EP2382423A1 - Induktionseinheit zur zusammenführung von luftströmen - Google Patents
Induktionseinheit zur zusammenführung von luftströmenInfo
- Publication number
- EP2382423A1 EP2382423A1 EP09838971A EP09838971A EP2382423A1 EP 2382423 A1 EP2382423 A1 EP 2382423A1 EP 09838971 A EP09838971 A EP 09838971A EP 09838971 A EP09838971 A EP 09838971A EP 2382423 A1 EP2382423 A1 EP 2382423A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- duct
- induction
- primary air
- air flow
- induction unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000006698 induction Effects 0.000 title claims abstract description 110
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 7
- 238000005192 partition Methods 0.000 claims description 13
- 239000003570 air Substances 0.000 description 115
- 230000003068 static effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/01—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station in which secondary air is induced by injector action of the primary air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/26—Arrangements for air-circulation by means of induction, e.g. by fluid coupling or thermal effect
Definitions
- Induction unit for uniting air flows
- the present invention relates to an induction unit for uniting air flows, comprising at least one induction duct coordinated with a primary air duct of the type specified in the preamble to patent claim 1 below.
- Induction units in which air flowing out of nozzles, slits or the like creates an induction (the ejector effect), which causes ambient air (circulated air) to circulate through a heat exchanger etc are already known.
- the nozzles formed as so-called ducted primary air nozzles directly in the wall of a primary air duct, which is connected to a fresh air fan.
- Extending from the duct wall with primary air nozzles and parallel to the outlet flow direction thereof is an induction duct, which in its duct wall adjoining the primary air nozzles has an inlet opening for circulated air, leading to a common outlet for the air mixture.
- the inlet opening for circulated air is arranged transversely to the outlet flow direction of the primary air nozzles.
- the fresh air fan By means of its fan pressure the fresh air fan produces jets through the nozzles, which in turn generate a static negative pressure over the inlet opening, which may be connected to a heat exchanger.
- the circulated air also referred to as secondary air, is thereby drawn in through the inlet opening oriented transversely to the outlet flow direction of the primary air nozzles and through the heat exchanger, where the air is either cooled or heated, whereupon the secondary air is forced to change direction by approximately 90 degrees during mixing with the primary air, before the air mixture is returned to the surrounding air through a common outlet.
- Another problem is that the efficiency of the heat exchanger becomes irregular and poorly optimized in that the static negative pressure generated by the primary air nozzles over the inlet opening connected to the heat exchanger varies over different parts of its area.
- the static negative pressure is almost 100% in the part of the inlet opening area closest to the duct wall with the primary air nozzles, whereas the static negative pressure drops towards 0% in the part of the inlet opening area situated furthest away from this duct wall.
- An object of the invention is to provide an improved induction unit, which is not impaired by the problems and disadvantages inherent in hitherto known technical solutions of this type that have been described above.
- figure 1 shows a cross section through one embodiment of an induction unit of conventional type
- figure 2 shows a cross section through an induction unit according to the invention having one induction duct
- figure 3 a shows a cross section through a further embodiment provided with a partition wall and two induction ducts
- figures 3b and 3 c are perspective sketch views, which show how the induction unit in figure 3a can be formed in sections
- figure 4 shows a variant of the induction unit in figure 3 having three induction ducts
- figure 5 shows a further enhanced embodiment of the induction unit in figure 3.
- FIG. 1 shows a previously known induction unit 2, which has so-called ducted primary air nozzles 4 formed directly in the wall of a primary air duct 6, which is connected to a fresh air fan (not shown).
- a primary air duct 6 Extending from the duct wall with the primary air nozzles 4 and parallel to the outlet flow direction thereof is an induction duct 8, which in its duct wall adjoining the primary air nozzles 4 has a secondary air intake 12, connected via a heat exchanger 10, leading to a common outlet 14 for the air mixture.
- the secondary air intake 12 is situated transversely to the outlet flow direction of the primary air nozzles 4.
- the fresh air fan produces jets through the nozzles 4, which in turn generate a static negative pressure over the secondary air intake 12 and the heat exchanger 10 connected thereto.
