EP2409103B1 - Wärmetauschereinheit und wärmetechnische anlage - Google Patents

Wärmetauschereinheit und wärmetechnische anlage Download PDF

Info

Publication number
EP2409103B1
EP2409103B1 EP10719231.2A EP10719231A EP2409103B1 EP 2409103 B1 EP2409103 B1 EP 2409103B1 EP 10719231 A EP10719231 A EP 10719231A EP 2409103 B1 EP2409103 B1 EP 2409103B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
unit
exchanger units
condenser
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10719231.2A
Other languages
English (en)
French (fr)
Other versions
EP2409103A2 (de
Inventor
Stefan Petersen
Christian Finck
Martin Mittermeier
Anna Jahnke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Berlin
Original Assignee
Technische Universitaet Berlin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Berlin filed Critical Technische Universitaet Berlin
Publication of EP2409103A2 publication Critical patent/EP2409103A2/de
Application granted granted Critical
Publication of EP2409103B1 publication Critical patent/EP2409103B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0443Combination of units extending one beside or one above the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators

Definitions

  • the invention relates to a thermal system, in particular a refrigeration system.
  • the main components of refrigeration systems such as evaporators, absorbers, expellers and condensers are heat exchangers, which all transport between media heat. These heat exchangers are responsible for 50% of the costs and 75% of the volume of the refrigeration system.
  • WO 2007/006289 A1 discloses the functional principle of a heat pump designed as an absorption refrigeration system.
  • the mode of operation of the heat pump which has several heat exchanger components, is explained in detail using a schematic circuit diagram.
  • heat exchanger components are then also combined to form heat exchanger units which have an evaporator device , which is configured to evaporate a heat exchanger operating or heat exchanger working fluid, and having a liquefier device which is configured to liquefy the heat exchanger operating or heat exchanger working medium.
  • Known types of construction and construction for heat exchanger units provide for a pronounced spatial separation of the functional units, which are optionally arranged in a common shell or a common housing.
  • the evaporator device and the condenser device are arranged side by side.
  • One version of this is the so-called hamster-jaw construction, in which an evaporator device is arranged between two partial condenser devices and the entire structure is integrated in a tubular housing.
  • Known units of heat exchanger components have a drip separator or steam blinds in order to make it more difficult for liquid splashes to make the transition to other heat exchanger units or to prevent them completely.
  • the object of the invention is to provide a thermal system with an improved structural design that supports the flexible use of the thermal system in applications with different requirements.
  • thermodynamic unit consists of one or more pairs of evaporator device and condenser device, which form a thermodynamic and process engineering unit.
  • This thermodynamic unit is characterized in particular in that both the length of the steam path and the specific steam mass flow are independent of the absolute power or capacity of the entire heat exchanger unit. The once optimized ratio of the capacities of the heat exchangers to one another, which form a higher-level unit, is retained even when the output is scaled.
  • Modular heat exchanger units can be produced, which can be assembled in an overall system, which enables improved scalability of thermal engineering systems or heat pumps, in particular refrigeration systems and desalination systems.
  • the front-side configuration also enables a structural design with optimized space utilization and makes a decisive contribution to the thermal separation of the different functional units, steam generators and condensers, which minimizes thermal losses despite spatial optimization.
  • the evaporator device can be, for example, a generator or an evaporator.
  • the liquefier device is designed, for example, as an absorber or a condenser.
  • the frontal arrangement of the evaporator device and the condenser device leads to a changed steam flow behavior between the devices compared to known heat exchanger units, which implies a kind of wave formation, whereby an increased heat and mass transfer is achieved.
  • the performance-related heat exchanger area is reduced.
  • the scalability achieved with the invention makes it possible to individually adapt thermal engineering systems, in particular refrigeration systems, with regard to the system size and output for different applications.
  • a compact design is made possible to advance into small performance ranges that were unattractive for known types of possible assembly of heat exchanger components due to poor power density and large space requirements.
  • the invention provides that the evaporator device and the condenser device are arranged opposite one another on the end face.
  • end faces of the evaporator device and the condenser device are arranged opposite one another, either at a distance from one another or essentially lying on top of one another.
  • the evaporator device and the liquefier device are arranged at least in sections interlocking at the end.
  • line sections of the evaporator device and the condenser device engage in sections, with an overlap formed thereby preferably being greater or less than half the longitudinal extent of the respective pipelines.
  • An advantageous embodiment of the invention provides that pipes of the evaporator device and pipes of the condenser device alternately interlock.
  • a pipe of the evaporator device and a pipe of the condenser device are arranged alternately.
  • a further development of the invention preferably provides that an end face of the evaporator device facing the condenser device is arranged substantially completely overlapping with an end face of the condenser device facing the evaporator device and / or vice versa.
  • the end faces are arranged essentially congruently.
  • An advantageous embodiment of the invention provides a drip separator-free design. In contrast to known heat exchanger units, the effort and provisions for a droplet separator can be saved.
  • a further development of the invention provides a vapor barrier-free and / or a drip barrier-free training. This creates a further simplification, which supports a material and cost-saving structure.
  • the invention provides a module structure.
  • the proposed design principle with regard to the arrangement of the evaporator device and the condenser device makes it possible, in one embodiment, to design independent flow properties for the heat exchanger operating means in the respective module, which essentially do not change even if several heat exchanger units constructed as modules are assembled in one system.
  • the evaporator device and the condenser device are formed in a thermal compressor.
  • the thermal compressor is integrated in a refrigeration system.
  • Fig. 1 shows a perspective view of a thermal system with a heat exchanger unit 10, which is formed with a steam generator 11 and a condenser 12.
  • the steam generator 11 and the condenser 12 each have associated pipelines 13, 14.
  • a further heat exchanger unit 20 is arranged, which is formed with a condenser 21 and a steam generator 22.
  • the two heat exchanger units 10, 20 form a refrigeration system.
  • the steam generator 11 and the condenser 12 are positioned in an end configuration or arrangement, with end surfaces arranged opposite each other.
  • the same construction is provided for the further heat exchanger unit 20 with the condenser 21 and the steam generator 22.
  • evaporated operating fluid which is also referred to as working fluid, flows from the steam generator 11 to the condenser 12 in order to at least partially condense there.
  • the liquid condensate is then transferred to the steam generator 22 in order to evaporate there and then to flow as steam to the condenser 21, where condensation takes place again.
  • the liquid produced here is then fed back to the steam generator 11.
  • Fig. 2 shows a schematic representation of a heat exchanger unit with condenser device 30 and evaporator device 31 in which end faces 32, 33 are arranged opposite one another.
  • Fig. 3 shows a schematic representation of a heat exchanger unit with condenser device 40 and evaporator device 41, in which end faces 42, 43 are also arranged opposite one another.
  • Fig. 4 shows a schematic representation of a heat exchanger unit with a condenser device 50 and an evaporator device 51 in a configuration at the end, the evaporator device 50 and the condenser device 51 being partially interlocking, so that an overlap area 52 is created.
  • the respective evaporator device can be an evaporator, a desorber or a generator.
  • the respective condenser device (condenser) is preferably designed as an absorber or condenser.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

