EP2401602A1 - Verfahren zur hochaufgelösten erfassung von nanopartikeln auf zweidimensionalen messflächen - Google Patents

Verfahren zur hochaufgelösten erfassung von nanopartikeln auf zweidimensionalen messflächen

Info

Publication number
EP2401602A1
EP2401602A1 EP10706196A EP10706196A EP2401602A1 EP 2401602 A1 EP2401602 A1 EP 2401602A1 EP 10706196 A EP10706196 A EP 10706196A EP 10706196 A EP10706196 A EP 10706196A EP 2401602 A1 EP2401602 A1 EP 2401602A1
Authority
EP
European Patent Office
Prior art keywords
sensor surface
plasmon resonance
particles
radiation source
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10706196A
Other languages
German (de)
English (en)
French (fr)
Inventor
Alexander Zybin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leibniz Institut fuer Analytische Wissenschaften ISAS eV
Original Assignee
Leibniz Institut fuer Analytische Wissenschaften ISAS eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz Institut fuer Analytische Wissenschaften ISAS eV filed Critical Leibniz Institut fuer Analytische Wissenschaften ISAS eV
Publication of EP2401602A1 publication Critical patent/EP2401602A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0008Microscopes having a simple construction, e.g. portable microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/008Details of detection or image processing, including general computer control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0038Investigating nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • G01N2015/019Biological contaminants; Fouling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance

