilés, court- circuités le long de plans latéraux opposés, ou d'un plan latéral commun.
Les antennes décrites dans ces deux articles offrent des largeurs de bande inférieures à 10% pour un taux d'ondes stationnaires TOS inférieur à 1,5, pour des fréquences moyennes de l'ordre de quelques gigahertz .
La présente invention a pour but de concevoir une antenne imprimée fonctionnant dans deux bandes de fréquence avec un taux d'ondes stationnaires inférieur à 1,5 sur plus de 10% de la largeur de bande dans chacune des bandes, et avec des polarisations des champs électromagnétiques qui sont croisées dans les deux bandes pour ne pas perturber des signaux dans une bande par des signaux dans l'autre bande.
Une antenne imprimée selon l'invention comprend d'une manière connue par le brevet européen EP-B- 484241 au nom du demandeur et l'article intitulé "Dual-Polarization Slot-Coupled Printed Antennas Fed by Stripline" de P. Brachat et al., IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, Vol. 43, No. 7, Juillet 1995, pages 738 à 742, une première couche diélectrique, une deuxième couche diélectrique, une première ligne d'alimentation hyperfrequence ayant un premier microruban disposé sur une face externe de la première couche et un plan conducteur de masse disposé entre les première et deuxième couches, et un premier élément rayonnant disposé sur une autre face de la deuxième couche et comportant plusieurs premières bandes étroites conductrices s 'étendant perpendiculairement à une première fente de couplage ménagée dans le plan conducteur pour coupler la première ligne d'alimentation au premier élément rayonnant.
Sur la base de cette structure d'antenne imprimée à mono-polarisation et avec un fonctionnement mono-bande, l'invention améliore celle-ci par le fait qu'une antenne selon l'invention comprend en outre une deuxième ligne d'alimentation hyperfrequence constituée par un deuxième microruban disposé sur la face externe de la première couche perpendiculairement au premier microruban et par ledit plan conducteur de masse, une troisième couche diélectrique ayant une face disposée contre le premier élément rayonnant, et un deuxième élément rayonnant disposé sur une autre face de la troisième couche et comportant plusieurs deuxièmes bandes étroites conductrices croisant perpendiculairement par superposition les premières bandes conductrices 6ι et s 'étendant perpendiculairement à une deuxième fente de couplage ménagée dans le plan conducteur de masse pour coupler la deuxième ligne d'alimentation au deuxième élément rayonnant.
Grâce au deuxième élément rayonnant, l'antenne selon l'invention fonctionne à deux fréquences différentes avec deux polarisations respectives orthogonales. Par exemple le premier élément rayonne dans la bande de fréquence du réseau de radiotéléphonie DCS 1800 et le deuxième élément dans la bande de fréquence du réseau de radiotéléphonie GSM. L'antenne selon l'invention conserve les performances en bande passante de l'antenne connue selon le EP-B-484241 et la pureté en polarisation grâce au concept de grille formée par les premières bandes et les deuxièmes bandes pour constituer les premier et deuxième éléments rayonnants. La disposition perpendiculaire des premières bandes par rapport aux deuxièmes bandes évite toute perturbation du champ radioélectrique polarisé émis par le premier élément relativement au champ radioélectrique polarisé émis par le deuxième élément.
En outre, l'antenne imprimée selon l'invention est compacte puisque les deux lignes d'alimentation ont un plan conducteur de masse commun incluant les deux fentes de couplage et des microrubans disposés sur une même face de la première couche diélectrique, et les bandes des éléments rayonnants se croisent par superposition.
L'invention concerne également un réseau d'antennes comprenant plusieurs premières antennes dont les premières bandes plus courtes sont parallèles entre elles et dont les deuxièmes bandes sont également parallèles entre elles.
Pour que ce réseau d'antennes présente des polarisations croisées dans chacune des deux bandes de fréquence, il doit comprendre plusieurs deuxièmes antennes dont les premières bandes plus courtes et les deuxièmes bandes s'étendent coplanairement et respectivement perpendiculairement aux premières bandes et aux deuxièmes bandes des premières antennes .
