EP2384259B1 - Machine-outil électrique portative - Google Patents

Machine-outil électrique portative Download PDF

Info

Publication number
EP2384259B1
EP2384259B1 EP09795760.9A EP09795760A EP2384259B1 EP 2384259 B1 EP2384259 B1 EP 2384259B1 EP 09795760 A EP09795760 A EP 09795760A EP 2384259 B1 EP2384259 B1 EP 2384259B1
Authority
EP
European Patent Office
Prior art keywords
hand
electric power
power tool
held electric
tool according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09795760.9A
Other languages
German (de)
English (en)
Other versions
EP2384259A1 (fr
Inventor
Jochen Roser
Stefano Delfini
Thilo Koeder
Joachim Platzer
Ivan Spremo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to EP13173324.8A priority Critical patent/EP2644320A1/fr
Publication of EP2384259A1 publication Critical patent/EP2384259A1/fr
Application granted granted Critical
Publication of EP2384259B1 publication Critical patent/EP2384259B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • B24B1/04Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes subjecting the grinding or polishing tools, the abrading or polishing medium or work to vibration, e.g. grinding with ultrasonic frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B23/00Portable grinding machines, e.g. hand-guided; Accessories therefor

Definitions

  • the invention relates to a hand-held power tool according to the preamble of claim 1, comprising a housing with a handle portion, a tool area for a linearly and / or rotationally oscillating drivable tool, a housing-side operating part for user-side activation of the tool and / or the power tool, a arranged in the housing drive unit for generating a working movement of the tool, an electronics unit arranged in the housing for applying the required processing power consisting of at least control and / or control signals, an operating voltage unit for providing a DC electrical voltage to the electronic unit, wherein the drive unit at least one Excitation actuator comprising a volume of excitation active material, which is electrically powered by the operating voltage unit in operation, is controlled or regulated by the electronic unit.
  • Such a power tool goes from the EP1598171 A2 out.
  • Hand-held power tools are characterized by being portable and held and guided by an operator in the hand during operation. They can be operated wirelessly via battery packs or with mains power. In particular, these usually consist of only one housing, which is completely held by the user.
  • the welding gun comprises a housing with a grip area, a tool area for a linear and / or oscillating drivable tool, a housing-side operating part for user-side activation of the tool and / or the welding gun, a housing arranged in the drive unit for generating a working movement of the Tool, a housing arranged in the electronic unit for applying the drive unit with at least control and / or control signals, an operating voltage unit for providing a DC electrical voltage, wherein the drive unit comprises at least one excitation actuator with a volume of excitation active material, which is electrically powered by the operating voltage unit in operation , and is controlled or regulated by the electronic unit.
  • the invention relates to a hand-held power tool, comprising a housing with a handle portion, a tool area for a linearly and / or rotationally oscillating drivable tool, a housing-side control unit for user-side activation of the tool and / or the power tool, a housing arranged in the drive unit for generating a working movement of the tool, an electronics unit arranged in the housing for applying at least control and / or regulating signals to the drive unit, an operating voltage unit for providing a direct electrical voltage to the electronics unit, wherein the drive unit comprises at least one excitation actuator with a volume of excitation-active material which is in operation is electrically powered by the operating voltage unit, is controlled or regulated by the electronic unit.
  • the electronics unit is designed to operate the at least one excitation actuator at a resonant frequency.
  • the excitation active material is piezoelectric, wherein the volume of the piezoelectric material is at least 0.2 cm 3 , and the at least one excitation actuator has a power density of at least 5 watts / cm 3 , based on the volume of the piezoelectric material of the at least one excitation actuator ,
  • the electronic unit comprises a control unit with frequency adaptation for tracking the resonance frequency of the at least one excitation actuator, which control unit controls a power generation unit of the electronic unit such that the power generation unit generates a sine-like square wave voltage by means of sine-delta modulation, wherein the number of square pulses per cycle duration of the sine wave signal is greater than 6 is.
  • the excitation actuator may be an ultrasonic excitation actuator, in particular a Piezo actuator in the construction of a Langevin oscillator.
  • the piezoelectric actuator has piezoelectric material as excitation-active material.
  • the quality of the undamped oscillatory system is typically greater than 500 at values greater than 100.
  • the resonant system of the excitation actuator which has the resonant frequency, comprises the Langevin transducer with piezoelectric active material and components coupled to the vibrator, particularly components that amplify the ultrasound and / or or transferred to a processing location. Such components are known, for example as a booster or sonotrode. This enables a size reduction and the provision of a compact device.
  • a compact power tool of high performance is thus created, which is at the same time handy.
  • excitation factors e.g. be provided with the same or with different resonant frequency, as a drive component.
  • one or more further drive components such as an electric motor, may be provided.
  • the various drive components may be operated alternatively or in combination. If the at least one excitation actuator is operated in resonance, the power output is particularly high, so that for a given output power of the power tool, the construction can be particularly compact, which is convenient handling of the hand-held power tool.
  • the proposed power tool is a one-piece device, can be dispensed with disturbing connection cable between separate housing parts.
  • the electric machine tool can be operated cordlessly with batteries or rechargeable batteries or also - additionally or alternatively - be operated with mains power via a mains cable.
  • the tool may be an insert tool detachably connected to the excitation actuator, or it may be fixedly connected to the excitation actuator.
  • the compound can e.g. be cohesive or non-positive.
  • the electric machine tool is a machine tool used to machine or modify objects or surfaces, such as drills, rotary hammers, cutting tools, grinders, milling machines, saws, welders and the like.
  • the electronic unit comprises a control unit with frequency adaptation for tracking the resonant frequency of the at least one excitation actuator.
  • the resonance frequency can be continuously adjusted if the resonant frequency of the excitation actuator changes due to, for example, temperature change, change of the tool coupled to the excitation actuator or load on the tool.
  • the electronic unit may comprise a phase locked loop, with which the resonance frequency can be excited with high accuracy.
  • phase shift between electric current and electrical voltage, which are supplied to the piezoelectric active material for exciting the ultrasonic vibrations, to a fixed value, in particular 0 ° phase difference between the current and voltage signal, adjusted and maintained, whereby an optimal power output can be achieved can.
  • the volume of the piezoelectrically active material is at least 0.2 cm 3 , preferably 0.5 cm 3 , in particular at least 1 cm 3 .
  • a sufficient ultrasound power can be achieved with a small size of the excitation actuator.
