EP2389404A1 - Verfahren zur herstellung von polyurethan-hartschaumstoffen - Google Patents

Verfahren zur herstellung von polyurethan-hartschaumstoffen

Info

Publication number
EP2389404A1
EP2389404A1 EP10701121A EP10701121A EP2389404A1 EP 2389404 A1 EP2389404 A1 EP 2389404A1 EP 10701121 A EP10701121 A EP 10701121A EP 10701121 A EP10701121 A EP 10701121A EP 2389404 A1 EP2389404 A1 EP 2389404A1
Authority
EP
European Patent Office
Prior art keywords
polyether alcohol
bii
preparation
toluenediamine
glycerol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10701121A
Other languages
English (en)
French (fr)
Inventor
Andreas Emge
Marc Fricke
Roman Prochazka
Holger Seifert
Darijo Mijolovic
Achim LÖFFLER
Sirus Zarbakhsh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP10701121A priority Critical patent/EP2389404A1/de
Publication of EP2389404A1 publication Critical patent/EP2389404A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/482Mixtures of polyethers containing at least one polyether containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/487Polyethers containing cyclic groups
    • C08G18/4879Polyethers containing cyclic groups containing aromatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid

Definitions

  • the invention relates to a process for the preparation of polyurethane in the following also abbreviated PU called rigid foams.
  • composite or sandwich elements which are constructed of a rigid polyurethane foam and at least one cover layer of a rigid or elastic material, such as paper, plastic films, aluminum foil, metal sheets, glass fleeces, or chipboard.
  • a rigid or elastic material such as paper, plastic films, aluminum foil, metal sheets, glass fleeces, or chipboard.
  • foaming of cavities in household appliances such as refrigerators, such as refrigerators or chests or hot water storage, with PU rigid foam as a thermal insulation.
  • insulated pipes consisting of a metal or plastic inner ear, a polyurethane insulating layer and an outer sheath made of polyethylene.
  • the insulation of large storage containers or transport ships for example, for storage and transport of liquids or liquefied gases in a temperature range of 160 0 C to -160 0 C is possible.
  • suitable heat and cold PU rigid foams can be known by reacting organic polyisocyanates with one or more compounds having at least two isocyanate-reactive groups, preferably polyester and / or polyether polyols, and usually with the concomitant use of chain extenders and / or crosslinking agents in Presence of blowing agents, catalysts and, optionally, auxiliaries and / or additives are produced.
  • PU rigid foams can be obtained with a low thermal conductivity and good mechanical properties shanks.
  • a constant task in the production of rigid polyurethane foams is the reduction of the thermal conductivity, whereby the mechanical and the processing properties should not be worsened.
  • One way to reduce the thermal conductivity is to increase the content of aromatic moieties in the polyol as described in EP 708127. However, this possibility is limited by the viscosity of the polyol component and the crosslinking of the foam.
  • Polyurethane rigid foams for the production of which polyether alcohols based on toluenediamine (TDA) are used, are gaining in importance recently.
  • TDA toluenediamine
  • polyols have a low viscosity and lead to a reduction in the thermal conductivity of the foams.
  • polyether alcohols having a higher functionality must be used in addition to sufficient crosslinking of the foams.
  • the object of the present invention to provide rigid polyurethane foams using TDA-based polyether alcohols which have a low heat conductivity.
  • the polyol component should have a low viscosity and the flowability of the polyurethane system should be high. Furthermore, the foam should have high crosslinking.
  • the problem could be solved by using in the polyol component a polyether alcohol which was prepared by addition of alkylene oxides to oligomeric glycerol.
  • the invention accordingly provides a process for producing rigid polyurethane foams by reacting
  • component b) contains at least one polyether alcohol bi), prepared by addition of alkylene oxides to toluenediamine, and at least one polyether alcohol bii), prepared by addition of alkylene oxides to H-functional starter substances containing oligomeric glycerol.
  • the oligomeric glycerin is composed of 4-10 glycerol units.
  • the polyether alcohol bii) preferably has a hydroxyl number in the range between 350 and 500 mg KOH / g. its preparation is carried out by the below explained in more detail basic catalysed addition of alkylene oxides, preferably ethylene oxide and / or propylene oxide, particularly preferably pure propylene oxide, to the oligomeric glycerol.
  • alkylene oxides preferably ethylene oxide and / or propylene oxide, particularly preferably pure propylene oxide
  • the starting substance in the preparation of the polyether alcohol bii) contains exclusively oligomeric glycerol.
  • the starting substance in the preparation of the polyether alcohol bii) contains oligomeric glycerol and at least one further H-functional compound.
  • these may be alcohols or amines.
  • alcohols having at least 3 hydroxyl groups are used as further H-functional compound.
  • the starting substance in the preparation of the polyether alcohol bii) comprises oligomeric glycerol and trimethylolpropane. In a further embodiment of the invention, in the preparation of the polyether alcohol bii) the starting substance contains oligomeric glycerol and at least sucrose or sorbitol.
  • the polyether alcohol bii) preferably has a molar ratio of oligomeric glycerol to sucrose or sorbitol of from 2.5: 1 to 1: 2.5.
  • all isomers of the TDA can be used in the preparation of the polyether alcohol bi). It is possible to use a mixture that does not contain o-TDA. Preference is given to mixtures which contain at least 25% by weight, based on the weight of the TDA, of o-TDA, also referred to as vicinal TDA. In a particularly preferred embodiment of the invention, the mixtures of TDA isomers contain at least 95% by weight, based on the weight of the TDA, of vicinal TDA.
  • the preparation of the polyether alcohols is carried out by addition of ethylene oxide, propylene oxide and mixtures thereof to the TDA.