Les premières antennes sont réparties suivant des colonnes qui sont entrelacées deux à deux avec des colonnes dans lesquelles sont réparties les deuxièmes antennes. D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante de plusieurs réalisations préférées de l'invention en référence aux dessins annexés correspondants dans lesquels : la figure 1 est une vue de dessus d'une antenne imprimée élémentaire bi-bande selon une réalisation préférée de l'invention ; - la figure 2 est une vue en coupe de l'antenne bi-bande prise suivant la ligne brisée II-II dans la figure 1 ; la figure 3 est une vue de dessus à des niveaux de lignes d'alimentation et d'un plan de masse avec fentes de couplage dans l'antenne bi-bande des figures 1 et 2 ;
- la figure 4 est une vue de dessus d'un premier élément rayonnant de taille réduite, associé à une bande de fréquence supérieure, inclus dans l'antenne bi-bande des figures 1 et 2 ; la figure 5 est une vue de dessus d'un deuxième élément rayonnant de taille plus grande, associé à une bande de fréquence inférieure, inclus dans l'antenne bi-bande des figures 1 et 2 ; - la figure 6 est une vue en perspective schématique d'un réseau monodimensionnel à deux colonnes d'antennes imprimées élémentaires selon l'invention pour champs rayonnes croisés dans chacune de deux bandes de fréquence ; et - la figure 7 est une vue en perspective schématique d'un réseau bidimensionnel avec des antennes imprimées élémentaires selon l'invention.
La description ci-après d'une antenne imprimée élémentaire bi-bande selon une réalisation préférée de l'invention illustrée sensiblement à l'échelle 1 aux figures 1 à 5 indique à titre d'exemple des valeurs numériques pour une antenne destinée à fonctionner dans une première bande de fréquence B_, dite bande supérieure, comprise entre 1710 MHz et 1880 MHz correspondant à des communications radiotéléphoniques selon la norme DCS-1800, et dans une deuxième bande B2, dite bande inférieure, comprise entre 890 MHz et 960 MHz pour des communications radiotéléphoniques selon la norme GSM.
Comme montré à la figure 2, l'antenne bi-bande comprend trois couches diélectriques superposées : une première couche 1 en Duroïd ayant une permittivité diélectrique relative z \ = 2,2 et une épaisseur ei = 1,5 mm, une deuxième couche en mousse diélectrique 2 ayant une permittivité diélectrique relative εr2 = 1,05 et une épaisseur e2 = 15 mm, et une troisième couche en mousse diélectrique ayant une permittivité diélectrique relative εr3 = 1,05 et une épaisseur e3 = 20 mm. L'antenne présente quatre niveaux de conducteurs électriques N_ι à N2 séparés par les trois couches diélectriques et montrés en superposition à la figure 1. Le niveau N_ι sur la face inférieure de l'antenne, c'est-à-dire sur la face externe de la première couche diélectrique 1, comporte deux microrubans perpendiculaires 4 et 42 pour des lignes d'alimentation hyperfrequence respectivement dans les bandes de fréquence Bi (bande supérieure) et B2 (bande inférieure) . Les microrubans 4χ et 42 peuvent s'étendre jusqu'au niveau d'un point de "croisement" O des axes longitudinaux perpendiculaires A]Aι et A2A2 de symétrie des éléments rayonnants l et 7 . Comme montré à la figure 3, le niveau Nn compris entre les première et deuxième couches diélectriques 1 et 2 comporte un plan conducteur de masse 5 dans lequel sont ménagées une première fente de couplage 6 s 'étendant perpendiculairement au premier microruban 4 et symétriquement par rapport à celui-ci et une deuxième fente de couplage 62 s' étendant perpendiculairement au deuxième microruban 42 et symétriquement par rapport à celui-ci. La première fente 6χ a une longueur de 28,7 mm et est plus courte que la deuxième fente 62 qui a une longueur de 59 mm. Les microrubans 4χ et 42 s'étendent respectivement au- delà des fentes de couplage 6χ et 62 sensiblement sur moins du quart des longueurs d'onde respectives. Le troisième niveau Ni montré également à la figure 4 comporte un premier élément rayonnant strié composé de cinq bandes étroites métalliques parallèles 1 \ s 'étendant perpendiculairement à et au-dessus de la première fente 61 à laquelle elles sont couplées, sans recouvrir la deuxième fente 62, et équiréparties symétriquement par rapport un plan de symétrie axial A]_Aι longitudinal au premier microruban 4 \ . Le quatrième niveau N2 montré également à la figure 5 comporte un deuxième élément rayonnant strié composé de quatre bandes étroites métalliques parallèles 72 s 'étendant perpendi-culairement à et au-dessus de la deuxième fente 62 à laquelle elles sont couplées, en croisant par dessus les bandes l , et équiréparties symétriquement par rapport à un plan de symétrie axial A2A2 longitudinal au deuxième microruban 42» Ainsi, les deuxièmes bandes 72 sont perpendiculaires aux premières bandes 1 .