  • the at least one excitation actuator has a power density of at least 5 watts / cm 3 , preferably at least 20 watts / cm 3 , based on the volume of the piezoelectrically active material of the at least one excitation actuator.
  • a correspondingly high power density is advantageous for a hand-held compact power tool with the smallest possible dimensions and low production costs.
  • the at least one excitation actuator on the tool tip can have a vibration amplitude of at least 3 ⁇ m, preferably at least 8 ⁇ m, in particular at least 12 ⁇ m.
  • a correspondingly high vibration amplitude is advantageous for a good power transmission to the workpiece and thus for a high work progress through the power tool.
  • an electrical power for acting on the at least one excitation actuator can amount to at least 20 watts.
  • a sufficient power for a power tool can be ensured.
  • Usual benefits are in the home improvement sector, for small cutting systems about between 20 watts and 250 watts, preferably 50 watts to 150 watts.
  • powers from 50W to 1000W, preferably 200W to 500W are needed.
  • the power requirement for small systems is approximately between 50 and 400 watts, preferably 100 to 250 watts.
  • powers of 200 W to 2000 watts, preferably 400 watts to 1000 watts are used. Nevertheless, a power tool with handy dimensions can be created, which can be included or held by the hand of the operator on the one hand and on the other hand provides sufficient power for processing.
  • a maximum electrical excitation field strength of the at least one excitation actuator can be in the range below 300 V / mm (based on the thickness, in particular slice thickness, of the piezoelectrically active material), preferably in the range between 50 V / mm and 220 V. / mm.
  • a slice thickness of the excitation actuator typically 1 mm to 10 mm, preferably 2 mm to 6 mm, in particular by 5 mm, the electrical voltages are less than 1000 volts. This advantageously makes it possible to use the excitation actuator in the hand-held power tool with sufficient mechanical output power and advantageously small dimensions.
  • an electrical output voltage of the operating voltage unit when supplied with electrochemical storage can be within 3 volts to 100 volts DC, preferably in the range of 3.5V to 40V, in particular at 36 volts, 24 volts, 18 volts, 14.4 Volts, 12 volts, 10.6 volts. 7.2 volts and 3.6 volts.
  • battery packs or rechargeable battery packs can be used, which are small and light enough to ensure good handling of the power tool with high output power yet.
  • a DC voltage component of the electrical output voltage of the operating voltage unit can be at supply with mains voltage within 0.5 U network (rms value of the mains voltage) to 2 U network .
  • mains voltage can be converted by means of an input-side transformer to a voltage suitable for the operating voltage unit.
  • the operating frequency of the at least one excitation actuator can be in the range between 10 kHz and 1000 kHz, preferably between 30 kHz and 50 kHz, in particular between 35 kHz and 45 kHz, particularly preferably around 40 kHz.
  • the size of the components decreases and the mechanical load of the oscillating system increases, with advantageous size ratios in the selected frequency range result in high output and low weight of the power tool.
  • the operating voltage unit can comprise an electrochemical store, preferably a rechargeable electrochemical store.
  • the operating voltage unit has only a small footprint, which is advantageous for the compactness and weight of the power tool.
  • systems based on e.g. Lithium-ion (Li-ion) or nickel-metal hydride (NiMeH), nickel-cadmium (NiCd) or lead and the like. These can be firmly integrated in the housing and recharged via a charging port.
  • the operating voltage unit may be formed as a change system, with exchangeable electrochemical storage, which may optionally be externally rechargeable, and which can be plugged into a receptacle provided in or on the housing.
  • the rated voltage of the operating voltage unit may, depending on the power requirement, e.g. between 3 volts dc and 48 volts dc, e.g. at 12 volts dc.
  • the operating voltage unit may comprise an AC / DC conversion unit.
  • a mains connection for the electric machine tool can be provided, and in the operating voltage unit, the rectification and smoothing of the mains voltage can take place.
  • the preparation of the mains voltage requires more space than an energy store, the further space-saving and compact design in a single housing still allows a simplified operation and handling of the power tool.
  • the electronic unit can be concentrated on a circuit board. This allows a particularly space-saving arrangement in the housing.
  • the electronic control of the excitation actuator is particularly compact.
  • At least one inductance in a power circuit of the electronic unit, which supplies the at least one excitation actuator with electrical power is provided be. It can be a space-saving structure of the power inductors realized in a single bobbin.
  • the favorable in excitation actuators signal filtering and inductive compensation of the piezoelectric actuator can be provided directly via a specifically set leakage inductance of a transmission transformer anyway required or be given by a wound on the same coil core inductance. An additional coil core with a further inductance in the power circuit can thereby be omitted.
  • At least the drive unit, the electronic unit and the operating voltage unit can be distributed in the housing such that a center of mass lies in the area of the handle part.
  • the operator can handle the power tool safely and conveniently. The safety and ease of use are increased.
  • the drive unit can comprise, in addition to the at least one excitation actuator, at least one further drive component.
  • the working movement of a tool driven by the at least one further drive component can be superimposed by the at least one excitation actuator movement, whereby the work progress can be significantly improved and the processing can be facilitated.
  • the at least one excitation actuator can form a main energy consumer of the electric machine tool, for which preferably at least 50% electrical input power can be provided.
  • at least 75%, preferably at least 80%, of the electrical input power can be provided for the excitation actuator.
  • the progress of the electric machine tool when using ultrasound is particularly large, so that a further energy consumer, in particular a further drive component, such as a drill, a Meisel, a knife or the like, can be made smaller.
  • a further drive component such as a drill, a Meisel, a knife or the like
  • one or more operating displays can be provided for an activated state of the at least one excitation actuator.
  • the display can be made optically and / or acoustically and / or haptically. The reliability of the power tool is increased because it is clearly visible when the excitation is activated and can deliver mechanical power.
  • the drive unit which imparts a working movement to the tool, can impress the tool on superposition oscillations.
  • the drive unit can have as an additional drive component, for example, an electric drive motor, which is accommodated in the housing of the power tool.
  • the motor shaft is usually coupled via a gear unit with a tool shaft, which is the carrier of the tool and performs the working movement.
  • the tool is usually replaceable to attach to the tool shaft.
  • the power tool may e.g. be used for machining of workpieces, to reduce the chip size advantageously the excitation is arranged in the power tool, which can generate overlay oscillations in the tool. These superimposed vibrations are superimposed on the working movement of the tool.
  • the superposition oscillations which do not originate from the drive motor, but from the excitation actuator, depending on the type of power tool and depending on the tool used and the workpiece material to be machined at a frequency can be generated, which leads to a significant reduction of the chip size. Since smaller chips also have a smaller heat capacity, the chips can cool down in a shorter period of time, whereby the risk of fire is reduced. In addition, the smaller chips per se lead to a reduced risk of injury, since the pulse emanating from them is lower.