  • the alkylene oxides can be attached individually one after another or in a mixture with each other.
  • ethylene oxide is added first, followed by propylene oxide.
  • the addition of the ethylene oxide takes place preferably without the presence of a catalyst and the addition of the propylene oxide in the presence of a basic catalyst.
  • the polyether alcohol bi) has a hydroxyl number in the range between 120 and 450.
  • the components bi) and bii) are used in a weight ratio of 5: 1 to 1: 2.
  • the component b) may contain further compounds having at least two isocyanate-reactive hydrogen atoms.
  • component b) contains, in addition to components bi) and bii), a polyether alcohol biii) which has been started with at least sucrose.
  • the polyether alcohol biii) has a hydroxyl number in the range between 350 and 550.
  • the polyether alcohols bii) and biii) are used in a weight ratio of 1:10 to 2: 1.
  • Oligomeric glycerol also called polyglycerol
  • Polyglycerin is formed by base-catalyzed reaction with itself.
  • the oligomerization of the glycerol can also be carried out in the presence of other polyfunctional alcohols, for example pentaerythritol or trimethylolpropane.
  • the glycerin is present in a molar excess, since otherwise high-viscosity or solid products are formed.
  • the molar ratio of glycerol to the other alcohol is 5: 1 to 10: 1, especially 9: 1.
  • the alkoxylation of the oligomeric glycerol is preferably carried out in the presence of alkaline catalysts. Particularly preferred are potassium hydroxide or tertiary amines.
  • polyether alcohols which have been prepared by reacting polyglycerol with alkylene oxides is known as an insert component for rigid polyurethane foams.
  • Polyether alcohols started with polyglycerol at the Polyurethanes Technical Conference of 24.-26.9.2007 in Orlando, as well as a rigid polyurethane foam prepared using these polyols
  • the advantages of polyglycerol-initiated polyether alcohols were, in particular, the low viscosity of the polyglycerol and the comparatively high functionality of polyglycerol. onality of polyols called.
  • the polyglycerol-started polyether alcohol was used in combination with a sucrose-initiated polyether alcohol.
  • Suitable organic polyisocyanates a) are all known organic di- and polyisocyanates, preferably aromatic polyfunctional isocyanates.
  • TDI 2,4- and 2,6-toluene diisocyanate
  • MDI 4,4'-, 2,4'- and 2,2'-diphenylmethane diisocyanate
  • MDI 4,4'-, 2,4'- and 2,2'-diphenylmethane diisocyanate
  • the organic di- and polyisocyanates can be used individually or in the form of mixtures.
  • modified polyvalent isocyanates i. Products obtained by chemical reaction of organic di- and / or polyisocyanates used. Examples include uretdione, carbamate, isocyanurate, carbodiimide, allophanate and / or urethane groups-containing di- and / or polyisocyanates.
  • the modified polyisocyanates may optionally be reacted with each other or with unmodified organic polyisocyanates, e.g. 2,4'-, 4,4'-diphenylmethane diisocyanate, crude MDI, 2,4- and / or 2,6-toluene diisocyanate are mixed.
  • reaction products of polyfunctional isocyanates with polyhydric polyols as well as their mixtures with other di- and polyisocyanates can be used.
  • Suitable compounds having at least two isocyanate-reactive hydrogen atoms which are used in addition to the components bi) and bii) are those which contain at least two reactive groups, preferably OH groups, and in particular polyether alcohols and / or polyester alcohols having OH numbers in the range of 25 to 800 mg KOH / g used.
  • the polyester alcohols used are usually obtained by condensation of polyfunctional alcohols, preferably diols, having 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms, with polyfunctional carboxylic acids having 2 to 12 carbon atoms, for example succinic, glutaric, adipic, suberic, azelaic, sebacic, decanedicarboxylic, maleic, fumaric and preferably phthalic, isophthalic, terephthalic and isomeric naphthalenedicarboxylic acids.
  • the polyesterols used usually have a functionality of 1, 5 - 4.
  • polyether polyols which are prepared by known processes, for example by anionic polymerization of alkylene oxides onto H-functional starter substances in the presence of catalysts, preferably alkali metal hydroxides or double metal cyanide catalysts (DMC catalysts), are used.
  • catalysts preferably alkali metal hydroxides or double metal cyanide catalysts (DMC catalysts).
  • alkylene oxides are usually ethylene oxide or propylene oxide, but also tetrahydrofuran, various butylene oxides, styrene oxide, preferably pure 1, 2-
  • the alkylene oxides can be used individually, alternately in succession or as mixtures.
  • Starting substances used are in particular compounds having at least 2, preferably 2 to 8 hydroxyl groups or having at least two primary amino groups in the molecule.
  • starting substances having at least 2 to 8 hydroxyl groups in the molecule are preferably trimethylolpropane, glycerol, pentaerythritol, Zuckerverbin- fertilize such as glucose, sorbitol, mannitol and sucrose, polyhydric
  • Phenols, resoles e.g. oligomeric condensation products of phenol and formaldehyde and Mannich condensates of phenols, formaldehyde and dialkanolamines and melamine used.
  • starting substances with at least two primary amino groups in the molecule are preferably aromatic di- and / or polyamines, for example phenylenediamines, and 4,4'-, 2,4'- and 2,2'-diaminodiphenylmethane and aliphatic di- and polyamines, such as ethylenediamine used.
  • aromatic di- and / or polyamines for example phenylenediamines, and 4,4'-, 2,4'- and 2,2'-diaminodiphenylmethane and aliphatic di- and polyamines, such as ethylenediamine used.
  • the polyether polyols have a functionality of preferably 2 to 8 and hydroxyl numbers of preferably 25 mg KOH / g to 800 mg KOH / g and in particular 150 mg KOH / g to 570 mg KOH / g.
  • the compounds having at least two isocyanate-reactive hydrogen atoms also include the optionally used chain extenders and crosslinkers.
  • chain extenders and crosslinking agents are preferably used alkanolamines and in particular diols and / or triols having molecular weights less than 400, preferably 60 to 300.
