EP2401602A1 - Verfahren zur hochaufgelösten erfassung von nanopartikeln auf zweidimensionalen messflächen - Google Patents
Verfahren zur hochaufgelösten erfassung von nanopartikeln auf zweidimensionalen messflächenInfo
- Publication number
- EP2401602A1 EP2401602A1 EP10706196A EP10706196A EP2401602A1 EP 2401602 A1 EP2401602 A1 EP 2401602A1 EP 10706196 A EP10706196 A EP 10706196A EP 10706196 A EP10706196 A EP 10706196A EP 2401602 A1 EP2401602 A1 EP 2401602A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sensor surface
- plasmon resonance
- particles
- radiation source
- radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002105 nanoparticle Substances 0.000 title claims description 16
- 238000000034 method Methods 0.000 title claims description 13
- 238000005259 measurement Methods 0.000 title description 6
- 230000005855 radiation Effects 0.000 claims abstract description 28
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 claims abstract description 16
- 230000003287 optical effect Effects 0.000 claims abstract description 13
- 239000002245 particle Substances 0.000 claims description 44
- 238000002310 reflectometry Methods 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 8
- 239000010931 gold Substances 0.000 claims description 8
- 229910052737 gold Inorganic materials 0.000 claims description 8
- 238000003384 imaging method Methods 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 5
- 230000005284 excitation Effects 0.000 claims description 3
- 239000013078 crystal Substances 0.000 claims description 2
- 230000010460 detection of virus Effects 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 238000011160 research Methods 0.000 claims description 2
- 230000003612 virological effect Effects 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000011156 evaluation Methods 0.000 claims 1
- 238000004611 spectroscopical analysis Methods 0.000 claims 1
- 241000700605 Viruses Species 0.000 description 4
- 238000000386 microscopy Methods 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 241001459819 Carassius gibelio Species 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000006117 anti-reflective coating Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000003368 label free method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000001847 surface plasmon resonance imaging Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
- G01N15/1433—Signal processing using image recognition
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
- G01N21/553—Attenuated total reflection and using surface plasmons
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/0008—Microscopes having a simple construction, e.g. portable microscopes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/008—Details of detection or image processing, including general computer control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N2015/0038—Investigating nanoparticles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/01—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
- G01N2015/019—Biological contaminants; Fouling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
- G01N21/553—Attenuated total reflection and using surface plasmons
- G01N21/554—Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
Definitions
- the invention relates to a heatsink containing
- the invention further relates to a method for optical detection of individual nanoparticles on two-dimensional measuring surfaces.
- optical arrangements i. the ability to observe small objects in optical microscopy, for example, is limited by the diffraction.
- the smallest particles which can be resolved with a light microscope have a diameter in the range of 0.2 ⁇ m corresponding to 200 nm.
- the arrangements required for this purpose are expensive.
- a label-free method which allows selectively viruses or particles of interest with a diameter in the nanometer range (nanoparticles) in water or
- the change in light intensity is analyzed at certain points in the image. When viewed with the eye, this is done on the retina.
- the detection with a detector takes place for example with a batch
- Coupled Device Since these changes are due to the difference in the optical properties of the object, such as transmission, refractive index or color and the environment, one can characterize the properties of the object.
- DE 40 24 476 C1 describes a Kretschmann arrangement which is used for the determination of analytes in a fluid sample.
- Layer thickness of the molecules bound to the surface can be achieved so that a required signal-to-noise ratio is achieved. Individual particles can not be detected by the method.
- the object of the invention is achieved in that the resolution of the observation optics and the detector is greater than the achievable with the radiation source under classical conditions, diffraction-limited resolution. It has surprisingly been found that the observation of nanoparticles is also possible with wavelengths which are significantly larger than the particle diameter. For example, the observation of particles with a
- a reference signal is formed, with which the signal is normalized.
- the reference signal may be generated by averaging the signals detected at the same location on the sensor surface prior to attachment of a particle to the sensor surface.