  • the frequency of the superposition oscillations is expediently in the ultrasound range and can thus amount to at least 20 kHz, for example.
  • This relatively high frequency on the one hand has the advantage that vibrations of this magnitude are no longer audible to humans, so no noise pollution arises.
  • vibrations of this magnitude are particularly effective in order to significantly reduce the size of the chips that arise during the machining of a workpiece.
  • the overlay vibrations Due to the superposition of the working movement of the tool on the one hand and the usually much higher frequency remains generating the overlay vibrations without effect on the working movement and thus on the result of workpiece machining.
  • the overlay vibrations usually have only a very small amplitude, so that the machining of the workpiece is not impaired.
  • the electric machine tool is designed as a grinding device, for example as an angle grinder, which has a tool mounted on a tool shaft grinding wheel as a tool, in which case the tool movement is an exclusive rotational movement.
  • translational movements come, for example in lifting saws that perform an oscillating stroke movement.
  • the superposition vibrations can be excited according to an advantageous embodiment orthogonal to the plane of movement of the tool in which the working movement takes place.
  • the superposition vibrations can be applied in the direction of the tool shaft carrying the grinding wheel.
  • the superimposition oscillation takes place perpendicularly to the translational movement.
  • the superposition oscillations excite the tool in the plane of motion.
  • the overlay oscillations emanating from the excitation actuator act on a bearing of the tool, the oscillations also propagating to the tool via the bearing.
  • this is preferably done via the tool-near bearing to avoid loading of the gear unit and the drive motor by the superposition oscillations.
  • the exciting active material is piezoelectric.
  • the excitation actuator is designed as a Langevin oscillator with clamped piezo elements which changes its extent by applying a voltage.
  • the piezoelectric element can expand and contract in the desired frequency of the superposition oscillations, wherein the excitation is coupled to a component in the power transmission chain between the drive unit or drive motor and tool, so that the vibrations of the excitation actuator spread into the tool can.
  • the excitation preferably takes place via a bearing of the tool shaft which carries the tool.
  • the excitation actuator is designed as a magnetostrictive excitation actuator, which is particularly suitable for generating ultrasonic vibrations.
  • FIGS. 1 and 2 Various examples of hand-held power tools 10.
  • Fig. 1 shows a cutting device with elongated housing shape
  • Fig. 2 shows a drill with T-shaped housing.
  • the handheld power tool 10 includes a housing 20 having a handle portion 40. An operator holds the power tool 10 on the handle portion 40 and may guide the power tool 10.
  • the grip area 40 may optionally be decoupled with a damping element, not shown, with respect to other housing areas.
  • the electric machine tool 10 further comprises a tool region 50 for a linearly and / or oscillatory drivable tool 60, such as a knife ( Fig. 1 ) or a drill ( Fig. 2 ) or another tool according to another device type.
  • a housing-side operating part 30 serves for the user-side activation of the tool 60 and / or of the power tool 10.
  • the operating part 30 may e.g. be a switch or a controller or also comprise a plurality of controls, of which e.g. one for turning on the power tool 10 and one for turning on and / or controlling the tool 60 may be provided.
  • a drive unit 80 is arranged, which in the examples according to Fig. 1 and Fig. 2 includes only one drive component formed by an excitation actuator 100.
  • This is designed as a piezo-excited Langevin oscillator (also called a piezoactuator), which comprises a volume of piezoelectrically active material 102, for example piezoceramic disks which are pressed together and which undergo a change in length when subjected to electrical voltage.
  • a piezo-excited Langevin oscillator also called a piezoactuator
  • the coupling element 106 may be a per se known sonotrode.
  • the length and the shape as well as the material of the coupling element 106 determine a resonance frequency of the excitation actuator 100.
  • the tool 60 can also influence the resonance frequency.
  • the excitation actuator 100 is designed so that Langevin oscillator and coupling element 106 are combined in one unit, and whose entire length corresponds to approximately half the wavelength ⁇ / 2 of the ultrasonic vibration.
  • Other embodiments may provide that the excitation actuator 100 is composed of several components of length ⁇ / 2. These can be: Vibration generator, known as a converter, in particular, for example, a Langevin oscillator, amplitude transformation pieces 104 known as boosters, possibly extension pieces, as well as the coupling element 106 known as a sonotrode.
  • An electronic unit 200 arranged in the housing 20 serves to apply at least control and / or regulating signals to the drive unit 80 as well as to the voltage supply of the excitation actuator 100.
  • An operating voltage unit 90 here designed as a battery pack with batteries or rechargeable batteries 92, serves to provide it an electrical DC voltage for the electronic unit 90, which converts the operating voltage into a high-frequency voltage signal with which the excitation actuator 100 is excited to vibrate in the desired manner.
  • the electronic unit 200 is configured to operate the at least one excitation actuator 100 at a resonant frequency f_res.
  • the electronic unit 200 comprises a control unit 224 for tracking the resonance frequency f_res of the excitation actuator 100.
  • the control unit 224 may comprise a phase locked loop which can excite the excitation actuator 100 at its resonant frequency, with a phase shift between the injected current and the injected voltage being set to 0 ° becomes.
  • the resonance frequency f_res is preferably readjusted when the resonant frequency changes due to heating or load changes on the tool. Alternatively, a frequency tracking can also take place by regulating to a maximum of the current fed into the excitation actuator 100.
  • the volume of the piezoelectrically active material 102 is at least 0.2 cm 3 , preferably 0.5 cm 3 , in particular at least 1 cm 3 .
  • the excitation actuator 100 has a power density of at least 5 watts / cm 3 , preferably at least 20 watts / cm 3 , based on the volume of the piezoelectrically active material 102 of the excitation actuator 100. The power density allows use in a hand-held Power tool 10 with sufficient power output of the tool 60th
  • the activation of the tool 60 by the activation actuator 30 can be performed with a signal means 122 (FIG. Fig. 2 ) are displayed.
  • the electronic unit 200 is particularly space-saving integrated on a single board 210.
  • the electronic unit is divided into two boards 212, 214, wherein one in the main part and a projecting in the transverse part of the main body grip portion of the T-shaped housing 20 is arranged.
  • Drive unit 80, electronic unit 200 and operating voltage unit 90 are advantageously distributed in housing 20 in such a way that a center of mass lies in the area of handle part 40.
  • Fig. 3a shows a schematic diagram of a drive of the excitation actuator 100, in the form of a piezoelectric actuator 100, with an AC power supply from a supply network or a DC power supply with a battery pack.
  • an assembly 94 is provided which rectifies and smooths the AC voltage.
  • the electronic unit 200 comprises a power generation unit 222 into which the DC voltage is fed and which is coupled to the excitation actuator 100 via a corresponding filter unit 226.
  • a control unit 224 provides the control signals for the excitation actuator 100.