  • Die Erfindung betrifft eine wärmetechnische Anlage, insbe-sondere einer Kälteanlage.
  • Hintergrund der Erfindung
  • Der Bedarf an Klimatisierungsaufwand, insbesondere Kälteenergie, und somit der Gesamtenergiebedarf aufgrund steigender Arbeitsplatzanforderungen und Komfortwünsche ist stetig stark steigend. Die Klimatisierung der privaten wie gewerblichen Fahrzeugtechnik bezogen auf die Fahrgastzelle hat innerhalb von 10 Jahren von einem marginalen Marktanteil annähernd 100 % erreicht. Ähnliches ist für die Klimatisierung des Gebäudebestands zu erwarten. Zusätzlich wird mit Umsetzung der europäischen Richtlinie über die Gesamtenergieeffizienz von Gebäuden künftig der Kühlenenergiebedarf bei der Gebäudebewertung berücksichtigt. Energie- und kosteneffiziente Kühltechnologien gewinnen hierdurch weiter an Bedeutung.
  • Ein Hemmnis für den verstärkten Ausbau kapitalintensiver KWK-Technologien (KWK - Kraft-Wärme-Kopplung) ist die geringe Systemauslastung in den Sommermonaten. Die umweltschonende Kältebereitstellung mittels thermischer Kälteerzeugungsprozesse gilt als Möglichkeit, diesem Hemmnis entgegen zu wirken. Gerade in Fernwärmenetzen, die vorwiegend durch KWK-System versorgt werden, steht die notwendige Wärmeenergie zum Betrieb von thermischen Kälteerzeugungsprozessen als Abwärme aus der Stromerzeugung zur Verfügung.
  • Die Hauptkomponenten von Kälteanlagen wie Verdampfer, Absorber, Austreiber und Kondensator sind Wärmetauscher, die alle zwischen Medienwärme transportieren. Diese Wärmeüberträger sind hierbei für 50 % der Kosten und 75 % des Volumens der Kälteanlage verantwortlich.
  • In dem Dokument WO 2007/006289 A1 ist eine das Funktionsprinzip einer als Absorptionskälteanlage ausgeführten Wärmepumpe offenbart. Anhand eines schematischen Schaltbildes wird dort die Arbeitsweise der Wärmepumpe, die mehrere Wärmetauscherkomponenten aufweist, im Einzelnen erläutert. Wärmetauscherkomponenten werden bei der realen Konstruktion für eine Anlage dann auch zu Wärmetauschereinheiten zusammengefasst, die eine Verdampfereinrichtung, die konfiguriert ist, ein Wärmetauscherbetriebs- oder Wärmetauscherarbeitsmittel zu verdampfen, und eine Verflüssigereinrichtung aufweisen, die konfiguriert ist, das Wärmetauscherbetriebs- oder Wärmetauscherarbeitsmittel mittel zu verflüssigen. Bekannte Bau- und Konstruktionsarten für Wärmetauschereinheiten sehen eine ausgesprochene räumliche Trennung der Funktionseinheiten vor, die gegebenenfalls in einer gemeinsamen Hülle oder einem gemeinsamen Gehäuse angeordnet sind. Bei den bekannten Wärmetauschereinheiten sind die Verdampfereinrichtung und Verflüssigereinrichtung nebeneinander angeordnet. Eine Ausführung hiervon ist die so genannte Hamsterbacken-Konstruktion, bei der eine Verdampfereinrichtung zwischen zwei Teilverflüssigereinrichtungen angeordnet ist und der Gesamtaufbau in ein rohrförmiges Gehäuse integriert ist. Bekannte Einheiten von Wärmetauscherkomponenten verfügen über einen Tropfabscheider oder Dampfjalousien, um Flüssigkeitsspritzer den Übergang zu anderen Wärmetauschereinheiten zu erschweren oder dieses vollständig zu unterbinden.
  • Dokument US 5,916,251 zeigt eine wärmetechnische Anlage, mit mehreren Wärmetauschereinheiten, wobei die Wärmetauschereinheiten eine thermodynamische und prozesstechnische Einheit bilden, derart, dass im Betrieb