Une quatrième couche diélectrique mince 8 recouvre les bandes métalliques 1 \ sur la troisième couche diélectrique 3 afin de servir de couverture de protection de l'antenne. L'antenne imprimée selon l'invention réunit ainsi d'une manière compacte deux sous-antennes fonctionnant respectivement dans les bandes de fréquence B_ et B2. L'antenne imprimée s'étend typiquement sur une longueur maximale de 130 mm suivant l'axe longitudinal des bandes métalliques 72 et sur une largeur maximale de 80 mm suivant l'axe longitudinal des bandes métalliques 1 .
La première sous-antenne est constituée par la ligne d'alimentation à microruban 4 adaptée à 50 Ω, la fente de couplage 61 et les bandes métalliques d'élément rayonnant 1 . Cette première sous-antenne fonctionne dans la bande de fréquence supérieure B et avec une polarisation de champ électrique rayonné par la première sous-antenne parallèle aux bandes métalliques 7χ, c'est-à-dire parfaitement perpendiculaire à la fente de couplage 6χ. Typiquement, les cinq bandes 7χ sont inscrites dans un rectangle de 58 mm de longueur et de 50 mm de largeur espacées deux à deux de 0,75 mm.
La deuxième sous-antenne imprimée est constituée par la ligne d'alimentation à microruban 42 adaptée à 50 Ω, la fente 62 et les bandes métalliques d'élément rayonnant 72- La deuxième sous-antenne fonctionne dans la bande inférieure B2 et avec une polarisation de champ électrique parallèle aux bandes métalliques 72, c'est-à-dire perpendiculaire à la fente de couplage 62 , et donc parfaitement perpendiculaire au champ électrique polarisé produit par la première sous-antenne. Ainsi, le champ radioélectrique dans la deuxième bande B2 produit par la deuxième sous-antenne est parfaitement orthogonal au champ radioélectrique dans la bande Bi produit par la première sous-antenne, ce qui évite toute perturbation mutuelle des champs radioelectriques d'une bande à l'autre. Les bandes métalliques 72 de la deuxième sous-antenne sont espacées d'une épaisseur e2 + e3 par rapport au plan conducteur de masse 5 supérieur à l'épaisseur e2 séparant les bandes métalliques 7χ de la première sous-antenne par rapport au plan conducteur de masse 5, puisque la deuxième sous-antenne rayonne dans une bande de fréquence B2 inférieure à la bande de fréquence B_ de la première sous-antenne. De même, les dimensions de fente de couplage étant sensiblement inversement proportionnelles à la fréquence centrale de la bande de fréquence, les dimensions de la première fente de couplage 6χ sont respectivement plus petites que les dimensions de la deuxième fente de couplage 62. Typiquement, chaque bande B2 a une longueur de 114 mm et une largeur de 10 mm et est distante de 2 mm d'une autre bande.
En pratique, les microrubans, plan de masse et bandes métalliques dans les niveaux N_χ à N2 sont gravés sur les faces des couches diélectriques respectives.
En particulier, chacune des fentes de couplage 6χ et 62 a une forme en U respectivement symétrique aux axes longitudinaux des microrubans 4χ et 42 et présentent ainsi chacune deux branches latérales 61χ, 6I2 parallèles aux bandes conductrices de l'élément rayonnant respectif 7χ, 72 et ayant des longueurs respectives de 9 mm et 18,2 mm, comme montré à la figure 3. Ceci contribue à réduire l'encombrement de l'élément rayonnant à bandes 7χ, 72, et à limiter le rayonnement de celui-ci vers le plan de masse 5 tout en garantissant une bande de fréquence Bχ B2 relativement large.
Les bandes 7χ ne recouvrent pas la deuxième fente 62 sous peine de court-circuiter le deuxième élément rayonnant fonctionnant dans la bande de fréquence inférieure B2. Les bandes 72 ne recouvrent pas totalement les bandes striées 7χ, en particulier leurs extrémités longitudinales, sous peine de court- circuiter le premier élément rayonnant fonctionnant dans la bande supérieure Bx- Ceci impose une contrainte très forte sur la largeur des bandes 72 qui normalement est imposée par la taille de la fente de couplage 62- Cette taille est de l'ordre de la demi-longueur d'onde. Afin que la longueur des fentes soit la plus faible possible, les fentes de couplage sont coudées.
Les deux bandes conductrices les plus éloignées dans le deuxième élément rayonnant 72 sont doublées le long d'une partie de leur longueur ne recouvrant par les bandes 7χ, par deux bandes conductrices supplémentaires latérales 8 respectivement superposées aux branches latérales 6I2 de la deuxième fente de couplage 62. Cette disposition de bandes latérales 8 contribue également à élargir la bande de fréquence B2 et à assurer un couplage correct entre la ligne 2 et l'élément rayonnant 72 pour la bande de fréquence B2.