- the secondary air is thereby drawn in through the secondary air intake 12 and through the heat exchanger 10, where the air is either cooled or heated, whereupon the secondary air is forced to change direction by approximately 90 degrees during mixing with the primary air, before the air mixture is returned to the surrounding air through the common outlet 14.
- the static negative pressure generated by the primary air nozzles over the inlet opening connected to the heat exchanger thereby varies over different parts of its area.
- the static negative pressure is almost 100% in the part of the inlet opening area closest to the duct wall with the primary air nozzles 4, whereas the static negative pressure drops towards 0% in the part of the inlet opening area situated furthest away from this duct wall.
- FIG. 2 shows a cross section through a basic embodiment of an induction unit 20 according to the invention, having one induction duct 21, which by contrast extends substantially straight from an upstream end with a secondary air intake 22 to a downstream end with an outlet 24 and has a straight reference line A passing through the ends.
- the flow paths from the upstream end with the secondary air intake 22 to the downstream end with the outlet 24 are thereby straight and parallel to the reference line A, which compared to the state of the art gives a substantially lower flow resistance and hence a maximized secondary air flow.
- a heat exchanger 26 when a heat exchanger 26 is connected to the secondary air intake 22 this moreover also advantageously affords a uniform flow through the heat exchanger 26, which leads to an optimum utilization of the entire heat exchanger surface.
- the variations in the static negative pressure are therefore very small and close to 100% over the entire area of the inlet opening 22.
- the induction unit 20 is likewise provided with primary air nozzles in the form of ducted first openings 28, which may be formed directly in a first duct wall 29 between the induction duct 21 and a first primary air duct 30, which is likewise connected to a fresh air fan (not shown).
- the first duct wall 29 has been profiled into a substantially z-like shape with a waist 32 running transversely to the reference line A, in which each first opening 28 is made and through which a primary air flow Fl directed with concurrent flow can be introduced into the induction duct 21 at a relatively small angle ⁇ of approximately 0-10° to the reference line A.
- the waist 32 is suitably situated at approximately 1/3 of the distance between the secondary air intake 22 and the outlet 24.
- the second duct wall 34 constitutes the opposite boundary of the secondary air intake 22, so that the entire cross section of the secondary air intake 22 is open to the induction duct.
- From the waist 32 a second leg of the first duct wall 29, converging with the second duct wall 36 towards the outlet 24, extends a further 1/3 of the distance in such a way as to produce a cross section which is less than half of the cross section of the secondary air intake and which has a substantially constant cross section over the remaining 1/3 towards the outlet 24.
- the reference line A extends centrally in the part of the induction duct of constant cross-section.
- the second duct wall 36 of the induction duct 21 may be of an extent corresponding to this cross section.
- the secondary air intake 22 thereby has an area which is at least twice as large as the outlet 24, thereby forming a venturi 38, the venturi effect of which contributes to a greater suction effect in the secondary air intake 22.
- Figure 3a shows a further enhanced embodiment similar to that in figure 2, with a two-duct induction unit 20' formed by two laterally inverted induction units 20 having a first induction duct 21' and a second induction duct 21", each having its associated primary air duct, a first primary air duct 30' and a second primary air duct 30" with associated first openings 28'.
- Every second duct wall 34 here has been replaced by a partition wall 38, which separates the first induction duct 21 ' from the second induction duct 21".
- the partition wall 38 makes it possible to distribute various air flows to the induction ducts, for example by fitting the first primary air duct 30' and the second primary air duct 30" with first openings 28' of different sizes.
- each first opening 28', or a group of first openings 28' blowing into each induction duct may be closable in a manner known in the art, in order to allow the first induction duct 21', for example, to be shut off whilst the second induction duct 21" continues to operate, or vice- versa.
- the regulation of the primary air between the primary air ducts may also be controlled in some other way, for example by throttle control of the inflow to each primary air duct or by using different fans, which are individually controllable, in order to create the intended effect.