Definitions

  • the invention relates to a heatsink containing
  • the invention further relates to a method for optical detection of individual nanoparticles on two-dimensional measuring surfaces.
  • optical arrangements i. the ability to observe small objects in optical microscopy, for example, is limited by the diffraction.
  • the smallest particles which can be resolved with a light microscope have a diameter in the range of 0.2 ⁇ m corresponding to 200 nm.
  • the arrangements required for this purpose are expensive.
  • a label-free method which allows selectively viruses or particles of interest with a diameter in the nanometer range (nanoparticles) in water or
  • the change in light intensity is analyzed at certain points in the image. When viewed with the eye, this is done on the retina.
  • the detection with a detector takes place for example with a batch
  • Coupled Device Since these changes are due to the difference in the optical properties of the object, such as transmission, refractive index or color and the environment, one can characterize the properties of the object.
  • DE 40 24 476 C1 describes a Kretschmann arrangement which is used for the determination of analytes in a fluid sample.
  • Layer thickness of the molecules bound to the surface can be achieved so that a required signal-to-noise ratio is achieved. Individual particles can not be detected by the method.
  • the object of the invention is achieved in that the resolution of the observation optics and the detector is greater than the achievable with the radiation source under classical conditions, diffraction-limited resolution. It has surprisingly been found that the observation of nanoparticles is also possible with wavelengths which are significantly larger than the particle diameter. For example, the observation of particles with a
  • a reference signal is formed, with which the signal is normalized.
  • the reference signal may be generated by averaging the signals detected at the same location on the sensor surface prior to attachment of a particle to the sensor surface.
  • the detection of the plasmon resonance can be done with a so-called Kretschmann arrangement.
  • a local change in reflectivity is caused by the interaction of the nanoparticles with the evanescent field.
  • particles smaller than 40 nm can be detected.
  • areas with several square millimeters can be detected simultaneously. It is important in the arrangement that the particles are very close to or touch the sensor surface at a distance below 200 nm.
  • the device is suitable for use in virological research and in the detection of viruses in public areas. The procedure can also be used for highly sensitive clinical diagnostics.
  • the change in the reflectivity of the sensor surface is observed, which is caused by a particle.
  • This change is in a preferred one
  • Embodiment of the invention stepwise and localized in a few microns.
  • the change is made at a location unknown in advance and at an unknown time measured.
  • the location and time are found individually for each particle during the measurement.
  • the signal is measured at pre-defined relatively large (> 100x100 ⁇ m 2 ) locations. At these places have been known
  • the signal increases continuously, in proportion to the layer density of the already bound particles or molecules.
  • the sensor used is a surface which ensures the greatest possible change in reflectivity by changing the refractive index.
  • Such a surface with a strong change in reflectivity can be realized by means of a gold surface in Kretschmann arrangement.
  • the reflectivity at an angle of incidence near the resonance angle depends very much on the refractive index of the medium that is in contact with the gold layer.
  • the selectivity of the detection is ensured, as in the conventional SPR imaging method, by selectivity of the binding of particles to receptors attached to the sensor surface.
  • the reflectivity changes are due to the size and refractive index of the particle, they can be used to characterize the particle.
  • the area with high reflectivity change can be realized by periodic structures that allow plasmon excitation. Also anti-glare glass or crystal surfaces are suitable. The anti-reflective coating is broken by the particles and the reflectivity in the environment increases.
  • the surface with high reflectivity change is realized by a surface with metallic nanoparticles which allow the excitation of localized plasmon resonance at selected wavelengths. These metallic nanoparticles serve as sensor particles. Near the resonance, the scattering of a particle is dependent on the refractive index. When another non-metallic particle attaches to a sensor particle, the reflectivity of the sensor changes
  • the surface with high reflectivity change can be realized by a multi-layered optical structure in which surface plasmon resonance can also be excited.
  • Embodiments of the invention are the subject of the dependent claims.
  • Fig.l is a schematic representation of a Kretschmann- arrangement for
  • FIG. 2 shows the course of a reflection signal in the vicinity of the resonance wavelength with and without particles.
  • Fig. 5 shows the image of an observed area after different
  • Fig. 6 is a schematic illustration of a regular array
  • FIG. 1 shows a Kretschmann arrangement in an imaging configuration, generally designated 10. Such an arrangement 10 is already known. The operation of the surface plasmon spectrometer therefore need not be described in detail here.
  • a glass sheet 12 is coated with a 50 nm thick gold layer 14. With the side facing away from the gold layer 14 16, the glass sheet 12 is attached to a prism 18. For fixing and improving the optical contact immersion oil is used.
  • the gold layer 14 is illuminated with radiation 20 from a superluminescent diode 22.
  • a superluminescent diode 22 is a QSDM-680-9 of
  • Illumination takes place through the prism 18 at a fixed angle of incidence 24.
  • a fixed angle of incidence 24 is also included in the prism 18.
  • a superluminescent diode has no irregularities in the
  • the angle of incidence 24 is chosen so that the wavelength of the diode appears on the left side of the resonance minimum, ie at a smaller angle.
  • a lens 26 is used to generate a parallel radiation beam. It is understood that a curved mirror can also be provided here.
  • a sample space for liquids in the form of a flow cell 28 is attached on the gold layer.
  • the flow cell 28 is formed by a 1 mm thick S-shaped PDMS seal.
  • the rear part of the flow cell 28 (not shown) is made of Plexiglas.
  • an inlet and an outlet in the form of hoses are provided on the flow cell 28.
  • the cell volume of the flow cell 28 is about 300 ⁇ L.
  • the glass surface of the disk 12 forms a sensor surface.
  • the sensor surface is illuminated by a standard Minolta Photo Lens 30 on a Charge Coupled Device
  • the aperture of the objective 30 is 1 / 1.7.
  • the CCD detector was a Cappa-100 CCD with a pixel size of 6.45x6.45 ⁇ m.
  • the saturation capacity of the detector is 40000 electrons per pixel.
  • the detector 32 has an area of -1000 x 1000 pixels. At a 7x magnification, one pixel corresponds to a sensor area of about ⁇ l ⁇ m. In the horizontal plane (p-plane), the image is compressed due to the slope of the sensor surface relative to the optical axis. Here a pixel corresponds to a sensor surface of about ⁇ l, 4 ⁇ m. The slope additionally causes a significant limitation of the area on the sensor surface, which can be sharply imaged.
  • the images are possible at a rate of up to 100 frames / second.
  • the pictures are saved and evaluated.
  • Intensity is formed for each pixel and stored for further processing.
  • the intensity distribution of the original image is very inhomogeneous. This is due to the high sensitivity of the sensor surface to small irregularities on the surface. There are usually many points to see that have a deviation from a mean value of up to 70%.
  • the local inhomogeneity of ⁇ 10% within a 20 ⁇ m spot on the sensor surface is typical for the rest of the image. This intensity distribution is relatively stable over time. Normalization is used to reduce inhomogeneity.
  • a reference image is generated by averaging the images over the period 34 ( Figure 3) in which no particle suspension is coming.
  • the shot noise is the essentially limiting factor for the minimum detectable intensity level.
  • the maximum product of the pixel capacitance C and the read-out frequency F is preferably used. With a pixel capacity of 40,000 photoelectrons, only ⁇ 20,000 can accumulate. Otherwise, saturation of some pixels occurs due to the significant inhomogeneities of the image.
  • the present embodiment is integrated with an average over 40 images / second over 10 pixels.
  • 2x10 6 electrons are accumulated in the area associated with the bound particle.
  • the present method can detect steps of the order of 10 -3 . This means that the shot noise is the limiting factor.
  • FIG. 5 The images in FIG. 5 were taken with the CCD camera 32. On successive shots one can directly observe the binding of particles.
  • the particles were injected in the 140th second.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
EP10706196A 2009-02-27 2010-02-23 Verfahren zur hochaufgelösten erfassung von nanopartikeln auf zweidimensionalen messflächen Withdrawn EP2401602A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009003548A DE102009003548A1 (de) 2009-02-27 2009-02-27 Verfahren zur hochaufgelösten Erfassung von Nanopartikeln auf zweidimensionalen Messflächen
PCT/EP2010/052229 WO2010097369A1 (de) 2009-02-27 2010-02-23 Verfahren zur hochaufgelösten erfassung von nanopartikeln auf zweidimensionalen messflächen