Des mesures ont montré que l'antenne imprimée selon l'invention décrite ci-dessus offrait un taux d'onde stationnaire inférieur à 1,5 sur plus de 10% de largeur de bande dans chacune des deux bandes B et B2, un découplage entre les champs polarisés rayonnes dans les deux bandes de l'ordre d'au moins - 30 dB grâce particulièrement au filtrage spatiale introduit par les deux grilles de polarisation formées par les bandes métalliques 7χ et 72, et des diagrammes de rayonnement quasiment symétriques dans les plans principaux respectivement perpendiculaires aux plans des grilles à bandes métalliques 7χ et 72 et passant par leurs axes de symétrie AxAx et A2A2.
Les performances radioelectriques de l'antenne imprimée élémentaire décrite ci-dessus sont conservées lorsque plusieurs antennes imprimées élémentaires selon l'invention sont juxtaposées pour former un réseau à double polarisation pour chacune des bandes de fréquence de fonctionnement B et B2. Les lignes d'alimentation, telles que les lignes 4χ et 42, sont avantageusement disposées, à l'opposé des éléments rayonnants constitués par les grilles à bandes métalliques 7χ et 72 par rapport au plan de masse 5 pour éviter tout rayonnement parasite mutuel entre des signaux transmis dans les bandes Bx et B2.
Selon un premier exemple, un réseau d'antenne comprend une colonne 0χ de premières antennes imprimées élémentaires orientées de la même façon et une colonne C2 de deuxièmes antennes élémentaires orientées de la même façon et perpendiculairement à l'orientation des premières antennes, ou plus généralement des colonnes 0χ et C2 alternées dont les niveaux de gravure N_χ à N2 sont communs, comme montré à la figure 2. Dans la première colonne 0χ, les premières bandes 7χ des premières antennes sont disposées verticalement de manière à rayonner un champ électrique polarisé verticalement et sont ainsi alimentées par une ligne d'alimentation commune à microruban 4Vχ, et les deuxièmes bandes 72 des premières antennes sont disposées horizontalement de manière à rayonner un champ électrique polarisé horizontalement et sont alimentées par une ligne d'alimentation commune à microruban 4Hχ. D'une manière symétrique, dans la deuxième colonne C2, les premières bandes 7 des deuxièmes antennes sont disposées horizontalement et sont alimentées par une ligne d'alimentation commune à microruban H2 afin de rayonner un champ électrique polarisé horizontalement et donc croisé perpendiculairement avec le champ électrique rayonné par les bandes 7χ dans la première colonne Cx pour un fonctionnement dans la première bande de fréquence commune B ; également dans la deuxième colonne C2, les deuxièmes bandes 72 des deuxièmes antennes sont disposées perpendiculairement aux deuxièmes bandes 72 incluses dans la première colonne Cx de manière à rayonner un champ électrique polarisé verticalement croisé perpendiculairement avec le champ électrique rayonné par les bandes 72 dans la première colonne 0χ pour un fonctionnement dans la deuxième bande de fréquence commune B2, les bandes 72 dans la colonne C2 étant alimentées par une ligne d'alimentation commune à microruban 4V2- Chaque ligne d'alimentation à microruban alimentant les antennes élémentaires respectives est arborescente et constitue en chaque noeud un répartiteur de puissance.
Ce premier type de réseau montré à la figure 6 peut constituer par exemple une antenne pour une station de base à bi-polarisation et bi-bande à la fois pour les réseaux de radiotéléphonie GSM et DCS. En fonction de l'orientation de l'antenne, celle-ci présente des diagrammes directifs en élévation et larges en azimut pour deux polarisations orthogonales respectivement horizontale et verticale, ou bien à - 45° et +45° par rapport à l'horizontal.
Comme montré à la figure 7, un réseau d'antennes à double polarisation et à deux bandes de fréquence peut comprendre plusieurs colonnes parallèles 0χ et C2 alternées sur un plan. Un tel réseau bidimensionnel d'antennes peut constituer par exemple une antenne pour une station de réception au sol dans un système de radiocommunication cellulaire à constellation de satellites géostationnaires ou non- géostationnaires .
Bien que l'invention ait été décrite en référence à des lignes d'alimentation à microruban (microstrip) , l'homme du métier sera les remplacer par des lignes triplaques (stripline) ou des lignes coaxiales. Pour une ligne triplaque, une couche diélectrique supplémentaire est prévue contre la face inférieure de la première couche diélectrique 1, sous le niveau de gravure N_χ, en référence à la figure 2, et un plan conducteur de masse réflecteur est imprimé sur la face inférieure de la couche diélectrique supplémentaire .