  • the operating frequency of the excitation actuator 100 is in the range between 10 kHz and 1000 kHz, preferably between 30 kHz and 50 kHz, in particular between 35 kHz and 45 kHz, particularly preferably around 40 kHz.
  • the electrical output voltage of the operating voltage unit 90 is preferably below 100 volts, at about 36 volts or 10.8 volts.
  • the maximum electrical excitation field strength of the at least one excitation actuator is preferably in the range below 300 V / mm (based on the thickness, in particular slice thickness, of the piezoelectrically active material), preferably in the range between 50 V / mm and 220 V / mm.
  • a slice thickness of the excitation actuator 100 typically 1 mm to 10 mm, preferably 2 mm to 6 mm, in particular by 5 mm, the electrical voltages are less than 1000 volts
  • the power generation unit 222 may be implemented by means of 4 MOSFET semiconductors in a full-bridge topology known per se.
  • the generation of the operating signal may also be effected by a half-bridge (also known) with e.g. a mid-point capacitor for filtering the DC component.
  • Fig. 3b illustrates how the size of the filter unit 226 according to the invention can be designed as small as possible.
  • the power unit 222 is controlled by the control unit 224 in such a way that it generates a sine-like rectangular voltage instead of simple square-wave signals by means of a sine-delta-modulation.
  • the number of square pulses per period of the sinusoidal signal is greater than 6, preferably in a range between 6 and 100, in particular in a range between 10 and 26.
  • the number and width of the rectangular pulses of the control unit 224 for example, during load changes during of the operation are changed.
  • Fig. 4 shows a profile of an ultrasonic amplitude along an excitation actuator 100 designed as a piezoelectric actuator.
  • the coupling element 106 is designed as a sonotrode.
  • the region of the excitation actuator 100 which adjoins the piezoelectric material 102 is designated together with the piezoelectric disks 102 as a converter.
  • the piezoelectric material 102 is excited by the fed high-frequency AC voltage to vibrations, which are transmitted via the converter in the coupling element 102.
  • this additionally consists of a booster 104 for amplitude adjustment.
  • the excitation actuator 100 takes on average the amplitude Amp excited vibration too.
  • Fig. 5 shows an impedance characteristic of a piezoactively executed excitation actuator with the resonance frequencies f_res and f_res2.
  • Characteristic A shows a profile of the impedance Imp as a function of the frequency f, which passes through an impedance minimum at the resonance frequency f_res and an impedance maximum at f_res2.
  • the frequency f_res is referred to as series resonance, f_res2 as parallel resonance.
  • Curve B shows the course of the phase shift between current and voltage, which has a zero crossing at the resonance frequency and changes from -90 ° below the resonance frequency f_res to + 90 ° above the resonance frequency f_res.
  • the phase shift of + 90 ° below the resonance frequency changes to -90 ° above the resonance frequency.
  • At least one inductance in a power circuit of the electronics unit, which supplies the at least one excitation actuator 100 with electrical power may be provided. It can be a space-saving structure of the power inductors realized together with the transmission transformer in a single bobbin.
  • the favorable with excitation actuators 100 signal filtering and inductive compensation of the piezoelectric actuator can be provided directly via a specifically set leakage inductance of a transmission transformer anyway required or be given by a wound on the same coil core inductance. An additional coil core with a further inductance in the power circuit can thereby be omitted.
  • Fig. 6 shows for explanation an equivalent circuit diagram with an ideal transformer.
  • the inductance M serves the actual transmission from primary side to secondary side.
  • the stray inductances arise because the windings can never be ideally coupled.
  • L1 and L2 represent the part of the magnetic field that can not be “captured" by the secondary coil.
  • L1 and L2 are to be considered as an air coil.
  • an angle grinder electric power tool 10 includes a housing 20 which consists of a motor housing 22 and a handle housing 24, wherein between the motor housing 22 and handle housing 24, a damping element 26 is arranged.
  • the power tool 10 is held on the handle housing 24, which forms the grip portion 40.
  • a drive unit 80 is received with a formed as an electric drive motor 82 drive component, which is coupled via a gear unit 62 with a tool shaft 64 and drives them.
  • the tool shaft 64 carries a tool 60 designed as a grinding wheel which is interchangeably fixed to the tool shaft 64.
  • Fig. 8 is the tool shaft 64 and attached thereto, designed as a grinding wheel tool 60 shown in detail.
  • the tool shaft 64 which has the longitudinal axis L, is rotatably mounted in bearings 70 and 72 which are spaced apart in the housing 20 are arranged.
  • the tool 60 designed as a grinding wheel is set in high-frequency oscillations in addition to its rotary working movement. These are overlapping vibrations that are superimposed on the working movement of the tool 60 designed as a grinding wheel. These superposition vibrations are generated by means of the excitation actuator 100, which is also arranged as a further drive component of the drive unit 80 in the housing 10 of the hand-held power tool 10 and directly or indirectly excites the designed as a grinding wheel tool 60 to the superposition oscillations.
  • the excitation actuator 100 which is also arranged as a further drive component of the drive unit 80 in the housing 10 of the hand-held power tool 10 and directly or indirectly excites the designed as a grinding wheel tool 60 to the superposition oscillations.
  • the excitation actuator 100 acts on the tool-side bearing 70 of the tool shaft 64 and generates overlay oscillations which are directed orthogonal to the longitudinal axis L of the tool shaft 64. These superposition oscillations directed orthogonally to the longitudinal axis L are also transmitted via the tool shaft 64 to the shaft Grinding wheel formed tool 60, which also orthogonal to the longitudinal axis L and thus exerts superposition oscillations in its plane of motion.
  • the excitation actuator 100 it is also possible to position the excitation actuator 100 at a different location, for example at the tool-distant bearing 72 or directly at a position on the tool shaft 64 or on the tool 60 designed as a grinding wheel, in order to apply this directly to superposition oscillations.
  • the excitation actuator 100 used is a piezoelectric element whose length changes as a result of the application of an electrical voltage. Since piezoelectric elements react very quickly to changes in voltage, a correspondingly rapid change in length in the excitation actuator can be generated by the application of a high-frequency voltage, which has an effect on the tool 60 embodied here by way of example as a grinding wheel.
  • the excitation actuator 100 can also be designed as a magnetoresistive actuator in which the electrical resistance can be changed by applying an external magnetic field.
  • the superposition vibrations in the direction of arrow 110 are generated orthogonal to the longitudinal axis L of the tool shaft 64 and the tool 60 designed as a grinding wheel.
  • the excitation with the superposition oscillations according to arrow direction 110 takes place in the direction of the longitudinal axis L of tool shaft 64 and tool 60 and thus perpendicular to the plane of movement of the tool 60 designed as a grinding wheel.
  • the excitation actuator 100 via which the superposition oscillations are generated, acts either directly on the tool shaft 64 or one or both bearings 70 and 72 or directly the tool 60 with the superposition vibrations in the axial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Claims (26)

