EP2380393B1 - Intelligentes lebensmittelzubereitungsgerät - Google Patents

Intelligentes lebensmittelzubereitungsgerät Download PDF

Info

Publication number
EP2380393B1
EP2380393B1 EP09764484.3A EP09764484A EP2380393B1 EP 2380393 B1 EP2380393 B1 EP 2380393B1 EP 09764484 A EP09764484 A EP 09764484A EP 2380393 B1 EP2380393 B1 EP 2380393B1
Authority
EP
European Patent Office
Prior art keywords
food preparation
data
integrated circuit
attachment device
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09764484.3A
Other languages
English (en)
French (fr)
Other versions
EP2380393B2 (de
EP2380393A1 (de
Inventor
Ingo Bally
Armin Kiefer
Claudia Leitmeyr
Dan Neumayer
Michael Reindl
Jens Sauerbrey
Wolfgang Schnell
Matthias Sorg
Monika Zeraschi
Günter ZSCHAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41527753&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2380393(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BSH Hausgeraete GmbH filed Critical BSH Hausgeraete GmbH
Publication of EP2380393A1 publication Critical patent/EP2380393A1/de
Publication of EP2380393B1 publication Critical patent/EP2380393B1/de
Application granted granted Critical
Publication of EP2380393B2 publication Critical patent/EP2380393B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/0252Domestic applications
    • H05B1/0258For cooking
    • H05B1/0261For cooking of food
    • H05B1/0266Cooktops
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/04Arrangements for transmitting signals characterised by the use of a wireless electrical link using magnetically coupled devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/06Cook-top or cookware capable of communicating with each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Definitions