Publications (1)

Publication Number Publication Date
EP2401602A1 true EP2401602A1 (de) 2012-01-04

Family

ID=42111598

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10706196A Withdrawn EP2401602A1 (de) 2009-02-27 2010-02-23 Verfahren zur hochaufgelösten erfassung von nanopartikeln auf zweidimensionalen messflächen

Country Status (5)

Country Link
US (1) US8587786B2 (enrdf_load_stackoverflow)
EP (1) EP2401602A1 (enrdf_load_stackoverflow)
JP (1) JP2012519271A (enrdf_load_stackoverflow)
DE (1) DE102009003548A1 (enrdf_load_stackoverflow)
WO (1) WO2010097369A1 (enrdf_load_stackoverflow)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009003548A1 (de) 2009-02-27 2010-09-02 Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. Verfahren zur hochaufgelösten Erfassung von Nanopartikeln auf zweidimensionalen Messflächen
DE102011087978A1 (de) * 2010-12-09 2012-07-05 Fachhochschule Jena Verfahren und Anordnung zur Bestimmung des Brechzahlgradienten eines Materials
JP6190358B2 (ja) 2011-04-28 2017-08-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光学的不均一性による分析評価
DE102014202844A1 (de) * 2014-02-17 2015-08-20 Robert Bosch Gmbh Plasmonische Sensorvorrichtung und Verfahren zur Oberflächenplasmonen-Resonanzspektroskopie
DE102017104379A1 (de) 2017-03-02 2018-09-06 Osram Opto Semiconductors Gmbh Optoelektronischer partikelsensor
DE102017116055A1 (de) 2017-07-17 2019-01-17 Leibniz - Institut Für Analytische Wissenschaften - Isas - E.V. Verfahren zur optischen Erfassung einzelner Nanoobjekte
FR3093807B1 (fr) * 2019-03-13 2021-04-16 Myriade Dispositif et procédé pour l’observation de microparticules et de nanoparticules.
US10551313B1 (en) * 2019-04-15 2020-02-04 The Florida International University Board Of Trustees Surface plasmon resonance based mechanical sensing of beating heart cells
CN112557262B (zh) * 2019-09-26 2022-12-09 中国科学院微电子研究所 一种单个纳米颗粒的探测方法及探测装置
FR3139916B1 (fr) * 2022-09-19 2024-09-20 Inst Doptique Graduate School Microscope optique avec résonateur