    • verdampftes Betriebsmittel von einer Verdampfereinrichtung zu einer Verflüssigereinrichtung einer der Wärmetauschereinheiten überströmt, um dort wenigstens teilweise zu verflüssigen,
    • das die in der Verflüssigereinrichtung erzeugte Flüssigkeit dann zu einer Verdampfereinrichtung einer weiteren der Wärmetauschereinheiten überführt wird, um dort zu Dampf zu verdampfen, und
    • anschließend der Dampf zu einer Verflüssigereinrichtung der weiteren Wärmetauschereinheiten überströmt, wo erneut eine Verflüssigung stattfindet, und die hierbei erzeugte Flüssigkeit wieder der Verdampfereinrichtung zugeführt wird.
  • Dokument US 5,845,703 betrifft ein Wärme-Wiedergewinnungssystem, bei dem Komponenten einer Wärmetauschereinheit stirnseitig gegenüberliegend angeordnet sind. Eine ähnliche Konstruktion ist für eine Wärmetauschereinheit in dem Dokument GB 2,451,848 A offenbart.
  • Dokument US 3,817,708 offenbart einen Fluid-Wärmetauscher mit U-förmigen Rohrleitungen.
  • Das Dokument US 951,694 offenbart eine Wärmetauschereinheit, bei der Rohrstränge ineinandergreifend angeordnet sind.
  • Im Dokument DE 1 551 523 ist ein Wärmetauscher offenbart, bei dem Komponenten stirnseitig gegenüberliegend angeordnet sind, derart, dass das Wärmetauscherfluid axial entlang dieser Anordnung strömt.
  • Im Dokument JP 2000-0111212 ist eine Absorbtionskühlanlage beschrieben.
  • Zusammenfassung der Erfindung
  • Aufgabe der Erfindung ist es eine wärmetechnische Anlage mit einem verbesserten konstruktiven Aufbau zu schaffen, der den flexiblen Einsatz der wärmetechnischen Anlage in Anwendungen mit unterschiedlichen Anforderungen unterstützt.
  • Diese Aufgabe wird erfindungsgemäß durch eine wärmetechnische Anlage nach dem unabhängigen Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand von abhängigen Unteransprüchen.
  • Wärmeübertrager bekannter Art wurden bisher individuell und unabhängig voneinander an die erforderlichen Leistungen angepasst. Die mit der Erfindung neu geschaffene Einheit besteht aus einem oder mehreren Paaren aus Verdampfereinrichtung und Verflüssigereinrichtung, welche eine thermodynamische und prozesstechnische Einheit bilden. Diese thermodynamische Einheit ist insbesondere dadurch gekennzeichnet, dass sowohl die Länge des Dampfweges als auch der spezifische Dampfmassenstrom unabhängig von der absoluten Leistung bzw. Kapazität der gesamten Wärmeübertragereinheit. Das einmal optimierte Verhältnis der Kapazitäten der Wärmeübertrager untereinander, welche eine übergeordnete Einheit bilden, bleibt selbst bei Skalierungen der Leistung erhalten.
  • Es können modulartige Wärmetauschereinheiten hergestellt werden, die in einer Gesamtanlage zusammensetzbar sind, wodurch eine verbesserte Skalierbarkeit von wärmetechnischen Anlagen oder Wärmepumpen, insbesondere Kälteanlagen und Entsalzungsanlagen, ermöglicht ist. Die stirnseitige Konfiguration ermöglicht darüber hinaus einen konstruktiven Aufbau mit optimierter Raumausnutzung und trägt entscheidend zur thermischen Trennung der unterschiedlichen Funktionseinheiten, Dampferzeuger und Verflüssiger bei, wodurch trotz räumlicher Optimierung die thermischen Verluste minimiert werden.