Claims

REVENDICATIONS
1 - Antenne imprimée comprenant une première couche diélectrique (1) , une deuxième couche diélectrique (2), une première ligne d'alimentation hyperfrequence ayant un premier microruban (4χ) disposé sur une face externe de la première couche et un plan conducteur de masse (5) disposé entre les première et deuxième couches, et un premier élément rayonnant disposé sur une autre face de la deuxième couche et comportant plusieurs premières bandes étroites conductrices (7χ) s 'étendant perpendiculairement à une première fente de couplage (6χ) ménagée dans le plan conducteur pour coupler la première ligne d'alimentation au premier élément rayonnant, caractérisée en ce qu'elle comprend une deuxième ligne d'alimentation hyperfrequence constituée par un deuxième microruban (42) disposé sur la face externe de la première couche (1) perpendiculairement au premier microruban (4χ) et par ledit plan conducteur de masse (5) , une troisième couche diélectrique (3) ayant une face disposée contre le premier élément rayonnant (7χ), et un deuxième élément rayonnant disposé sur une autre face de la troisième couche et comportant plusieurs deuxièmes bandes étroites conductrices (72) croisant perpendiculairement par superposition les premières bandes conductrices (6χ) et s 'étendant perpendiculairement à une deuxième fente de couplage (62) ménagée dans le plan conducteur de masse (5) pour coupler la deuxième ligne d'alimentation au deuxième élément rayonnant.
2 - Antenne conforme à la revendication 1, caractérisée en ce que le deuxième élément rayonnant (72) rayonne dans une deuxième bande de fréquence inférieure à une première bande de fréquence dans laquelle le premier élément rayonnant (7χ) rayonne, et les dimensions de la première fente de couplage (6χ) sont respectivement plus petites que les dimensions de la deuxième fente de couplage (62).
3 - Antenne conforme à la revendication 1 ou 2, caractérisée en ce qu'au moins l'une des fentes de couplage (6χ, 62) a une forme en U présentant des branches latérales (61χ, 6I2) parallèles aux bandes conductrices de l'élément rayonnant respectif (7χ,
72).
4 - Antenne conforme à la revendication 3, caractérisée en ce que les deux bandes (72) les plus éloignées dans le deuxième élément rayonnant présentent des bandes latérales (8) respectivement superposées aux branches latérales (6I2) de la deuxième fente de couplage (62) .
5 - Réseau d'antennes comprenant plusieurs premières antennes (0χ) qui sont conformes à l'une quelconque des revendications 1 à 4 et dont les premières bandes plus courtes (7χ) sont parallèles entre elles et dont les deuxièmes bandes (72) sont également parallèles entre elles.
6 - Réseau d'antennes conforme à la revendication 5, caractérisé en ce qu'il comprend plusieurs deuxièmes antennes (C2) qui sont conformes à l'une quelconque des revendications 1 à 4 et dont les premières bandes plus courtes (7χ) et les deuxièmes bandes (72) s'étendent coplanairement et respectivement perpendiculairement aux premières bandes (7χ) et aux deuxièmes bandes (72) des premières antennes (Ci) .
7 - Réseau d'antennes conforme à la revendication 6, caractérisé en ce que les premières antennes sont réparties suivant des colonnes (Ci) qui sont entrelacées deux à deux avec des colonnes (C2) dans lesquelles sont réparties les deuxièmes antennes .
EP00977654A 1999-11-12 2000-11-09 Antenne imprimee bi-bande Withdrawn EP1228552A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9914329A FR2801139B1 (fr) 1999-11-12 1999-11-12 Antenne imprimee bi-bande
FR9914329 1999-11-12
PCT/FR2000/003134 WO2001035491A1 (fr) 1999-11-12 2000-11-09 Antenne imprimee bi-bande