- the detection of the plasmon resonance can be done with a so-called Kretschmann arrangement.
- a local change in reflectivity is caused by the interaction of the nanoparticles with the evanescent field.
- particles smaller than 40 nm can be detected.
- areas with several square millimeters can be detected simultaneously. It is important in the arrangement that the particles are very close to or touch the sensor surface at a distance below 200 nm.
- the device is suitable for use in virological research and in the detection of viruses in public areas. The procedure can also be used for highly sensitive clinical diagnostics.
- the change in the reflectivity of the sensor surface is observed, which is caused by a particle.
- This change is in a preferred one
- Embodiment of the invention stepwise and localized in a few microns.
- the change is made at a location unknown in advance and at an unknown time measured.
- the location and time are found individually for each particle during the measurement.
- the signal is measured at pre-defined relatively large (> 100x100 ⁇ m 2 ) locations. At these places have been known
- the signal increases continuously, in proportion to the layer density of the already bound particles or molecules.
- the sensor used is a surface which ensures the greatest possible change in reflectivity by changing the refractive index.
- Such a surface with a strong change in reflectivity can be realized by means of a gold surface in Kretschmann arrangement.
- the reflectivity at an angle of incidence near the resonance angle depends very much on the refractive index of the medium that is in contact with the gold layer.
- the selectivity of the detection is ensured, as in the conventional SPR imaging method, by selectivity of the binding of particles to receptors attached to the sensor surface.
- the reflectivity changes are due to the size and refractive index of the particle, they can be used to characterize the particle.
- the area with high reflectivity change can be realized by periodic structures that allow plasmon excitation. Also anti-glare glass or crystal surfaces are suitable. The anti-reflective coating is broken by the particles and the reflectivity in the environment increases.
- the surface with high reflectivity change is realized by a surface with metallic nanoparticles which allow the excitation of localized plasmon resonance at selected wavelengths. These metallic nanoparticles serve as sensor particles. Near the resonance, the scattering of a particle is dependent on the refractive index. When another non-metallic particle attaches to a sensor particle, the reflectivity of the sensor changes
- the surface with high reflectivity change can be realized by a multi-layered optical structure in which surface plasmon resonance can also be excited.
- Embodiments of the invention are the subject of the dependent claims.
- Fig.l is a schematic representation of a Kretschmann- arrangement for
- FIG. 2 shows the course of a reflection signal in the vicinity of the resonance wavelength with and without particles.
- Fig. 5 shows the image of an observed area after different
- Fig. 6 is a schematic illustration of a regular array
- FIG. 1 shows a Kretschmann arrangement in an imaging configuration, generally designated 10. Such an arrangement 10 is already known. The operation of the surface plasmon spectrometer therefore need not be described in detail here.
- a glass sheet 12 is coated with a 50 nm thick gold layer 14. With the side facing away from the gold layer 14 16, the glass sheet 12 is attached to a prism 18. For fixing and improving the optical contact immersion oil is used.
- the gold layer 14 is illuminated with radiation 20 from a superluminescent diode 22.
- a superluminescent diode 22 is a QSDM-680-9 of
- Illumination takes place through the prism 18 at a fixed angle of incidence 24.
- a fixed angle of incidence 24 is also included in the prism 18.
- a superluminescent diode has no irregularities in the
- the angle of incidence 24 is chosen so that the wavelength of the diode appears on the left side of the resonance minimum, ie at a smaller angle.
- a lens 26 is used to generate a parallel radiation beam. It is understood that a curved mirror can also be provided here.
- a sample space for liquids in the form of a flow cell 28 is attached on the gold layer.
- the flow cell 28 is formed by a 1 mm thick S-shaped PDMS seal.
- the rear part of the flow cell 28 (not shown) is made of Plexiglas.
- an inlet and an outlet in the form of hoses are provided on the flow cell 28.
