EP2380414B1 - Strahlrohr sowie teilchenbeschleuniger mit einem strahlrohr - Google Patents

Strahlrohr sowie teilchenbeschleuniger mit einem strahlrohr Download PDF

Info

Publication number
EP2380414B1
EP2380414B1 EP09771739.1A EP09771739A EP2380414B1 EP 2380414 B1 EP2380414 B1 EP 2380414B1 EP 09771739 A EP09771739 A EP 09771739A EP 2380414 B1 EP2380414 B1 EP 2380414B1
Authority
EP
European Patent Office
Prior art keywords
conductor
beam tube
carrier substrate
electrical conductor
particle accelerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09771739.1A
Other languages
English (en)
French (fr)
Other versions
EP2380414A1 (de
Inventor
Oliver Heid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2380414A1 publication Critical patent/EP2380414A1/de
Application granted granted Critical
Publication of EP2380414B1 publication Critical patent/EP2380414B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H5/00Direct voltage accelerators; Accelerators using single pulses
    • H05H5/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/22Details of linear accelerators, e.g. drift tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators
    • H05H9/005Dielectric wall accelerators

Definitions

  • the invention relates to a jet pipe for guiding a charged particle beam and to a particle accelerator with such a jet pipe.
  • Such a jet pipe is particularly provided in a particle accelerator for charged particles.
  • the charged particle beam may include, for example, electrons, nuclei, ionized atoms, charged molecules or charged molecular fragments.
  • the acceleration of the charged particle beam takes place in a jet-carrying hollow volume, which is enclosed by the jet pipe.
  • the hollow volume is usually evacuated during operation of the particle accelerator.
  • usually associated with the jet pipe vacuum pump system is provided.
  • the jet pipe which separates the hollow volume and the charged particle beam from the environment, is electrostatically charged by the accelerating electric field.
  • the jet pipe With increasing field strength of the electric field increases the probability that stray electrons are torn out of the surface of the inner wall of the jet pipe.
  • This process occurs first and preferably on so-called whiskers. Whiskers are acicular single crystals of a few microns in diameter and up to several hundred microns in length, which occur on all, especially on metallic, surfaces.
  • whiskers are acicular single crystals of a few microns in diameter and up to several hundred microns in length, which occur on all, especially on metallic, surfaces.
  • an elevated electric field occurs.
  • stray electrons are torn out of the tip of the whisker.
  • the scattered electrons are now accelerated as well as the charged particle beam from the electric field. If such scattered electrons hit the inner wall of the beam tube, secondary electrons are triggered upon impact.
  • the process is self-inflating. Finally, there
  • a jet pipe in which the particle beam leading hollow volume is directly surrounded by a hollow cylindrical insulating core, which is referred to as a high gradient insulator, HGI.
  • the insulation core comprises a number of thin rings (thickness approx. 0.25 mm) made of a dielectric, which are each provided with a thin metallic conductive layer (thickness approx. 4 * 10 -3 mm, ie 40,000 angstroms).
  • the rings are assembled into a hollow cylinder. Under pressure and the influence of temperature, the adjacent metal layers of adjacent rings melt and combine to form metal rings.
  • the HGI increases the puncture resistance of the jet pipe. If secondary electrons form on the inner wall of the HGI, the adjacent metal rings of the HGI are charged. The electrical charge is thus distributed in each case over all of the secondary electrons directly acted upon metal rings. This leads to a homogenization of the electric charge on the inner wall of the HGI and thus to a reduced tendency for secondary electron multiplication.
  • a discharge tube for generating an electron beam comprises a tubular insulating jacket immediately surrounding a jet-carrying hollow volume.
  • the insulating jacket is formed from a dielectrically acting carrier substrate, in particular a ceramic.
  • metal layers arranged one behind the other along the axis of the insulation jacket are introduced, which are connected to one another inductively by an electrical conductor. Via the conductor, the layers are galvanically connected between a cathode and an anode, between which a voltage for generating a gas discharge and accelerating the released electrons is applied.
  • the discharge tube according to US 2 569 154 A a held in the carrier substrate electrical conductor which is divided into a plurality of conductor loops, which completely surround the circumference of the insulating core at different axial positions and which are electrically connected to form a helical coil with each other.
  • a cathode ray tube similar in construction to the above-described discharge tube is made US 2 005 021 A known.
  • a high voltage insulator for a van der Graaf generator or van der Graaf accelerator.
  • the high-voltage insulator comprises a tubular insulating jacket, which immediately surrounds a hollow volume.
  • the insulating jacket is formed from a dielectrically acting carrier substrate.
  • In the carrier substrate are arranged along the axis of the insulation jacket arranged one behind the other metallic layers which are connected by an electrical conductor with each other resistive (ie via a respective ohmic resistance).
  • the layers are galvanically connected between a live pole and ground via the conductor.
  • For detection and localization of defects of the high voltage insulator a high test voltage is applied over this, under its effect in the hollow volume At possibly existing defect sites electrons are released. Detection and spectral analysis of the Bremsstrahlung generated by these electrons, the defect sites are detected and localized.
  • a jet pipe for a particle accelerator comprises a tubular insulating jacket, which immediately surrounds a jet-carrying hollow volume.
  • the insulating jacket is formed from a dielectrically acting carrier substrate, in particular a synthetic resin.
  • annular acceleration electrodes are introduced, which are connected to each other resistively by an electrical conductor.
  • the conductor is wound helically around the outer circumference of the insulation jacket.
  • the jet pipe comprises a tubular insulating jacket, which immediately surrounds a jet-carrying hollow volume. Inside or outside of the electrically non-conductive insulation jacket, a conductor is provided which is divided into a plurality of conductor loops, which completely surround the circumference of the insulation core at different axial positions and which are galvanically connected to form a helical coil.
  • the invention is therefore based on the object of specifying a jet pipe, which has a low breakdown probability having.
  • the invention is further based on the object of specifying a particle accelerator with such a jet pipe.
  • the object is achieved according to the invention by the feature combination of claim 1.
  • the jet-guiding hollow volume is surrounded directly by a hollow cylindrical insulating core.
  • the insulating core is formed of a dielectrically acting carrier substrate and an electrical conductor held therein.
  • the conductor is divided into several conductor loops that completely circumscribe the circumference of the insulation core at different axial positions.