  • Bei der Verdampfereinrichtung kann es sich zum Beispiel um einen Generator oder einen Verdampfer handeln. Die Verflüssigereinrichtung ist beispielsweise als ein Absorber oder ein Kondensator ausgeführt. Die stirnseitige Anordnung von Verdampfereinrichtung und Verflüssigereinrichtung führt im Vergleich zu bekannten Wärmetauschereinheiten zu einem veränderten Dampfströmungsverhalten zwischen den Einrichtungen, was eine Art Wellenbildung impliziert, wodurch ein erhöhter Wärme- und Stoffübergang erreicht ist. Die leistungsbezogene Wärmetauscherfläche ist verringert.
  • Die mit der Erfindung erreichte Skalierbarkeit ermöglicht es, wärmetechnische Anlagen, insbesondere Kälteanlagen, hinsichtlich der Anlagengröße und -leistung für unterschiedliche Anwendungen individuell anzupassen. Insbesondere ist eine kompakte Bauform ermöglicht, um in kleine Leistungsbereiche vorzustoßen, die für bekannte Bauarten des möglichen Zusammenbaus von Wärmetauscherkomponenten wegen schlechter Leistungsdichte und großem Platzbedarf unattraktiv waren.
  • Die Erfindung sieht vor, dass die Verdampfereinrichtung und die Verflüssigereinrichtung einander stirnseitig gegenüberstehend angeordnet sind. So sind Stirnflächen der Verdampferreinrichtung und der Verflüssigereinrichtung einander gegenüberliegend angeordnet, sei es in einem Abstand voneinander oder im Wesentlichen aufeinander liegend.
  • Bei einer zweckmäßigen Ausgestaltung der Erfindung kann vorgesehen sein, dass die Verdampfereinrichtung und die Verflüssigereinrichtung wenigstens abschnittsweise stirnseitig ineinandergreifend angeordnet sind. Bei dieser Ausführungsform greifen Leitungsabschnitte von Verdampfereinrichtung und Verflüssigereinrichtung abschnittsweise ineinander, wobei eine hierdurch gebildete Überlappung vorzugsweise größer oder kleiner als die halbe Längserstreckung der jeweiligen Rohrleitungen ist.
  • Eine vorteilhafte Ausführungsform der Erfindung sieht vor, dass Rohrleitungen der Verdampfereinrichtung und Rohrleitungen der Verflüssigereinrichtung alternierend ineinandergreifen. Abwechselnd sind eine Rohrleitung der Verdampfereinrichtung und eine Rohrleitung der Verflüssigereinrichtung angeordnet.
  • Bevorzugt sieht eine Fortbildung der Erfindung vor, dass eine der Verflüssigereinrichtung zugewandte Stirnfläche der Verdampfereinrichtung im Wesentlichen vollständig überlappend mit einer der Verdampfereinrichtung zugewandten Stirnfläche der Verflüssigereinrichtung angeordnet ist und / oder umgekehrt. In einer Ausführungsform sind die stirnseitigen Flächen also im Wesentlichen deckungsgleich angeordnet.
  • Eine vorteilhafte Ausgestaltung der Erfindung sieht eine tropfabscheiderfreie Ausbildung vor. Im Unterschied zu bekannten Wärmetauschereinheiten können Aufwand und Vorkehrungen für einen Tropfenabscheider eingespart werden.
  • Eine Weiterbildung der Erfindung sieht eine dampfsperrenfreie und / oder eine tropfensperrenfreie Ausbildung vor. Hierdurch ist eine weitergehende Vereinfachung gebildet, die einen material- und kostensparenden Aufbau unterstützt.
  • Die Erfindung sieht einen Modulaufbau vor. Das vorgesehen Konstruktionsprinzip hinsichtlich der Anordnung von Verdampfereinrichtung und Verflüssigereinrichtung ermöglicht es in einer Ausführungsform, in dem jeweiligen Modul eigenständige Strömungseigenschaften für das Wärmetauscherbetriebsmittel auszubilden, die sich im Wesentlichen auch nicht ändern, wenn mehrere als Modul aufgebaute Wärmetauschereinheiten zusammengesetzt werden in einer Anlage.
  • Bei einer zweckmäßigen Ausgestaltung der Erfindung kann vorgesehen sein, dass die Verdampfereinrichtung und die Verflüssigereinrichtung in einem thermischen Verdichter gebildet sind. Beispielsweise ist der thermische Verdichter in eine Kälteanlage integriert.