- the cell volume of the flow cell 28 is about 300 ⁇ L.
- the glass surface of the disk 12 forms a sensor surface.
- the sensor surface is illuminated by a standard Minolta Photo Lens 30 on a Charge Coupled Device
- the aperture of the objective 30 is 1 / 1.7.
- the CCD detector was a Cappa-100 CCD with a pixel size of 6.45x6.45 ⁇ m.
- the saturation capacity of the detector is 40000 electrons per pixel.
- the detector 32 has an area of -1000 x 1000 pixels. At a 7x magnification, one pixel corresponds to a sensor area of about ⁇ l ⁇ m. In the horizontal plane (p-plane), the image is compressed due to the slope of the sensor surface relative to the optical axis. Here a pixel corresponds to a sensor surface of about ⁇ l, 4 ⁇ m. The slope additionally causes a significant limitation of the area on the sensor surface, which can be sharply imaged.
- the images are possible at a rate of up to 100 frames / second.
- the pictures are saved and evaluated.
- Intensity is formed for each pixel and stored for further processing.
- the intensity distribution of the original image is very inhomogeneous. This is due to the high sensitivity of the sensor surface to small irregularities on the surface. There are usually many points to see that have a deviation from a mean value of up to 70%.
- the local inhomogeneity of ⁇ 10% within a 20 ⁇ m spot on the sensor surface is typical for the rest of the image. This intensity distribution is relatively stable over time. Normalization is used to reduce inhomogeneity.
- a reference image is generated by averaging the images over the period 34 ( Figure 3) in which no particle suspension is coming.
- the shot noise is the essentially limiting factor for the minimum detectable intensity level.
- the maximum product of the pixel capacitance C and the read-out frequency F is preferably used. With a pixel capacity of 40,000 photoelectrons, only ⁇ 20,000 can accumulate. Otherwise, saturation of some pixels occurs due to the significant inhomogeneities of the image.
- the present embodiment is integrated with an average over 40 images / second over 10 pixels.
- 2x10 6 electrons are accumulated in the area associated with the bound particle.
- the present method can detect steps of the order of 10 -3 . This means that the shot noise is the limiting factor.
- FIG. 5 The images in FIG. 5 were taken with the CCD camera 32. On successive shots one can directly observe the binding of particles.
- the particles were injected in the 140th second.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Dispersion Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009003548A DE102009003548A1 (de) | 2009-02-27 | 2009-02-27 | Verfahren zur hochaufgelösten Erfassung von Nanopartikeln auf zweidimensionalen Messflächen |
PCT/EP2010/052229 WO2010097369A1 (de) | 2009-02-27 | 2010-02-23 | Verfahren zur hochaufgelösten erfassung von nanopartikeln auf zweidimensionalen messflächen |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2401602A1 true EP2401602A1 (de) | 2012-01-04 |
Family
ID=42111598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10706196A Withdrawn EP2401602A1 (de) | 2009-02-27 | 2010-02-23 | Verfahren zur hochaufgelösten erfassung von nanopartikeln auf zweidimensionalen messflächen |
Country Status (5)
Country | Link |
---|---|
US (1) | US8587786B2 (enrdf_load_stackoverflow) |
EP (1) | EP2401602A1 (enrdf_load_stackoverflow) |
JP (1) | JP2012519271A (enrdf_load_stackoverflow) |
DE (1) | DE102009003548A1 (enrdf_load_stackoverflow) |