  • the invention relates to a food preparation attachment, in particular cookware, with a transmitter and an energy sensor for supplying power to the transmitter, and an operating device for operating the food preparation attachment.
  • EP 0 098 491 A2 discloses a remote measuring device which has at least one interrogation station and at least one measuring station which are equipped with at least one information transmitter or a modulator and with an information receiver and in each case an antenna.
  • the measuring station is provided with a measuring device for carrying out the measurements.
  • the interrogation station is equipped with an energy transmitter that emits the energy required for the measuring station.
  • the measuring station has an energy receiver, which is followed by a rectifier, which is provided for the entire current or voltage supply to the measuring station. If several measuring stations are to transmit their measured values to an interrogation station at the same time, each measuring station is provided with an additional memory which contains a special opening code.
  • the addressed measuring station only releases its information if the opening code sent by the interrogation station matches the opening code contained in the memory.
  • the measuring station can have a microcomputer which belongs to a signal processing and control unit of the measuring station. Measured data prepared by the microcomputer pass through its output in the form of a control signal to the modulator, which is connected downstream of the microcomputer and which is connected to the antenna. The modulator changes the resistance of the antenna in accordance with the signal supplied to it.
  • the measuring station can be accommodated in a button on a lid of a cooking container.
  • EP 1 037 508 A1 discloses an inductive cooker for heating food, which contains means for controlling the heating power and at least one sensor for temperature measurement.
  • the output signal of the sensors is used as a manipulated variable for the control means.
  • the sensors are installed directly in or near the food.
  • the output signal of the sensors is visually displayed on the inductive cooker by means of a display unit.
  • WO 99/41950 A2 discloses a cooking vessel for use with induction hot plates, which contains all input elements for controlling the induction heating in, for example, a handle of the cookware.
  • the power supply is achieved by converting ELF radiation which is used to heat the cookware and the control buttons, temperature sensing means and transmission means to the power control unit for the induction coils all fit under control.
  • US 6 504 135 B2 discloses temperature self-regulating food delivery systems with a magnetic induction heater and an associated food container which is equipped with an essentially permanent ferromagnetic heating element.
  • the induction heater and heating elements are designed to heat the heating element to a user-selected control temperature when the heating elements are coupled to the magnetic field of the heater and to maintain the temperature near the control temperature indefinitely.
  • the temperature control is regulated by periodically determining at least two parameters of the heating oscillating circuits of the induction heating based on the amplitude of the resonance current flowing through the heating.
  • the value of the resonant circuit amplitude and the rate of change of the amplitude are preferably determined.
  • DE 19743253 A1 discloses a method for protecting circuit components of an integrated circuit against operating temperatures that are too high, and a correspondingly designed protective circuit.
  • the food preparation attachment has at least one transmitter for the wireless transmission of data to an external unit.
  • a transmitter is generally understood to mean a transmission device for access to a transmission channel to an external unit.
  • the food preparation attachment also has at least one integrated circuit for processing data and for outputting data to the transmitter based on the processing.
  • the integrated circuit can therefore process data, e.g. B. read, change, link, buffer, format, etc., and output this data or data derived therefrom to the transmitter for transmission to an external unit.
  • Data to be processed can be obtained from another unit, e.g. B. a sensor, delivered data or data stored in or on the integrated circuit, z. B. an identifier or property of the food preparation attachment.
  • the transmitter of the food preparation attachment is not battery-operated, but rather draws its energy essentially from an electromagnetic excitation field.
  • the food preparation attachment has at least one energy sensor for the continuous absorption of energy from the electromagnetic excitation field.
  • Energy absorbed from the electromagnetic excitation field is used on the one hand to supply power to the cooking appliance (operation of a heating element, etc.) and on the other hand is used to supply at least the integrated circuit and the transmitter, and possibly other low-voltage components.
  • the heating element can therefore be supplied with energy for its operation by means of the at least one energy sensor.
  • a switching regulator can be connected downstream of the energy sensor, which rectifies energy extracted from the power supply to a voltage level suitable for operating the low-voltage components.
  • the food preparation attachment including the heating element as well as the integrated circuit and the transmitter will be fed by means of the energy sensor for their operation.
  • the integrated circuit can thus be permanently provided with high electrical power, which enables the use of particularly powerful and comparatively inexpensive electronic components.
  • energy storage devices can be present, e.g. B. powerful capacitors such as gold caps.
  • B. powerful capacitors such as gold caps.
  • Data can also be processed flexibly.
  • the use of a powerful integrated circuit enables intelligent power management of the operational performance depending on food preparation device and process parameters of the attached devices, e.g. B. a power distribution over several energy transfer areas (z. B. cooking zones) depending on a maximum power consumption of the attached devices.
  • Electronic components are also available for higher temperatures than RFIDs, which increases reliability.
  • the food preparation attachment also has an inherent temperature determination unit for determining an inherent temperature of the integrated circuit.
  • the integrated circuit can be set up, in particular, to process own temperature data and to output data to the transmitter based on the processing of the own temperature data. As a result, harmful temperature values for the operation of the integrated circuit can be detected early and subsequently avoided.
  • the type of energy absorber is basically not limited.
  • the energy sensor can preferably have a coil with corresponding power windings, in particular for tapping energy from an electromagnetic excitation field in the form of an alternating magnetic field.
  • a coil as an energy sensor, the food preparation attachment can be used in particular for inductive or transformer energy transfer (energy transfer between two inductors by means of an alternating magnetic field), in which the electromagnetic excitation field is generated by means of an external primary coil.
  • transformer energy transfer is, for example, in DE 10 2006 017 800 A1 described.
  • the transmitter can be at least partially integrated into the integrated circuit. This results in a particularly compact design.
  • the transmitter is a component different from the integrated circuit.
  • the transmitter can have a modulator and an antenna connected downstream of the modulator.
  • the modulator may be integrated in the integrated circuit, but the antenna may not.
  • the antenna can be designed as a coil-like turn (s) in particular in the case of transformer energy transmission, since the operating device and the food preparation attachment are already set up there for inductive coupling via corresponding coils and are already at a sufficiently short distance.
  • the signal transmission can be transmitted via the same windings via which the power is also transmitted, e.g. B. from a secondary coil to the primary coil in unidirectional data transmission and between the two coils in bidirectional data transmission. This means that there is no need for a separate antenna.
  • the signal transmission can be carried out via inductively coupled signal windings in the control gear and food preparation attachment, which are carried out separately from the power windings for power transmission.
  • the signal turn (s) can in particular be arranged on one level with the power turns, e.g. B. the power turns around the outside.
  • the data transmission can also be done in other ways, e.g. B. over a radio air path, an optical data transmission channel, an IR data transmission channel and so on.
  • the processor clock of the integrated circuit can advantageously serve as the carrier frequency.
  • the food preparation attachment can only be equipped with a transmitter, which simplifies the construction of the food preparation attachment and reduces the costs (simplification of the electronics of the food preparation attachment).
  • the communication is then unidirectional from the food preparation attachment to the operating device (base station).
  • the food preparation attachment can also have a receiver function. Communication can then take place bidirectionally between the food preparation attachment and the operating device.
  • the food preparation attachment can be equipped with a separate receiver (receiver).
  • the receiver can then have a demodulator connected downstream of a receiving antenna, wherein the demodulator can also be integrated in the integrated circuit.
  • the transmitter can advantageously be designed as a transceiver (transmitter / receiver).
  • the transceiver can have a modem connected downstream of a transceiver antenna, wherein the modem can also be integrated in the integrated circuit.
  • the received data can be processed by the integrated circuit in the food preparation attachment.
  • bidirectional data transmission the data transmission from the food preparation attachment to the operating device can be initiated, for example, cyclically and / or on request by the operating device, but not on request in the case of unidirectional data transmission.
  • some data e.g. measurement data or device status data
  • other data e.g. Identification data
  • the data exchange can take place both in full-duplex mode and in half-duplex mode.
  • the food preparation attachment can furthermore have at least one sensor unit for sensing at least one physical measured variable, the at least one integrated circuit being set up for processing sensor data of the at least one sensor unit and for outputting data to the transmitter based on this processing.
  • a measurement variable that serves to set or control a cooking process such as a temperature of the food to be cooked, a pressure (e.g. in the case of a pressure cooker), a moisture level, a fill level and so on, can be sensed as the physical measurement variable.
  • a corresponding temperature control, pressure control, humidity control etc. is made possible by transmitting the physical measured variable (s).
  • identification data can include, for example, information about a device type (e.g. pot, pan, small household appliance), a system affiliation (e.g. to a specific device series), a design, a type and number of sensors, control parameters, material properties (e.g. B. thermal conductivity of a cookware base), coefficients (z. B. PID coefficients for a PID control), etc. of the food preparation attachment include.
  • the device status data can contain, for example, information about the presence of a device, an on / off state, a power consumption, a centering of the food preparation attachment with respect to an energy transmission area (cooking zone or the like) and so on.
  • the information about the centering of the food preparation attachment can make it possible to readjust the energy transfer when the pot is not centered, or it can be used for efficient energy transfer (adjustment of the parameters of the electromagnetic excitation field) become.
  • a user interface of the operating device can also be individually adapted to the food preparation attachment.
  • the processing of the intrinsic temperature data can take place in the integrated circuit, in the operating device or partly in the integrated circuit and partly in the operating device.
  • the integrated circuit can process the intrinsic temperature data for transmission to the operating device, e.g. B. format while the control gear uses the self-temperature data to control the food preparation attachment.
  • the operating device causes the electromagnetic excitation field to be reduced by, for example, 25% in order to prevent the heating process from overheating and being interrupted soon. If the value of the intrinsic temperature reaches or exceeds a second, higher intrinsic temperature threshold value (e.g. after a long empty cooking), the operating device switches off the excitation field in order to prevent damage to the integrated circuit (and possibly other temperature-sensitive components).
  • Different intrinsic temperature threshold values can also be associated with different reduction levels (for example a reduction by 5%, 10%, 25% etc.) of the strength of the excitation field.
  • the reduction can be more pronounced, in particular, the higher the self-temperature threshold reached or exceeded.
  • an intrinsic temperature threshold signal may include a warning signal, a ramp-down signal for reducing the electromagnetic excitation field and / or a switch-off signal for switching off the electromagnetic excitation field.
  • the food preparation attachment can be designed in particular as cookware, e.g. B. as a pot, pan, etc.
  • the operating device is set up to operate such a food preparation attachment and, for this purpose, has at least one excitation field generating means, in particular a coil ('primary coil') for transformer energy transfer, in order to generate an electromagnetic excitation field, in particular an alternating magnetic field.
  • the operating device has a receiver which is set up to receive data from the transmitter of the food preparation attachment.
  • the operating device also has a control unit for setting a strength of the electromagnetic excitation field based on the received data.
  • the control unit is also set up to carry out a comparison of the self-temperature with at least one self-temperature threshold when receiving self-temperature data.
  • the operating device may give a warning signal and / or reduce, including shutdown, a strength of the electromagnetic excitation field.
  • control unit can also be set up to react accordingly when it receives an intrinsic temperature threshold signal.
  • the control unit can in particular (a) issue a visual and / or acoustic warning when a warning signal is received from the food preparation attachment, (b) reduce the electromagnetic excitation field, in particular down-regulate it when a down-regulation signal is received, and / or (c) when it receives a shutdown signal Switch off the electromagnetic excitation field.
  • the control unit can thus counteract an impending overheating of the integrated circuit.
  • a power of not more than 10 watts is used for data communication, especially not more than 5 watts, in particular not more than 3 watts.
  • the power can also be required to operate electronics of the attachment, which uses the signal coil as an antenna.
  • a power of not more than 10 watts is used for data communication, especially not more than 5 watts, in particular not more than 3 watts.
  • the power can also be required to operate electronics of the attachment, which uses the signal coil as an antenna.
  • a method for operating such a food preparation attachment can have, for example, the following steps: monitoring an intrinsic temperature (by means of the integrated circuit of the food preparation attachment and / or by means of the operating device) and, if the intrinsic temperature reaches or exceeds a predetermined intrinsic temperature threshold value, output a warning signal and / or down-regulate (possibly including switching off) the electromagnetic excitation field.
  • Fig. 1 shows an intelligent cookware 101, which is designed as an "electric pot and represents an electrical consumer.
  • the cookware 101 has a base body 102 with a lid and handles and an energy sensor 114 designed as a drive unit.
  • the cookware 101 is on a surface of a worktop 105 of an operating device 106 for operating the cooking utensil 101.
  • An energy transmission unit 107 is mounted under the worktop 105.
  • This has a housing 108 with an actuating element 109 for switching the energy transmission unit 107 on and off and a power generation unit 112 for supplying the excitation field generating means 111 with an alternating current.
  • the power generation unit 112 is as Inverters trained.
  • the excitation field generating means 111 designed as a primary winding is wound in the form of a spiral winding.
  • the excitation field generating means 111 is supplied with the alternating current and generates an excitation field designed as an alternating magnetic field.
  • the excitation field generating means 111 transmits energy by induction to the energy sensor 114, which is arranged in an energy transfer area 113 drawn on the surface of the work surface 105.
  • the energy absorber 114 is designed as a secondary winding, which is wound in the form of a spiral winding.
  • the energy transfer area 113 is drawn on the worktop 105 by means of a line 115.
  • a control panel in the form of a touch-sensitive screen 104 is also embedded in the worktop 105, on which display elements and actuating elements are freely programmable.
  • the touch-sensitive screen 104 can be, for example, a liquid crystal or LED screen which is covered by a touch-sensitive film, e.g. B. an ITO film is covered.
  • actuating elements such as buttons, circular sliders, linear sliders, can essentially be displayed as desired on the control panel, which allows very flexible operator guidance.
  • the cookware 101 is equipped with an integrated circuit 116 for processing data and for outputting data to a transmitter.
  • a temperature sensor (intrinsic temperature sensor) 117 for determining an intrinsic temperature of the integrated circuit 116 is connected to an input of the integrated circuit 116.
  • the integrated circuit 116 cyclically senses the self-temperature sensor 117, processes the sensed self-temperature signals into a predetermined data and protocol structure and transmits the self-temperature data processed in this way to a transmitter.
  • the transmitter has a modulator (not shown) and a downstream transmission antenna.
  • the secondary winding 114 serves as the transmitting antenna for power transmission.
  • the data signals emitted by the secondary winding 114 are received by the primary winding 111, which also serves as the receiving antenna of the operating device 106, are demodulated in a demodulator (not shown) of the operating device 106 and are forwarded to a control unit 110 of the operating device 106.
  • the control unit (“stove electronics”) 110 which here comprises a microcontroller, controls the power generation unit 112, among other things, by means of the intrinsic temperature data.
  • the control unit 110 issues an acoustic and optical warning signal which indicates a critical condition to an operator and can prompt him to take a countermeasure. Reaching or exceeding the first intrinsic temperature threshold can be an indication of a low water level ('impending empty boiling'), to which the operator can react, for example, by refilling water, switching down a power level or removing the cookware.
  • the control unit 110 causes the electromagnetic excitation field to be reduced by, for example, 25% (“reduction level”) in order to prevent the heating process from overheating and being interrupted soon.
  • the control unit 110 switches off the power generation unit 112 and thus the excitation field in order to damage the integrated circuit (and possibly other temperature-sensitive components). to prevent.
  • Fig. 2 shows a sketch of a simplified control structure of a system comprising an intelligent cookware 201 and an operating device 206.
  • the intelligent cookware 201 is designed as a pot, in which food 221 can be filled into a base body 202, which is closed at the bottom by a pot base 220.
  • a heating track 222 in the form of a tortuous resistance thick-film track runs on an underside of the pot bottom 220, which is heated when energized and thus heats the pot bottom 220 to heat the food 221.
  • the heating track 222 is connected to an energy sensor 214 in the form of a spiral secondary winding and represents its load.
  • the energy sensor 214 also branches off an electrical power for supplying a top electronics 223.
  • the top electronics 223 has a switching regulator 224, which converts the AC power output from the energy absorber 214 into a low-voltage DC voltage.
  • the remaining parts of the top electronics 223 are operated, of which an analog measuring electronics 225, an integrated circuit 216 and a modulator 226 are shown.
  • analog measuring electronics 225 measuring signals from various sensors of the cooking utensils 201 are sensed and digitized.
  • temperature sensors 227 attached to the underside of the pot base 220 are shown.
  • other sensors can also be connected to the analog measuring electronics 225, e.g. B. pressure sensors or moisture sensors.
  • an inherent temperature sensor 217 is present directly at a measuring input of the analog measuring electronics 225.
  • the analog measuring electronics 225 is connected on the output side to an input side of the integrated circuit 216, so that temperature data are forwarded from the analog measuring electronics 225 to the integrated circuit 216 for subsequent processing.
  • the integrated circuit 216 has an A / D converter (not shown) for processing the temperature data transmitted analogously by the measuring electronics 225.
  • the digital "raw data" supplied by the analog measuring electronics 225 are reformatted into a format compatible for communication with the operating device 206.
  • raw data are converted into a predetermined data format and protocol format.
  • the formatted measurement data is then cyclically, e.g. B.
  • the modulator 226, every 10 ms, forwarded to the modulator 226, where they are modulated onto a carrier signal, in order to then be transmitted from the modulator 226 via an antenna 228 to the operating device 206.
  • the antenna 228 is configured here as a signal turn running parallel to the pot base 220.
  • other measurement data can also be processed by the integrated circuit 216 and forwarded to the modulator 226, such as a measurement signal of a secondary-side power voltage.
  • Other data can also be processed by the integrated circuit 216 and forwarded to the modulator 226, such as identification data (identity code, etc.) and device status data, either cyclically or - in the case of bidirectional communication - on request.
  • the operating device 206 has a receiving antenna 229, which is also designed as a signal winding, which is essentially opposite the signal winding of the transmitting antenna 228 of the cookware 201.
  • the receiving antenna 229 receives the modulated carrier signal emitted by the transmitting antenna 228 and forwards it to a demodulator 230, in which the carrier signal modulated data extracted and output again as readable digital data.
  • a control unit (“cooker electronics”) 210 and evaluated for the operation of the cookware 201.
  • the temperature data sent out from the cookware 201 can be in the form of resistance values of the temperature sensors used, if these are designed as resistance temperature sensors. From this, the actual temperature on the underside of the pan base 220 can be determined in the control unit 210 by looking up corresponding resistance / temperature characteristics in a look-up table, and the temperature of the food to be cooked can be derived therefrom. For example, the temperature on the underside of the pan base 220 can be equated with the temperature of the food, or an empirically determined temperature difference can be added, which can also be dependent on the level of the measured temperature.
  • the control unit 210 also receives inputs from a control panel 204, for example via a target food temperature for a temperature control.
  • control unit 210 For this purpose, an operator has previously set the target food temperature on the control panel 204 directly or via a cooking program. Other control variables, such as PID coefficients, can also be sent from the control panel 204 to the control unit, unnoticed by the operator.
  • a control deviation between the target food temperature and the actual food temperature can be determined in the control unit 210, as can a manipulated variable of the control circuit, from which a control voltage for controlling a power generation unit 212 in the form of power electronics is in turn calculated and output.
  • the control voltage is in a range between 0 V (switched off) and 4 V (maximum).
  • a digital / analog converter 231 is inserted between the control unit 210 and the power generation unit 212.
  • the control unit 210 further compares the transmitted value of the self-temperature with at least one self-temperature threshold, as already described in more detail above. Depending on whether one of the intrinsic temperature threshold values has been reached or exceeded and, if so, which of several intrinsic temperature threshold values has been reached or exceeded, a warning can be issued or the excitation field generated by the excitation field generating means 211 can be specifically weakened and reduced by reducing a control voltage to the power generation unit 212 In extreme cases, they can even be switched off.
  • the worktop 105 shown can transmit energy from the operating device 206 to the cooking utensil 201 and data signals from the cooking utensil 201 to the operating device 206. Due to the transformer or inductive coupling between the excitation field generating means 211 and the energy absorber 214, however, the energy transfer is only possible in a near field of the excitation field generating means 211 for operating the cookware 201. Typical maximum distances between operating device 206 and cookware 201 are 3 to 10 cm. If the cookware 201 is further removed from the excitation field generating means 211, the transmitted power is no longer sufficient to operate the cookware 201. Then the transmitted energy is no longer sufficient to operate the top electronics, which then cease operation.
  • the cooking utensil 201 When the cooking utensil 201 approaches an operating device 206, it can reenter the near field of the excitation field generating means 211 and can thus be supplied with energy again. In this case, the top electronics 223 again sends out signals which are recognized by the operating device 206.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Cookers (AREA)
  • Induction Heating Cooking Devices (AREA)