  1. Machine-outil électrique manuelle (10) comportant :
    un boîtier (20) doté d'une partie de saisie (40),
    une partie d'outil (50) prévue pour un outil (60) qui peut être entraîné linéairement et/ou en oscillation,
    une partie de commande (30) située du côté du boîtier et permettant à l'utilisateur d'activer l'outil (60) et/ou la machine-outil électrique (10),
    une unité d'entraînement (80) disposée dans le boîtier (20) et qui produit un déplacement de travail de l'outil (60),
    une unité électronique (200) disposée dans le boîtier (20) et qui applique sur l'unité d'entraînement (80) au moins des signaux de commande et/ou de régulation et
    une unité (90) de tension de service qui délivre une tension électrique continue,
    l'unité d'entraînement (80) comportant au moins un actionneur d'excitation (100) doté d'un volume de matériau excitateur et qui est alimenté électriquement et est commandée ou régulée par l'unité électronique (200) lorsque l'unité (90) de tension de service est en fonctionnement,
    caractérisée en ce que
    l'unité électronique (200) est configurée pour entraîner le ou les actionneurs d'excitation (100) à une fréquence de résonance (f_res),
    en ce que le matériau excitateur est piézoélectrique, le volume du matériau piézoélectrique représentant au moins 0,2 cm3,
    en ce que le ou les actionneurs d'excitation (100) ont une densité de puissance d'au moins 5 Watts/cm3 par rapport au volume du matériau piézoélectriquement actif (102) du ou des actionneurs d'excitation (100) et
    en ce que l'unité électronique (200) comporte une unité de régulation (224) à adaptation de fréquence lui permettant de suivre la fréquence de résonance (f_res) du ou des actionneurs d'excitation (100), l'unité de régulation (224) commandant une unité (222) de fourniture d'énergie de l'unité électronique (200) de telle sorte que l'unité (222) de fourniture d'énergie forme une tension rectangulaire de type sinusoïdal au moyen d'une modulation en sinus-triangle, le nombre des impulsions rectangulaires par période du signal sinusoïdal étant supérieur à 6.
  2. Machine-outil électrique manuelle selon la revendication 1, caractérisée en ce que le nombre des impulsions rectangulaires par période du signal sinusoïdal est compris dans la plage de 10 à 100 et de préférence de 10 à 26.
  3. Machine-outil électrique manuelle selon les revendications 1 ou 2, caractérisée en ce que le volume du matériau piézoélectrique représente au moins 0,5 cm3 et en particulier au moins 1 cm3.
  4. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce que le ou les actionneurs d'excitation (100) ont une densité de puissance d'au moins 20 Watts/cm3 par rapport au volume du matériau piézoélectriquement actif (102) du ou des actionneurs d'excitation (100).
  5. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce que le ou les actionneurs d'excitation présentent à la pointe de l'outil une amplitude d'oscillation d'au moins 3 µm, de préférence d'au moins 8 µm et en particulier d'au moins 12 µm.
  6. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce que la puissance électrique qui alimente le ou les actionneurs d'excitation (100) à l'entrée de l'unité électronique (200) est d'au moins 20 Watts.
  7. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce que l'épaisseur de la plaque de l'actionneur d'excitation est typiquement de 1 mm à 10 mm, de préférence de 2 mm à 6 mm et en particulier de 5 mm.
  8. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce que l'intensité du champ d'entrée du ou des actionneurs d'excitation (100) est de l'ordre de 300 V/mm par rapport à l'épaisseur, en particulier l'épaisseur de la plaque du matériau piézoélectriquement actif qui de préférence est de l'ordre de 50 V/mm et de 220 V/mm.
  9. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce que la tension d'entrée du ou des actionneurs d'excitation (100) est de l'ordre de moins de 1 000 Volt et est de préférence comprise dans la plage de 300 Volt à 700 Volt.
  10. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce que la tension électrique de sortie de l'unité (90) de tension de service est inférieure à 100 Volt.
  11. Machine-outil électrique manuelle selon l'une des revendications 1 à 9, caractérisée en ce que la tension électrique de sortie de l'unité (90) de tension de service est supérieure à 100 Volt.
  12. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce que la fréquence de fonctionnement du ou des actionneurs d'excitation (100) est comprise dans la plage de 10 kHz à 1 000 kHz, de préférence de 30 kHz à 50 kHz et en particulier de 35 kHz à 45 kHz.
  13. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce que l'unité (90) de tension de service comporte un accumulateur électrochimique (92) et de préférence un accumulateur électrochimique (92) rechargeable.
  14. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce que l'unité (90) de tension de service comporte un redresseur (94).
  15. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce que l'unité électronique (200) est concentrée sur une carte de circuit (210).
  16. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce que pour filtrer les signaux et/ou pour compenser par induction le ou les actionneurs d'excitation (100), au moins une inductance est prévue dans un circuit de puissance de l'unité électronique (200) qui alimente en énergie électrique le ou les actionneurs d'excitation (100).
  17. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce qu'au moins l'unité d'entraînement (80), l'unité électronique (200) et l'unité (90) de tension de service sont réparties dans le boîtier (20) de telle sorte que le centre de masse soit situé au niveau de la partie de saisie (40).
  18. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce qu'en plus du ou des actionneurs d'excitation (100), l'unité d'entraînement (80) comporte au moins un autre composant d'entraînement.
  19. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce que le ou les actionneurs d'excitation (100) forment un consommateur principal d'énergie de la machine-outil électrique (10) pour lequel de préférence au moins 50 % de puissance électrique d'entrée sont prévus.
  20. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce qu'un ou plusieurs affichages de fonctionnement optiques, acoustiques et/ou tactiles (120, 122) sont prévus pour indiquer l'état d'activation du ou des actionneurs d'excitation (100).
  21. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce qu'elle présente un éclairage du champ de travail.
  22. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce que l'actionneur d'excitation (100) est prévu pour former dans l'outil (60) des oscillations qui sont superposées au déplacement de travail de l'outil (60).
  23. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce que l'outil (60) est monté à rotation et en ce que le déplacement de travail de l'outil (60) est un déplacement de rotation.
  24. Machine-outil électrique manuelle selon la revendication 18, caractérisée en ce que l'outil (60) est un disque de meulage.
  25. Machine-outil électrique manuelle selon l'une des revendications 17 à 19, caractérisée en ce que les oscillations superposées excitent l'outil (60) dans au moins l'une des directions suivantes :
    une direction perpendiculaire au plan de déplacement de l'outil (60) dans lequel a lieu le déplacement de travail de l'outil (60),
    la direction de l'axe longitudinal (L) d'un arbre d'outil (64) qui porte l'outil (60),
    dans le plan de déplacement dans lequel le déplacement de travail de l'outil (60) a lieu et/ou
    une direction perpendiculaire à l'arbre (64) de l'outil.
  26. Machine-outil électrique manuelle selon l'une des revendications précédentes, caractérisée en ce que l'actionneur d'excitation (100) agit sur un palier (70, 72) de l'outil (60).
EP09795760.9A 2009-01-05 2009-12-17 Machine-outil électrique portative Not-in-force EP2384259B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13173324.8A EP2644320A1 (fr) 2009-01-05 2009-12-17 Machine-outil électrique portative