Publications (1)

Publication Number Publication Date
EP1228552A1 true EP1228552A1 (fr) 2002-08-07

Family

ID=9552127

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00977654A Withdrawn EP1228552A1 (fr) 1999-11-12 2000-11-09 Antenne imprimee bi-bande

Country Status (6)

Country Link
US (1) US6741210B2 (fr)
EP (1) EP1228552A1 (fr)
JP (1) JP2003514422A (fr)
CN (1) CN1175520C (fr)
FR (1) FR2801139B1 (fr)
WO (1) WO2001035491A1 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1223637B1 (fr) * 1999-09-20 2005-03-30 Fractus, S.A. Antennes multiniveau
ES2156832B1 (es) * 1999-10-07 2002-03-01 Univ Valencia Politecnica Antena impresa de banda dual
ES2205898T3 (es) * 1999-10-26 2004-05-01 Fractus, S.A. Agrupaciones multibanda de antenas entrelazadas.
ATE302473T1 (de) 2000-01-19 2005-09-15 Fractus Sa Raumfüllende miniaturantenne
US9755314B2 (en) 2001-10-16 2017-09-05 Fractus S.A. Loaded antenna
BR0215790A (pt) 2002-06-25 2005-03-01 Fractus Sa Antena para múltiplas faixas de sintonia
JP2005533446A (ja) * 2002-07-15 2005-11-04 フラクトゥス・ソシエダッド・アノニマ マルチレベルで成形された素子及び空間充填して成形された素子を使用するアンダーサンプリングされたマイクロストリップアレー
US7868843B2 (en) 2004-08-31 2011-01-11 Fractus, S.A. Slim multi-band antenna array for cellular base stations
US7109928B1 (en) * 2005-03-30 2006-09-19 The United States Of America As Represented By The Secretary Of The Air Force Conformal microstrip leaky wave antenna
US7605763B2 (en) 2005-09-15 2009-10-20 Dell Products L.P. Combination antenna with multiple feed points
EP1935057B1 (fr) 2005-10-14 2012-02-01 Fractus S.A. Reseau d'antennes minces triple bande pour stations de base cellulaires
US8738103B2 (en) 2006-07-18 2014-05-27 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US20080111748A1 (en) * 2006-11-10 2008-05-15 Dunn Doug L Antenna system having plural selectable antenna feed points and method of operation thereof
US7872606B1 (en) * 2007-02-09 2011-01-18 Marvell International Ltd. Compact ultra wideband microstrip resonating antenna
EP2058902A4 (fr) * 2007-04-12 2013-03-20 Nec Corp Antenne à double polarisation
CN102257675B (zh) * 2008-12-22 2014-01-29 Saab公司 双频天线孔径
KR101872460B1 (ko) 2011-01-27 2018-06-29 갈트로닉스 코포레이션 리미티드 광대역 이중 편파 안테나
EP2482383A4 (fr) * 2011-04-19 2012-12-19 Huawei Tech Co Ltd Antenne microruban
US9450647B2 (en) * 2013-06-10 2016-09-20 Intel Corporation Antenna coupler for near field wireless docking
US10381725B2 (en) 2015-07-20 2019-08-13 Optimum Semiconductor Technologies Inc. Monolithic dual band antenna
US10109918B2 (en) 2016-01-22 2018-10-23 Airgain Incorporated Multi-element antenna for multiple bands of operation and method therefor
CN107666034B (zh) * 2016-07-28 2024-05-10 大唐终端技术有限公司 一种天线装置和移动终端
CN107706528B (zh) 2016-08-08 2020-05-08 华为技术有限公司 天线系统
CN111082222B (zh) * 2019-11-08 2021-12-17 京信通信技术(广州)有限公司 天线装置及天线辐射单元
CN113534998A (zh) * 2021-07-09 2021-10-22 维沃移动通信有限公司 显示模组及电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847625A (en) * 1988-02-16 1989-07-11 Ford Aerospace Corporation Wideband, aperture-coupled microstrip antenna
US5043738A (en) * 1990-03-15 1991-08-27 Hughes Aircraft Company Plural frequency patch antenna assembly
US5124713A (en) * 1990-09-18 1992-06-23 Mayes Paul E Planar microwave antenna for producing circular polarization from a patch radiator
FR2668655B1 (fr) * 1990-10-31 1993-07-30 Behe Roger Antenne imprimee pour reseau a double polarisation.
US5241321A (en) * 1992-05-15 1993-08-31 Space Systems/Loral, Inc. Dual frequency circularly polarized microwave antenna
SE9603565D0 (sv) * 1996-05-13 1996-09-30 Allgon Ab Flat antenna
SE521407C2 (sv) * 1997-04-30 2003-10-28 Ericsson Telefon Ab L M Mikrovägantennsystem med en plan konstruktion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO0135491A1 *