  • Chain extenders, crosslinkers or mixtures thereof are suitably used in an amount of 1 to 20 wt .-%, preferably 2 to 5 wt .-%, based on the polyol component.
  • the preparation of rigid foams is usually carried out in the presence of blowing agents, catalysts, flame retardants and cell stabilizers and, if necessary, further auxiliaries and / or additives.
  • chemical blowing agents such as water and / or formic acid can be used, which react with isocyanate groups with elimination of carbon dioxide or carbon dioxide and carbon monoxide.
  • physical blowing agents can also be used in combination with or instead of water. These are compounds which are inert to the starting components and which are usually liquid at room temperature and evaporate under the conditions of the urethane reaction. The boiling point of these compounds is preferably below 50 ° C.
  • the physical blowing agents also include compounds which are gaseous at room temperature and are introduced under pressure into or dissolved in the starting components, for example carbon dioxide, low-boiling alkanes and fluoroalkanes.
  • the blowing agents are usually selected from the group comprising formic acid, alkanes and / or cycloalkanes having at least 4 carbon atoms, dialkyl ethers, esters, ketones, acetals, fluoroalkanes having 1 to 8 carbon atoms, and tetraalkylsilanes having 1 to 3 carbon atoms in the alkyl chain, in particular tetramethylsilane ,
  • Examples include propane, n-butane, iso- and cyclobutane, n-, iso- and cyclopentane, cyclohexane, dimethyl ether, methyl ethyl ether, methyl butyl ether, methyl formate, acetone, as well as fluoroalkanes, which can be degraded in the troposphere and therefore for the Ozone layer are harmless, such as trifluoromethane, difluoromethane, 1, 3,3,3-pentafluoropropene, 1, 1, 1, 3,3-pentafluorobutane, 1, 1, 1, 3,3-pentafluoropropane, 1, 1 , 1, 2-tetrafluoroethane, difluoroethane and heptafluoropropane.
  • the said physical blowing agents can be used alone or in any combination with each other.
  • blowing agent mixture is a mixture of formic acid, water and pentane.
  • the blowing agent component is usually used in an amount of 1 to 45 wt .-%, preferably 1 to 30 wt .-%, particularly preferably 1, 5 to 20 wt .-% and in particular 2 to 15 wt .-%, based on the total weight the components polyol, blowing agent, catalyst system, and possibly foam stabilizers, flame retardants and other additives used.
  • the polyurethane or Polyisocyanuratschaumstoffe usually contain flame retardants.
  • flame retardants Preferably, bromine-free flame retardants are used.
  • flame retardants containing phosphorus atoms in particular trischloroisopropyl phosphate, diethylethane phosphonate, triethyl phosphate and / or diphenyl cresyl phosphate are used.
  • the catalysts used are in particular compounds which greatly accelerate the reaction of the isocyanate groups with the groups reactive with isocyanate groups.
  • Such catalysts are, for example, basic amines, such as secondary aliphatic amines, imidazoles, amidines, alkanolamines, Lewis acids or organometallic compounds, especially those based on tin.
  • Catalyst systems consisting of a mixture of different catalysts can also be used.
  • isocyanurate groups are to be incorporated into the rigid foam, special catalysts are required.
  • the isocyanurate catalysts used are usually metal carboxylates, in particular potassium acetate and its solutions.
  • the catalysts can be used alone or in any desired mixtures, as required.
  • auxiliaries and / or additives are known for this purpose substances, such as surface-active substances, foam stabilizers, cell regulators, fillers, pigments, dyes, antioxidants, hydrolysis, antistatic agents, fungistatic and bacteriostatic agents are used.
  • the polyisocyanates and the compounds having at least two isocyanate-reactive hydrogen atoms are reacted in amounts such that the isocyanate index in the case of the polyurethane foams is in a range between 100 and 220, preferably between 15 and 180, lies.
  • the polyisocyanates a) and component b) are reacted in amounts such that the isocyanate index of the foam is 90 to 350, preferably 100 to 180, more preferably 110 to 140.
  • the rigid polyurethane foams can be prepared batchwise or continuously by known methods, for example on a double belt or in a mold.
  • Polyol 1 polyether alcohol based on vicinal TDA, ethylene oxide and propylene oxide, hydroxyl number: 390 mg KOH / g
  • Polyol 2 polyether alcohol based on sucrose, glycerol and propylene oxide, functionality 5, hydroxyl number: 450 mg KOH / g
  • Polyol 3 polyetheralcohol based on vicinal TDA, ethylene oxide and propylene oxide, hydroxyl number: 160 mg KOH / g
  • Polyol 4 polyether alcohol based on oligomeric glycerol and propylene oxide, functionality 4.5, hydroxyl number: 450 mg KOH / g
  • polyol 5 polyether alcohol based on oligomeric glycerol and propylene oxide, functionality 6.5, hydroxyl number: 450 mg KOH / g
  • Polyol 6 polyether alcohol based on oligomeric glycerol, functionality 6.5, hydroxyl number: 1 100 mg KOH / g
  • polyol 7 polyether alcohol based on sucrose, glycerol, ethylene oxide and propylene oxide, functionality 6.5, hydroxyl number: 450 mg KOH / g
  • Polyol 8 polyetheralcohol based on sucrose, glycerol, oligomeric glycerol and propylene oxide, functionality 6, hydroxyl number: 450 mg KOH / g polyol 9: polyetheralcohol based on vicinal TDA, ethylene oxide and propylene oxide, hydroxyl number: 160 mg KOH / g containing 35% graft particles made of acrylonitrile / stryol (3: 1). Silicone stabilizer: Tegostab® B 8462 Degussa,
  • Catalyst Mixture of 26% N, N-dimethylcyclohexylamine, 53% Lupragen® N301, BASF SE, 21% Lupragen® N600, BASF SE.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Polyurethan Hartschaumstoffen durch Umsetzung von a) Polyisocyanaten mit b) Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen in Gegenwart von c) Treibmitteln, dadurch gekennzeichnet, dass die Komponente b) mindestens einen Polyetheralkohol bi), hergestellt durch Anlagerung von Alkylenoxiden an Toluylendiamin, und mindestens einen Polyetheralkohol bii), hergestellt durch Anlagerung von Alkylenoxiden an H- funktionelle Startsubstanzen, die oligomeres Glyzerin enthalten, enthält.