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009000030 2009-01-05
DE102009027688A DE102009027688A1 (de) 2009-01-05 2009-07-14 Handgehaltene Elektrowerkzeugmaschine
PCT/EP2009/067375 WO2010076230A1 (fr) 2009-01-05 2009-12-17 Machine-outil électrique portative

Publications (2)

Publication Number Publication Date
EP2384259A1 EP2384259A1 (fr) 2011-11-09
EP2384259B1 true EP2384259B1 (fr) 2013-06-26

Family

ID=42234752

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13173324.8A Withdrawn EP2644320A1 (fr) 2009-01-05 2009-12-17 Machine-outil électrique portative
EP09795760.9A Not-in-force EP2384259B1 (fr) 2009-01-05 2009-12-17 Machine-outil électrique portative

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13173324.8A Withdrawn EP2644320A1 (fr) 2009-01-05 2009-12-17 Machine-outil électrique portative

Country Status (6)

Country Link
US (1) US20120045976A1 (fr)
EP (2) EP2644320A1 (fr)
CN (1) CN102271865B (fr)
DE (1) DE102009027688A1 (fr)
RU (1) RU2011132474A (fr)
WO (1) WO2010076230A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2841237B1 (fr) 2012-04-24 2021-01-06 C. & E. Fein GmbH Machine-outil pouvant être guidée manuellement et comportant un carter