Description

  • Die Erfindung betrifft ein Lebensmittelzubereitungs-Aufsatzgerät, insbesondere Gargeschirr, mit einem Transmitter und einem Energieaufnehmer zur Stromversorgung des Transmitters sowie eine Betriebsvorrichtung zum Betrieb des Lebensmittelzubereitungs-Aufsatzgeräts.
  • EP 0 098 491 A2 offenbart eine Fernmesseinrichtung, die wenigstens eine Abfragestation und wenigstens eine Messstation aufweist, die mit wenigstens einem Informationssender bzw. einem Modulator und mit einem Informationsempfänger sowie jeweils einer Antenne ausgerüstet sind. Die Messstation ist zur Ausführung der Messungen mit einer Meßeinrichtung versehen. Dabei ist die Abfragestation mit einem Energiesender ausgerüstet, der die für die Messstation erforderliche Energie aussendet. Die Messstation weist einen Energieempfänger auf, dem ein Gleichrichter nachgeschaltet ist, der für die gesamte Strom- bzw. Spannungsversorgung der Messstation vorgesehen ist. Sollen mehrere Meßstationen gleichzeitig ihre Meßwerte an eine Abfragestation übermitteln, so ist jede Messstation mit einem zusätzlichen Speicher versehen, der einen speziellen Öffnungscode enthält. Die angesprochene Messstation gibt ihre Information nur dann ab, wenn der von der Abfragestation gesendete Öffnungscode mit dem im Speicher enthaltenen Öffnungscode übereinstimmt. Die Messstation kann einen Mikrocomputer aufweisen, der zu einer Signalverarbeitungs- und Steuereinheit der Messstation gehört. Vom Mikrocomputer aufbereitete Meßdaten gelangen über seinen Ausgang in Form eines Steuersignals zum Modulator, der dem Mikrocomputer nachgeschaltet ist, und welcher mit der Antenne in Verbindung steht. Der Modulator verändert entsprechend dem ihm zugeführten Signal den Widerstand der Antenne. Die Messstation kann in einem Knopf eines Deckels eines Garbehältnisses untergebracht sein.
  • EP 1 037 508 A1 offenbart einen induktiven Kochherd zur Erwärmung von Kochgut, der Mittel zur Regelung der Heizleistung und mindestens einen Sensor zur Temperaturmessung enthält. Das Ausgangssignal der Sensoren wird als Stellgrösse für die Mittel zur Regelung verwendet. Die Sensoren sind unmittelbar im oder beim Kochgut angebracht. Das Ausgangssignal der Sensoren wird mittels einer Anzeigeeinheit auf dem induktiven Kochherd visuell dargestellt.
  • WO 99/41950 A2 offenbart ein Kochgefäß zur Verwendung mit Induktionsherdplatten, das alle Eingabeelemente zur Steuerung der Induktionsheizung in z.B. einem Griff des Kochgeschirrs enthält. Die Leistungsversorgung wird mittels Umwandelns von ELF-Strahlung erlangt, die verwendet wird, um das Kochgeschirr zu erwärmen, und die Steuerknöpfe, Temperaturabfühlmittel und Übertragungsmittel an die Leistungssteuereinheit für die Induktionsspulen passen alle in den Griff.
  • US 3,742,178 A1 offenbart einen Induktionskochherd mit einer Ablagefläche, die ein Speisen enthaltendes Kochgeschirr unterstützt. Das Geschirr wird mittels der Induktionsspule des Herds erwärmt, welche bei einer hohen Frequenz arbeitet. Der Induktionskochherd umfasst eine Temperaturabfühleinheit, die eine Temperaturerfassungseinheit und eine Temperaturempfangseinheit aufweist. Erstere Einheit ist in dem Kochgeschirr eingebaut, während sich letztere Einheit entfernt davon im Induktionsherd befindet. Die zuvor genannte Temperaturempfangseinheit empfängt Funkfrequenzübertragungen von Temperaturdaten von der Temperaturerfassungseinheit in dem Geschirr. Die Temperaturerfassungseinheit in dem Geschirr wird mittels des Hauptfelds, das von der Induktionsspule erzeugt wird, angetrieben.
  • US 6 504 135 B2 offenbart temperatur-selbstregelnde Lebensmittelliefersysteme mit einer magnetischen Induktionsheizung und einem zugeordneten Lebensmittelbehälter, der mit einem im Wesentlichen permanenten ferromagnetischen Heizelement ausgestattet ist. Die Induktionsheizung und die Heizelemente sind so ausgelegt, dass sie das Heizelement auf eine vom Benutzer gewählte Regeltemperatur erwärmen, wenn die Heizelemente mit dem Magnetfeld der Heizung gekoppelt sind, und die Temperatur in der Nähe der Regelungstemperatur auf unbestimmte Zeit aufrechterhalten wird. Die Temperaturregelung wird dadurch eingeregelt, dass periodisch mindestens zwei Parameter der Heizschwingkreise der Induktionsheizung bezogen auf die Amplitude des beim Heizen durchfließenden Resonanzstroms ermittelt werden. Vorzugsweise werden der Wert der Schwingkreisamplitude und die Änderungsrate der Amplitude ermittelt.
  • DE 19743253 A1 offenbart ein Verfahren zum Schutz von Schaltungskomponenten einer integrierten Schaltung gegen zu hohe Betriebstemperaturen sowie eine entsprechend ausgelegte Schutzschaltung.
  • Es ist die Aufgabe der vorliegenden Erfindung, eine Möglichkeit zur leistungsfähigen, flexiblen und ausfallsicheren Kommunikation eines Lebensmittelzubereitungs-Aufsatzgeräts mit einem zu seinem Betrieb eingerichteten Betriebsgerät bereitzustellen.
  • Diese Aufgabe wird mittels eines Lebensmittelzubereitungs-Aufsatzgeräts und einer Betriebsvorrichtung zum Betrieb des Lebensmittelzubereitungs-Aufsatzgeräts gelöst. Bevorzugte Ausführungsformen sind insbesondere den abhängigen Ansprüchen entnehmbar.
  • Das Lebensmittelzubereitungs-Aufsatzgerät weist mindestens einen Transmitter zum drahtlosen Übermitteln von Daten an eine externe Einheit auf. Dabei wird unter einem Transmitter ganz allgemein eine Sendeeinrichtung für den Zugang zu einem Übertragungskanal zu einer externen Einheit verstanden. Das Lebensmittelzubereitungs-Aufsatzgerät weist ferner mindestens eine integrierte Schaltung zur Verarbeitung von Daten und zur Ausgabe von Daten an den Transmitter beruhend auf der Verarbeitung auf. Die integrierte Schaltung kann also Daten verarbeiten, z. B. einlesen, verändern, verknüpfen, zwischenspeichern, formatieren usw., und diese Daten oder daraus abgeleitete Daten an den Transmitter zur Übertragung an eine externe Einheit ausgeben. Zu verarbeitende Daten können von einer anderen Einheit, z. B. einem Sensor, angelieferte Daten sein oder auch in oder an der integrierten Schaltung gespeicherte Daten sein, z. B. eine Kennung oder Eigenschaft des Lebensmittelzubereitungs-Aufsatzgeräts. Der Transmitter des Lebensmittelzubereitungs-Aufsatzgeräts wird nicht batteriebetrieben, sondern bezieht seine Energie im Wesentlichen aus einem elektromagnetischen Anregungsfeld. Dazu weist das Lebensmittelzubereitungs-Aufsatzgerät mindestens einen Energieaufnehmer zur kontinuierlichen Aufnahme von Energie aus dem elektromagnetischen Anregungsfeld auf. Aus dem elektromagnetischen Anregungsfeld aufgenommene Energie wird einerseits zur Leistungsversorgung des Gargeräts (Betrieb eines Heizelements usw.) verwendet werden und wird andererseits zur Speisung mindestens der integrierten Schaltung und des Transmitters, und ggf. noch anderer Niedervoltkomponenten, verwendet. Das Heizelement ist also zu seinem Betrieb mittels des mindestens einen Energieaufnehmers mit Energie versorgbar. Dazu kann dem Energieaufnehmer ein Schaltregler nachgeschaltet sein, welcher aus der Leistungsversorgung ausgekoppelte Energie auf einen zum Betreiben der Niedervoltkomponenten geeigneten Spannungspegel gleichrichtet. In anderen Worten werden das Lebensmittelzubereitungs-Aufsatzgerät einschließlich des Heizelements als auch die integrierte Schaltung und der Transmitter mittels des Energieaufnehmers zu deren Betrieb gespeist werden.
  • Der integrierten Schaltung kann so dauerhaft eine hohe elektrische Leistung zur Verfügung gestellt werden, was den Einsatz besonders leistungsfähiger und vergleichsweise preiswerter elektronischer Komponenten ermöglicht. Zum Schutz vor kurzen Leistungsunterbrechungen können Energiespeicher vorhanden sein, z. B. leistungsstarke Kondensatoren wie Goldcaps. Durch die Verwendung einer leistungsfähigen integrierten Schaltung kann der Umfang der übermittelten Daten wesentlich höher sein als beispielsweise bei RFID (Funkmarken)-Systemen ohne eigene Spannungsversorgung oder auch bei Niedrigenergieelektroniken. Auch können Daten flexibel verarbeitet werden. Beispielsweise ermöglicht die Verwendung einer leistungsfähigen integrierten Schaltung ein intelligentes Power-Management der Betriebsverrichtung in Abhängigkeit von Lebensmittelzubereitungsgerät- und Prozessparametern der aufgesetzten Geräte, z. B. eine Leistungsverteilung auf mehrere Energieübertragungsbereiche (z. B. Kochzonen) in Abhängigkeit einer maximalen Leistungsaufnahme der aufgesetzten Geräte. Ferner sind elektronische Bauteile für höhere Temperaturen erhältlich als RFIDs, was eine Zuverlässigkeit erhöht.
  • Die integrierte Schaltung kann als eine analoge integrierte Schaltung, als eine digitale integrierte Schaltung oder als eine gemischte analoge und digitale integrierte Schaltung ("Mixed Signal-IC") ausgestaltet sein. Die integrierte Schaltung kann beispielsweise als ASIC, DSP, FPGA, oder Microcontroller ausgestaltet sein. Die integrierte Schaltung kann einen Datenspeicher aufweisen und / oder mit einem Datenspeicher verbunden sein, z. B. einem EEPROM.
  • Das Lebensmittelzubereitungs-Aufsatzgerät weist ferner eine Eigentemperaturbestimmungseinheit zum Bestimmen einer Eigentemperatur der integrierten Schaltung aufw. Die integrierte Schaltung kann insbesondere zur Verarbeitung von Eigentemperaturdaten und zur Ausgabe von Daten an den Transmitter beruhend auf der Verarbeitung der Eigentemperaturdaten eingerichtet sein. Dadurch können zum Betrieb der integrierten Schaltung schädliche Temperaturwerte frühzeitig erkannt und in der Folge vermieden werden.
  • Die Art des Energieaufnehmers ist grundsätzlich nicht beschränkt. Vorzugsweise kann der Energieaufnehmer eine Spule mit entsprechenden Leistungswindungen aufweisen, insbesondere zum Abgriff von Energie aus einem elektromagnetischen Anregungsfeld in Form eines magnetischen Wechselfelds. Durch die Verwendung einer Spule als Energieaufnehmer kann das Lebensmittelzubereitungs-Aufsatzgerät insbesondere zur induktiven oder transformatorischen Energieübertragung (Energieübertragung zwischen zwei Induktoren mittels eines magnetischen Wechselfelds) verwendet werden, bei der das elektromagnetische Anregungsfeld mittels einer externen Primärspule erzeugt wird. Das Prinzip der transformatorischen Energieübertragung ist beispielsweise in DE 10 2006 017 800 A1 beschrieben.
  • Der Transmitter kann zumindest teilweise in die integrierte Schaltung integriert sein. Dadurch wird eine besonders kompakte Bauweise erreicht. Alternativ ist der Transmitter ein von der integrierten Schaltung unterschiedliches Bauelement.
  • Der Transmitter kann einen Modulator und eine dem Modulator nachgeschaltete Antenne aufweisen. Bei einem solchen Aufbau des Transmitters mag beispielsweise der Modulator in die integrierte Schaltung integriert sein, die Antenne jedoch nicht.