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4024476C1 (enrdf_load_stackoverflow) 1990-08-02 1992-02-27 Boehringer Mannheim Gmbh, 6800 Mannheim, De
DE19615366B4 (de) * 1996-04-19 2006-02-09 Carl Zeiss Jena Gmbh Verfahren und Einrichtung zum Nachweis physikalischer, chemischer, biologischer oder biochemischer Reaktionen und Wechselwirkungen
JPH10267841A (ja) * 1997-03-24 1998-10-09 Kokuritsu Shintai Shogaisha Rehabilitation Center Souchiyou 表面プラズモン共鳴センシングデバイス
GB2326229A (en) * 1997-06-13 1998-12-16 Robert Jeffrey Geddes Carr Detecting and analysing submicron particles
AU3081301A (en) 1999-11-12 2001-06-06 Surromed, Inc. Biosensing using surface plasmon resonance
DE102004033869B3 (de) 2004-07-13 2006-03-30 Gesellschaft zur Förderung der Spektrochemie und angewandten Spektroskopie e.V. Verfahren zur Bestimmung von Oberflächenplasmonenresonanzen an zweidimensionalen Messflächen
JP2006125860A (ja) * 2004-10-26 2006-05-18 Fujikura Ltd 表面プラズモンセンサ及び表面プラズモン測定装置
JP2006308321A (ja) * 2005-04-26 2006-11-09 Toyobo Co Ltd 表面プラズモン共鳴センサ用チップ
DE102005054495A1 (de) * 2005-11-16 2007-05-24 Mivitec Gmbh Verteilte Sensor- und Referenzspots für Chemo- und Biosensoren
US7233396B1 (en) 2006-04-17 2007-06-19 Alphasniffer Llc Polarization based interferometric detector
DE112008000507T5 (de) * 2007-02-26 2010-02-18 Wisconsin Alumni Research Foundation, Madison Mit Oberflächen-Plasmon-Resonanz kompatible Kohlenstoff-Dünnschichten
JP2009042112A (ja) * 2007-08-09 2009-02-26 Fujifilm Corp センシング装置およびこれを用いたセンシング方法
DE102009003548A1 (de) 2009-02-27 2010-09-02 Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. Verfahren zur hochaufgelösten Erfassung von Nanopartikeln auf zweidimensionalen Messflächen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2010097369A1 *

Also Published As

Publication number Publication date
US8587786B2 (en) 2013-11-19
JP2012519271A (ja) 2012-08-23
WO2010097369A1 (de) 2010-09-02
DE102009003548A1 (de) 2010-09-02
US20110311962A1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
WO2010097369A1 (de) Verfahren zur hochaufgelösten erfassung von nanopartikeln auf zweidimensionalen messflächen
CN105628655B (zh) 一种基于表面等离子体共振的光学显微镜
CN105980810B (zh) 光学断层摄影装置和方法
EP3491445A1 (en) A common-path interferometric scattering imaging system and a method of using common-path interferometric scattering imaging to detect an object
CN110398479B (zh) 一种基于光学芯片基底的显微光谱测量装置及方法
Lu et al. Investigation of the hyper-reflective inner/outer segment band in optical coherence tomography of living frog retina
Rajadhyaksha et al. Detectability of contrast agents for confocal reflectance imaging of skin and microcirculation
DE102015003019A1 (de) Verfahren und Vorrichtung zur optischen Detektion einer Bewegung in einer biologischen Probe mit räumlicher Ausdehnung
Weigel et al. Resolution in the ApoTome and the confocal laser scanning microscope: comparison
CN204439923U (zh) 一种暗场显微镜
US20240134178A1 (en) High effective refractive index materials for ultra-high resolution illumination nanoscopy
US20130265407A1 (en) Method and device for determining a critical angle of an excitation light beam
EP3853587A1 (en) A method and apparatus for detecting nanoparticles and biological molecules
DE102008014335B4 (de) Vorrichtung und Verfahren zur Bestimmung einer Brechzahl eines Messobjekts
US10605735B2 (en) Photonic resonator outcoupler microscopy (PROM)
US20090116024A1 (en) Method for obtaining a high resolution image
DE19637131A1 (de) Einrichtung zum Beurteilen von Reflexionsverhalten
WO2010075385A2 (en) Methods and system for confocal light scattering spectroscopic imaging
WO2008092704A1 (de) Verfahren und vorrichtung zur untersuchung der anheftung oder ablösung lebender oder toter zellen oder zellähnlicher partikel oder sonstiger oberflächenbelegung an oberflächen mittels plasmonenresonanz sowie verwendung dieses verfahrens und dieser vorrichtung
Caracciolo et al. Plasmonic Color Filters Enable Label-Free Plasmon-Enhanced Array Tomography with sub-diffraction limited resolution
US20230185067A1 (en) Methods and apparatus for optimised interferometric scattering microscopy
CN115516362B (zh) 用于优化的干涉散射显微镜的方法和装置
DE19829086C2 (de) Verfahren zur optischen Bestimmung von chemischen und physikalischen Eigenschaften von ultradünnen Schichten und Vorrichtung zur Durchführung des Verfahrens
DE29913707U1 (de) Konfokale optische Vorrichtung zur optischen Erfassung eines Beobachtungsvolumens
Haindl et al. Investigation of thin pharmaceutical coatings with ultra-high-resolution optical coherence tomography

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170822

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180302