  • the individual conductor loops are galvanically connected with each other.
  • a metal such as copper, gold or the like can be used.
  • a dielectric for example SiO 2 , Al 2 O 3 , a polycarbonate, a polyacrylic, a glass or a ceramic can be used.
  • Metallic layers e.g. Metal plates are introduced in succession along the beam tube arranged in the dielectric carrier substrate.
  • the metallic layers serve as intermediate electrodes.
  • the metallic layers are electrically connected to each other by the electrical conductor.
  • the structure essentially corresponds to the aforementioned HGI. Due to the galvanic connection of the metallic layers, any impacting electrons may flow off.
  • a particle accelerator with such a jet pipe can thus be operated at a high rate of acceleration pulses and / or with an increased field energy, without the breakdown probability increasing significantly.
  • the jet pipe is surrounded by a metallic housing.
  • a metallic housing can be made, for example, from pipe sections which are sealed against one another and can be evacuated in a simple manner by means of a vacuum pump system in order to provide the spray-conveying evacuated hollow volume.
  • the metallic housing can also comprise a device provided for the provision of the accelerating electric field or form part of such a device.
  • the electrical conductor held on the dielectric carrier substrate is connected in a galvanically conductive manner to the metallic housing at at least one point.
  • At least two spaced-apart points of the electrical conductor are galvanically connected to the housing. Thus, there is no potential gradient within the electrical conductor.
  • the conductor loops can be of annular design and can be galvanically connected to one another by a number of conductor bridges running essentially in the cylinder longitudinal direction.
  • the conductor loops of the electrical conductor but wound in the manner of a helical coil about the central longitudinal axis of the hollow cylindrical insulator core and thus form a helical coil.
  • the conductor acts as an inductance and attenuates high-frequency components of the accelerating electric field.
  • the electrical conductor is embedded in the dielectrically acting carrier substrate.
  • a mold is provided which has the shape of a hollow cylinder with a cylindrical core to form an annular space.
  • the bent in the manner of a helix electrical conductor is inserted, which consists of a metal wire.
  • the annular space is filled with the dielectrically acting carrier substrate to form the hollow cylindrical insulating core together with the electrical conductor.
  • the dielectric is, for example, a flowable plastic compound, such as a synthetic resin or the like, which solidifies after it has been filled in the mold. But it may also be a powdered dielectric, which is filled as a flowable bulk material in the mold and solidified under temperature and / or pressure application.
  • the electrical conductor is on the inner wall of the hollow cylindrical carrier substrate attached, in particular glued.
  • the electrical conductor can also be imprinted or vapor-deposited.
  • both the electrical conductor and the dielectrically acting carrier substrate are formed as wire-shaped strips and wound into each other to form the hollow cylindrical insulating core in the form of a double helix.
  • the two strips are wound, for example, around a cylinder as an assembly aid and then fastened to one another.
  • the electrical conductor advantageously completely penetrates the carrier substrate.
  • both the inner wall and the outer wall of the hollow cylindrical insulating core have a metallically conductive portion.
  • the particle accelerator comprises a jet pipe according to any one of claims 1 to 5.
  • the particle accelerator can be used for example for research purposes, but also as a medical therapy device.
  • the particle accelerator is designed in particular as a Dielectric Wall Accelerator, DWA, as described in US Pat US 5,757,146 is described in detail.
  • the particle accelerator can be operated in particular in pulsed operation and based on electromagnetic induction, ie the accelerating electric field is through generates a magnetic flux change around the particle trajectory.
  • the single FIGURE shows a partial region of a particle accelerator 2 with a section of a jet pipe 4 in a three-dimensional sectional view.
  • the particle accelerator 2 is designed for example as a linear accelerator, in which the accelerating electric field by a DC voltage or by a pulsating AC voltage (see. Linear accelerator from Wideröe, 1928 ) provided. But it can also be designed as a Dielectric Wall Accelerator.
  • the jet pipe 4 is shown only schematically as a hollow cylinder. It comprises a tubular metallic housing 5. However, it can also have attachments, for example, not shown in the figure vacuum pumping system.
  • the jet pipe 4 receives a likewise hollow cylindrical insulating core 6.
  • the insulating core 6 in turn directly surrounds a jet-guiding cylindrical hollow volume 8. In the hollow volume 8, a charged particle beam 10 which is indicated only symbolically is guided and accelerated.
  • the particle accelerator 2 is based on the principle of electromagnetic induction. It generates a symbolically indicated in the figure magnetic field 12 to the particle trajectory, which coincides with the directional arrow for the charged particle beam 10.
  • the magnetic field 12 forms closed field lines around the hollow volume 8 or about the particle trajectory of the charged particles 10.
  • the hollow-cylindrical insulation core 6 is formed from a dielectrically acting carrier substrate 14 and from an electrical conductor 16 held therein.
  • the electrical conductor 16 is divided into several, around the circumference of the insulating core 6 seen from its central longitudinal axis 18 forth at different positions circulating conductor loops 20.
  • the conductor loops 20 are galvanically connected to one another and thus form a helical coil.
  • the dielectric carrier substrate 14 metallic layers, for example metal plates, can be introduced one behind the other along the axis of the jet tube (not shown here).
  • the dielectric carrier substrate has a structure as shown in FIG US 6,331,194 B1 shown.
  • the metallic layers are connected to each other by the circulating conductor loops 20. Due to the galvanic connection of the metallic layers, any impacting electrons may flow off.
  • the electrical conductor 16 is bent in the manner of a helical coil and secured to the inner wall of the hollow cylindrical carrier substrate 14.
  • the electrical conductor can also be printed onto the inner wall of the hollow-cylindrical carrier substrate 14 by means of a metallically conductive paste, as is used for printing printed conductors on printed circuit boards.
  • the two ends of the helical electrical conductor 16 are connected via electrically conductive connections 22 to the jet pipe 4 or its metallic housing 5 and thus to the basic potential of the particle accelerator 2.
  • the hollow volume 8 is evacuated during operation of the particle accelerator 2.
  • the particle accelerator 2 can be operated at a high accelerating electric field strength and operates at a high rate of acceleration pulses.
  • the design of the electrical conductor 16 in the manner of a coil also high-frequency alternating electric fields are filtered.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)