- One example may be to use the first primary air duct 30' for a basic flow and to use the second primary air duct 30" and/or further primary air ducts, which will be described later with reference to figure 4, for one or more forced-air flows.
- the partition wall 38 results in separate air paths for each duct and hence an optimum induction.
- the partition wall may also be of moveable design, that is to say if the first primary air duct 30' has most primary air, the first induction duct 21 ' must also be larger, which can be achieved in a manner known in the art by displacing the partition wall 38 towards the second induction duct 21 ' '.
- Figures 3b and 3 c are perspective sketch views, which show how the induction unit 20' in figure 3a can be formed in sections, where each section 40 is box- shaped of a height H, depth D and length L and comprises the two primary air ducts 30'; 30" and the two induction ducts 21'; 21".
- the profiled waist 32" of the first duct wall 29 for example, may be provided with a group of three first openings 28', which connect each primary air duct to the associated induction duct.
- an induction unit 20" may thereby be constructed in modular form from one or more sections 40, depending on the required capacity in the particular case.
- the modular construction in sections 40 allows an induction unit 20" of height H, depth D and length n x L to be assembled from a suitable number n of sections 40 in accordance with the particular ventilation and/or air conditioning requirement.
- Figure 4 shows a variant of the induction unit having three induction ducts.
- an induction unit 20 according to the basic embodiment in figure 2 has been combined with an induction unit 20' according to the embodiment in figure 3, creating a three-duct induction unit 20'".
- This three-duct variant therefore has a first induction duct 21', a second induction duct 21" and a third induction duct 21'", each comprising its own associated primary air duct, a first primary air duct 30', a second primary air duct 30" and a third primary air duct 30'" with associated first openings 28'.
- the function of each duct in this variant is equivalent to the preceding embodiments and will therefore not be described in more detail here.
- first primary air duct 30' for a basic flow and use of the second primary air duct 30" for a forced-air flow to a first level and the third primary air duct 30'" for a forced-air flow to a second level and any further primary air ducts to further boost the forced-air flows.
- the partition wall 38'" or equivalent partition walls result in separate air paths for each duct and hence an optimum induction.
- the basic flow can be ensured by means of two or three primary air ducts, after which forced-air flows can be produced by means of an optional further number of primary air ducts.
- FIG. 5 shows a further enhanced embodiment 20"" of the induction unit in figures 3a-c.
- the design of each induction duct has been further improved in that the z-profiled first duct wall 29 has been replaced by a plane wall, to reduce the flow resistance further and to improve the efficiency.
- a third induction duct 42 and a fourth induction duct 42' are therefore formed each with their own plane third wall 44 or fourth wall 44' on either side of an associated, likewise plane partition wall, which for the sake of clarity has here been termed a dividing wall 46. From the secondary air intake 48 each plane third wall 44 and plane fourth wall 44' converges to a position situated at substantially 2/3 of the distance to the outlet 50 and extends with a substantially constant cross section over the remaining 1/3 of the distance to outlet.
- the first duct wall 29, profiled to a substantially z-like shape, with a waist 32 which runs transversely to the reference line A and which partially encroaches on the cross sectional area of each induction duct, and in which each first opening 28 is made, has therefore in each case been replaced by a plane third wall 44 or fourth wall 44'.
- Each first opening 28 in previous embodiments according to figures 2-4 has then been replaced by a second primary air nozzle 52 embodied as a bent pipe, which in place of the waist 32 projects a distance into each induction duct 42, 42' and which may be configured in such a way that the primary air flow can be directed parallel to the dividing wall 46 and the reference line A.
- the construction according to the enhanced embodiment 20"" means that, because only the second primary air nozzles 52 project into the third and fourth induction ducts 42, 42' through isolated points in the plane third wall 44 and fourth wall 44' respectively, the second primary air nozzles 52 affect the flow resistance in each of the induction ducts 42, 42' to a substantially lesser degree than the waist 32 running transversely to the reference line A in preceding embodiments.