  • Beschreibung bevorzugter Ausführungsbeispiele der Erfindung
  • Die Erfindung wird im Folgenden anhand von bevorzugten Ausführungsbeispielen unter Bezugnahme auf Fig. einer Zeichnung näher erläutert. Hierbei zeigen:
  • Fig. 1
    eine perspektivische Darstellung einer wärmetechnischen Anlage mit vier Wärmetauscherkomponenten,
    Fig. 2
    eine schematische Darstellung einer Wärmetauschereinheit mit Verflüssigereinrichtung und Verdampfereinrichtung, bei der Stirnflächen einander gegenüberliegend angeordnet sind,
    Fig. 3
    eine schematische Darstellung einer Wärmetauschereinheit mit Verflüssigereinrichtung und Verdampfereinrichtung, bei der Stirnflächen ebenfalls einander gegenüberliegend angeordnet sind, und
    Fig. 4
    eine schematische Darstellung einer Wärmetauschereinheit mit Verflüssigereinrichtung und Verdampfereinrichtung in stirnseitiger Konfiguration, wobei die Verdampfereinrichtung und die Verflüssigereinrichtung teilweise ineinander liegend angeordnet sind.
  • Fig. 1 zeigt eine perspektivische Darstellung einer wärmetechnischen Anlage mit einer Wärmetauschereinheit 10, die mit einem Dampferzeuger 11 und einem Verflüssiger 12 gebildet ist. Der Dampferzeuger 11 und der Verflüssiger 12 verfügen jeweils über zugeordnete Rohrleitungen 13, 14. Auf der Wärmetauschereinheit 10 ist eine weitere Wärmetauschereinheit 20 angeordnet, die mit einem Verflüssiger 21 und einem Dampferzeuger 22 gebildet ist. Die beiden Wärmetauschereinheiten 10, 20 bilden eine Kälteanlage.
  • Der Dampferzeuger 11 und der Verflüssiger 12 sind in einer stirnseitigen Konfiguration oder Anordnung positioniert, wobei Stirnflächen einander gegenüberliegend angeordnet sind. Ein gleicher konstruktiver Aufbau ist für die weitere Wärmetauschereinheit 20 mit dem Verflüssiger 21 und den Dampferzeuger 22 vorgesehen.
  • Im Betrieb der Kälteanlage strömt verdampftes Betriebsmittel, welches auch als Arbeitsfluid bezeichnet wird, von dem Dampferzeuger 11 zu dem Verflüssiger 12, um dort wenigstens teilweise zu kondensieren. Das flüssige Kondensat wird dann dem Dampferzeuger 22 überführt, um dort zu verdampfen und anschließend als Dampf zum Verflüssiger 21 überzuströmen, wo erneut eine Kondensation stattfindet. Die hierbei erzeugte Flüssigkeit wird dann wieder dem Dampferzeuger 11 zugeführt.
  • Fig. 2 zeigt eine schematische Darstellung einer Wärmetauschereinheit mit Verflüssigereinrichtung 30 und Verdampfereinrichtung 31 bei der Stirnflächen 32, 33 einander gegenüberliegend angeordnet sind.
  • Fig. 3 zeigt eine schematische Darstellung einer Wärmetauschereinheit mit Verflüssigereinrichtung 40 und Verdampfereinrichtung 41, bei der Stirnflächen 42, 43 ebenfalls einander gegenüberliegend angeordnet sind.
  • Fig. 4 zeigt eine schematische Darstellung einer Wärmetauschereinheit mit Verflüssigereinrichtung 50 und Verdampfereinrichtung 51 in stirnseitiger Konfiguration, wobei die Verdampfereinrichtung 50 und die Verflüssigereinrichtung 51 teilweise ineinander greifend angeordnet sind, so dass ein Überlappungsbereich 52 geschaffen ist.
  • Bei der jeweiligen Verdampfereinrichtung (Dampferzeuger) kann es sich um einen Verdampfer, einen Desorber oder einen Generator handeln. Die jeweilige Verflüssigereinrichtung (Verflüssiger) ist bevorzugt als Absorber oder Kondensator ausgeführt.