  • Der Modulator kann die Datensignale mittels einer Amplitudenumtastung ("Amplutide Shift Keying"; ASK) auf ein Trägersignal zur drahtlosen Übertragung des modulierten Trägersignals über die Antenne aufmodulieren. Als eine besonders einfache Form der Amplitudenumtastung kann ein sog. "On-Off Keying" (OOK) verwendet werden, es können aber auch mehrere Amplitudenwerte (Stufen) gewählt werden. Andere mögliche, vorzugsweise digitale, Modulationsarten können beispielsweise eine Frequenzumtastung ("Frequency Shift Keying"; FSK, z. B. in Form einer "Gaussian Minimum Shift Keying", GMSK) und eine Phasenumtastung ("Phase Shift Keying; PSK, z. B. in Form einer binären Phasenmodulation, BPSK, oder einer Quadraturamplitudenmodulation, QPSK) umfassen. Auch können Mehrträgerverfahren wie Orthogonal Frequency Division Multiplex, OFDM, oder Coded Orthogonal Frequency Division Multiplex, COFDM, verwendet werden.
  • Die Datenübertragung geschieht vorteilhafterweise mit einem hochfrequenten Trägersignal, wobei ein Frequenzunterschied zwischen dem Trägersignal und einer Frequenz des elektromagnetischen Anregungsfelds zur Speisung des Lebensmittelzubereitungs-Aufsatzgeräts so gewählt ist, dass sich die Frequenzen von Energieübertragung (Leistungsübertragung) und Signalübertragung nicht gegenseitig stören. Dies geschieht vorteilhafterweise unter Berücksichtigung eines Störspektrums der Energieübertragung. Die Leistungsübertragung bewegt sich vorzugsweise in einem Bereich zwischen 0 kW und 4 kW.
  • Die Antenne kann insbesondere bei einer transformatorischen Energieübertragung als spulenartige Windung(en) ausgeführt sein, da dort bereits die Betriebsvorrichtung und das Lebensmittelzubereitungs-Aufsatzgerät für eine induktive Kopplung über entsprechende Spulen eingerichtet sind und bereits einen ausreichend geringen Abstand aufweisen. Die Signalübertragung kann über die gleichen Windungen übertragen werden, über welche auch die Leistung übertragen wird, z. B. von einer Sekundärspule zur Primärspule bei unidirektionaler Datenübertragung und zwischen den beiden Spulen bei bidirektionaler Datenübertragung. Dadurch kann auf eine gesonderte Antenne verzichtet werden. Zur verringerten Störungsanfälligkeit kann die Signalübertragung über induktiv gekoppelte Signalwindungen in Betriebsgerät und Lebensmittelzubereitungs-Aufsatzgerät durchgeführt werden, welche von den Leistungswindungen zur Leistungsübertragung getrennt ausgeführt sind. Die Signalwindung(en) kann oder können insbesondere auf einer Ebene mit den Leistungswindungen angeordnet sein kann, z. B. die Leistungswindungen außenseitig umlaufend. Allgemein kann die Datenübertragung aber auch über andere Weisen geschehen, z. B. über eine Funkluftstrecke, einen optischen Datenübertragungskanal, einen IR-Datenübertragungskanal und so weiter.
  • Als Trägerfrequenz kann vorteilhafterweise der Prozessortakt der integrierten Schaltung dienen.
  • Das Lebensmittelzubereitungs-Aufsatzgerät kann lediglich mit einem Transmitter ausgestattet sein, was den Aufbau des Lebensmittelzubereitungs-Aufsatzgeräts vereinfacht und die Kosten verringert (Vereinfachung der Elektronik des Lebensmittelzubereitungs-Aufsatzgeräts). Die Kommunikation ist dann unidirektional vom Lebensmittelzubereitungs-Aufsatzgerät zur Betriebsvorrichtung (Basisstation) ausgeführt.
  • Zur besonders flexiblen Gargutbehandlung kann das Lebensmittelzubereitungs-Aufsatzgerät aber auch eine Empfängerfunktion aufweisen. Die Kommunikation kann dann bidirektional zwischen Lebensmittelzubereitungs-Aufsatzgerät und Betriebsvorrichtung erfolgen. Das Lebensmittelzubereitungs-Aufsatzgerät kann mit einem gesonderten Receiver (Empfänger) ausgestattet sein. Der Receiver kann dann einen einer Empfangsantenne nach geschalteten Demodulator aufweisen, wobei der Demodulator auch in die integrierte Schaltung integriert sein kann. Zur Einsparung von Bauelementen kann der Transmitter vorteilhafterweise als ein Transceiver (Sender/Empfänger) ausgestaltet sein. Der Transceiver kann ein einer Sendeempfangsantenne nachgeschaltetes Modem aufweisen, wobei das Modem auch in die integrierte Schaltung integriert sein kann. Im Lebensmittelzubereitungs-Aufsatzgerät können die empfangenen Daten von der integrierten Schaltung verarbeitet werden.
  • Die Datenübertragung vom Lebensmittelzubereitungs-Aufsatzgerät zur Betriebsvorrichtung kann bei bidirektionalen Datenübertragung beispielsweise zyklisch und / oder auf Anforderung der Betriebsvorrichtung initiiert werden, bei unidirektionaler Datenübertragung jedoch nicht auf Anforderung. Bei bidirektionaler Datenübertragung können auch einige Daten (z. B. Messdaten oder Gerätestatusdaten) zyklisch und andere Daten (z. B. Identifizierungsdaten) auf Anforderung vom Lebensmittelzubereitungs-Aufsatzgerät übertragen werden.
  • Zur bidirektionalen Kommunikation können sowohl an der Betriebsvorrichtung als auch am Lebensmittelzubereitungs-Aufsatzgerät Modems vorhanden sein. Bei einer bidirektionalen Kommunikation genügen ein Modulator am Lebensmittelzubereitungs-Aufsatzgerät und ein Demodulator an der Betriebsvorrichtung.
  • Der Datenaustausch kann sowohl im Vollduplexbetrieb als auch im Halbduplexbetrieb erfolgen.
  • Das Lebensmittelzubereitungs-Aufsatzgerät kann ferner mindestens eine Sensoreinheit zum Abfühlen mindestens einer physikalischen Messgröße aufweisen, wobei die mindestens eine integrierte Schaltung zur Verarbeitung von Sensordaten der mindestens einen Sensoreinheit und zur Ausgabe von Daten an den Transmitter beruhend auf dieser Verarbeitung eingerichtet ist. Als physikalischen Messgröße kann insbesondere eine Messgröße abgefühlt werden, welche zur Einstellung oder Regelung eines Garprozesses dient, wie eine Garguttemperatur, ein Druck (z. B. bei einem Schnellkochtopf), eine Feuchte, ein Füllstand und so weiter. Durch eine Übermittlung der physikalischen Messgröße(n) wird eine entsprechende Temperaturregelung, Druckregelung, Feuchteregelung usw. ermöglicht.
  • Aber auch andere Daten können von der integrierten Schaltung über den Transmitter nach Außen ausgegeben werden, wie Identifizierungsdaten zur Identifizierung des aufgesetzten Geräts und / oder Gerätestatusdaten über einen Gerätestatus. Die Identifizierungsdaten können beispielsweise Information über einen Gerätetyp (z. B. Topf, Pfanne, kleines Hausgerät), eine Systemzugehörigkeit (z. B. zu einer bestimmten Gerätereihe), eine Bauart, eine Art und Anzahl von Sensoren, Regelparameter, Materialeigenschaften (z. B. eine Wärmeleitfähigkeit eines Gargeschirrbodens), Koeffizienten (z. B. PID-Koeffizienten für eine PID-Regelung) usw. des Lebensmittelzubereitungs-Aufsatzgeräts umfassen. Die Gerätestatusdaten können beispielsweise Information über ein Vorhandensein eines Geräts, einen Ein/Aus-Zustand, eine Leistungsaufnahme, eine Zentrierung des Lebensmittelzubereitungs-Aufsatzgeräts bezüglich eines Energieübertragungsbereichs (Kochzone o. ä.) und so weiter enthalten. So kann beispielsweise die Information über die Zentrierung des Lebensmittelzubereitungs-Aufsatzgeräts eine Nachregelung der Energieübertragung bei nicht zentriertem Topf ermöglichen oder zur effizienten Energieübertragung (Anpassung der Parameter des elektromagnetischen Anregungsfelds) verwendet werden. Auch ist eine Anpassung der Leistungsregelung an ein aufgesetztes Lebensmittelzubereitungs-Aufsatzgerät in Abhängigkeit von den Identifizierungsdaten (Eigenschaften des Lebensmittelzubereitungs-Aufsatzgeräts usw.) und / oder Gerätestatusdaten möglich. Mittels der Identifizierungsdaten kann auch eine Bedienoberfläche des Betriebsgeräts individuell an das Lebensmittelzubereitungs-Aufsatzgerät angepasst werden.
  • Allgemein können durch die übertragenen Daten, insbesondere die Messdaten, Lebensmittelzustände erkannt werden, wie Garzustände bei einem Gargeschirr oder ein Ende einer Lebensmittelzubereitung bei einem Toaster (Toast fertig) oder einer Kaffeemaschine (Kaffee durchgelaufen) usw. Auch wird durch die Datenübertragung eine Durchführung von Garprogrammen für unterschiedliche Nahrungsmittel ermöglicht.
  • Zur Abfühlung einer Eigentemperatur der integrierten Schaltung kann die Eigentemperaturbestimmungseinheit einen (Eigen)-Temperatursensor aufweisen. Dieser kann außerhalb der integrierten Schaltung angeordnet sein, z. B. in einem zur Bestimmung der Eigentemperatur repräsentativen Raumbereich (beispielsweise an einer Oberfläche der integrierten Schaltung oder in einiger Entfernung davon), und mit der integrierten Schaltung verbundenen sein. Alternativ oder zusätzlich kann die Eigentemperaturbestimmungseinheit in der integrierten Schaltung integriert sein; dabei braucht der Eigentemperatursensor kein separater Sensor zu sein, sondern kann die Temperatur beispielsweise auch indirekt ermitteln, z. B. über eine temperaturabhängige Laufzeitbestimmung, Spannungspegelbestimmung, Widerstandswertbestimmung, Taktratenbestimmung usw.). Allgemein wird unter einer Eigentemperaturbestimmungseinheit eine Einheit verstanden, welche in der Lage ist, aus einer abgefühlten Primärgröße (Spannung, Widerstand usw.) auf die Eigentemperatur zu schließen.
  • Die Verarbeitung der Eigentemperaturdaten kann in der integrierten Schaltung, im Betriebsgerät oder teilweise in der integrierten Schaltung und teilweise im Betriebsgerät geschehen. So kann insbesondere die integrierte Schaltung die Eigentemperaturdaten zur Übertragung an das Betriebsgerät verarbeiten, z. B. formatieren, während das Betriebsgerät die Eigentemperaturdaten zur Steuerung des Lebensmittelzubereitungs-Aufsatzgeräts verwendet.
  • Die Verarbeitung der Eigentemperaturdaten kann einen Vergleich der Eigentemperatur mit mindestens einem Eigentemperaturschwellwert umfassen. Der Eigentemperaturschwellwert kann beispielsweise vorbestimmt sein und in einem mit der integrierten Schaltung verbundenen oder darin integrierten Speicher abgelegt sein. Abhängig von der Tatsache, dass ein Eigentemperaturschwellwert erreicht oder überschritten worden ist und ggf., welcher von mehreren Eigentemperaturschwellwerten erreicht oder überschritten worden ist, kann eine Warnung ausgegeben werden, das Anregungsfeld gezielt geschwächt werden und im Extremfall sogar ausgeschaltet werden.
  • Insbesondere kann die Eigentemperatur mit mehreren Eigentemperaturschwellwerten verglichen werden, und es können je nach Höhe des Schwellwerts unterschiedliche Handlungen durchgeführt werden. So kann beispielsweise für den Fall, dass die Verarbeitung der Eigentemperaturdaten in dem Betriebsgerät erfolgt, dann, wenn der vom Lebensmittelzubereitungs-Aufsatzgerät übermittelte Wert der Eigentemperatur einen ersten, niedrigeren Eigentemperaturschwellwert von unten kommend erreicht oder überschreitet, die Betriebsvorrichtung ein akustisches und / oder optisches Warnsignal ausgeben, das einem Bediener den kritischen Zustand anzeigt und ihn zu einer Gegenhandlung veranlassen kann. So kann das Erreichen oder Überschreiten des ersten, niedrigeren Eigentemperaturschwellwerts ein Hinweis auf einen niedrigen Wasserstand eines Gargeschirrs sein ('drohendes Leerkochen'), worauf der Bediener beispielsweise mit einem Nachfüllen von Wasser des Gargeschirrs reagieren kann. Zusätzlich zum Warnsignal veranlasst die Betriebsvorrichtung, dass das elektromagnetische Anregungsfeld um beispielsweise 25% verringert wird, um eine baldige Überhitzung und ein Unterbrechen des Garablaufs zu verhindern. Erreicht oder überschreitet der Wert der Eigentemperatur einen zweiten, höheren Eigentemperaturschwellwert (z. B. nach einem längeren Leerkochen), schaltet die Betriebsvorrichtung das Anregungsfeld ab, um eine Schädigung des integrierten Schaltkreises (und ggf. anderer temperaturempfindlicher Komponenten) zu verhindern.