Description

  • Die Erfindung bezieht sich auf ein Strahlrohr zur Führung eines geladenen Teilchenstrahls sowie auf einen Teilchenbeschleuniger mit einem derartigen Strahlrohr.
  • Ein derartiges Strahlrohr ist insbesondere bei einem Teilchenbeschleuniger für geladene Teilchen vorgesehen. Der geladene Teilchenstrahl kann beispielsweise Elektronen, Atomkerne, ionisierte Atome, geladene Moleküle oder geladene Molekülbruchstücke umfassen. Die Beschleunigung des geladenen Teilchenstrahls erfolgt in einem strahlführenden Hohlvolumen, das vom Strahlrohr umschlossen ist. Das Hohlvolumen ist üblicherweise im Betrieb des Teilchenbeschleunigers evakuiert. Dazu ist üblicherweise ein dem Strahlrohr zugeordnetes Vakuumpumpensystem vorgesehen.
  • Das Strahlrohr, das das Hohlvolumen und den geladenen Teilchenstrahl von der Umgebung abgrenzt, wird durch das beschleunigende elektrische Feld elektrostatisch beaufschlagt. Mit wachsender Feldstärke des elektrischen Feldes steigt die Wahrscheinlichkeit, dass Streuelektronen aus der Oberfläche der Innenwandung des Strahlrohrs herausgerissen werden. Dieser Vorgang tritt zuerst und bevorzugt an so genannten Whiskern auf. Bei Whiskern handelt es sich um nadelförmige Einkristalle von wenigen Mikrometern Durchmesser und bis zu mehreren hundert Mikrometern Länge, die auf sämtlichen, insbesondere auf metallischen, Oberflächen auftreten. An der Spitze eines Whiskers tritt ein erhöhtes elektrisches Feld auf. Dadurch werden Streuelektronen aus der Spitze des Whiskers herausgerissen. Die Streuelektronen werden nun ebenso wie der geladene Teilchenstrahl vom elektrischen Feld beschleunigt. Treffen solche Streuelektronen auf die Innenwand des Strahlrohrs auf, so werden beim Aufprall Sekundärelektronen ausgelöst. Der Prozess ist selbstanfachend. Schließlich kommt es zu einer Durchzündung an der Innenwand und somit zu einem Einbruch des die geladenen Teilchen beschleunigenden elektrischen Feldes.
  • Zur Lösung dieses Problems ist aus der US 6,331,194 B1 ein Strahlrohr bekannt, bei dem das den Teilchenstrahl führende Hohlvolumen unmittelbar von einem hohlzylindrischen Isolationskern umgeben ist, der als High Gradient Insulator, HGI, bezeichnet wird. Der Isolationskern umfasst eine Anzahl aus einem Dielektrikum gefertigter dünner Ringe (Dicke ca. 0,25 mm), die stirnseitig mit jeweils einer dünnen metallisch leitenden Schicht (Dicke ca. 4*10-3mm, d.h. 40.000 Angström) versehen sind. Zur Herstellung des Isolationskerns werden die Ringe zu einem Hohlzylinder zusammengesetzt. Unter Druck und Temperatureinfluss schmelzen die aneinanderliegenden Metallschichten benachbarter Ringe auf und verbinden sich zu Metallringen.
  • Der HGI erhöht die Durchschlagsresistenz des Strahlrohrs. Entstehen nämlich an der Innenwand des HGI Sekundärelektronen, so werden die benachbarten Metallringe des HGI aufgeladen. Die elektrische Ladung verteilt sich somit jeweils über sämtliche von den Sekundärelektronen direkt beaufschlagte Metallringe. Dies führt zu einer Vergleichmäßigung der elektrischen Ladung an der Innenwand des HGI und somit zu einer verringerten Tendenz zur Sekundärelektronenvervielfachung.
  • Bei der Aufteilung der elektrischen Ladung auf benachbarte dünne Metallringe handelt es sich um eine rein kapazitive Aufteilung. Das Prinzip funktioniert somit nur für seltene und kurze Spannungsimpulse. Eine Aufladung der Metallringe ist nicht wirksam verhindert, da die Metallringe im Dielektrikum des Isolatorkerns eingebettet sind und somit die aufgebrachte Ladung nur langsam über Kriechstrecken abfließen kann. Ein Betrieb des Linearbeschleunigers mit einer hohen Rate von Beschleunigungsimpulsen führt somit zu einer zunehmenden Durchschlagswahrscheinlichkeit.
  • Aus US 2 569 154 A ist eine Entladungsröhre zur Erzeugung eines Elektronenstrahls bekannt. Die Entladungsröhre umfasst einen rohrförmigen Isolationsmantel, der ein strahlführendes Hohlvolumen unmittelbar umgibt. Der Isolationsmantel ist aus einem dielektrisch wirkenden Trägersubstrat, insbesondere einer Keramik gebildet. In dem Trägersubstrat sind entlang der Achse des Isolationsmantels hintereinander angeordnete metallische Schichten eingebracht, die durch einen elektrischen Leiter miteinander induktiv verbunden sind. Über den Leiter sind die Schichten galvanisch zwischen eine Kathode und eine Anode geschaltet, zwischen denen eine Spannung zur Erzeugung einer Gasentladung und zur Beschleunigung der dabei frei werdenden Elektronen angelegt ist.
  • In einer alternativen Ausführung umfasst die Entladungsröhre gemäß US 2 569 154 A einen in dem Trägersubstrat gehaltene elektrischen Leiter, der in mehrere Leiterschleifen gegliedert ist, die den Umfang des Isolationskerns auf unterschiedlichen axialen Positionen vollständig umlaufen und die unter Bildung einer wendelförmigen Spule untereinander galvanisch verbunden sind.
  • Eine vom Aufbau her zu der vorstehend beschriebenen Entladungsröhre ähnliche Kathodenstrahlröhre ist aus US 2 005 021 A bekannt.