Claims (8)

  1. Wärmetechnische Anlage, mit mehreren Wärmetauschereinheiten (10, 20), die einem modularen Aufbau entsprechend zusammengesetzt sind, wobei:
    - die mehreren Wärmetauschereinheiten (10, 20) jeweils mit einer Verdampfereinrichtung, die konfiguriert ist, ein Wärmetauscherbetriebsmittel zu verdampfen, und einer Verflüssigereinrichtung gebildet sind, die konfiguriert ist, das Wärmetauscherbetriebsmittel zu verflüssigen, wobei die Verdampfereinrichtung und die Verflüssigereinrichtung für ein Überströmen des Wärmetauscherbetriebsmittels in Fluidverbindung stehen und zueinander in einer stirnseitigen Konfiguration angeordnet sind, und
    - die mehreren Wärmetauschereinheiten (10, 20) eine thermodynamische und prozesstechnische Einheit bilden, derart, dass im Betrieb
    - verdampftes Betriebsmittel von einer Verdampfereinrichtung (11) zu einer Verflüssigereinrichtung (12) einer der Wärmetauschereinheiten (10) überströmt, um dort wenigstens teilweise zu verflüssigen,
    - das die in der Verflüssigereinrichtung (12) erzeugte Flüssigkeit dann zu einer Verdampfereinrichtung (22) einer weiteren der Wärmetauschereinheiten (20) überführt wird, um dort zu Dampf zu verdampfen, und
    - anschließend der Dampf zu einer Verflüssigereinrichtung (21) der weiteren Wärmetauschereinheiten (20) überströmt, wo erneut eine Verflüssigung stattfindet, und die hierbei erzeugte Flüssigkeit wieder der Verdampfereinrichtung (11) zugeführt wird.
  2. Wärmetechnische Anlage nach Anspruch 1, dadurch gekennzeichnet, dass bei den mehreren Wärmetauschereinheiten (10, 20) die Verdampfereinrichtung (51) und die Verflüssigereinrichtung (50) wenigstens abschnittsweise stirnseitig ineinandergreifend angeordnet sind.
  3. Wärmetechnische Anlage nach Anspruch 2, dadurch gekennzeichnet, dass bei den mehreren Wärmetauschereinheiten (10, 20) Rohrleitungen der Verdampfereinrichtung und Rohrleitungen der Verflüssigereinrichtung alternierend ineinandergreifen.
  4. Wärmetechnische Anlage nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass bei den mehreren Wärmetauschereinheiten (10, 20) eine der Verflüssigereinrichtung zugewandte Stirnfläche der Verdampfereinrichtung im Wesentlichen vollständig überlappend mit einer der Verdampfereinrichtung zugewandten Stirnfläche der Verflüssigereinrichtung angeordnet ist und / oder umgekehrt.
  5. Wärmetechnische Anlage nach mindestens einem der vorangehenden Ansprüche, gekennzeichnet durch eine tropfabscheiderfreie Ausbildung der mehreren Wärmetauschereinheiten (10, 20).
  6. Wärmetechnische Anlage nach mindestens einem der vorangehenden Ansprüche, gekennzeichnet durch eine dampfsperrenfreie und / oder eine tropfensperrenfreie Ausbildung der mehreren Wärmetauschereinheiten (10, 20).
  7. Wärmetechnische Anlage nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass bei den mehreren Wärmetauschereinheiten (10, 20) die Verdampfereinrichtung und die Verflüssigereinrichtung in einem thermischen Verdichter gebildet sind.
  8. Wärmetechnische Anlage nach mindestens einem der vorangehenden Ansprüche, ausgeführt als Wärmepumpe, Kälteanlage oder Entsalzungsanlage.
EP10719231.2A 2009-03-20 2010-03-19 Wärmetauschereinheit und wärmetechnische anlage Active EP2409103B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009013684A DE102009013684A1 (de) 2009-03-20 2009-03-20 Wärmetauschereinheit und wärmetechnische Anlage
PCT/DE2010/000309 WO2010105613A2 (de) 2009-03-20 2010-03-19 Wärmetauschereinheit und wärmetechnische anlage