WO (1) | WO2010097369A1 (enrdf_load_stackoverflow) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009003548A1 (de) | 2009-02-27 | 2010-09-02 | Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. | Verfahren zur hochaufgelösten Erfassung von Nanopartikeln auf zweidimensionalen Messflächen |
DE102011087978A1 (de) * | 2010-12-09 | 2012-07-05 | Fachhochschule Jena | Verfahren und Anordnung zur Bestimmung des Brechzahlgradienten eines Materials |
JP6190358B2 (ja) | 2011-04-28 | 2017-08-30 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 光学的不均一性による分析評価 |
DE102014202844A1 (de) * | 2014-02-17 | 2015-08-20 | Robert Bosch Gmbh | Plasmonische Sensorvorrichtung und Verfahren zur Oberflächenplasmonen-Resonanzspektroskopie |
DE102017104379A1 (de) | 2017-03-02 | 2018-09-06 | Osram Opto Semiconductors Gmbh | Optoelektronischer partikelsensor |
DE102017116055A1 (de) | 2017-07-17 | 2019-01-17 | Leibniz - Institut Für Analytische Wissenschaften - Isas - E.V. | Verfahren zur optischen Erfassung einzelner Nanoobjekte |
FR3093807B1 (fr) * | 2019-03-13 | 2021-04-16 | Myriade | Dispositif et procédé pour l’observation de microparticules et de nanoparticules. |
US10551313B1 (en) * | 2019-04-15 | 2020-02-04 | The Florida International University Board Of Trustees | Surface plasmon resonance based mechanical sensing of beating heart cells |
CN112557262B (zh) * | 2019-09-26 | 2022-12-09 | 中国科学院微电子研究所 | 一种单个纳米颗粒的探测方法及探测装置 |
FR3139916B1 (fr) * | 2022-09-19 | 2024-09-20 | Inst Doptique Graduate School | Microscope optique avec résonateur |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4024476C1 (enrdf_load_stackoverflow) | 1990-08-02 | 1992-02-27 | Boehringer Mannheim Gmbh, 6800 Mannheim, De | |
DE19615366B4 (de) * | 1996-04-19 | 2006-02-09 | Carl Zeiss Jena Gmbh | Verfahren und Einrichtung zum Nachweis physikalischer, chemischer, biologischer oder biochemischer Reaktionen und Wechselwirkungen |
JPH10267841A (ja) * | 1997-03-24 | 1998-10-09 | Kokuritsu Shintai Shogaisha Rehabilitation Center Souchiyou | 表面プラズモン共鳴センシングデバイス |
GB2326229A (en) * | 1997-06-13 | 1998-12-16 | Robert Jeffrey Geddes Carr | Detecting and analysing submicron particles |
AU3081301A (en) | 1999-11-12 | 2001-06-06 | Surromed, Inc. | Biosensing using surface plasmon resonance |
DE102004033869B3 (de) | 2004-07-13 | 2006-03-30 | Gesellschaft zur Förderung der Spektrochemie und angewandten Spektroskopie e.V. | Verfahren zur Bestimmung von Oberflächenplasmonenresonanzen an zweidimensionalen Messflächen |
JP2006125860A (ja) * | 2004-10-26 | 2006-05-18 | Fujikura Ltd | 表面プラズモンセンサ及び表面プラズモン測定装置 |
JP2006308321A (ja) * | 2005-04-26 | 2006-11-09 | Toyobo Co Ltd | 表面プラズモン共鳴センサ用チップ |
DE102005054495A1 (de) * | 2005-11-16 | 2007-05-24 | Mivitec Gmbh | Verteilte Sensor- und Referenzspots für Chemo- und Biosensoren |
US7233396B1 (en) | 2006-04-17 | 2007-06-19 | Alphasniffer Llc | Polarization based interferometric detector |
DE112008000507T5 (de) * | 2007-02-26 | 2010-02-18 | Wisconsin Alumni Research Foundation, Madison | Mit Oberflächen-Plasmon-Resonanz kompatible Kohlenstoff-Dünnschichten |
JP2009042112A (ja) * | 2007-08-09 | 2009-02-26 | Fujifilm Corp | センシング装置およびこれを用いたセンシング方法 |
DE102009003548A1 (de) | 2009-02-27 | 2010-09-02 | Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. | Verfahren zur hochaufgelösten Erfassung von Nanopartikeln auf zweidimensionalen Messflächen |
-
2009
- 2009-02-27 DE DE102009003548A patent/DE102009003548A1/de not_active Ceased
-
2010