  • Aus US 3 761 720 A ist ein Hochspannungsisolator für einen Van-der-Graaf-Generator oder einen Van-der-Graaf-Beschleuniger bekannt. Der Hochspannungsisolator umfasst einen rohrförmigen Isolationsmantel, der ein Hohlvolumen unmittelbar umgibt. Der Isolationsmantel ist aus einem dielektrisch wirkenden Trägersubstrat gebildet. In dem Trägersubstrat sind entlang der Achse des Isolationsmantels hintereinander angeordnete metallische Schichten eingebracht, die durch einen elektrischen Leiter miteinander resistiv (d.h. über je einen ohmschen Widerstand) verbunden sind. Über den Leiter sind die Schichten galvanisch zwischen einen spannungsführenden Pol und Erde geschaltet. Zur Erkennung und Lokalisierung von Defekten des Hochspannungsisolators wird über diesem eine hohe Testspannung angelegt, unter dessen Wirkung in dem Hohlvolumen an gegebenenfalls vorhandenen Defektstellen Elektronen freigesetzt werden. Durch Detektion und Spektralauswertung der von diesen Elektronen erzeugten Bremsstrahlung werden die Defektstellen erkannt und lokalisiert.
  • Aus WO 2006/043366 A1 ist ein Strahlrohr für einen Teilchenbeschleuniger bekannt. Das Strahlrohr umfasst einen rohrförmigen Isolationsmantel, der ein strahlführendes Hohlvolumen unmittelbar umgibt. Der Isolationsmantel ist aus einem dielektrisch wirkenden Trägersubstrat, insbesondere einem Kunstharz gebildet. In dem Trägersubstrat sind entlang der Achse des Strahlrohres hintereinander angeordnete ringförmige Beschleunigungselektroden eingebracht, die durch einen elektrischen Leiter miteinander resistiv verbunden sind. Der Leiter ist hierbei wendelförmig um den Außenumfang des Isolationsmantels gewunden.
  • Aus US 3 506 865 A ist ein weiteres Strahlrohr für einen Teilchenbeschleuniger bekannt. Das Strahlrohr umfasst einen rohrförmigen Isolationsmantel, der ein strahlführendes Hohlvolumen unmittelbar umgibt. Innerhalb oder außerhalb des elektrisch nicht-leitenden Isolationsmantels ist ein Leiter vorgesehen, der in mehrere Leiterschleifen gegliedert ist, die den Umfang des Isolationskerns auf unterschiedlichen axialen Positionen vollständig umlaufen und die unter Bildung einer wendelförmigen Spule untereinander galvanisch verbunden sind.
  • Weitere Strahlrohre für Teilchenbeschleuniger, deren das strahlführende Hohlvolumen unmittelbar umgebender Isolationsmantel aus einem dielektrisch wirkenden Trägersubstrat gebildet ist, in das entlang der Achse des Strahlrohres hintereinander angeordnete metallische Schichten eingebracht sind, sind aus WO 98/33228 A2 und US 5 757 146 A bekannt.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein Strahlrohr anzugeben, das eine niedrige Durchschlagswahrscheinlichkeit aufweist. Der Erfindung liegt weiterhin die Aufgabe zugrunde, einen Teilchenbeschleuniger mit einem derartigen Strahlrohr anzugeben.
  • Bezüglich des Strahlrohrs wird die Aufgabe erfindungsgemäß gelöst durch die Merkmalskombination des Anspruchs 1. Hierzu ist das strahlführende Hohlvolumen unmittelbar von einem hohlzylindrischen Isolationskern umgeben. Der Isolationskern ist aus einem dielektrisch wirkenden Trägersubstrat und einem darin gehaltenen elektrischen Leiter gebildet. Der Leiter ist in mehrere Leiterschleifen gegliedert, die den Umfang des Isolationskerns auf unterschiedlicher axialer Position vollständig umlaufen. Die einzelnen Leiterschleifen sind untereinander galvanisch verbunden.
  • Als elektrischer Leiter kann ein Metall, wie Kupfer, Gold oder dergleichen zum Einsatz kommen. Als Dielektrikum kann beispielsweise SiO2, Al2O3, ein Polycarbonat, ein Polyacryl, ein Glas oder eine Keramik eingesetzt werden.
  • Metallische Schichten, z.B. Metallplatten, sind im dielektrisch wirkenden Trägersubstrat hintereinander entlang des Strahlrohres angeordnete eingebracht. Die metallischen Schichten dienen als Zwischenelektroden. Die metallischen Schichten sind durch den elektrischen Leiter miteinander galvanisch verbunden. Damit entspricht der Aufbau im Wesentlichen dem eingangs erwähnten HGI. Durch die galvanische Verbindung der metallischen Schichten können eventuell einschlagende Elektronen abfließen.
  • Eine niederimpedante Verbindung der metallischen Schichten würde bei einem induktiven Teilchenbeschleuniger mit einem derartigen Strahlrohr allerdings zu einer Belastung des Induktionsgenerators und damit zu einer Reduktion der Beschleunigungsspannung führen. Durch den in Leiterschleifen geführten elektrischen Leiter kann aber gewährleistet werden, dass die metallischen Schichten auf der Strahlrohroberfläche im Wesentlichen induktiv angekoppelt sind. Dies ist insbesondere bei einem gepulsten Betrieb des Strahlrohres vorteilhaft. Die kapazitive Ankopplung der Isolatorstrecken an eine nahe Metallelektrode ist damit erreicht. Eventuelle Ladungen können aber in kurzer Zeit (aber lange bezüglich einer Beschleunigungsperiode) abfließen, so dass der selbstdivergierende Durchschlagsprozess auch bei hohen Wiederholraten unterdrückt ist.