Also Published As

Publication number Publication date
JP2003514422A (ja) 2003-04-15
FR2801139B1 (fr) 2001-12-21
CN1175520C (zh) 2004-11-10
FR2801139A1 (fr) 2001-05-18
US6741210B2 (en) 2004-05-25
CN1390373A (zh) 2003-01-08
US20020113737A1 (en) 2002-08-22
WO2001035491A1 (fr) 2001-05-17

Similar Documents

Publication Publication Date Title
WO2001035491A1 (fr) Antenne imprimee bi-bande
EP0825673B1 (fr) Antenne plane à éléments superposés court-circuités
EP1849213B1 (fr) Antenne dipole imprimee multibande
US6300906B1 (en) Wideband phased array antenna employing increased packaging density laminate structure containing feed network, balun and power divider circuitry
US4866451A (en) Broadband circular polarization arrangement for microstrip array antenna
EP0089084B1 (fr) Structure d'antenne plane hyperfréquences
FR2863111A1 (fr) Antenne en reseau multi-bande a double polarisation
EP1690317B1 (fr) Antenne en reseau multi-bande a double polarisation
FR2810164A1 (fr) Perfectionnement aux antennes source d'emission/reception d'ondes electromagnetiques pour systemes de telecommunications par satellite
FR2966986A1 (fr) Element rayonnant d'antenne
JP4034265B2 (ja) 2個の放射要素を備えるリアクティブ結合アンテナ
WO2010142756A1 (fr) Élément rayonnant d'antenne
FR2761532A1 (fr) Antenne-reseau a dipoles a microrubans a cavites
CN111541031B (zh) 一种宽带低剖面传输阵列天线及无线通信设备
CA1319190C (fr) Antenne composite a diplexage a polarisation circulaire
CA2182334C (fr) Element de rayonnement mini-cap
EP2430705A1 (fr) Antenne multifaisceaux compacte
Kamal et al. Enabling MIMO antenna miniaturization and wide circular polarization coverage by amalgamation of a dielectric strip between meandered traces and slotted ground
EP1516393B1 (fr) Dispositif rayonnant bi-bande a double polarisation
Kidder et al. Broad-band U-slot patch antenna with a proximity-coupled double/spl Pi/-shaped feed line for arrays
JPH0629723A (ja) 平面アンテナ
WO1996008055A1 (fr) Antenne plaquee miniaturisee a double polarisation a tres large bande
NZ247365A (en) Microwave patch antenna for cellular telephony base station
EP0354076B1 (fr) Antenne comportant des circuits de distribution d'énergie micro-onde du type triplaque
FR2705167A1 (fr) Antenne plaquée large bande à encombrement réduit, et dispositif d'émission/réception correspondant.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RBV Designated contracting states (corrected)

Designated state(s): DE ES FI GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070503