- 2010-02-23 WO PCT/EP2010/052229 patent/WO2010097369A1/de active Application Filing
- 2010-02-23 EP EP10706196A patent/EP2401602A1/de not_active Withdrawn
- 2010-02-23 JP JP2011551477A patent/JP2012519271A/ja active Pending
-
2011
- 2011-08-26 US US13/218,804 patent/US8587786B2/en active Active
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2010097369A1 * |
Also Published As
Publication number | Publication date |
---|---|
US8587786B2 (en) | 2013-11-19 |
JP2012519271A (ja) | 2012-08-23 |
WO2010097369A1 (de) | 2010-09-02 |
DE102009003548A1 (de) | 2010-09-02 |
US20110311962A1 (en) | 2011-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010097369A1 (de) | Verfahren zur hochaufgelösten erfassung von nanopartikeln auf zweidimensionalen messflächen | |
CN105628655B (zh) | 一种基于表面等离子体共振的光学显微镜 | |
CN105980810B (zh) | 光学断层摄影装置和方法 | |
EP3491445A1 (en) | A common-path interferometric scattering imaging system and a method of using common-path interferometric scattering imaging to detect an object | |
CN110398479B (zh) | 一种基于光学芯片基底的显微光谱测量装置及方法 | |
Lu et al. | Investigation of the hyper-reflective inner/outer segment band in optical coherence tomography of living frog retina | |
Rajadhyaksha et al. | Detectability of contrast agents for confocal reflectance imaging of skin and microcirculation | |
DE102015003019A1 (de) | Verfahren und Vorrichtung zur optischen Detektion einer Bewegung in einer biologischen Probe mit räumlicher Ausdehnung | |
Weigel et al. | Resolution in the ApoTome and the confocal laser scanning microscope: comparison | |
CN204439923U (zh) | 一种暗场显微镜 | |
US20240134178A1 (en) | High effective refractive index materials for ultra-high resolution illumination nanoscopy | |
US20130265407A1 (en) | Method and device for determining a critical angle of an excitation light beam | |
EP3853587A1 (en) | A method and apparatus for detecting nanoparticles and biological molecules | |
DE102008014335B4 (de) | Vorrichtung und Verfahren zur Bestimmung einer Brechzahl eines Messobjekts | |
US10605735B2 (en) | Photonic resonator outcoupler microscopy (PROM) | |
US20090116024A1 (en) | Method for obtaining a high resolution image | |
DE19637131A1 (de) | Einrichtung zum Beurteilen von Reflexionsverhalten | |
WO2010075385A2 (en) | Methods and system for confocal light scattering spectroscopic imaging | |
WO2008092704A1 (de) | Verfahren und vorrichtung zur untersuchung der anheftung oder ablösung lebender oder toter zellen oder zellähnlicher partikel oder sonstiger oberflächenbelegung an oberflächen mittels plasmonenresonanz sowie verwendung dieses verfahrens und dieser vorrichtung | |
Caracciolo et al. | Plasmonic Color Filters Enable Label-Free Plasmon-Enhanced Array Tomography with sub-diffraction limited resolution | |
US20230185067A1 (en) | Methods and apparatus for optimised interferometric scattering microscopy | |
CN115516362B (zh) | 用于优化的干涉散射显微镜的方法和装置 | |
DE19829086C2 (de) | Verfahren zur optischen Bestimmung von chemischen und physikalischen Eigenschaften von ultradünnen Schichten und Vorrichtung zur Durchführung des Verfahrens | |
DE29913707U1 (de) | Konfokale optische Vorrichtung zur optischen Erfassung eines Beobachtungsvolumens | |
Haindl et al. | Investigation of thin pharmaceutical coatings with ultra-high-resolution optical coherence tomography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110823 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170822 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20180302 |