  • Entstehen nun an der dem Hohlvolumen zugewandten Innenwand des Isolatorkerns Sekundärelektronen, so wird eine Anzahl von benachbarten Leiterschleifen mit der elektrischen Ladung der Sekundärelektronen direkt und punktuell beaufschlagt. Die elektrische Ladung verteilt sich nun in Umfangsrichtung auf diesen Leiterschleifen. Da sämtliche Leiterschleifen galvanisch miteinander verbunden sind, verteilt sich die Ladung auch auf Leiterschleifen, die nicht direkt mit den Sekundärelektronen in Kontakt kommen. Die Wahrscheinlichkeit für eine Sekundärelektronenvervielfachung und ein Durchschlagen des Isolators ist somit wirksam verringert. Ein Teilchenbeschleuniger mit einem derartigen Strahlrohr lässt sich somit mit einer hohen Rate von Beschleunigungsimpulsen und/oder mit einer erhöhten Feldenergie betreiben, ohne dass die Durchschlagswahrscheinlichkeit signifikant ansteigt.
  • Zweckmäßig ist das Strahlrohr von einem metallischen Gehäuse umgeben. Ein derartiges metallisches Gehäuse kann beispielsweise aus gegeneinander abgedichteten Rohrstücken gefertigt sein und lässt sich in einfacher Weise mittels eines Vakuumpumpsystems evakuieren, um das strahlführende evakuierte Hohlvolumen bereit zu stellen. Das metallische Gehäuse kann aber auch eine für die Bereitstellung des beschleunigenden elektrischen Feldes vorgesehene Vorrichtung umfassen oder einen Bestandteil einer solchen Vorrichtung bilden.
  • In einer zweckmäßigen Weiterbildung ist der am dielektrischen Trägersubstrat gehaltene elektrische Leiter an zumindest einem Punkt galvanisch leitend mit dem metallischen Gehäuse verbunden.
  • In der Erfindung sind zumindest zwei voneinander beabstandete Punkte des elektrischen Leiters mit dem Gehäuse galvanisch verbunden. Somit herrscht innerhalb des elektrischen Leiters kein Potentialgefälle.
  • Die Leiterschleifen können ringförmig geschlossen ausgebildet sein und durch eine Anzahl von im Wesentlichen in Zylinderlängsrichtung verlaufenden Leiterbrücken miteinander galvanisch verbunden sein.
  • In einer vorteilhaften Weiterbildung sind die Leiterschleifen des elektrischen Leiters aber nach Art einer Schraubenwendel um die Mittellängsachse des hohlzylindrischen Isolatorkerns gewunden und bilden somit eine wendelförmige Spule. Der Leiter wirkt so als Induktivität und dämpft hochfrequente Anteile des beschleunigenden elektrischen Feldes.
  • In einer zweckmäßigen Variante ist der elektrische Leiter in das dielektrisch wirkende Trägersubstrat eingebettet. Zur Herstellung des Isolationskerns ist beispielsweise eine Form vorgesehen, die die Gestalt eines Hohlzylinders mit einem zylindrischen Kern zur Bildung eines Ringraumes aufweist. In den Ringraum wird beispielsweise der nach Art eines Schraubenwendels gebogene elektrische Leiter eingelegt, der aus einem Metalldraht besteht. Anschließend wird der Ringraum mit dem dielektrisch wirkenden Trägersubstrat verfüllt zur Bildung des hohlzylindrischen Isolationskerns gemeinsam mit dem elektrischen Leiter. Bei dem Dielektrikum handelt es sich beispielsweise um eine fließfähige Kunststoffmasse, wie ein Kunstharz oder dergleichen, die nach ihrem Einfüllen in der Form erstarrt. Es kann sich aber auch um ein pulverförmiges Dielektrikum handeln, das als fließfähiges Schüttgut in die Form eingefüllt und unter Temperatur- und / oder Druckapplikation verfestigt wird.
  • In einer anderen zweckmäßigen Variante ist der elektrische Leiter an der Innenwand des hohlzylindrischen Trägersubstrats befestigt, insbesondere aufgeklebt. Der elektrische Leiter kann hierbei auch aufgedruckt oder aufgedampft sein.
  • In einer anderen vorteilhaften Variante sind sowohl der elektrische Leiter als auch das dielektrisch wirkende Trägersubstrat als drahtförmige Streifen ausgebildet und zur Bildung des hohlzylindrischen Isolationskerns in Form einer Doppelwendel ineinander gewunden. Zur Herstellung dieser Form des Isolationskerns werden die beiden Streifen beispielsweise um einen Zylinder als Montagehilfe gewickelt und anschließend aneinander befestigt.
  • Sämtliche beschriebenen Varianten für die Fertigung des hohlzylindrischen Isolationskerns sind vergleichsweise einfach und somit kostengünstig durchführbar.
  • Im Fertigungsendzustand durchsetzt der elektrische Leiter vorteilhaft das Trägersubstrat vollständig. Mit anderen Worten weist sowohl die Innenwand, als auch die Außenwand des hohlzylindrischen Isolationskerns einen metallisch leitenden Anteil auf. Somit lässt sich im Isolationskern eine große Menge an elektrisch leitendem Material verbauen, die zur Aufnahme einer großen elektrischen Ladungsmenge geeignet ist.
  • Bezüglich des Teilchenbeschleunigers wird die obige Aufgabe erfindungsgemäß gelöst durch die Merkmale des Anspruchs 6. Danach umfasst der Teilchenbeschleuniger ein Strahlrohr nach einem der Ansprüche 1 bis 5. Der Teilchenbeschleuniger kann beispielsweise zu Forschungszwecken, aber auch als medizinisches Therapiegerät eingesetzt werden. Der Teilchenbeschleuniger ist insbesondere als Dielectric Wall Accelerator, DWA, ausgeführt, wie er in der US 5,757,146 ausführlich beschrieben ist.