  • Auch können verschiedenen Eigentemperaturschwellwerten verschiedenen Verringerungsstufen (z. B. eine Verringerung um 5 %, 10 %, 25 % usw.) der Stärke des Anregungsfelds zugeordnet sein. Dabei kann die Verringerung insbesondere um so stärker ausfallen, je höher der erreichte oder überschrittene Eigentemperaturschwellwert ist.
  • Allgemein können bestimmte Reaktionen bei einer Verringerung der Eigentemperatur auch wieder rückgängig gemacht werden, z. B. kann bei Erreichen des niedrigeren Schwellwerts das Warnsignal ausgeschaltet werden und / oder es kann wieder eine höhere Stärke, z. B. die volle Stärke, des Anregungsfelds eingestellt werden.
  • Für den Fall, dass die Verarbeitung der Eigentemperaturdaten in der integrierten Schaltung erfolgt, kann dann, wenn die Eigentemperatur den Eigentemperaturschwellwert erreicht oder überschreitet, die integrierte Schaltung an den Transmitter ein entsprechendes Eigentemperaturschwellwert-Überschreitungssignal ausgeben. Ein solches Eigentemperaturschwellwert-Überschreitungssignal kann ein Warnsignal, ein Herunterregelungssignal zum Verringern des elektromagnetischen Anregungsfelds und / oder ein Abschaltsignal zum Abschalten des elektromagnetischen Anregungsfelds umfassen.
  • Das Lebensmittelzubereitungs-Aufsatzgerät kann insbesondere als Gargeschirr ausgebildet sein, z. B. als Topf, Pfanne usw.
  • Die Betriebsvorrichtung ist zum Betrieb eines solchen Lebensmittelzubereitungs-Aufsatzgeräts eingerichtet und weist dazu mindestens ein Anregungsfelderzeugungsmittel, insbesondere Spule ('Primärspule') zur transformatorischen Energieübertragung, auf, um ein elektromagnetisches Anregungsfeld, insbesondere magnetisches Wechselfeld, zu erzeugen. Die Betriebsvorrichtung weist einen Receiver auf, der zum Empfang von Daten vom Transmitter des Lebensmittelzubereitungs-Aufsatzgeräts eingerichtet ist. Die Betriebsvorrichtung weist auch eine Steuereinheit zum Einstellen einer Stärke des elektromagnetischen Anregungsfelds auf der Grundlage der empfangenen Daten auf.
  • Die Steuereinheit ist ferner dazu eingerichtet, bei Empfang von Eigentemperaturdaten einen Vergleich der Eigentemperatur mit mindestens einem Eigentemperaturschwellwert durchzuführen.
  • Die Betriebsvorrichtung kann dann, wenn die Eigentemperatur einen Eigentemperaturschwellwert erreicht oder überschreitet, ein Warnsignal geben und / oder eine Stärke des elektromagnetischen Anregungsfelds verringern, einschließlich abschalten.
  • Die Betriebsvorrichtung kann eine Stärke des elektromagnetischen Anregungsfelds in Abhängigkeit von einer Höhe eines von mehreren Eigentemperaturschwellwerten verringern.
  • Die Steuereinheit kann aber auch dazu eingerichtet sein, bei Empfang eines Eigentemperaturschwellwert-Überschreitungssignals entsprechend zu reagieren. Die Steuereinheit kann insbesondere (a) bei Empfang eines Warnsignals vom Lebensmittelzubereitungs-Aufsatzgerät eine optische und / oder akustische Warnung ausgeben, (b) bei Empfang eines Herunterregelungssignals das elektromagnetische Anregungsfelds verringern, insbesondere herunterregeln, und / oder (c) bei Empfang eines Abschaltsignals das elektromagnetische Anregungsfelds abschalten. Die Steuereinheit kann somit einer drohenden Überhitzung der integrierten Schaltung entgegenwirken.
  • Zur Vermeidung einer Erwärmung des Aufsatzgeräts wird es bevorzugt, wenn zur Datenkommunikation eine Leistung von nicht mehr als 10 Watt verbraucht wird, speziell nicht mehr als 5 Watt, insbesondere nicht mehr als 3 Watt. Dabei kann die Leistung auch zum Betrieb einer Elektronik des Aufsatzgeräts benötigt werden, welche die Signalspule als Antenne verwendet.
  • Zur Unterdrückung eines Übersprechens zwischen einem Leistungssignal und einem Datensignal wird es bevorzugt, wenn eine minimale Frequenz des Leistungssignals oder des Datensignals mindestens zehn mal höher ist als eine maximale Frequenz des Datensignals bzw. des Leistungssignals. Das Datensignal kann vorzugsweise eine Frequenz im MHz-Bereich oder höher aufweisen, vorzugsweise in einem Bereich ab einer Frequenz von 4 MHz oder z. B. eine Frequenz im Frequenzbereich zwischen 4 MHz und 32 MHz.
  • Das Leistungssignal weist vorteilhafterweise eine Frequenz von nicht mehr als 400 KHz auf, insbesondere eine Frequenz im Frequenzbereich zwischen 100 KHz und 400 KHz. Alternativ oder zusätzlich können Datensignale bei Frequenzen übertragen werden, die unterhalb des Frequenzbands für die Leistungsübertragung liegen.
  • Zur Vermeidung einer Erwärmung des Aufsatzgeräts wird es bevorzugt, wenn zur Datenkommunikation eine Leistung von nicht mehr als 10 Watt verbraucht wird, speziell nicht mehr als 5 Watt, insbesondere nicht mehr als 3 Watt. Dabei kann die Leistung auch zum Betrieb einer Elektronik des Aufsatzgeräts benötigt werden, welche die Signalspule als Antenne verwendet.
  • Ein Verfahren zum Betreiben eines solchen Lebensmittelzubereitungs-Aufsatzgeräts kann beispielsweise die folgenden Schritte aufweisen: Überwachen einer Eigentemperatur (mittels der integrierten Schaltung des Lebensmittelzubereitungs-Aufsatzgeräts und / oder mittels der Betriebsvorrichtung) und, falls die Eigentemperatur einen vorbestimmten Ei gentemperaturschwellwert erreicht oder überschreitet, Ausgeben eines Warnsignals und / oder Herunterregeln (ggf. einschließlich Abschalten) des elektromagnetischen Anregungsfelds.
  • In den folgenden Figuren wird die Erfindung anhand eines Ausführungsbeispiels schematisch genauer beschrieben. Dabei können zur besseren Übersichtlichkeit gleiche oder gleichwirkende Elemente mit gleichen Bezugszeichen versehen sein.
  • Fig. 1
    zeigt ein System aus einem Betriebsgerät zum Betreiben eines Gargeschirrs mittels transformatorischer Energieübertragung und einem darauf angeordneten Topf als Gargeschirr;
    Fig. 2
    zeigt eine Skizze einer vereinfachten Regelstruktur des Systems aus Fig. 1.
  • Fig. 1 zeigt ein intelligentes Gargeschirr 101, das als "elektrischer Topf ausgebildet ist und einen elektrischen Verbraucher darstellt. Das Gargeschirr 101 weist einen Grundkörper 102 mit einem Deckel und Griffen sowie einen als Antriebseinheit ausgebildeten Energieaufnehmer 114 auf. Das Gargeschirr 101 ist auf einer Oberfläche einer Arbeitsplatte 105 eines Betriebsgeräts 106 zum Betrieb des Gargeschirrs 101 angeordnet. Unter der Arbeitsplatte 105 ist eine Energieübertragungseinheit 107 montiert. Diese weist ein Gehäuse 108 mit einem Betätigungselement 109 zum Ein- und Ausschalten der Energieübertragungseinheit 107 auf. Ferner umfasst die Energieübertragungseinheit 107 ein als Primärwicklung ausgebildetes Anregungsfelderzeugungsmittel 111 und eine Stromerzeugungseinheit 112 zur Versorgung des Anregungsfelderzeugungsmittels 111 mit einem Wechselstrom. Die Stromerzeugungseinheit 112 ist in diesem Ausführungsbeispiel als Wechselrichter ausgebildet. Das als Primärwicklung ausgebildete Anregungsfelderzeugungsmittel 111 ist in Form einer Spiralwicklung gewickelt. Beim Betrieb der Energieübertragungseinheit 107 und des Topfes 101 wird das Anregungsfelderzeugungsmittel 111 mit dem Wechselstrom gespeist und erzeugt ein als magnetisches Wechselfeld ausgebildetes Anregungsfeld. Mittels eines Feldflusses dieses Anregungsfelds überträgt das Anregungsfelderzeugungsmittel 111 durch Induktion Energie an den Energieaufnehmer 114, welcher in einem auf der Oberfläche der Arbeitsplatte 105 gezeichneten Energieübertragungsbereich 113 angeordnet ist. Der Energieaufnehmer 114 ist als Sekundärwicklung ausgebildet, die in Form einer Spiralwicklung gewickelt ist. Der Energieübertragungsbereich 113 ist mittels einer Linie 115 auf der Arbeitsplatte 105 eingezeichnet. Im Energieaufnehmer 114 wird durch den Anregungsfeldfluss eine Sekundärspannung induziert, die als Betriebsspannung für einen Betrieb des Gargeschirrs 101 genutzt wird. Das Gargeschirr 101 kann vom Übertragungsbereich 113 entfernt werden, wodurch der Energieaufnehmer 114 vom Anregungsfelderzeugungsmittel 111 getrennt wird. In den Übertragungsbereich 113 können dann weitere elektrische Verbraucher gebracht werden, wie z. B. eine Kaffeemaschine, ein Mixer, ein Ladegerät, eine Friteuse, ein Toaster, ein Wasserkocher usw. (auch als 'Haushaltskleingeräte' bezeichnet), die jeweils einen Energieaufnehmer aufweisen und von einem drahtlosem Zusammenwirken des jeweiligen Energieaufnehmers mit dem Anregungsfelderzeugungsmittel 111 eine Betriebsenergie beziehen.
  • In der Arbeitsplatte 105 ist ferner ein Bedienfeld in Form eines berührungsempfindlichen Bildschirms 104 eingelassen, auf dem Anzeigeelemente und Betätigungselemente frei programmierbar sind. Der berührungsempfindliche Bildschirm 104 kann beispielsweise ein Flüssigkristall- oder LED-Bildschirm sein, der von einer berührungsempfindlichen Folie, z. B. einer ITO-Folie, abgedeckt ist. Dadurch kann eine große Zahl unterschiedlicher Betätigungselemente wie Taster, Zirkularslider, Linearslider im Wesentlichen beliebig auf dem Bedienfeld dargestellt werden, was eine sehr flexible Bedienerführung erlaubt.
  • Das Gargeschirr 101 ist mit einer integrierten Schaltung 116 zur Verarbeitung von Daten und zur Ausgabe von Daten an einen Transmitter ausgerüstet. An einen Eingang der integrierten Schaltung 116 ist ein Temperatursensor (Eigentemperatursensor) 117 zur Bestimmung einer Eigentemperatur der integrierten Schaltung 116 angeschlossen. Die integrierte Schaltung 116 fühlt den Eigentemperatursensor 117 zyklisch ab, verarbeitete die abgefühlten Eigentemperatursignale in eine vorbestimmte Daten- und Protokollstruktur und übermittelt die so verarbeiteten Eigentemperaturdaten an einen Transmitter. Der Transmitter verfügt über einen nicht eingezeichneten Modulator und eine nachgeschaltete Sendeantenne. Als Sendeantenne dient hier die Sekundärwicklung 114 zur Leistungsübertragung. Die von der Sekundärwicklung 114 ausgestrahlten Datensignale werden von der auch als Empfangsantenne des Betriebsgeräts 106 dienenden Primärwicklung 111 aufgenommen, in einem nicht eingezeichneten Demodulator des Betriebsgeräts 106 demoduliert und an eine Steuereinheit 110 des Betriebsgeräts 106 weitergeleitet. Unter anderem mittels der Eigentemperaturdaten steuert die Steuereinheit ("Herdelektronik") 110, die hier einen Mikrocontroller umfasst, die Stromerzeugungseinheit 112.