Description

Verfahren zur Herstellung von Polyurethan-Hartschaumstoffen
Beschreibung
Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Polyurethan- im Folgenden auch abgekürzt PU genannt- Hartschaumstoffen.
Die Herstellung von PU-Hartschaumstoffen ist bekannt und vielfach beschrieben.
Ihr Einsatz erfolgt insbesondere zur Herstellung von Verbund- oder Sandwichelementen, die aufgebaut sind aus einem PU-Hartschaumstoff und mindestens einer Deckschicht aus einem starren oder elastischen Material, wie Papier, Kunststofffolien, Aluminiumfolie, Metallblechen, Glasvliesen, oder Spanplatten. Bekannt ist ferner die Aus- schäumung von Hohlräumen in Haushaltsgeräten, wie Kühlmöbeln, beispielsweise Kühlschränken oder -truhen oder von Heißwasserspeichern, mit PU-Hartschaumstoff als Wärmedämmstoff. Weitere Anwendungen sind gedämmte Rohre, bestehend aus einem Innerohr aus Metall oder Kunststoff, einer Polyurethandämmschicht und einem Außenmantel aus Polyethylen. Weiterhin möglich ist die Dämmung von großen Vorratsbehältern oder Transportschiffen, beispielsweise zur Lagerung und Transport von Flüssigkeiten oder verflüssigten Gasen in Temperaturbereich von 1600C bis -1600C.
Hierfür geeignete wärme- und kältedämmende PU-Hartschaumstoffe können bekanntermaßen durch Umsetzung von organischen Polyisocyanaten mit einer oder mehreren Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Gruppen, vorzugs- weise Polyester- und/oder Polyetherpolyolen, sowie üblicherweise unter Mitverwendung von Kettenverlängerungsmitteln und/oder Vernetzungsmitteln in Gegenwart von Treibmitteln, Katalysatoren und gegebenenfalls Hilfsmitteln und/oder Zusatzstoffen hergestellt werden. Bei geeigneter Wahl der Aufbaukomponenten können hierbei PU- Hartschaumstoffe mit einer niedrigen Wärmeleitzahl und guten mechanischen Eigen- Schäften erhalten werden.
Eine zusammenfassende Übersicht über die Herstellung von PU-Hartschaumstoffen und ihre Verwendung als Deck- oder vorzugsweise Kernschicht in Verbundelementen sowie ihre Anwendung als Dämmschicht in der Kühl- oder Heizungstechnik wurde z.B. publiziert in Polyurethane, Kunststoff-Handbuch, Band 7, 3. Auflage 1993, herausgegeben von Dr. Günter Oertel, Carl Hanser Verlag, München, Wien.
Eine ständige Aufgabe bei der Herstellung von Polyurethan-Hartschaumstoffen ist die Verringerung der Wärmeleitfähigkeit, wobei die mechanischen und die Verarbeitungs- eigenschaften nicht verschlechtert werden sollten. Eine Möglichkeit, die Wärmeleitfähigkeit zu verringern, besteht in der Erhöhung des Gehalts an aromatischen Anteilen im Polyol, wie in EP 708127 beschrieben. Diese Möglichkeit ist jedoch durch die Viskosität der der Polyolkomponente und die Vernetzung des Schaums limitiert.
In letzter Zeit gewinnen Polyurethan-Hartschaumstoffe, zu deren Herstellung PoIy- etheralkohole auf Basis von Toluylendiamin (TDA) eingesetzt werden, an Bedeutung. Derartige Polyole weisen eine geringe Viskosität auf und führen zu einer Verringerung der Wärmeleitfähigkeit der Schaumstoffe. Da diese Polyole jedoch nur eine Funktiona- lität von 4 aufweisen, müssen zu einer ausreichenden Vernetzung der Schaumstoffe zusätzlich Polyetheralkohole mit einer höheren Funktionalität mit verwendet werden. Zumeist handelt es sich dabei um Polyole auf der Basis von Zucker, insbesondere Saccharose. Diese erhöhen jedoch die Viskosität der Polyolkomponente und verschlechtern die Fließfähigkeit der Polyurethansysteme.
Es war daher die Aufgabe der vorliegenden Erfindung, Polyurethan-Hartschaumstoffe unter Verwendung von Polyetheralkoholen auf Basis von TDA bereitzustellen, die eine niedrige Wärmeleitfähigkeit aufweisen. Die Polyolkomponente sollte eine geringe Viskosität besitzen und die Fließfähigkeit des Polyurethansystems sollte hoch sein. Wei- terhin sollte der Schaum eine hohe Vernetzung aufweisen.
Man kann die Vernetzungsdichte anhand der verwendeten Rohstoffe berechnen. Das Prinzip ist hierbei, die molekulare Masse der Gruppierungen zu berechnen, die sich zwischen 2 Knotenpunkten befinden. Dies ist beispielsweise beschrieben in J. H. Saun- ders, K. C. Frisch „Polyurethanes, VoI 1 , Chemistry", 1962, Interscience Wiley, New York, S.264-267.
Die Aufgabe konnte überraschenderweise dadurch gelöst werden, dass in der Polyolkomponente ein Polyetheralkohol mitverwendet wird, der durch Anlagerung von Alky- lenoxiden an oligomeres Glyzerin hergestellt wurde.
Gegenstand der Erfindung ist demzufolge ein Verfahren zur Herstellung von Polyurethan-Hartschaumstoffen durch Umsetzung von
a) Polyisocyanaten mit
b) Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen in Gegenwart von
c) Treibmitteln, dadurch gekennzeichnet, dass die Komponente b) mindestens einen Polyetheralkohol bi), hergestellt durch Anlagerung von Alkylenoxiden an Toluylendiamin, und mindestens einen Polyetheralkohol bii), hergestellt durch Anlagerung von Alkylenoxiden an H- funktionelle Startsubstanzen, die oligomeres Glyzerin enthalten, enthält.
Vorzugsweise ist das oligomere Glyzerin aus 4-10 Glyzerin-Einheiten aufgebaut.
Der Polyetheralkolhol bii) weist vorzugsweise eine Hydroxylzahl im Bereich zwischen 350 und 500 mg KOH/g auf. seine Herstellung erfolgt durch die weiter unten näher erläuterte basisch katalysierte Anlagerung von Alkylenoxiden, vorzugsweise Ethylen- oxid und/oder Propylenoxid, besonders bevorzugt reines Propylenoxid, an das oligomere Glyzerin.
In einer Ausführungsform der Erfindung enthält bei der Herstellung des Polyetheralko- hols bii) die Startsubstanz ausschließlich oligomeres Glyzerin.
In einer weiteren Ausführungsform der Erfindung enthält bei der Herstellung des PoIy- etheralkohols bii) die Startsubstanz oligomeres Glyzerin und mindestens eine weitere H-funktionelle Verbindung. Dabei kann es sich um Alkohole oder Amine handeln. Vor- zugsweise werden als weitere H-funktionelle Verbindung Alkohole mit mindestens 3 Hydroxylgruppen eingesetzt.
In einer Ausführungsform der Erfindung enthält bei der Herstellung des Polyetheralko- hols bii) die Startsubstanz oligomeres Glyzerin und Trimethylolpropan. In einer weite- ren Ausführungsform der Erfindung enthält bei der Herstellung des Polyetheralkohols bii) die Startsubstanz oligomeres Glyzerin und mindestens Saccharose oder Sorbitol.
Dabei weist der Polyetheralkohol bii) vorzugsweise ein Molverhältnis von oligomerem Glycerol zu Saccharose beziehungsweise Sorbitol von 2,5:1 bis 1 :2,5 auf.