  • Der Teilchenbeschleuniger kann insbesondere im gepulsten Betrieb betrieben werden und auf elektromagnetischer Induktion beruhen, d.h. das beschleunigende elektrische Feld wird durch eine magnetische Flussänderung um die Teilchenflugbahn erzeugt.
  • Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert.
  • Die einzige Figur zeigt einen Teilbereich eines Teilchenbeschleunigers 2 mit einem Abschnitt eines Strahlrohrs 4 in einer dreidimensionalen Schnittansicht.
  • Der Teilchenbeschleuniger 2 ist beispielsweise als Linearbeschleuniger ausgestaltet, bei dem das beschleunigende elektrische Feld durch eine Gleichspannung oder durch eine pulsierende Wechselspannung (vgl. Linearbeschleuniger von Wideröe, 1928) bereitgestellt wird. Er kann aber auch als Dielectric Wall Accelerator ausgebildet sein.
  • Das Strahlrohr 4 ist lediglich schematisch als Hohlzylinder dargestellt. Es umfasst ein röhrenförmiges metallisches Gehäuse 5. Es kann aber auch Anbauten, beispielsweise ein in der Figur nicht dargestelltes Vakuumpumpsystem, aufweisen. Das Strahlrohr 4 nimmt einen ebenfalls hohlzylindrischen Isolationskern 6 auf. Der Isolationskern 6 wiederum umgibt unmittelbar ein strahlführendes zylindrisches Hohlvolumen 8. Im Hohlvolumen 8 wird ein nur symbolisch angedeuteter geladener Teilchenstrahl 10 geführt und beschleunigt.
  • Dem Teilchenbeschleuniger 2 liegt das Prinzip der elektromagnetischen Induktion zugrunde. Er generiert ein in der Figur symbolisch angedeutetes Magnetfeld 12 um die Teilchenflugbahn, die mit dem Richtungspfeil für den geladenen Teilchenstrahl 10 zusammenfällt. In der Figur bildet das Magnetfeld 12 geschlossene Feldlinien um das Hohlvolumen 8 bzw. um die Teilchenflugbahn der geladenen Teilchen 10. Durch eine zeitliche Änderung des magnetischen Flusses des Magnetfelds 12 wird ein in der Figur nicht dargestelltes elektrisches Feld erzeugt, das den geladenen Teilchenstrahl 10 in Pfeilrichtung beschleunigt.
  • Der hohlzylindrische Isolationskern 6 ist aus einem dielektrisch wirkenden Trägersubstrat 14 und aus einem darin gehaltenen elektrischen Leiter 16 gebildet. Der elektrische Leiter 16 ist in mehrere, den Umfang des Isolationskerns 6 von seiner Mittellängsachse 18 her gesehen auf unterschiedlichen Positionen umlaufende Leiterschleifen 20 gegliedert. Die Leiterschleifen 20 sind miteinander galvanisch verbunden und bilden so eine wendelförmige Spule.
  • Im dielektrisch wirkenden Trägersubstrat 14 können hintereinander entlang der Achse des Strahlrohres metallische Schichten, z.B. Metallplatten, eingebracht sein (hier nicht gezeigt). In diesem Fall hat das dielektrisch wirkende Trägersubstrat einen Aufbau wie in Fig. 2A der US 6,331,194 B1 gezeigt. Die metallischen Schichten sind durch die umlaufenden Leiterschleifen 20 miteinander verbunden. Durch die galvanische Verbindung der metallischen Schichten können eventuell einschlagende Elektronen abfließen.
    Zur Fertigung des Isolationskerns 6 wird beispielsweise der elektrische Leiter 16 nach Art eines Schraubenwendels gebogen und an der Innenwand des hohlzylindrischen Trägersubstrats 14 befestigt. Der elektrische Leiter kann aber auch mittels einer metallisch leitfähigen Paste, wie sie für das Drucken von Leiterbahnen auf Leiterplatten eingesetzt wird, auf die Innenwand des hohlzylindrischen Trägersubstrats 14 aufgedruckt werden.
  • Die beiden Enden des wendelförmigen elektrischen Leiters 16 sind über elektrisch leitende Verbindungen 22 mit dem Strahlrohr 4 bzw. seinem metallischen Gehäuse 5 und damit mit dem Grundpotential des Teilchenbeschleunigers 2 verbunden.
  • Das Hohlvolumen 8 ist im Betrieb des Teilchenbeschleunigers 2 evakuiert.
  • Streu- und Sekundärelektronen, die durch das beschleunigende elektrische Feld aus der Strahlrohrwand gelöst wurden, treffen beim Aufprall auf den Isolationskern 6 auf eine oder mehrere Leiterschleifen 20 des elektrischen Leiters 16 und laden diese auf. Durch die galvanische Verbindung der Leiterschleifen 16 untereinander verteilt sich die Ladung der Sekundärelektronen in Richtung der Mittellängsachse 18 entlang des elektrischen Leiters 16. Auf diese Weise ist die Gefahr einer Sekundärelektronenvervielfachung und damit die Durchschlagswahrscheinlichkeit des Teilchenbeschleunigers 2 gering. Somit lässt sich der Teilchenbeschleuniger 2 mit einer hohen beschleunigenden elektrischen Feldstärke und ist einer hohen Rate von Beschleunigungsimpulsen betreiben.
  • Durch die Ausbildung des elektrischen Leiters 16 nach Art einer Spule werden zudem hochfrequente elektrische Wechselfelder gefiltert.
  • Bezugszeichenliste
  • 2
    Teilchenbeschleuniger
    4
    Strahlrohr
    6
    Isolationskern
    8
    Hohlvolumen
    10
    geladener Teilchenstrahl
    12
    Magnetfeld
    14
    Trägersubstrat
    16
    elektrischer Leiter
    18
    Mittellängsachse
    20
    Leiterschleife
    22
    elektrisch leitende Verbindung