Publications (2)

Publication Number Publication Date
EP2409103A2 EP2409103A2 (de) 2012-01-25
EP2409103B1 true EP2409103B1 (de) 2020-05-06

Family

ID=42674761

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10719231.2A Active EP2409103B1 (de) 2009-03-20 2010-03-19 Wärmetauschereinheit und wärmetechnische anlage

Country Status (4)

Country Link
US (1) US10801782B2 (de)
EP (1) EP2409103B1 (de)
DE (1) DE102009013684A1 (de)
WO (1) WO2010105613A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3686714A1 (de) * 2019-01-25 2020-07-29 Asetek Danmark A/S Kühlsystem mit einer wärmetauscheinheit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916251A (en) * 1997-10-29 1999-06-29 Gas Research Institute Steam flow regulation in an absorption chiller
EP1160530A1 (de) * 1999-03-04 2001-12-05 Ebara Corporation Plattenwärmetauscher

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1401713B2 (de) 1958-10-14 1971-09-23 Waermeaustauscher
DE1551523A1 (de) 1967-01-05 1970-03-19 Willy Scheller Maschb Kg Fa Waermeaustauscher
US3817708A (en) 1970-02-25 1974-06-18 Phillips Petroleum Co Alkylation apparatus
DE2343463A1 (de) 1973-08-29 1975-03-13 Ver Kesselwerke Ag Verfahren zur erzeugung von reindestillat mittels mehrstufenverdampfung durch entspannungsverdampfung und die anlage hierzu
US5626102A (en) 1996-03-14 1997-05-06 Nir; Ari Heat recovery system for a boiler and a boiler provided therewith
DE19902695B4 (de) * 1998-01-21 2016-01-07 Vaillant Gmbh Sorptionswärmepumpe mit einem Ad-/Desorber-Wärmetauscher
JP2000111212A (ja) 1998-10-09 2000-04-18 Sanyo Electric Co Ltd 吸収冷凍機界面活性剤循環回路
DE19858686A1 (de) * 1998-12-18 2000-06-21 Linde Ag Absorptionsmaschine
EP1139041B1 (de) * 2000-03-31 2013-06-19 Panasonic Healthcare Co., Ltd. Lager und Überwachungsanordnung dazu
US7165326B2 (en) * 2001-12-17 2007-01-23 Showa Denko K.K. Heat exchanger and process for fabricating same
DE102005032266A1 (de) 2005-07-11 2007-02-15 Technische Universität Berlin Verfahren zum Abführen eines Gases aus einer Wärmepumpe und Wärmepumpe
JP2007113801A (ja) * 2005-10-18 2007-05-10 Denso Corp 熱交換器
US8506839B2 (en) * 2005-12-14 2013-08-13 E I Du Pont De Nemours And Company Absorption cycle utilizing ionic liquids and water as working fluids
CA2530621A1 (en) * 2006-01-03 2007-07-03 Free Energy Solutions Inc. Thermal superconductor refrigeration system
GB2451848A (en) 2007-08-14 2009-02-18 Arctic Circle Ltd Multiple circuit heat exchanger comprising tube bundles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916251A (en) * 1997-10-29 1999-06-29 Gas Research Institute Steam flow regulation in an absorption chiller
EP1160530A1 (de) * 1999-03-04 2001-12-05 Ebara Corporation Plattenwärmetauscher