Bei der Herstellung des Polyetheralkohols bi) können prinzipiell alle Isomere des TDA eingesetzt werden. Es ist möglich, eine Mischung zu verwenden, die kein o-TDA enthält. Bevorzugt sind Mischungen, die mindestens 25 Gew.-%, bezogen auf das Gewicht des TDA, o-TDA, auch als vicinales TDA bezeichnet, enthalten. In einer beson- ders bevorzugten Ausführungsform der Erfindung enthalten die Mischungen aus TDA- Isomeren mindestens 95 Gew.-%, bezogen auf das Gewicht des TDA, vicinales TDA. Die Herstellung der Polyetheralkohole erfolgt durch Anlagerung von Ethylenoxid, Propylenoxid und Mischungen daraus an das TDA. Dabei können bei Verwendung von Ethylenoxid und Propylenoxid die Alkylenoxide einzeln nacheinander oder im Gemisch miteinander angelagert werden. In einer Ausführungsform wird zunächst Ethylenoxid und danach Propylenoxid angelagert. Dabei erfolgt die Anlagerung des Ethylenoxids vorzugsweise ohne Anwesenheit eines Katalysators und die Anlagerung des Propyle- noxids in Anwesenheit eines basischen Katalysators.
Vorzugsweise weist der Polyetheralkohol bi) eine Hydroxylzahl im Bereich zwischen 120 und 450 auf.
In einer bevorzugten Ausführungsform der Erfindung werden die die Komponenten bi) und bii) in einen Gewichtsverhältnis von 5:1 bis 1 :2 eingesetzt.
Die Komponente b) kann neben den Komponenten bi) und bii) noch weitere Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen enthalten.
In einer bevorzugten Ausführungsform der Erfindung enthält die Komponente b) neben den Komponenten bi) und bii) einen Polyetheralkohol biii), der mit mindestens Saccharose gestartet ist. Vorzugsweise weist der Polyetheralkohol biii) eine Hydroxylzahl im Bereich zwischen 350 und 550 auf.
In einer besonders bevorzugten Ausführungsform der Erfindung werden die Polyether- alkohole bii) und biii) in einen Gewichtsverhältnis von 1 :10 bis 2:1 eingesetzt.
Oligomeres Glycerin, auch als Polyglycerin bezeichnet, ist bekannt. Polyglyzerin entsteht durch basisch katalysierte Umsetzung mit sich. Die Oligomerisierung des Glyzerins kann auch in Anwesenheit anderer mehrfunktioneller Alkohole durchgeführt wer- den, beispielsweise Pentaerithryt oder Trimethylolpropan. Dabei liegt das Glyzerin im molaren Überschuss vor, da ansonsten zu hochviskose beziehungsweise feste Produkte entstehen. Insbesondere liegt das Molare Verhältnis von Glyzerin zu dem anderen Alkohol bei 5:1 bis 10:1 , insbesondere bei 9:1. Ein Vorteil bei der Mitverwendung von anderen Alkoholen, insbesondere von Trimethylolpropan, liegt in der besseren Verträglichkeit mit den anderen Einsatzkomponenten des Polyurethansystems, insbesondere mit den vorzugsweise als Treibmittel verwendeten Kohlenwasserstoffen. Die Alkoxylierung des oligomeren Glycerins erfolgt vorzugsweise in Gegenwart alkalischer Katalysatoren. Besonders bevorzugt sind Kaliumhydroxid oder tertiäre Amine.
Prinzipiell ist der Einsatz von Polyetheralkoholen, die durch Umsetzung von Polyglyzerin mit Alkylenoxiden hergestellt wurden, als Einsatzkomponente für Polyurethan- Hartschaumstoffe bekannt. So wurde auf einem Poster „Polyether Polyols Based On Polyglycerol" von lonescu et al. bei der Polyurethanes Technical Conference vom 24.- 26.9.2007 in Orlando mit Polyglyzerin gestartete Polyetheralkohole sowie ein PoIy- urethan-Hartschaumstoff beschrieben, der unter Verwendung dieser Polyole hergestellt wurde. Als Vorteile der mit Polyglyzerin gestarteten Polyetheralkohole wurden insbesondere die niedrige Viskosität des Polyglyzerins und die vergleichsweise hohe Funkti- onalität der Polyole genannt. Der mit Polyglyzerin gestartete Polyetheralkohol wurde in Kombination mit einem mit Saccharose gestarteten Polyetheralkohol eingesetzt.
Zu den neben den beschriebenen Polyetheralkoholen für das erfindungsgemäße Ver- fahren eingesetzten Ausgangsverbindungen ist im Einzelnen folgendes zu sagen.
Als organische Polyisocyanate a) kommen alle bekannten organischen Di- und PoIy- isocyanate in Betracht, vorzugsweise aromatische mehrwertige Isocyanate.
Im einzelnen seien beispielhaft genannt 2,4- und 2,6-Toluylen-diisocyanat (TDI) und die entsprechenden Isomerengemische, 4,4'-, 2,4'- und 2,2'-Diphenylmethan- diisocyanat (MDI) und die entsprechenden Isomerengemische, Mischungen aus 4,4'- und 2,4'-Diphenylmethan-diisocyanaten, Polyphenyl-polymethylen-polyisocyanate, Mischungen aus 4,4'-, 2,4'- und 2,2'-Diphenylmethan-diisocyanaten und Polyphenyl- polymethylen-polyisocyanaten (Roh-MDI) und Mischungen aus Roh-MDI und Toluy- lendiisocyanaten. Die organischen Di- und Polyisocyanate können einzeln oder in Form von Mischungen eingesetzt werden.
Häufig werden auch sogenannte modifizierte mehrwertige Isocyanate, d.h. Produkte, die durch chemische Umsetzung organischer Di- und/oder Polyisocyanate erhalten werden, verwendet. Beispielhaft genannt seien Uretdion-, Carbamat-, Isocyanurat-, Carbodiimid-, Allophanat- und/oder Urethangruppen enthaltende Di- und/oder Polyisocyanate. Die modifizierten Polyisocyanate können gegebenenfalls miteinander oder mit unmodifizierten organischen Polyisocyanaten wie z.B. 2,4'-, 4,4'-Diphenylmethan- diisocyanat, Roh-MDI, 2,4- und/oder 2,6-Toluylen-diisocyanat gemischt werden.
Daneben können auch Umsetzungsprodukte von mehrwertigen Isocyanaten mit mehrwertigen Polyolen, sowie deren Mischungen mit anderen Di- und Polyisocyanaten Verwendung finden.
Besonders bewährt hat sich als organisches Polyisocyanat Roh-MDI, insbesondere mit einem NCO-Gehalt von 29 bis 33 Gew.-% und einer Viskosität bei 25°C im Bereich von 150 bis 1000 mPas.
Als Verbindungen mit mindestens zwei gegenüber Isocyanatgruppen reaktiven Wasserstoffatomen, die neben den Komponenten bi) und bii) eingesetzt werden, kommen solche in Betracht, die mindestens zwei reaktive Gruppen, bevorzugt OH-Gruppen, enthalten und insbesondere Polyetheralkohole und/oder Polyesteralkohole mit OH- Zahlen im Bereich von 25 bis 800 mg KOH/g zum Einsatz.
Die eingesetzten Polyesteralkohole werden zumeist durch Kondensation von mehr- funktionellen Alkoholen, vorzugsweise Diolen, mit 2 bis 12 Kohlenstoffatomen, vor- zugsweise 2 bis 6 Kohlenstoffatomen, mit mehrfunktionellen Carbonsäuren mit 2 bis 12 Kohlenstoffatomen, beispielsweise Bernsteinsäure, Glutarsäure, Adipinsäure, Korksäure, Azelainsäure, Sebacinsäure, Decandicarbonsäure, Maleinsäure, Fumarsäure und vorzugsweise Phthalsäure, Isophthalsäure, Terephthalsäure und die isomeren Naph- thalindicarbonsäuren, hergestellt.
Die eingesetzten Polyesterole haben zumeist eine Funktionalität von 1 ,5 - 4.
Insbesondere kommen Polyetherpolyole, die nach bekannten Verfahren, beispielswei- se durch anionische Polymerisation von Alkylenoxiden an H-funktionellen Startsubstanzen in Gegenwart von Katalysatoren, vorzugsweise Alkalihydroxiden oder Dop- pelmetallcyanidkatalysatoren (DMC-Katalysatoren), hergestellt werden, zum Einsatz.