Claims (6)

  1. Strahlrohr (4) zur Führung,eines geladenen Teilchenstrahls (10) mit einem ein strahlführendes Hohlvolumen (8) unmittelbar umgebenden hohlzylindrischen Isolationskern (6), der aus einem dielektrisch wirkenden Trägersubstrat (14) gebildet ist, und mit einem den Isolationskern (6) umgebenden metallischen Gehäuse (5), wobei im Trägersubstrat (14) entlang der Achse des Strahlrohres (4) hintereinander angeordnete metallische Schichten eingebracht sind,
    dadurch gekennzeichnet, dass
    der Isolationskern (6) weiterhin aus einem in dem dielektrisch wirkenden Trägersubstrat (14) gehaltenen elektrischen Leiter (16) gebildet ist, wobei der Leiter (16) in mehrere Leiterschleifen (20) gegliedert ist, die den Umfang des Isolationskerns (6) auf unterschiedlichen axialen Positionen vollständig umlaufen und die untereinander galvanisch verbunden sind, wobei der Leiter (16) an mindestens zwei voneinander beabstandeten Punkten insbesondere endseitig mit dem Gehäuse (5) galvanisch verbunden ist, wobei die metallischen Schichten durch den elektrischen Leiter (16) miteinander galvanisch verbunden sind und wobei die metallischen Schichten durch den in Leiterschleifen geführten elektrischen Leiter auf einer Strahlrohroberfläche im Wesentlichen induktiv angekoppelt sind.
  2. Strahlrohr (4) nach Anspruch 1,
    wobei die Leiterschleifen (20) eine wendelförmige Spule bilden.
  3. Strahlrohr (4) nach Anspruch 1 oder 2,
    wobei der Leiter (16) in das Trägersubstrat (14) eingebettet ist.
  4. Strahlrohr (4) nach einem der Ansprüche 1 bis 3,
    wobei der Leiter (16) das Trägersubstrat (14) vollständig durchsetzt.
  5. Strahlrohr (4) nach einem der Ansprüche 1 bis 4,
    wobei der Leiter (16) und das Trägersubstrat (14) drahtförmig ausgebildet und als Doppelwendel gewunden sind.
  6. Teilchenbeschleuniger (2), insbesondere Linearbeschleuniger, mit einem Strahlrohr (4) nach einem der Ansprüche 1 bis 5.
EP09771739.1A 2009-01-20 2009-12-02 Strahlrohr sowie teilchenbeschleuniger mit einem strahlrohr Not-in-force EP2380414B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009005200.3A DE102009005200B4 (de) 2009-01-20 2009-01-20 Strahlrohr sowie Teilchenbeschleuniger mit einem Strahlrohr
PCT/EP2009/066227 WO2010083915A1 (de) 2009-01-20 2009-12-02 Strahlrohr sowie teilchenbeschleuniger mit einem strahlrohr

Publications (2)

Publication Number Publication Date
EP2380414A1 EP2380414A1 (de) 2011-10-26
EP2380414B1 true EP2380414B1 (de) 2015-01-28

Family

ID=42078040

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09771739.1A Not-in-force EP2380414B1 (de) 2009-01-20 2009-12-02 Strahlrohr sowie teilchenbeschleuniger mit einem strahlrohr

Country Status (8)

Country Link
US (1) US9351390B2 (de)
EP (1) EP2380414B1 (de)
JP (1) JP5602154B2 (de)
CN (1) CN102293067B (de)
DE (1) DE102009005200B4 (de)
DK (1) DK2380414T3 (de)
RU (1) RU2544838C2 (de)
WO (1) WO2010083915A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009005200B4 (de) 2009-01-20 2016-02-25 Siemens Aktiengesellschaft Strahlrohr sowie Teilchenbeschleuniger mit einem Strahlrohr
US9974155B2 (en) * 2013-08-05 2018-05-15 National Technology & Engineering Solutions Of Sandia, Llc Variable-pulse-shape pulsed-power accelerator
US9648710B2 (en) * 2013-11-19 2017-05-09 Varex Imaging Corporation High power X-ray tube housing
US9089039B2 (en) * 2013-12-30 2015-07-21 Eugene J. Lauer Particle acceleration devices with improved geometries for vacuum-insulator-anode triple junctions
WO2018173812A1 (ja) * 2017-03-22 2018-09-27 国立研究開発法人日本原子力研究開発機構 イオンビーム機能性透過膜、イオンビーム機能性透過膜を用いたビームライン機器、イオンビーム機能性透過膜を用いたフィルター機器、フィルター機器の調整方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR365609A (fr) 1905-03-21 1906-09-12 Edwin Ruud Appareils à chauffer l'eau
US2569154A (en) 1948-07-24 1951-09-25 Donath Erwin Electronic discharge device
FR1028597A (fr) * 1949-11-30 1953-05-26 Thomson Houston Comp Francaise Perfectionnements aux accélérateurs linéaires de particules chargées
US3506865A (en) 1967-07-28 1970-04-14 Atomic Energy Commission Stabilization of charged particle beams
US3617908A (en) * 1969-02-24 1971-11-02 Henry Greber Charged particle accelerator with single or multimode operation
US3761720A (en) 1972-08-30 1973-09-25 Atomic Energy Commission Method of locating defects in a high-voltage insulating tube
FR2396407A1 (fr) * 1977-06-27 1979-01-26 Commissariat Energie Atomique Generateur d'ondes metriques et decimetriques
DE2950098A1 (de) * 1979-12-13 1981-07-09 Basf Ag, 6700 Ludwigshafen Flammgeschuetzte styrolpolymerisate
US4712042A (en) * 1986-02-03 1987-12-08 Accsys Technology, Inc. Variable frequency RFQ linear accelerator
US5038076A (en) * 1989-05-04 1991-08-06 Raytheon Company Slow wave delay line structure having support rods coated by a dielectric material to prevent rod charging
FR2671908A1 (fr) * 1991-01-18 1992-07-24 Bourgogne Technologies Tube accelerateur a couche conductrice.
US5433744A (en) * 1994-03-14 1995-07-18 Medtronic, Inc. Medical electrical lead with super austentic stainless steel conductor
DE19523859C2 (de) * 1995-06-30 2000-04-27 Bruker Daltonik Gmbh Vorrichtung für die Reflektion geladener Teilchen
US5698949A (en) * 1995-03-28 1997-12-16 Communications & Power Industries, Inc. Hollow beam electron tube having TM0x0 resonators, where X is greater than 1
US5757146A (en) 1995-11-09 1998-05-26 Carder; Bruce M. High-gradient compact linear accelerator
US6331194B1 (en) 1996-06-25 2001-12-18 The United States Of America As Represented By The United States Department Of Energy Process for manufacturing hollow fused-silica insulator cylinder
AU6132498A (en) 1997-01-14 1998-08-18 United States Department Of Energy High-gradient insulator cavity mode filter
US6921042B1 (en) * 2001-09-24 2005-07-26 Carl L. Goodzeit Concentric tilted double-helix dipoles and higher-order multipole magnets
WO2004027813A1 (en) 2002-09-23 2004-04-01 Epion Corporation System for and method of gas cluster ion beam processing
JP4250763B2 (ja) 2004-10-20 2009-04-08 国立大学法人京都工芸繊維大学 加速管用電圧分割抵抗体、加速管、及び加速器
JP4435124B2 (ja) 2005-08-29 2010-03-17 株式会社東芝 X線管
CN101091232A (zh) 2005-08-29 2007-12-19 株式会社东芝 X射线管
US7705296B2 (en) * 2006-02-14 2010-04-27 Excellims Corporation Ion mobility spectrometer apparatus and methods
DE102009005200B4 (de) 2009-01-20 2016-02-25 Siemens Aktiengesellschaft Strahlrohr sowie Teilchenbeschleuniger mit einem Strahlrohr