  • Dann, wenn der übermittelte Wert der Eigentemperatur einen ersten, niedrigeren Eigentemperaturschwellwert von unten kommend erreicht oder überschreitet, gibt die Steuereinheit 110 ein akustisches und optisches Warnsignal aus, das einem Bediener einen kritischen Zustand anzeigt und ihn zu einer Gegenhandlung veranlassen kann. So kann das Erreichen oder Überschreiten des ersten Eigentemperaturschwellwerts ein Hinweis auf einen niedrigen Wasserstand sein ('drohendes Leerkochen'), worauf der Bediener beispielsweise mit einem Nachfüllen von Wasser, einer Herunterschaltung einer Leistungsstufe oder einem Abnehmen des Gargeschirrs reagieren kann. Zusätzlich zum Warnsignal veranlasst die Steuereinheit 110, dass das elektromagnetische Anregungsfeld um beispielsweise 25% verringert wird ("Verringerungsstufe"), um eine baldige Überhitzung und ein Unterbrechen des Garablaufs zu verhindern. Erreicht oder überschreitet der Wert der Eigentemperatur einen zweiten, höheren Eigentemperaturschwellwert (z. B. nach einem längeren Leerkochen), schaltet die Steuereinheit 110 die Stromerzeugungseinheit 112 und damit das Anregungsfeld ab, um eine Schädigung des integrierten Schaltkreises (und ggf. anderer temperaturempfindlicher Komponenten) zu verhindern.
  • Fig. 2 zeigt eine Skizze einer vereinfachten Regelstruktur eines Systems aus einem intelligenten Gargeschirr 201 und einem Betriebsgerät 206.
  • Das intelligente Gargeschirr 201 ist als Topf ausgebildet, bei dem in einen Grundkörper 202, der durch einen Topfboden 220 nach unten abgeschlossen wird, Gargut 221 eingefüllt werden kann. An einer Unterseite des Topfbodens 220 verläuft eine Heizbahn 222 in Form einer verschlungenen Widerstandsdickschicht-Bahn, welche bei einer Bestromung aufgeheizt wird und so den Topfboden 220 zur Erwärmung des Garguts 221 aufwärmt. Zu ihrer Stromversorgung ist die Heizbahn 222 mit einem Energieaufnehmer 214 in Form einer spiralförmig ausgebildeten Sekundärwindung verbunden und stellt deren Last dar. Vom Energieaufnehmer 214 wird auch eine elektrische Leistung zur Versorgung einer Topfelektronik 223 abgezweigt. Dazu weist die Topfelektronik 223 einen Schaltregler 224 auf, welcher die vom Energieaufnehmer 214 ausgegebene Leistungswechselspannung in eine Niedervoltgleichspannung umwandelt. Mittels der Niedervoltgleichspannung werden die übrigen Teile der Topfelektronik 223 betrieben, von denen hier eine analoge Messelektronik 225, eine integrierte Schaltung 216 und ein Modulator 226 eingezeichnet sind. Mittels der analogen Messelektronik 225 werden Messsignale verschiedener Sensoren des Gargeschirrs 201 abgefühlt und digitalisiert. Zur einfacheren Darstellung sind hier lediglich drei an der Unterseite des Topfbodens 220 angebrachte Temperatursensoren 227 eingezeichnet, jedoch können auch andere Sensoren mit der analogen Messelektronik 225 verbunden sein, z. B. Drucksensoren oder Feuchtesensoren. Ferner ist direkt an einem Messeingang der analogen Messelektronik 225 ein Eigentemperatursensor 217 vorhanden. Dieser misst somit die Temperatur im Bereich dieses Messeingangs der analogen Messelektronik 225; da die Topfelektronik 223 vergleichsweise kompakt auf einer gemeinsamen Platine (o. Abb.) untergebracht ist, wird die Temperatur an diesem Messeingang als auch repräsentativ für die Temperatur an der integrierten Schaltung 216 angesehen.
  • Die analoge Messelektronik 225 ist ausgangsseitig mit einer Eingangsseite der integrierten Schaltung 216 verbunden, so dass Temperaturdaten von der analogen Messelektronik 225 an die integrierte Schaltung 216 zur folgenden Verarbeitung weitergeleitet werden. Zur Verarbeitung der von der Messelektronik 225 analog übermittelten Temperaturdaten weist die integrierte Schaltung 216 einen A/D-Wandler (o. Abb.) auf. In der integrierten Schaltung 216 werden die von der analogen Messelektronik 225 gelieferten digitalen "Rohdaten" in ein zur Kommunikation mit dem Betriebsgerät 206 kompatibles Format umformatiert. Insbesondere werden Rohdaten in ein vorbestimmtes Datenformat und Protokollformat umgewandelt. Die formatierten Messdaten werden von der integrierten Schaltung 216 dann zyklisch, z. B. alle 10 ms, an den Modulator 226 weitergeleitet, wo sie auf ein Trägersignal aufmoduliert werden, um danach vom Modulator 226 über eine Antenne 228 an das Betriebsgerät 206 übermittelt zu werden. Die Antenne 228 ist hier als eine parallel zum Topfboden 220 verlaufende Signalwindung ausgestaltet. Es können aber auch andere Messdaten von der integrierten Schaltung 216 verarbeitet und an den Modulator 226 weitergeleitet werden, wie ein Messsignal einer sekundärseitigen Leistungsspannung. Es können zudem auch andere Daten von der integrierten Schaltung 216 verarbeitet und an den Modulator 226 weitergeleitet werden, wie Identifizierungsdaten (Identcode usw.) und Gerätestatusdaten, und zwar zyklisch oder - bei einer bidirektionalen Kommunikation - auf Abfrage. Das Betriebsgerät 206 weist eine Empfangsantenne 229 auf, die ebenfalls als Signalwindung ausgestaltet ist, welche im Wesentlichen der Signalwindung der Sendeantenne 228 des Gargeschirrs 201 gegenüberliegt. Die Empfangsantenne 229 empfängt das von der Sendeantenne 228 ausgestrahlte modulierte Trägersignal und leitet es an einen Demodulator 230 weiter, in welchem die auf das Trägersignal aufmodulierten Daten extrahiert und wieder als lesbare digitale Daten ausgegeben werden. Somit liegen nun sowohl die von der analogen Messelektronik 225 abgefühlten Daten als auch von der integrierten Schaltung 216 mitgelieferten Identifizierungsdaten oder Gerätestatusdaten im Betriebsgerät vor. Diese Daten werden in einer Steuereinheit ("Herdelektronik") 210 weiterverarbeitet und zum Betrieb des Gargeschirrs 201 ausgewertet.
  • So können die von dem Gargeschirr 201 ausgesandten Temperaturdaten, einschließlich der Eigentemperaturmessdaten, in Form von Widerstandswerten der verwendeten Temperatursensoren vorliegen, falls diese als Widerstandstemperatursensoren ausgestaltet sind. Daraus kann in der Steuereinheit 210 mittels Nachschlagens entsprechender Widerstands/Temperatur-Kennlinien in einer Nachschlagetabelle die Ist-Temperatur an der Unterseite des Topfbodens 220 bestimmt werden und daraus die Garguttemperatur abgeleitet werden. Beispielsweise kann die Temperatur an der Unterseite des Topfbodens 220 mit der Garguttemperatur gleichgesetzt werden, oder es kann ein empirisch bestimmter Temperaturunterschied hinzugefügt werden, welcher auch von der Höhe der gemessenen Temperatur abhängig sein kann. Die Steuereinheit 210 erhält auch Eingaben von einem Bedienfeld 204, beispielsweise über eine Soll-Garguttemperatur für eine Temperaturregelung. Dazu hat ein Bediener vorher die Soll-Garguttemperatur am Bedienfeld 204 direkt oder über ein Kochprogramm eingestellt. Vom Bedienfeld 204 können - unbemerkt vom Bediener - auch weitere Regelgrößen wie PID-Koeffizienten an die Steuereinheit mitgeschickt werden. In der Steuereinheit 210 kann im Fall einer Temperaturregelung eine Regelabweichung zwischen Soll-Garguttemperatur und Ist-Garguttemperatur bestimmt werden, als auch eine Stellgröße des Regelkreises, woraus wiederum eine Steuerspannung zur Steuerung einer Stromerzeugungseinheit 212 in Form einer Leistungselektronik berechnet und ausgegeben wird. Die Steuerspannung liegt hier in einem Bereich zwischen 0 V (ausgeschaltet) und 4 V (maximal). Dazu ist zwischen der Steuereinheit 210 und der Stromerzeugungseinheit 212 ein Digital/Analog-Wandler 231 eingefügt. Mittels der Stromerzeugungseinheit 212 wird ein Anregungsfelderzeugungsmittel 211 in Form einer spiralförmig ausgeführten Leistungswindung betrieben, wie schon bezüglich Figur 1 ausgeführt worden ist. Die Stromerzeugungseinheit 212 erzeugt dazu eine an dem Anregungsfelderzeugungsmittel 211 anliegende Leistungswechselspannung, hier beispielsweise zwischen 10 VAC und 230 VAC bei einer Frequenz zwischen 400 KHz und 100 KHz. Das Anregungsfelderzeugungsmittel 211 erzeugt als Anregungsfeld ein magnetisches Wechselfeld, welches wiederum vom Energieaufnehmer 214 aufgenommen wird. In anderen Worten ergibt sich zwischen dem Anregungsfelderzeugungsmittel 211 und dem Energieaufnehmer 214 ein auf Induktion beruhender Energieübertrag.
  • Die Steuereinheit 210 vergleicht ferner den übermittelten Wert der Eigentemperatur mit mindestens einem Eigentemperaturschwellwert, wie bereits oben genauer beschrieben. Abhängig davon, ob einer der Eigentemperaturschwellwerte erreicht oder überschritten worden ist und ggf., welcher von mehreren Eigentemperaturschwellwerten erreicht oder überschritten worden ist, kann eine Warnung ausgegeben werden oder das vom Anregungsfelderzeugungsmittel 211 erzeugte Anregungsfeld durch eine Verringerung einer Steuerspannung zur Stromerzeugungseinheit 212 gezielt geschwächt und im Extremfall sogar ausgeschaltet werden.
  • Ist das Gargeschirr 201 auf dem Betriebsgerät 206 aufgesetzt, beispielsweise auf die in Figur 1 dargestellte Arbeitsplatte 105 kann Energie vom Betriebsgerät 206 auf das Gargeschirr 201 und Datensignale vom Gargeschirr 201 auf das Betriebsgerät 206 übertragen werden. Aufgrund der transformatorischen oder induktiven Kopplung zwischen Anregungsfelderzeugungsmittel 211 und Energieaufnehmer 214 ist die Energieübertragung jedoch nur in einem Nahfeld des Anregungsfelderzeugungsmittels 211 zum Betrieb des Gargeschirrs 201 möglich. Typische maximale Abstände zwischen Betriebsgerät 206 und Gargeschirr 201 betragen 3 bis 10 cm. Wird das Gargeschirr 201 weiter von dem Anregungsfelderzeugungsmittel 211 entfernt, reicht die übertragene Leistung nicht mehr zum Betrieb des Gargeschirrs 201 aus. Dann reicht die übertragene Energie auch nicht mehr zum Betrieb der Topfelektronik, welche sodann ihren Betrieb einstellt.
  • Bei einer Annäherung des Gargeschirrs 201 an ein Betriebsgerät 206 kann dieses wieder in das Nahfeld des Anregungsfelderzeugungsmittels 211 eintreten und somit wieder mit Energie versorgt werden. In diesem Fall sendet die Topelektronik 223 wieder Signale aus, welche vom Betriebsgerät 206 erkannt werden.
  • Selbstverständlich ist die vorliegende Erfindung nicht auf das gezeigte Ausführungsbeispiel beschränkt.
  • So kann auch eine bidirektionale Kommunikation zwischen Gargeschirr und Betriebsvorrichtung vorliegen. Ein von der Betriebsvorrichtung betreibbares Gerät ist nicht auf ein Gargeschirr eingeschränkt, sondern kann jedes andere elektrisch betreibbare Lebensmittelzubereitungsgerät umfassen, wie ein Haushaltskleingerät. Bezugszeichenliste
    101 Gargeschirr 222 Heizbahn
    102 Grundkörper 223 Topfelektronik
    104 Bedienfeld 224 Schaltregler
    105 Arbeitsplatte 225 analoge Messelektronik
    106 Betriebsgerät 226 Modulator
    107 Energieübertragungseinheit 227 Temperatursensor
    108 Gehäuse 228 Sendeantenne
    109 Betätigungselement 229 Empfangsantenne
    110 Steuereinheit 230 Demodulator
    111 Anregungsfelderzeugungsmittel 231 D/A-Wandler
    112 Stromerzeugungseinheit
    113 Energieübertragungsbereich
    114 Energieaufnehmer
    115 Linie
    116 integrierte Schaltung
    117 Eigentemperatursensor
    201 Gargeschirr
    202 Grundkörper
    206 Betriebsgerät
    210 Steuereinheit
    211 Anregungsfelderzeugungsmittel
    212 Stromerzeugungseinheit
    214 Energieaufnehmer
    216 integrierte Schaltung
    217 Eigentemperatursensor
    220 Topfboden
    221 Gargut