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9601284B2 (en) * 2007-03-14 2017-03-21 Zonit Structured Solutions, Llc Hybrid relay
US9010329B2 (en) * 2009-02-10 2015-04-21 Aerophase Electronically-controlled, high pressure flow control valve and method of use
DE102009047348A1 (de) * 2009-12-01 2011-06-09 Robert Bosch Gmbh Gartengerät mit mindestens einer Arbeitsklinge
CN102656657B (zh) * 2009-12-16 2015-04-15 胡斯华纳有限公司 具有启动指示装置的电动手持工具
DE102011075137A1 (de) 2011-05-03 2012-11-08 Robert Bosch Gmbh Handgeführtes Elektrowerkzeug mit einem schwingfähigen Anregungsaktor
DE102011075134A1 (de) 2011-05-03 2012-11-08 Robert Bosch Gmbh Handgeführtes Elektrowerkzeug mit einem schwingfähigen Anregungsaktor
DE102011075682A1 (de) 2011-05-11 2012-11-15 Robert Bosch Gmbh Handgeführtes Elektrowerkzeug mit einem schwingfähigen Anregungsaktor
DE102011078684A1 (de) * 2011-07-05 2013-01-10 Robert Bosch Gmbh Handgeführtes Elektrowerkzeug mit einem schwingfähigen Anregungsaktor
US10399218B2 (en) * 2011-12-19 2019-09-03 Carine Elen Motorized scrubbing, buffing, and polishing tool
US9408513B2 (en) * 2011-12-19 2016-08-09 Carine Elen Motorized scrubbing, buffing, and polishing tool
US9630310B2 (en) * 2013-02-01 2017-04-25 Makita Corporation Electric tool
DE102014201918A1 (de) * 2013-02-06 2014-08-07 Robert Bosch Gmbh Stabförmige Handwerkzeugmaschine mit einem Schiebeschalter zum Ein- und Ausschalten eines Antriebsmotors
CN105636731B (zh) * 2013-03-14 2018-06-01 罗伯特·博世有限公司 用于电动工具的滑动开关
US11948760B2 (en) 2013-03-15 2024-04-02 Zonit Structured Solutions, Llc Hybrid relay
EP2853364A1 (fr) * 2013-09-27 2015-04-01 A O Schallinox GmbH Outil manuel pour l'usinage d'un produit de processus
CN105033779B (zh) * 2014-09-01 2018-01-30 哈尔滨工业大学深圳研究生院 超声加工系统的动态跟踪匹配装置
DE102014220225A1 (de) 2014-10-07 2016-04-07 Robert Bosch Gmbh Handgeführtes Elektrowerkzeug mit einem schwingfähigen Anregungsaktor
DE102014220227A1 (de) 2014-10-07 2016-04-07 Robert Bosch Gmbh Handgeführtes Elektrowerkzeug mit einem schwingfähigen Anregungsaktor
DE102014221206A1 (de) 2014-10-20 2016-04-21 Robert Bosch Gmbh Handgeführtes Elektrowerkzeug mit einem schwingfähigen Anregungsaktor
DE102015105338A1 (de) 2015-04-08 2016-10-27 Lti Motion Gmbh Werkzeugantrieb mit Spindelwelle und Betriebsverfahren
DE102015212809B4 (de) * 2015-07-08 2021-08-26 Sauer Gmbh Verfahren und Vorrichtung zur Messung einer Resonanzfrequenz eines in Ultraschall versetzten Werkzeugs für die spanende Bearbeitung
DE102016204485A1 (de) 2016-03-17 2017-09-21 Robert Bosch Gmbh Einsatzwerkzeug zur Ultraschallbearbeitung
DE102016211729A1 (de) 2016-06-29 2018-01-04 Robert Bosch Gmbh Verfahren zum Betrieb einer Ultraschallbohrmaschine
DE102016014253B4 (de) * 2016-11-08 2020-10-22 Innolite Gmbh Ultraschall-System, Verfahren zur Auslegung eines Ultraschall-Systems
DE102016225458A1 (de) 2016-12-19 2018-06-21 Robert Bosch Gmbh Ultraschallbohrwerkzeug
DE102016225455A1 (de) 2016-12-19 2018-06-21 Robert Bosch Gmbh Ultraschallbohrvorrichtung
CN106695464B (zh) * 2017-01-03 2019-03-22 东莞理工学院 一种应用于硬脆材料加工的纵扭复合振动加工系统
WO2019079560A1 (fr) 2017-10-20 2019-04-25 Milwaukee Electric Tool Corporation Outil à percussion
CN214723936U (zh) 2018-01-26 2021-11-16 米沃奇电动工具公司 冲击工具
CN110753603B (zh) 2018-03-28 2022-09-16 南京泉峰科技有限公司 电动工具及其控制方法
WO2019191848A1 (fr) * 2018-04-04 2019-10-10 The University Of British Columbia Procédés et appareils provoquant la vibration d'au moins un outil
DE102018206876A1 (de) * 2018-05-04 2019-11-07 Robert Bosch Gmbh Werkzeugmaschinenvorrichtung
DE102018126185A1 (de) * 2018-10-22 2020-04-23 Schaeffler Technologies AG & Co. KG Werkzeug und Verfahren zur mechanischen Oberflächenbearbeitung
KR102128489B1 (ko) * 2019-12-21 2020-06-30 주식회사 메타바이오메드 에너지 수집이 가능한 무선형 초음파 수술기
RU203649U1 (ru) * 2020-05-21 2021-04-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." Ультразвуковая насадка к дрели для сверления полимерных композиционных материалов