- the heat exchanger may, where appropriate, as shown by the dashed defining lines of the heat exchanger across the upstream end, be omitted and the induction unit used, for example, for mixing circulated air with fresh air in specific proportions.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Duct Arrangements (AREA)
- Jet Pumps And Other Pumps (AREA)
- Air-Flow Control Members (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0950029A SE533440C2 (sv) | 2009-01-26 | 2009-01-26 | Induktionsapparat för sammanföring av luftflöden |
PCT/SE2009/051499 WO2010085194A1 (en) | 2009-01-26 | 2009-12-23 | Induction unit for uniting air flows |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2382423A1 true EP2382423A1 (de) | 2011-11-02 |
EP2382423A4 EP2382423A4 (de) | 2012-11-21 |
EP2382423B1 EP2382423B1 (de) | 2018-10-24 |
Family
ID=42356102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09838971.1A Not-in-force EP2382423B1 (de) | 2009-01-26 | 2009-12-23 | Induktionseinheit zur zusammenführung von luftströmen |
Country Status (7)
Country | Link |
---|---|
US (1) | US20120015600A1 (de) |
EP (1) | EP2382423B1 (de) |
CN (1) | CN102292600B (de) |
AU (1) | AU2009338225A1 (de) |
NZ (1) | NZ594194A (de) |
SE (1) | SE533440C2 (de) |
WO (1) | WO2010085194A1 (de) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110165832A1 (en) * | 2010-08-25 | 2011-07-07 | Ford Global Technologies, Llc | Electric compartment exhaust duct with enhanced air cooling features |
CN102444934B (zh) * | 2010-09-30 | 2016-06-01 | 海尔集团公司 | 一种具有空气放大器的空调器 |
US9551496B2 (en) * | 2011-04-20 | 2017-01-24 | Dan P. McCarty | Displacement-induction neutral wall air terminal unit |
JP5786687B2 (ja) * | 2011-11-30 | 2015-09-30 | 株式会社富士通ゼネラル | 空気調和機 |
JP5786686B2 (ja) * | 2011-11-30 | 2015-09-30 | 株式会社富士通ゼネラル | 空気調和機 |
JP5786688B2 (ja) * | 2011-11-30 | 2015-09-30 | 株式会社富士通ゼネラル | 空気調和機 |
US9920950B2 (en) * | 2012-03-16 | 2018-03-20 | Oy Halton Group Ltd. | Chilled beam with multiple modes |
JP2013226859A (ja) * | 2012-04-24 | 2013-11-07 | Denso Corp | 空気吹出装置 |
US9625166B2 (en) * | 2013-02-20 | 2017-04-18 | Air System Components, Inc. | Induction displacement air handling unit |
CN104648674A (zh) * | 2013-11-22 | 2015-05-27 | 中国航空工业集团公司西安飞机设计研究所 | 一种低阻风扇辅助引射进气装置 |
US20170067689A1 (en) * | 2014-03-27 | 2017-03-09 | Halliburton Energy Services, Inc. | Pumping equipment cooling system |
JP6516547B2 (ja) * | 2015-04-27 | 2019-05-22 | 三菱航空機株式会社 | 気圧調整弁を通じて排気させるダクト構造および航空機 |
US11168951B2 (en) * | 2016-07-14 | 2021-11-09 | General Electric Company | Entrainment heat exchanger |
US11204192B2 (en) * | 2018-06-15 | 2021-12-21 | Johnson Controls Technology Company | Adjustable duct for HVAC system |
DE102018120712A1 (de) * | 2018-08-24 | 2020-02-27 | Gerhard Dehner | Vorrichtung zur Zuluftzuführung in einen Raum |
US11560043B2 (en) * | 2019-07-31 | 2023-01-24 | The Boeing Company | Passenger cabin air distribution system and method of using |
AU2020394759B2 (en) | 2019-12-06 | 2023-10-26 | Guangdong Midea White Home Appliance Technology Innovation Center Co. Ltd. | Heat exchange device and refrigerant circulation system |
CN112923439A (zh) * | 2019-12-06 | 2021-06-08 | 广东美的白色家电技术创新中心有限公司 | 新风系统和冷媒循环系统 |
CN112212443B (zh) * | 2020-10-27 | 2024-02-02 | 西安建筑科技大学 | 一种带环形风口的送风装置及其设计方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2921514A (en) * | 1955-02-03 | 1960-01-19 | Erik Larsson Goesta | Convectors |
US3654944A (en) * | 1969-10-29 | 1972-04-11 | Johnson Service Co | Fluid mixing control apparatus |