Claims (14)

  1. Lebensmittelzubereitungs-Aufsatzgerät (101; 201), aufweisend
    - mindestens einen Transmitter (226, 228) zum Übermitteln von Daten an eine externe Einheit (106; 206),
    - mindestens eine integrierte Schaltung (116; 216) zur Verarbeitung von Daten und zur Ausgabe von Daten an den Transmitter (226, 228) beruhend auf der Verarbeitung,
    - mindestens einen Energieaufnehmer (114; 214) in Form einer Spule zur transformatorischen Aufnahme von Energie aus einem elektromagnetischen Anregungsfeld zur Versorgung der integrierten Schaltung (116; 216) und des Transmitters (226, 228) und
    - ein Heizelement,
    - dadurch gekennzeichnet, dass das Heizelement zu seinem Betrieb mittels des mindestens einen Energieaufnehmers (114; 214) mit Energie versorgbar ist und
    - das Lebensmittelzubereitungs-Aufsatzgerät (101; 201) eine Eigentemperaturbestimmungseinheit (117; 217) zum Bestimmen einer Eigentemperatur der integrierten Schaltung (116; 216) aufweist.
  2. Lebensmittelzubereitungs-Aufsatzgerät (101; 201) nach Anspruch 1, bei dem der Transmitter (226, 228) zumindest teilweise in die integrierte Schaltung (116;216) integriert ist.
  3. Lebensmittelzubereitungs-Aufsatzgerät (101; 201) nach Anspruch 1 oder 2, bei dem der Transmitter (226, 228) einen Modulator (226) und eine dem Modulator (226) nachgeschaltete Antenne (228), insbesondere mit mindestens einer Signalwindung, aufweist.
  4. Lebensmittelzubereitungsgerät nach einem der vorhergehenden Ansprüche, bei dem der Transmitter ein Transceiver ist.
  5. Lebensmittelzubereitungs-Aufsatzgerät (101; 201) nach einem der vorhergehenden Ansprüche, bei dem eine zumindest teilweise analoge Messelektronik (225) in die integrierte Schaltung (216) integriert ist.
  6. Lebensmittelzubereitungs-Aufsatzgerät (101; 201) nach einem der vorhergehenden Ansprüche, ferner aufweisend mindestens eine Sensoreinheit (217, 227) zum Abfühlen mindestens einer physikalischen Messgröße, wobei die mindestens eine integrierte Schaltung (216) zur Verarbeitung von Sensordaten der mindestens einen Sensoreinheit (217, 227) und zur Ausgabe von Daten an den Transmitter (226, 228) beruhend auf dieser Verarbeitung eingerichtet ist.
  7. Lebensmittelzubereitungs-Aufsatzgerät (101; 201) nach einem der vorhergehenden Ansprüche, das als Gargeschirr ausgebildet ist.
  8. Lebensmittelzubereitungs-Aufsatzgerät (101; 201) nach Anspruch 7, wobei die integrierte Schaltung (116; 216) und der Transmitter (226, 228) unterhalb eines Topfbodens (220) eines als Topf ausgebildeten Lebensmittelzubereitungsgeräts (101; 201) angeordnet sind.
  9. Lebensmittelzubereitungs-Aufsatzgerät (101; 201) nach Anspruch 8, wobei das Heizelement als eine an einer Unterseite eines Topfbodens (220) verlaufende Heizbahn (222) ausgebildet ist, welche bei einer Bestromung aufgeheizt wird und dann den Topfboden (220) aufwärmt.
  10. Lebensmittelzubereitungs-Aufsatzgerät (101; 201) nach einem der vorhergehenden Ansprüche, bei dem zur Datenkommunikation eine Leistung von nicht mehr als 10 Watt vorgesehen ist, speziell nicht mehr als 5 Watt, insbesondere nicht mehr als 3 Watt.
  11. Lebensmittelzubereitungs-Aufsatzgerät (101; 201) nach einem der vorhergehenden Ansprüche, bei dem die Eigentemperaturbestimmungseinheit (117; 217) einen mit der integrierten Schaltung (116; 216) verbundenen oder darin integrierten Eigentemperatursensor (117; 217) aufweist.
  12. Betriebsvorrichtung (106; 206) zum Betrieb eines Lebensmittelzubereitungs-Aufsatzgeräts (101; 201) nach einem der nach einem der vorhergehenden Ansprüche mit mindestens einem Anregungsfelderzeugungsmittel (111; 211), insbesondere Spule, zur Erzeugung des elektromagnetischen Anregungsfelds, dadurch gekennzeichnet, dass die Betriebsvorrichtung (106; 206) einen Receiver (229, 230) zum Empfang von Daten aufweist, die vom Transmitter (226, 228) des Lebensmittelzubereitungs-Aufsatzgeräts (101; 201) ausgesandt worden sind, als auch eine Steuereinheit (110; 210) zum Einstellen einer Stärke des elektromagnetischen Anregungsfelds auf der Grundlage der empfangenen Daten, wobei die Steuereinheit (110; 210) dazu eingerichtet ist, bei Empfang von Eigentemperaturdaten einen Vergleich der Eigentemperatur mit mindestens einem Eigentemperaturschwellwert durchzuführen.
  13. Betriebsvorrichtung (106; 206) nach Anspruch 12, die dann, wenn die Eigentemperatur einen Eigentemperaturschwellwert erreicht oder überschreitet, ein Warnsignal ausgibt und / oder eine Stärke des elektromagnetischen Anregungsfelds verringert.
  14. Betriebsvorrichtung (106; 206) nach Anspruch 13, welche eine Stärke des elektromagnetischen Anregungsfelds in Abhängigkeit von einer Höhe eines von mehreren Eigentemperaturschwellwerten verringert.
EP09764484.3A 2008-12-18 2009-11-24 Intelligentes lebensmittelzubereitungsgerät Active EP2380393B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008054911A DE102008054911A1 (de) 2008-12-18 2008-12-18 Intelligentes Lebensmittelzubereitungsgerät
PCT/EP2009/065743 WO2010069720A1 (de) 2008-12-18 2009-11-24 Intelligentes lebensmittelzubereitungsgerät

Publications (3)

Publication Number Publication Date
EP2380393A1 EP2380393A1 (de) 2011-10-26
EP2380393B1 true EP2380393B1 (de) 2020-03-04
EP2380393B2 EP2380393B2 (de) 2022-12-07

Family

ID=41527753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09764484.3A Active EP2380393B2 (de) 2008-12-18 2009-11-24 Intelligentes lebensmittelzubereitungsgerät

Country Status (3)

Country Link
EP (1) EP2380393B2 (de)
DE (1) DE102008054911A1 (de)
WO (1) WO2010069720A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010031761A1 (de) * 2010-07-15 2012-01-19 Ljubisa Ilić Herd-Topf-Kombination
EP2757660A4 (de) * 2011-09-14 2015-02-18 Panasonic Corp Kontaktlose stromversorgungsvorrichtung und kontaktlose stromübertragungsvorrichtung
DE102011088918A1 (de) * 2011-12-16 2013-06-20 E.G.O. Elektro-Gerätebau GmbH Verfahren zum Übertragen von Daten, Induktionsheizvorrichtung, induktiv beheizbares Kochgefäß und System
DE102014009710B4 (de) * 2014-07-02 2018-05-09 Dräger Safety AG & Co. KGaA Verfahren zur Fehlererkennung in einem Messsystem
DE102015222797A1 (de) 2015-11-18 2017-05-18 BSH Hausgeräte GmbH System mit Kochgerät und Kochgeschirr
CA3087324A1 (en) * 2017-12-29 2019-07-04 Breton Spa Countertop with induction hob
DE102018124319A1 (de) * 2018-10-02 2020-04-02 Miele & Cie. Kg Verfahren und Vorrichtung zum Betreiben eines Kochfelds, Kochgeschirr und Kochfeld
DE102019114805A1 (de) * 2019-06-03 2020-12-03 Miele & Cie. Kg System, umfassend ein Aufstellgerät und eine Aufstellbasis, und Verfahren zum Betrieb des Systems
DE102019119731A1 (de) * 2019-07-22 2021-01-28 Miele & Cie. Kg Induktionskochgeschirr für ein Induktionskochsystem mit einem Temperatursensor, Induktionskochsystem und Verfahren zum Betrieb des Induktionskochsystems