Als Alkylenoxide werden zumeist Ethylenoxid oder Propylenoxid, aber auch Tetra- hydrofuran, verschiedene Butylenoxide, Styroloxid, vorzugsweise reines 1 ,2-
Propylenoxid eingesetzt. Die Alkylenoxide können einzeln, alternierend nacheinander oder als Mischungen verwendet werden.
Als Startsubstanzen kommen insbesondere Verbindungen mit mindestens 2, vorzugs- weise 2 bis 8 Hydroxylgruppen oder mit mindestens zwei primären Aminogruppen im Molekül zum Einsatz.
Als Startsubstanzen mit mindestens 2, vorzugsweise 2 bis 8 Hydroxylgruppen im Molekül werden vorzugsweise Trimethylolpropan, Glycerin, Pentaerythrit, Zuckerverbin- düngen wie beispielsweise Glucose, Sorbit, Mannit und Saccharose, mehrwertige
Phenole, Resole, wie z.B. oligomere Kondensationsprodukte aus Phenol und Formaldehyd und Mannich-Kondensate aus Phenolen, Formaldehyd und Dialkanolaminen sowie Melamin eingesetzt.
Als Startsubstanzen mit mindestens zwei primären Aminogruppen im Molekül werden vorzugsweise aromatische Di- und/oder Polyamine, beispielsweise Phenylendiamine, und 4,4'-, 2,4'- und 2,2'-Diamino-diphenylmethan sowie aliphatische Di- und Polyamine, wie Ethylendiamin, eingesetzt.
Die Polyetherpolyole besitzen eine Funktionalität von vorzugsweise 2 bis 8 und Hydro- xylzahlen von vorzugsweise 25 mg KOH/g bis 800 mg KOH/g und insbesondere 150 mg KOH/g bis 570 mg KOH/g.
Zu den Verbindungen mit mindestens zwei gegenüber Isocyanat reaktiven Wasser- stoffatomen gehören auch die gegebenenfalls mitverwendeten Kettenverlängerer und Vernetzer. Zur Modifizierung der mechanischen Eigenschaften kann sich der Zusatz von difunktionellen Kettenverlängerungsmitteln, tri- und höherfunktionellen Vernet- zungsmitteln oder gegebenenfalls auch Gemischen davon als vorteilhaft erweisen. Als Kettenverlängerungs- und/oder Vernetzungsmittel verwendet werden vorzugsweise Alkanolamine und insbesondere Diole und/oder Triole mit Molekulargewichten kleiner als 400, vorzugsweise 60 bis 300.
Kettenverlängerungsmittel, Vernetzungsmittel oder Mischungen davon werden zweckmäßigerweise in einer Menge von 1 bis 20 Gew.-%, vorzugsweise 2 bis 5 Gew.-%, bezogen auf die Polyolkomponente, eingesetzt.
Die Herstellung der Hartschaumstoffe wird üblicherweise in Anwesenheit von Treibmitteln, Katalysatoren, Flammschutzmitteln und Zellstabilisatoren sowie, falls erforderlich weiteren Hilfs- und/oder Zusatzstoffen durchgeführt.
Als Treibmittel können chemische Treibmittel wie Wasser und/oder Ameisensäure ver- wendet werden, die mit Isocyanatgruppen unter Abspaltung von Kohlendioxid bzw. Kohlendioxid und Kohlenmonoxid reagieren. Bevorzugt können in Kombination mit oder an Stelle von Wasser auch sogenannte physikalische Treibmittel eingesetzt werden. Dabei handelt es sich um gegenüber den Einsatzkomponenten inerte Verbindungen, die zumeist bei Raumtemperatur flüssig sind und bei den Bedingungen der Ur- ethanreaktion verdampfen. Vorzugsweise liegt der Siedepunkt dieser Verbindungen unter 500C. Zu den physikalischen Treibmitteln zählen auch Verbindungen, die bei Raumtemperatur gasförmig sind und unter Druck in die Einsatzkomponenten eingebracht bzw. in ihnen gelöst werden, beispielsweise Kohlendioxid, niedrigsiedende Al- kane und Fluoralkane.
Die Treibmittel werden zumeist ausgewählt aus der Gruppe, enthaltend Ameisensäure, Alkane und/oder Cycloalkane mit mindestens 4 Kohlenstoffatomen, Dialkylether, Ester, Ketone, Acetale, Fluoralkane mit 1 bis 8 Kohlenstoffatomen, und Tetraalkylsilane mit 1 bis 3 Kohlenstoffatomen in der Alkylkette, insbesondere Tetramethylsilan.
Beispielhaft seien genannt Propan, n-Butan, iso- und Cyclobutan , n-, iso- und Cyclo- pentan, Cyclohexan, Dimethylether, Methylethylether, Methylbutylether, Ameisensäuremethylester, Aceton, sowie Fluoralkane, die in der Troposphäre abgebaut werden können und deshalb für die Ozonschicht unschädlich sind, wie Trifluormethan, Difluor- methan, 1 ,3,3,3-Pentafluorpropen, 1 ,1 ,1 ,3,3-Pentafluorbutan, 1 ,1 ,1 ,3,3-Pentafluor- propan, 1 ,1 ,1 ,2-Tetrafluorethan, Difluorethan und Heptafluorpropan. Die genannten physikalischen Treibmittel können allein oder in beliebigen Kombinationen untereinander eingesetzt werden.
Besonders bevorzugt als Treibmittelmischung ist eine Mischung aus Ameisensäure, Wasser und Pentan. Die Treibmittelkomponente wird üblicherweise in einer Menge von 1 bis 45 Gew.-%, bevorzugt 1 bis 30 Gew.-%, besonders bevorzugt 1 ,5 bis 20 Gew.-% und insbesondere 2 bis 15 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten Polyol, Treibmittel, Katalysatorsystem, und eventuell Schaumstabilisatoren, Flammschutzmittel und sonstigen Zusatzstoffen, eingesetzt.
Die Polyurethan- oder Polyisocyanuratschaumstoffe enthalten üblicherweise Flammschutzmittel. Vorzugsweise werden bromfreie Flammschutzmittel eingesetzt. Besonders bevorzugt sind Phosphoratome enthaltende Flammschutzmittel, insbesondere werden Trischlorisopropylphosphat, Diethylethanphosphonat, Triethylphosphat und/oder Diphenylkresylphosphat eingesetzt.
Als Katalysatoren werden insbesondere Verbindungen eingesetzt, welche die Reaktion der Isocyanatgruppen mit den mit Isocyanatgruppen reaktiven Gruppen stark be- schleunigen. Solche Katalysatoren sind beispielsweise basische Amine, wie sekundäre aliphatische Amine, Imidazole, Amidine, Alkanolamine, Lewissäuren oder metallorganische Verbindungen, insbesondere solche auf Basis von Zinn. Auch Katalysatorsysteme, bestehend aus einer Mischung verschiedener Katalysatoren, können eingesetzt werden.
Falls in den Hartschaumstoff Isocyanuratgruppen eingebaut werden sollen, werden spezielle Katalysatoren benötigt. Als Isocyanurat-Katalysatoren werden üblicherweise Metallcarboxylate, insbesondere Kaliumacetat und dessen Lösungen, eingesetzt. Die Katalysatoren können, je nach Erfordernis, allein oder in beliebigen Mischungen unter- einander eingesetzt werden.
Als Hilfsmittel und/oder Zusatzstoffe kommen die für diesen Zweck an sich bekannten Stoffe, beispielsweise oberflächenaktive Substanzen, Schaumstabilisatoren, Zellregler, Füllstoffe, Pigmente, Farbstoffe, Antioxidantien, Hydrolyseschutzmittel, Antistatika, fungistatisch und bakteriostatisch wirkende Mittel zum Einsatz.
Nähere Angaben über die zur Durchführung des erfindungsgemäßen Verfahrens eingesetzten Ausgangsstoffe, Treibmittel, Katalysatoren sowie Hilfs- und/oder Zusatzstoffe finden sich beispielsweise im Kunststoffhandbuch, Band 7, „Polyurethane" Carl- Hanser-Verlag München, 1. Auflage, 1966, 2. Auflage, 1983 und 3. Auflage, 1993.