US5127878A (en) * | 1980-09-05 | 1992-07-07 | Camp Dresser & Mckee | Mixing box |
WO2004085930A1 (en) * | 2003-03-24 | 2004-10-07 | Dadanco Pty Ltd | Induction diffuser |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3465814A (en) * | 1968-03-12 | 1969-09-09 | Carrier Corp | Air conditioning terminal |
CH574084A5 (de) * | 1973-11-21 | 1976-03-31 | Luwa Ag | |
US3981326A (en) * | 1974-02-28 | 1976-09-21 | Mitco Corporation | Induction mixing nozzle |
US4113176A (en) * | 1976-04-21 | 1978-09-12 | Nicholas Caknis | Air-conditioning |
US4090434A (en) * | 1977-03-07 | 1978-05-23 | Connor Engineering & Manufacturing, Inc. | Variable induction apparatus with a primary fluid flow controlled induction damper |
US4446774A (en) * | 1980-05-19 | 1984-05-08 | Gershon Meckler | Air conditioning apparatus |
US4858519A (en) * | 1980-09-05 | 1989-08-22 | Gershon Meckler | Mixing box |
US4448111A (en) * | 1981-01-02 | 1984-05-15 | Doherty Robert | Variable venturi, variable volume, air induction input for an air conditioning system |
US4913036A (en) * | 1981-10-26 | 1990-04-03 | Gershon Meckler | Mixing box |
NO844320L (no) * | 1984-10-30 | 1986-05-02 | Norsk Viftefabrikk As | Fremgangsmaate ved ventilasjon av rom. |
EP0387362A1 (de) * | 1989-03-12 | 1990-09-19 | Ventilplafon S.A. | System zur Klimatisierung von Räumen |
AUPN164695A0 (en) * | 1995-03-10 | 1995-04-06 | Luminis Pty Limited | Improved induction nozzle and arrangement |
CA2151773C (en) * | 1995-06-14 | 2000-03-28 | Vernon Casper Badry | Air inductor device for controlled fresh air intake in an air heating system |
US6139425A (en) * | 1999-04-23 | 2000-10-31 | Air Handling Engineering Ltd. | High efficiency air mixer |
US6213867B1 (en) * | 2000-01-12 | 2001-04-10 | Air Handling Engineering Ltd. | Venturi type air distribution system |
FI118236B (fi) * | 2000-11-24 | 2007-08-31 | Halton Oy | Tuloilmalaite |
US6547433B2 (en) * | 2001-01-05 | 2003-04-15 | M & I Heat Transfer Products, Ltd. | Air mixing device having series of parallel airflow passages |
US20060183419A1 (en) * | 2005-02-17 | 2006-08-17 | York International Corporation | Air handling unit mixing method and system |
DE602005013003D1 (de) * | 2005-07-15 | 2009-04-09 | Carrier Corp | Luftverteilsystem für eine klimaanlage |
FI122286B (fi) * | 2006-01-16 | 2011-11-15 | Halton Oy | Tuloilmalaite ja menetelmä ilmavirtausmäärän säädössä |
FI122295B (fi) * | 2007-02-16 | 2011-11-15 | Halton Oy | Tuloilmalaite |
NL2002015C (nl) * | 2008-09-24 | 2010-03-25 | Inteco B V | Kruisstroom inductie plafondconvector. |
-
2009
- 2009-01-26 SE SE0950029A patent/SE533440C2/sv unknown
- 2009-12-23 NZ NZ594194A patent/NZ594194A/xx not_active IP Right Cessation
- 2009-12-23 AU AU2009338225A patent/AU2009338225A1/en not_active Abandoned
- 2009-12-23 CN CN200980155406.4A patent/CN102292600B/zh not_active Expired - Fee Related
- 2009-12-23 US US13/144,052 patent/US20120015600A1/en not_active Abandoned
- 2009-12-23 EP EP09838971.1A patent/EP2382423B1/de not_active Not-in-force
- 2009-12-23 WO PCT/SE2009/051499 patent/WO2010085194A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2921514A (en) * | 1955-02-03 | 1960-01-19 | Erik Larsson Goesta | Convectors |
US3654944A (en) * | 1969-10-29 | 1972-04-11 | Johnson Service Co | Fluid mixing control apparatus |
US5127878A (en) * | 1980-09-05 | 1992-07-07 | Camp Dresser & Mckee | Mixing box |
WO2004085930A1 (en) * | 2003-03-24 | 2004-10-07 | Dadanco Pty Ltd | Induction diffuser |
Non-Patent Citations (1)
Title |
---|