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3742174A (en) 1971-12-29 1973-06-26 Gen Electric Induction cooking appliance including cooking vessel having means for transmission of temperature data by light pulses
US3742178A (en) 1971-12-29 1973-06-26 Gen Electric Induction cooking appliance including cooking vessel having means for wireless transmission of temperature data
US4191875A (en) * 1977-11-10 1980-03-04 Cunningham Ronald J Fan speed control used in induction cooking apparatus
DE4439777A1 (de) 1994-11-07 1996-05-15 Bosch Siemens Hausgeraete Sensorgesteuerte Glaskeramik-Kochstelleneinheit
DE19502935A1 (de) 1995-01-31 1996-08-01 Ego Elektro Blanc & Fischer Verfahren und Einrichtung zur Übermittlung von Daten von einem Kochgefäß zu einer Kocheinrichtung
JPH08315975A (ja) 1995-05-18 1996-11-29 Matsushita Electric Ind Co Ltd 誘導加熱調理器
DE19743253A1 (de) * 1997-09-30 1999-04-08 Siemens Ag Verfahren zum Schutz von Schaltungskomponenten einer integrierten Schaltung gegen zu hohe Betriebstemperaturen sowie entsprechend ausgelegte Schutzschaltung
WO1999041950A2 (en) 1998-02-10 1999-08-19 Aktiebolaget Electrolux A control system for use with induction heating cooktops
EP1037508A1 (de) 1999-03-10 2000-09-20 Inducs A.G. Induktiver Kochherd mit Temperaturregelung
US6320169B1 (en) 1999-09-07 2001-11-20 Thermal Solutions, Inc. Method and apparatus for magnetic induction heating using radio frequency identification of object to be heated
US20020008102A1 (en) 2000-06-15 2002-01-24 Wilmington Research And Development Corporation Induction driven power supply for circuits accompanying portable heated items
US6412977B1 (en) 1998-04-14 2002-07-02 The Goodyear Tire & Rubber Company Method for measuring temperature with an integrated circuit device
US6504135B2 (en) * 1998-05-19 2003-01-07 Thermal Solutions, Inc. Temperature self-regulating food delivery system
WO2004071131A2 (en) 2003-01-30 2004-08-19 Thermal Solutions, Inc. Rfid-controlled smart induction range and method of cooking and heating
EP1591049A1 (de) 2004-04-28 2005-11-02 Imura International U.S.A. INC. Radiofrequenzidentifikationsgesteuerter heizbarer Behälter
EP1708545A2 (de) 2005-03-31 2006-10-04 BSH Bosch und Siemens Hausgeräte GmbH Induktionsheizgerät
DE102005023468A1 (de) 2005-05-20 2006-11-30 Electrolux Home Products Corporation N.V. Gargerät mit Temperaturerfassungsvorrichtung
US20070080158A1 (en) 2003-11-25 2007-04-12 Kabushiki Kaisha Toshiba Heat cooking apparatus, cooking tool and heat cooking system
WO2007107888A2 (en) 2006-03-23 2007-09-27 Access Business Group International Llc System and method for food preparation
DE102006022283A1 (de) 2006-05-11 2007-11-15 Micronas Gmbh Monolithische Sensoranordnung bzw. Verfahren zum Ansteuern einer monolithischen Sensoranordnung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3225486A1 (de) 1982-07-08 1984-01-12 Bbc Brown Boveri & Cie Verfahren und vorrichtung zur speisung von messstationen eines fernmesssystems
DE19540408A1 (de) * 1995-10-30 1997-05-07 Herchenbach Wolfgang Kochsystem
DE19729662A1 (de) * 1997-07-11 1999-01-14 Ego Elektro Geraetebau Gmbh Informations-Übertragungssystem
US20040016348A1 (en) * 2002-07-24 2004-01-29 Richard Sharpe Electronic cooking pan systems and methods
US20060132045A1 (en) 2004-12-17 2006-06-22 Baarman David W Heating system and heater
DE102006017800A1 (de) 2006-04-18 2007-11-15 BSH Bosch und Siemens Hausgeräte GmbH Energieübertragungseinheit
CN200977058Y (zh) * 2006-11-25 2007-11-21 浙江苏泊尔家电制造有限公司 感应测温锅具

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3742178A (en) 1971-12-29 1973-06-26 Gen Electric Induction cooking appliance including cooking vessel having means for wireless transmission of temperature data
US3742174A (en) 1971-12-29 1973-06-26 Gen Electric Induction cooking appliance including cooking vessel having means for transmission of temperature data by light pulses
US4191875A (en) * 1977-11-10 1980-03-04 Cunningham Ronald J Fan speed control used in induction cooking apparatus
DE4439777A1 (de) 1994-11-07 1996-05-15 Bosch Siemens Hausgeraete Sensorgesteuerte Glaskeramik-Kochstelleneinheit
DE19502935A1 (de) 1995-01-31 1996-08-01 Ego Elektro Blanc & Fischer Verfahren und Einrichtung zur Übermittlung von Daten von einem Kochgefäß zu einer Kocheinrichtung
JPH08315975A (ja) 1995-05-18 1996-11-29 Matsushita Electric Ind Co Ltd 誘導加熱調理器
DE19743253A1 (de) * 1997-09-30 1999-04-08 Siemens Ag Verfahren zum Schutz von Schaltungskomponenten einer integrierten Schaltung gegen zu hohe Betriebstemperaturen sowie entsprechend ausgelegte Schutzschaltung
WO1999041950A2 (en) 1998-02-10 1999-08-19 Aktiebolaget Electrolux A control system for use with induction heating cooktops
US6412977B1 (en) 1998-04-14 2002-07-02 The Goodyear Tire & Rubber Company Method for measuring temperature with an integrated circuit device
US6504135B2 (en) * 1998-05-19 2003-01-07 Thermal Solutions, Inc. Temperature self-regulating food delivery system
EP1037508A1 (de) 1999-03-10 2000-09-20 Inducs A.G. Induktiver Kochherd mit Temperaturregelung
US6320169B1 (en) 1999-09-07 2001-11-20 Thermal Solutions, Inc. Method and apparatus for magnetic induction heating using radio frequency identification of object to be heated
US20020008102A1 (en) 2000-06-15 2002-01-24 Wilmington Research And Development Corporation Induction driven power supply for circuits accompanying portable heated items
WO2004071131A2 (en) 2003-01-30 2004-08-19 Thermal Solutions, Inc. Rfid-controlled smart induction range and method of cooking and heating
US20070080158A1 (en) 2003-11-25 2007-04-12 Kabushiki Kaisha Toshiba Heat cooking apparatus, cooking tool and heat cooking system
EP1591049A1 (de) 2004-04-28 2005-11-02 Imura International U.S.A. INC. Radiofrequenzidentifikationsgesteuerter heizbarer Behälter
EP1708545A2 (de) 2005-03-31 2006-10-04 BSH Bosch und Siemens Hausgeräte GmbH Induktionsheizgerät
DE102005023468A1 (de) 2005-05-20 2006-11-30 Electrolux Home Products Corporation N.V. Gargerät mit Temperaturerfassungsvorrichtung
WO2007107888A2 (en) 2006-03-23 2007-09-27 Access Business Group International Llc System and method for food preparation
DE102006022283A1 (de) 2006-05-11 2007-11-15 Micronas Gmbh Monolithische Sensoranordnung bzw. Verfahren zum Ansteuern einer monolithischen Sensoranordnung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "LIN-Bus-Mikrocontroller von Micronas kann 12V-Verbraucher direct ansteuern", PRESSEMITTEILUNG, 11 February 2008 (2008-02-11), pages 1 - 3, XP055759468

Also Published As

Publication number Publication date
DE102008054911A1 (de) 2010-06-24
EP2380393B2 (de) 2022-12-07
WO2010069720A1 (de) 2010-06-24
EP2380393A1 (de) 2011-10-26

Similar Documents

Publication Publication Date Title
EP2380393B1 (de) Intelligentes lebensmittelzubereitungsgerät
EP3675597B1 (de) Verfahren zum betrieb eines induktiven kochsystems
EP2380397B1 (de) Haushaltsgerät zur induktiven energieübertragung
EP2380396B1 (de) Verfahren zum betreiben eines elektrischen lebensmittelzubereitungsgeräts
DE102010039071A1 (de) Aufsatz-Haushaltskleingerät und Betriebsgerät zum Betreiben eines Aufsatz-Haushaltskleingeräts und System mit dem Aufsatz-Haushaltskleingerät und dem Betriebsgerät
DE102008054906B4 (de) Verfahren zum Betreiben eines Aufsatzgeräts
DE102009029253B4 (de) Verfahren zum Zuordnen eines Aufsatzgeräts zu einer Basisstation eines Betriebsgeräts und Betriebsgerät
DE102015222797A1 (de) System mit Kochgerät und Kochgeschirr
DE102016108680A1 (de) Kochsystem mit Kochstelle und Kochgeschirr
JP2015506742A (ja) 誘導加熱調理器上で動作される無線台所器具
WO2022233660A1 (de) Induktionsenergieübertragungssystem
WO2010081773A1 (de) Verfahren zum betreiben eines hybriden kochfelds
DE102009029250B4 (de) System mit Basisstationen und mindestens einem Haushalts-Aufsatzgerät und Verfahren zum Betreiben des Systems
DE102008054903B4 (de) Verfahren zum Betreiben eines Aufsatzgeräts
DE102009029252A1 (de) Aufsatzgerät, Betriebsgerät zum Betreiben eines Aufsatzgeräts, System aus Aufsatzgerät und Betriebsgerät und Verfahren zum Betreiben eines Aufsatzgeräts an einem Betriebsgerät
DE112007001158B4 (de) Vorrichtung und Verfahren zur Steuerung und/oder Regelung einer Heizleistung eines Heizelements einer Kochmulde
EP4070695A1 (de) Küchenutensil zum aufstellen auf ein induktionskochfeld, verfahren zum betrieb des küchenutensils, verfahren zum betrieb der innenschale des küchenutensils und verfahren zum betrieb eines systems
DE102007058691A1 (de) Kochgeschirr
DE102011076181A1 (de) Sensoreinheit, Datenübertragungseinheit, Sensorsystem für ein Haushaltsgerät und Haushaltsgerät
DE102022209889A1 (de) Haushaltsgerätesystem
DE202022106277U1 (de) Sensorgesteuertes Kochfeld
EP3893602A1 (de) Induktives küchensystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BSH HAUSGERAETE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161025

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191024

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1241945

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009016127

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200605

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200704

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502009016127

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: MIELE & CIE. KG

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201124

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201124

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201124

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1241945

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20221207

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502009016127

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502009016127

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231130

Year of fee payment: 15