Zur Herstellung der Hartschaumstoffe auf Isocyanatbasis werden die Polyisocyanate und die Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen in solchen Mengen zur Umsetzung gebracht, dass der Isocyanatindex im Falle der Polyurethan-Schaumstoffe in einem Bereich zwischen 100 und 220, vorzugsweise zwischen 1 15 und 180, liegt. Zur Herstellung der Polyurethan-Hartschaumstoffe werden die Polyisocyanate a) und die Komponente b) in solchen Mengen zur Umsetzung gebracht, dass die Isocyanat- Kennzahl des Schaumes 90 bis 350, bevorzugt 100 bis 180, mehr bevorzugt 110 bis 140 beträgt.
Die Polyurethan-Hartschaumstoffe können diskontinuierlich oder kontinuierlich mit Hilfe bekannter Verfahren, beispielsweise auf einem Doppelband oder in einer Form, hergestellt werden.
Als besonders vorteilhaft hat es sich erwiesen, nach dem Zweikomponenten-Verfahren zu arbeiten und die Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen zusammen mit den Treibmitteln, Schaumstabilisatoren und Flammschutzmitteln sowie den Katalysatoren und Hilfs- und/oder Zusatzstoffen zu einer sogenannten Polyolkomponente zu vereinigen und diese mit den Polyisocyanaten oder den Mischungen aus den Polyisocyanaten und gegebenenfalls Treibmitteln, auch als Isocyanatkomponente bezeichnet, zur Umsetzung zu bringen.
Die vorliegende Erfindung soll durch nachfolgende Beispiele veranschaulicht werden
Polyol 1 : Polyetheralkohol auf Basis von vicinalem TDA, Ethylenoxid und Propylenoxid, Hydroxylzahl: 390 mg KOH/g
Polyol 2: Polyetheralkohol auf Basis von Saccharose, Glycerin und Propylenoxid, Funktionalität 5, Hydroxylzahl: 450 mg KOH/g
Polyol 3: Polyetheralkohol auf Basis von vicinalem TDA, Ethylenoxid und Propylenoxid, Hydroxylzahl: 160 mg KOH/g
Polyol 4: Polyetheralkohol auf Basis von oligomeren Glycerin und Propylenoxid, Funktionalität 4.5, Hydroxylzahl: 450 mg KOH/g Polyol 5: Polyetheralkohol auf Basis von oligomeren Glycerin und Propylenoxid, Funktionalität 6.5, Hydroxylzahl: 450 mg KOH/g
Polyol 6: Polyetheralkohol auf Basis von oligomeren Glycerin, Funktionalität 6.5, Hydroxylzahl: 1 100 mg KOH/g Polyol 7: Polyetheralkohol auf Basis von Saccharose, Glycerin, Ethylenoxid und Propy- lenoxid, Funktionalität 6.5, Hydroxylzahl: 450 mg KOH/g
Polyol 8: Polyetheralkohol auf Basis von Saccharose, Glycerin, oligomeren Glycerin und Propylenoxid, Funktionalität 6, Hydroxylzahl: 450 mg KOH/g Polyol 9: Polyetheralkohol auf Basis vicinalem TDA, Ethylenoxid und Propylenoxid, Hydroxylzahl: 160 mg KOH/g enthaltend 35 % Graftpartikel aus Acrylnitril/Stryol (3:1 ). Silikonstabilisator: Tegostab® B 8462 Degussa,
Katalysator: Gemisch aus 26 % N,N-Dimethylcyclohexyamin, 53 % Lupragen® N301 , BASF SE, 21 % Lupragen® N600, BASF SE.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Polyurethan-Hartschaumstoffen durch Umsetzung von
a) Polyisocyanaten mit
b) Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen in Gegenwart von
c) Treibmitteln,
dadurch gekennzeichnet, dass die Komponente b) mindestens einen Polyether- alkohol bi), hergestellt durch Anlagerung von Alkylenoxiden an Toluylendiamin, und mindestens einen Polyetheralkohol bii), hergestellt durch Anlagerung von
Alkylenoxiden an H-funktionelle Startsubstanzen, die oligomeres Glyzerin enthalten, enthält.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das oligomere GIy- zerin aus 4-10 Glyzerin-Einheiten aufgebaut ist.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Polyetheralkolhol bii) eine Hydroxylzahl im Bereich zwischen 350 und 500 mg KOH/g aufweist.
4. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass bei der Herstellung des Polyetheralkohols bii) die Startsubstanz ausschließlich oligomeres Glyzerin enthält.
5. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass bei der Herstellung des Polyetheralkohols bii) die Startsubstanz oligomeres Glyzerin und mindestens eine weitere H-funktionelle Verbindung enthält.
6. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass bei der Herstellung des Polyetheralkohols bii) die Startsubstanz oligomeres Glyzerin und mindestens Saccharose enthält.
7. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass bei der Herstellung des Polyetheralkohols bii) die Startsubstanz oligomeres Glyzerin und mindestens Trimethylolpropan enthält.
8. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Polyetheralkohol bii) ein Molverhältnis von oligomeren Glycerol zu Saccharose von 2,5:1 bis 1 :2,5 aufweist.
9. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass bei der Herstellung des Polyetheralkohols bi) 2,4- bzw. 2,6- Toluylendiamin bzw. ein Gemisch dieser Substanzen eingesetzt wird.
10. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass bei der Herstellung des Polyetheralkohols bi) vicinales Toluylendiamin eingesetzt wird.
1 1. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass bei der Herstellung des Polyetheralkohols bi) mindestens 25 Gew.-%, bezogen auf das Gewicht des Toluylendiamins, vicinales Toluylendiamin eingesetzt wird.
12. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass bei der Herstellung des Polyetheralkohols bi) mindestens 95 Gew.-%, bezogen auf das Gewicht des Toluylendiamins, vicinales Toluylendiamin eingesetzt wird.
13. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Polyetheralkohol bi) eine Hydroxylzahl im Bereich zwischen 120 und 450 aufweist.
14. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Komponenten bi) und bii) in einen Gewichtsverhältnis von 5:1 bis 1 :2 eingesetzt werden.
15. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Polyetheralkohol bii) ein Molverhältnis von oligomerem Glycerol zu Saccharose von 2,5:1 bis 1 :2,5 aufweist.
16. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass in der Komponente b) neben den Komponenten bi) und bii) ein Polyetheralkohol biii) enthalten ist, der mit mindestens Saccharose gestartet ist.
17. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Polyetheralkohol biii) eine Hydroxylzahl im Bereich zwischen 350 und 550 aufweist.
18. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Polyetheralkoho- Ie bii) und biii) in einen Gewichtsverhältnis von 1 :10 bis 2:1 eingesetzt werden.
19. Polyurethan-Hartschaumstoffe, herstellbar nach einem der Ansprüche 1-18.
EP10701121A 2009-01-20 2010-01-12 Verfahren zur herstellung von polyurethan-hartschaumstoffen Withdrawn EP2389404A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10701121A EP2389404A1 (de) 2009-01-20 2010-01-12 Verfahren zur herstellung von polyurethan-hartschaumstoffen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09150896 2009-01-20
PCT/EP2010/050299 WO2010084058A1 (de) 2009-01-20 2010-01-12 Verfahren zur herstellung von polyurethan-hartschaumstoffen
EP10701121A EP2389404A1 (de) 2009-01-20 2010-01-12 Verfahren zur herstellung von polyurethan-hartschaumstoffen