Also Published As

Publication number Publication date
EP2409103A2 (de) 2012-01-25
WO2010105613A2 (de) 2010-09-23
WO2010105613A3 (de) 2011-03-10
US20120067713A1 (en) 2012-03-22
DE102009013684A1 (de) 2010-10-07
US10801782B2 (en) 2020-10-13

Similar Documents

Publication Publication Date Title
DE102005038858B4 (de) Dampfkompressionskreis mit Ejektorpumpe
DE10355936A1 (de) Wärmetauscher
DE102017211256B4 (de) Kälteanlage für ein Fahrzeug mit einem einen Wärmeübertrager aufweisenden Kältemittelkreislauf
EP1281545B1 (de) Lufgekühlte Wärmeübertrageranordnung mit einem CO2-Gaskühler
DE102020202313A1 (de) Wärmeübertrager
DE102012024723A1 (de) Wärmetauscher und Verfahren zur Wärmeübertragung
EP1882888A1 (de) Wärmepumpenanlage, insbesondere zur Klimatisierung eines Gebäudes
EP2409103B1 (de) Wärmetauschereinheit und wärmetechnische anlage
EP2664868B1 (de) Wärmepumpenvorrichtung und Verdampfer für eine Wärmepumpenvorrichtung
DE102018215026B4 (de) Kälteanlage für ein Fahrzeug mit einem einen zweiflutigen Wärmeübertrager aufweisenden Kältemittelkreislauf sowie Wärmeübertrager und Verfahren zum Betreiben der Kälteanlage
DE102008049896A1 (de) Luftwärmepumpe und Lamellenluftwärmetauscher sowie Verfahren zu deren Betrieb
DE102012105643A1 (de) Fahrzeug-wärmetauscher
DE102017114993A1 (de) Vorrichtung zur Wärmeübertragung und Verfahren zum Betreiben der Vorrichtung
WO2010000311A1 (de) Wärmetauscherblock, sowie ein verfahren zur herstellung eines wärmetauscherblocks
DE102008002319B4 (de) Absorptionsklimaanlagen-Flüssigkeitstank
DE102006035994A1 (de) Kraftfahrzeugklimaanlage, Wärmeübertrager, insbesondere Heizkörper, für eine derartige Kraftfahrzeugklimaanlage sowie Verfahren zum Betreiben eines Wärmeübertragers einer Kraftfahrzeugklimaanlage
EP3009780B1 (de) Wärmeübertrager
WO2003046449A1 (de) Verfahren und vorrichtung zur solarthermischen kälteerzeugung
DE112017006707T5 (de) Absorptionskältemaschine
DE102009055079B4 (de) Wärmeübertrager, Wärmeübertragungseinheit sowie Verfahren zur Bereitstellung von Heizenergie mittels Wärmeübertragung
AT506812B1 (de) Wärmepumpenanlage, insbesondere sole-erdwärmepumpenanlage
DE102011053526A1 (de) Absorber für eine Solarthermieanlage
WO2011073762A2 (de) Wärmetauscher
WO2009149745A1 (de) Wärmetauscherblock, sowie ein verfahren zur benetzung eines wärmetauscherblocks
EP1520146A1 (de) Wärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111020

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PETERSEN, STEFAN

Inventor name: FINCK, CHRISTIAN

Inventor name: JAHNKE, ANNA

Inventor name: MITTERMEIER, MARTIN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150204

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191203

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1267438

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010016627

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200906

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200907

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200807

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010016627

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210319

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210319

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210319

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230320

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100319

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240318

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 15