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3447051A (en) * 1965-01-13 1969-05-27 Union Special Machine Co Control circuit for electro-mechanical devices
US3396285A (en) * 1966-08-10 1968-08-06 Trustees Of The Ohio State Uni Electromechanical transducer
GB1207974A (en) * 1966-11-17 1970-10-07 Clevite Corp Frequency selective apparatus including a piezoelectric device
JPH0810994B2 (ja) * 1986-02-18 1996-01-31 株式会社東芝 インバ−タ装置
DE8805832U1 (de) * 1988-05-03 1988-07-07 Mafell-Ultrasonics GmbH Keramik-Erosion, 7238 Oberndorf Vorrichtung zur Bearbeitung von sehr hartem Werkstoff mittels eines Bearbeitungswerkzeugs
GB8810976D0 (en) * 1988-05-10 1988-06-15 Sra Dev Ltd Cutting brittle materials
DE9003031U1 (de) * 1990-03-13 1990-09-27 Ebi, Manfred, 7618 Nordrach Elektro-pneumatische Pendelschleifmaschine mit Komplex-Schleifscheibe
JP3185226B2 (ja) * 1991-01-30 2001-07-09 株式会社村田製作所 圧電バイモルフ素子の駆動方法及び圧電バイモルフ素子
GB9312699D0 (en) * 1993-06-19 1993-08-04 Young Michael J R Apparatus for making an aperture in a tile
DE4444853B4 (de) * 1994-12-16 2006-09-28 Hilti Ag Handgerät zur materialabtragenden Bearbeitung mit elektroakustischem Wandler für die Erzeugung von Ultraschallschwingungen
CA2299997A1 (fr) * 1999-03-05 2000-09-05 Thomas Peterson Methode et appareil pour nettoyer les instruments medicaux et des objets de meme nature
US6204592B1 (en) * 1999-10-12 2001-03-20 Ben Hur Ultrasonic nailing and drilling apparatus
AU2002368194A1 (en) * 2002-08-31 2004-03-19 Atlas Copco Electric Tools Gmbh Tool
CN100492844C (zh) * 2003-05-29 2009-05-27 株式会社田村制作所 压电变压器的驱动方法和驱动电路
CN102230457B (zh) * 2004-02-23 2014-05-07 日本电气株式会社 压电泵驱动电路和使用该驱动电路的冷却系统
JP3854285B2 (ja) 2004-05-20 2006-12-06 三愛工業株式会社 溶着機
JP2006279485A (ja) * 2005-03-29 2006-10-12 Epson Toyocom Corp 高安定圧電発振器
DE102005031074A1 (de) * 2005-06-24 2007-01-04 C. & E. Fein Gmbh Kraftgetriebenes Handwerkzeug mit Dämpfungseinrichtung
DE102007021338A1 (de) * 2007-05-07 2008-11-13 Robert Bosch Gmbh Piezoelektrische Antriebsvorrichtung
US20090162810A1 (en) * 2007-12-21 2009-06-25 Peter Werner Ultrasonic dental insert and lighted handpiece assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2841237B1 (fr) 2012-04-24 2021-01-06 C. & E. Fein GmbH Machine-outil pouvant être guidée manuellement et comportant un carter

Also Published As

Publication number Publication date
US20120045976A1 (en) 2012-02-23
WO2010076230A1 (fr) 2010-07-08
RU2011132474A (ru) 2013-02-10
CN102271865B (zh) 2015-11-25
EP2644320A1 (fr) 2013-10-02
CN102271865A (zh) 2011-12-07
EP2384259A1 (fr) 2011-11-09
DE102009027688A1 (de) 2010-07-08

Similar Documents

Publication Publication Date Title
EP2384259B1 (fr) Machine-outil électrique portative
EP2490863B1 (fr) Machine-outil électrique à excitation par ultrasons
EP2563547B1 (fr) Système de lubrification à quantités minimales
EP3266556B1 (fr) Dispositif de soudage ultrasonique torsionnel de pieces metalliques
DE102012219254B4 (de) Versorgungsschaltung, Versorgungssystem, Werkzeugaktor, Werkzeug
DE102010028233A1 (de) Hubsäge
EP3221082A1 (fr) Ensemble broche et machine-outil comprenant un ensemble broche
DE102015226423A1 (de) Handwerkzeugmaschine
WO2018114394A1 (fr) Système d'outil portatif
DE102006007990A1 (de) Handwerkzeugmaschine
EP2311427A1 (fr) Appareil de traitement à ultrasons et son procédé de fonctionnement
EP1081772B1 (fr) Dispositif d'entraínement piézoélectrique
EP1670632B1 (fr) Procede et dispositif de soudage par fiction
DE102009001284B4 (de) Vorrichtung und Verfahren zur Behandlung von metallischen Oberflächen mittels eines motorisch angetriebenen Schlagwerkzeugs
EP2888812A2 (fr) Procédé et dispositif de commande d'un moteur électrique de machine-outil portative
EP2632667A1 (fr) Outil remplaçable pour une machine-outil électrique et machine-outil électrique munie d'un outil remplaçable
DE102005010556B4 (de) Zahnärztliche Vorrichtung zur Behandlung mittels Ultraschall
DE102014119141A1 (de) Oszillierend antreibbare Werkzeugmaschine
WO2011080028A1 (fr) Appareil de pulvérisation tenu à la main
DE9005626U1 (de) Naßrasierer mit auswechselbarer Rasierklinge
AT410768B (de) Vorrichtung an sich drehenden werkzeugen
EP3332468B1 (fr) Appareil de charge par induction pour la transmission d'énergie par induction à un dispositif accumulateur à induction ainsi que procédé de charge par induction d'un dispositif accumulateur à induction
DE102011078083A1 (de) Handgeführtes Elektrowerkzeug mit einem schwingfähigen Anregungsaktor
WO2019185171A1 (fr) Perceuse à main à ultrasons
DE102012201691A1 (de) Handgeführtes Elektrowerkzeug mit einer Antriebseinheit zum schwingenden Antrieb eines Einsatzwerkzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110805

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120531

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 618475

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009007447

Country of ref document: DE

Effective date: 20130822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130927

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130926

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130926

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131028

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131026

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131007

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

26N No opposition filed

Effective date: 20140327

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20131231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009007447

Country of ref document: DE

Effective date: 20140327

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131217

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131217

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 618475

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151218

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170224

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009007447

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703