Publications (1)

Publication Number Publication Date
EP2389404A1 true EP2389404A1 (de) 2011-11-30

Family

ID=42199254

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10701121A Withdrawn EP2389404A1 (de) 2009-01-20 2010-01-12 Verfahren zur herstellung von polyurethan-hartschaumstoffen

Country Status (6)

Country Link
US (1) US20120022179A1 (de)
EP (1) EP2389404A1 (de)
JP (1) JP2012515804A (de)
KR (1) KR20110117084A (de)
CN (1) CN102282190A (de)
WO (1) WO2010084058A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2525812T3 (es) 2009-03-16 2014-12-30 Basf Se Procedimiento de fabricación de materiales compuestos de xerogel
CN102438972B (zh) 2009-05-20 2015-09-09 巴斯夫欧洲公司 通过在含铜非均相催化剂上氢化甘油三脂肪酸酯而制备脂肪醇的方法
JP5520379B2 (ja) 2009-08-13 2014-06-11 ビーエーエスエフ ソシエタス・ヨーロピア 芳香族及び脂環式アミンの基づく多孔性ゲル
AU2010330056B2 (en) 2009-12-11 2015-03-26 Basf Se Improved porous materials based on aromatic amines
US20110218259A1 (en) * 2010-03-02 2011-09-08 Basf Se Preparing polyurethanes
KR102049107B1 (ko) * 2012-02-28 2019-11-27 바스프 에스이 경질 중합체 발포체의 제조 방법
US9051412B2 (en) * 2013-03-14 2015-06-09 Bayer Materialscience Llc Base-catalyzed, long chain, active polyethers from short chain DMC-catalyzed starters
EP3601397B1 (de) * 2017-03-27 2021-03-03 Basf Se Polyolkomponenten und ihre verwendung zur herstellung von polyurethan-hartschaumstoffen
JP6909074B2 (ja) * 2017-06-28 2021-07-28 サンスター技研株式会社 ポリウレタン組成物
CN113929851B8 (zh) * 2020-06-29 2024-08-23 万华化学(宁波)容威聚氨酯有限公司 一种基于低真空度密闭空间的聚氨酯硬泡及其制备方法和应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332936A (en) * 1978-10-16 1982-06-01 Mobay Chemical Corporation Method of making polyether polyols from solid hydroxyl containing initiators
TW293827B (de) * 1992-04-20 1996-12-21 Takeda Pharm Industry Co Ltd
DE4309691A1 (de) * 1993-03-25 1994-09-29 Bayer Ag Verfahren zur Herstellung von Urethan- und gegebenenfalls Isocyanuratgruppen aufweisenden Hartschaumstoffen und ihre Verwendung als Wärmedämmaterialien
DE4437859A1 (de) 1994-10-22 1996-04-25 Elastogran Gmbh Verfahren zur Herstellung von Polyurethan-Hartschaumstoffen mit einer verminderten Wärmeleitfähigkeit und ihre Verwendung
JP2001122941A (ja) * 1999-10-29 2001-05-08 Hitachi Ltd 硬質ポリウレタンフォームおよびそれを用いた冷蔵庫
US6380367B1 (en) * 1999-11-18 2002-04-30 Basf Corporation Continuous process for the production of sucrose based polyether polyols
DE102004048728A1 (de) * 2004-10-05 2006-04-06 Basf Ag Verfahren zur Herstellung von Polyurethan-Hartschaumstoffen
DE102004051102A1 (de) * 2004-10-19 2006-04-27 Basf Ag Verfahren zur Herstellung von Polyurethan-Hartschaumstoffen
CN100575379C (zh) * 2006-08-18 2009-12-30 南京红宝丽股份有限公司 具有快速脱模性能的硬质聚氨酯泡沫组合物
CN1908028B (zh) * 2006-08-18 2010-05-12 南京红宝丽股份有限公司 低密度低热导率聚氨酯硬质泡沫
ZA200709673B (en) * 2006-11-13 2009-09-30 Bayer Materialscience Ag Process for the preparation of polyether-ester polyols
US9284401B2 (en) * 2006-11-13 2016-03-15 Bayer Materialscience Llc Process for the preparation of polyether-ester polyols
US20090306238A1 (en) * 2006-11-14 2009-12-10 Basf Se Method for the production of rigid polyurethane foams

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010084058A1 *

Also Published As

Publication number Publication date
US20120022179A1 (en) 2012-01-26
CN102282190A (zh) 2011-12-14
JP2012515804A (ja) 2012-07-12
KR20110117084A (ko) 2011-10-26
WO2010084058A1 (de) 2010-07-29

Similar Documents

Publication Publication Date Title
EP2389404A1 (de) Verfahren zur herstellung von polyurethan-hartschaumstoffen
EP1799736B2 (de) Verfahren zur herstellung von polyurethan-hartschaumstoffen
EP2094757B1 (de) Verfahren zur herstellung von polyurethan-hartschaumstoffen
EP2688933B1 (de) Pu hartschaum mit niedriger wärmeleitfähigkeit und guter thermischer stabilität
DE102004051102A1 (de) Verfahren zur Herstellung von Polyurethan-Hartschaumstoffen
EP3548533B1 (de) Polyurethan-hartschaumstoffe, ein verfahren zu deren herstellung und deren verwendung
EP2870188B1 (de) Herstellung von schaumstoffen mit verbesserten eigenschaften
EP2483323B1 (de) Verfahren zur herstellung von polyurethan-hartschaumstoffen
EP2561002B1 (de) Verfahren zur herstellung von polyurethan-hartschaumstoffen
EP2542607A1 (de) Verfahren zur herstellung von polyurethan-hartschaumstoffen
DE102011079336A1 (de) Versprühbarer, wassergetriebener PUR-/PIR-Hartschaumstoff
DE19918726C2 (de) Offenzellige Polyurethanhartschaumstoffe
EP2111423B1 (de) Polyurethan-hartschaumstoffe
EP1571167B1 (de) Verfahren zur Herstellung von Hartschaumstoffen auf Isocyanatbasis
EP1138709B1 (de) Verfahren zur Herstellung von Hartschaumstoffen auf Isocyanatbasis
DE102005057998A1 (de) Polyurethan-Hartschaumstoffe
DE102007052599A1 (de) Verfahren zur Herstellung von Polyetherolen
DE10124333A1 (de) Flammgeschützte PUR-Hartschaumstoffe mit reduziertem Flammschutzmittelanteil
EP3720892A1 (de) Verfahren zur herstellung von urethangruppen und isocyanuratgruppen enthaltenden offenzelligen hartschaumstoffen
DE102008040471A1 (de) Verfahren zur Herstellung von Polyurethan-Hartschaumstoffen
DE10156136A1 (de) Verfahren zur Herstellung von Polyurethan-Hartschaumstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110822

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130614

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131025