See also references of WO2010085194A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20120015600A1 (en) | 2012-01-19 |
CN102292600B (zh) | 2014-01-08 |
EP2382423A4 (de) | 2012-11-21 |
NZ594194A (en) | 2013-09-27 |
CN102292600A (zh) | 2011-12-21 |
WO2010085194A1 (en) | 2010-07-29 |
SE533440C2 (sv) | 2010-09-28 |
SE0950029A1 (sv) | 2010-07-27 |
AU2009338225A1 (en) | 2011-08-11 |
EP2382423B1 (de) | 2018-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2382423B1 (de) | Induktionseinheit zur zusammenführung von luftströmen | |
EP3006855B1 (de) | Verfahren zur verhinderung von kondensation durch luftzufuhrvorrichtung einer klimaanlage | |
SE534353C2 (sv) | Kylbaffel med VAV-funktion via reglerskena | |
CN105546778A (zh) | 一种实现均匀送风的静压箱 | |
CN107525248B (zh) | 空调器导风板与空调器 | |
KR101747609B1 (ko) | 연소 장치 | |
US20060211365A1 (en) | Induction diffuser | |
CN114060932A (zh) | 柜式空调室内机 | |
US2976794A (en) | High-velocity primary air nozzle | |
CN107031341A (zh) | 用于暖通空调的促进混和的温度门 | |
CN208349877U (zh) | 板换式消雾模块及其冷却塔 | |
CN104315690B (zh) | 一种用于坐姿的个性化节能送风装置 | |
CN205669863U (zh) | 一种送风系统及应用其的室内机和空调 | |
CN204227648U (zh) | 空调器 | |
US10401048B2 (en) | Air flow mixer | |
EP3006851B1 (de) | Klimaanlage mit klimaanlagenluftzufuhrvorrichtung | |
JP6837191B2 (ja) | 送風装置 | |
CN114623502A (zh) | 空调室内机和空调器 | |
EP3006850A1 (de) | Luftzufuhrvorrichtung für eine vertikale klimaanlage mit einer luftstromverteilungsanordnung | |
US7669535B2 (en) | Boiler gas flow distribution fin apparatus and method | |
CN216838660U (zh) | 晾衣机主机、晾衣机 | |
JP2019060295A (ja) | 送風装置 | |
CN220397677U (zh) | 风管机 | |
CN220379939U (zh) | 出风结构和具有其的空调器 | |
CN218915118U (zh) | 立式空调器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110715 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20121018 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F24F 13/26 20060101ALI20121012BHEP Ipc: F24F 1/01 20110101AFI20121012BHEP |
|
17Q | First examination report despatched |
Effective date: 20160530 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180523 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1057140 Country of ref document: AT Kind code of ref document: T Effective date: 20181115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009055303 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181024 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1057140 Country of ref document: AT Kind code of ref document: T Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190124 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190224 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190124 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20190102 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190125 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009055303 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181223 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
26N | No opposition filed |
Effective date: 20190725 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181223 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20191218 Year of fee payment: 11 Ref country code: DE Payment date: 20191219 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20091223 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181024 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602009055303 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20201223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201223 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210701 |