Also Published As

Publication number Publication date
WO2010083915A1 (de) 2010-07-29
DK2380414T3 (en) 2015-05-04
DE102009005200B4 (de) 2016-02-25
DE102009005200A1 (de) 2010-07-29
US9351390B2 (en) 2016-05-24
US20110285283A1 (en) 2011-11-24
CN102293067B (zh) 2016-06-22
JP5602154B2 (ja) 2014-10-08
RU2544838C2 (ru) 2015-03-20
RU2011134895A (ru) 2013-02-27
JP2012515997A (ja) 2012-07-12
EP2380414A1 (de) 2011-10-26
CN102293067A (zh) 2011-12-21

Similar Documents

Publication Publication Date Title
EP2380414B1 (de) Strahlrohr sowie teilchenbeschleuniger mit einem strahlrohr
DE69116260T2 (de) Elektrostatischer Teilchenbeschleuniger mit linearen axialen und radialen Feldern
EP1667798B1 (de) Aufbau einer elektrodynamischen fraktionieranlage
DE102013104643B3 (de) Korona-Zündeinrichtung
EP0601595A1 (de) Zur Anordnung in einem Vakuumgefäss geeignete selbsttragende isolierte Leiteranordnung, insbesondere Antennenspule für einen Hochfrequenz-Plasmagenerator
WO2011104079A1 (de) Hf-resonatorkavität und beschleuniger
EP1141979A1 (de) Hohlisolator
DE102017105546B4 (de) Steckdose zur Aufnahme eines Steckers eines Hochspannungskabels für eine Mikrofokus-Röntgenröhre, Steckverbindung für ein Hochspannungskabel
DE102009048400A1 (de) HF-Resonatorkavität und Beschleuniger
DE2030747C3 (de) Beschleunigungsrohr für einen Ladungsträgerstrahl
DE1179309B (de) Hochfrequenz-Ionenquelle
DE60124241T2 (de) Hochspannungs- niederinduktivitätsschaltkreisschutzwiderstand
CH658961A5 (de) Generator zum erzeugen von hochspannungs-rechteckimpulsen.
EP3178128B1 (de) Anordnung zur galvanisch getrennten energieübertragung
DE102021209350B3 (de) Röntgenröhre mit einem Isolationskörper, der einen Gusskörper umfasst
DE4340984A1 (de) Stark reduzierter, leitungsgekühlter Kollektor mit hoher thermischer Kapazität
DE1766364C (de) Hochspannungsfeste Auffängerisolation fur Laufzeitrohren
DE2527075C3 (de) Gesteuertes Entladungsgerät
DE974518C (de) Vakuumroehre fuer eine Einrichtung zur Beschleunigung geladener Teilchen
DE102017126530A1 (de) Verfahren und Vorrichtung zum Erstellen einer Schirmanbindung eines geschirmten Kabels
DE7324740U (de) Kathodenstrahlröhre
WO1988007756A1 (en) Coaxial cable with screening electrode for use as an ionization chamber
DE102015110135A1 (de) Überspannungsableiter mit verbessertem Isolationswiderstand
DE202013008473U1 (de) Gasentladungsröhre mit Zündhilfe
DE8623187U1 (de) Elektronenstrahlauffänger für Laufzeitröhren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110412

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502009010573

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05H0005020000

Ipc: H05H0009000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H05H 9/00 20060101AFI20131216BHEP

INTG Intention to grant announced

Effective date: 20140109

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140716

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009010573

Country of ref document: DE

Effective date: 20150312

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 708710

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150315

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20150430

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150128

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150428

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150528

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009010573

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

26N No opposition filed

Effective date: 20151029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151202

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091202

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20181221

Year of fee payment: 10

Ref country code: AT

Payment date: 20181108

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20181217

Year of fee payment: 10

Ref country code: FR

Payment date: 20181227

Year of fee payment: 10

Ref country code: GB

Payment date: 20181212

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190218

Year of fee payment: 10

Ref country code: CH

Payment date: 20190313

Year of fee payment: 10

Ref country code: IT

Payment date: 20181220

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009010573

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20191231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 708710

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191202

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191202

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191202

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231