EP2370053A1 - Neue pulverförmige kristalline arzneimittel zur inhalation - Google Patents

Neue pulverförmige kristalline arzneimittel zur inhalation

Info

Publication number
EP2370053A1
EP2370053A1 EP09756312A EP09756312A EP2370053A1 EP 2370053 A1 EP2370053 A1 EP 2370053A1 EP 09756312 A EP09756312 A EP 09756312A EP 09756312 A EP09756312 A EP 09756312A EP 2370053 A1 EP2370053 A1 EP 2370053A1
Authority
EP
European Patent Office
Prior art keywords
amino
drying gas
spray
drying
quinazoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09756312A
Other languages
English (en)
French (fr)
Inventor
Claudius Weiler
Marc Egen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim International GmbH
Original Assignee
Boehringer Ingelheim International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim International GmbH filed Critical Boehringer Ingelheim International GmbH
Priority to EP09756312A priority Critical patent/EP2370053A1/de
Publication of EP2370053A1 publication Critical patent/EP2370053A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/439Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom the ring forming part of a bridged ring system, e.g. quinuclidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/536Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines ortho- or peri-condensed with carbocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • A61K9/1623Sugars or sugar alcohols, e.g. lactose; Derivatives thereof; Homeopathic globules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1658Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics

Definitions

  • the invention relates to stable pharmaceutical compositions for inhalation use, wherein one or more active ingredients are embedded in a crystalline matrix of an excipient.
  • the invention relates to spray-dried, crystalline and storage-stable powders wherein one or more active ingredients are embedded in a crystalline mannitol matrix.
  • the invention relates to processes for their preparation and the use for the production of a medicament for the treatment of Atemwegserkrnakungen, in particular for the treatment of COPD (chronic obstructive pulmonary disease) and asthma.
  • inhalable powders which are filled, for example, into suitable capsules (inhalettes) are applied by means of powder inhalers in the lungs.
  • powder inhalers in the lungs.
  • other systems in which the amount of powder to be applied is pre-dosed (e.g., blisters) as well as multi-dose powder systems.
  • an inhalative application can also be carried out by application of suitable powdered inhalation aerosols, which are suspended, for example, in HFAI 34a, HFA227 or their mixture as propellant gas.
  • the microparticles of a pure drug are transported through the airways on the lung surface, e.g. in the alveoli, by means of the inhalation process applied. These particles sediment on the surface and can be absorbed by the active and passive transport processes in the body only after the dissolution process.
  • inhalation systems in which the active ingredient is present in the form of solid particles either as a micronized suspension in a suitable solvent system as carrier or in the form of a dry powder.
  • powder inhalants for example in the form of capsules for inhalation, based on the general teaching, as described in DE-A-179 22 07, prepared.
  • a critical factor in such multi-component systems is a uniform distribution of the drug in the powder mixture.
  • Another important aspect of powder inhalation is that only particles of a certain aerodynamic size reach the target organ lung during the inhalative application of the active ingredient.
  • the average particle size of these respirable particles is in the range of a few micrometers, typically between 0.1 and 10 .mu.m, preferably below 6 .mu.m.
  • Such particles are usually produced by micronization (air jet milling). As a result, it often happens that such particles can be complex in their crystal properties due to this mechanical step.
  • Formulation systems are known to the person skilled in the art, wherein co-spray micronisates of active substances and physiologically acceptable auxiliaries [WO 9952506] are disclosed for inhalative administration. Also known are powder preparations comprising co-spray micronisates of SLPI protein in physiologically acceptable carrier materials [WO 99/170000]; Co-spray-dried interferon with a carrier material [WO 9531479] and co-spray micronisates of an active ingredient and cellulose derivatives [WO 9325198].
  • mannitol as an assistant for co-spray micronisates for the stabilization of peptides and proteins is described in WO 05/020953.
  • formulations characterized by having complex proteins in an amorphous matrix in the form of embedment particles characterized by good long-term stability and inhalability.
  • the object of the invention is to provide crystalline particles for inhalation application, wherein at least one pharmaceutically active substance is embedded in a crystalline matrix of an excipient.
  • a further object of the invention is to utilize the stabilizing effect of the crystalline state for spray-dried inhalable embedding particles.
  • a basic object of the invention is to provide spray-dried powders which are distinguished by good long-term stability and inhalability.
  • the decisive factor here is a balanced balance between both criteria.
  • the object of the invention is also to provide a manufacturing method for providing the inhalable powder according to the invention.
  • Another object of the present invention is pharmaceutical preparations for inhalation application, be it in the form of a dry powder, a propellant-containing metered dose inhaler or a propellant-free inhalable solution.
  • stable inhalable powders are to be understood as meaning inhalable powders whose properties remain unchanged over a relatively long period of time. Inhalation powders will not change their properties if both the chemical stability of the individual components in the powder mixture and their physical or physicochemical stability is given. This also assumes that the components of the powder mixture remain unchanged in terms of their polymorphic and morphological properties. For inhalation powder physical stability plays a prominent role.
  • the powder consists predominantly of finely divided inhalable particles having an average aerodynamic particle size (MMAD) of ⁇ 10 .mu.m, preferably 0.5-7.5 .mu.m, more preferably 1-5 .mu.m.
  • MMAD average aerodynamic particle size
  • the matrix formers here can be sugars, polyols, polymers or a combination of these. Preference is given here to polyols, wherein the mannitol plays a prominent role.
  • Powders of the invention are characterized in that they have a high inhalable content.
  • the Fine Particle Dose represents the amount of inhalable active substance particles ( ⁇ 5 ⁇ m), as described on the basis of Pharm. Eur. 2.9.18 (European Pharmacopoeia, 6th edition 2008, Apparatus D - Andersen Cascade Impactor) or USP30-NF25 ⁇ 601> is determinable.
  • the inhalable particles as
  • the powders according to the invention are formulations of pharmaceutical products, predominantly for inhalative applications, which contain one of the powders according to the invention described herein.
  • the invention also encompasses pharmaceutical compositions which contain the powders according to the invention as propellant-containing metered-dose aerosols or as propellant-free inhalable solutions.
  • the invention further provides a process consisting of spray-drying and an additional, integrated second drying zone for preparing preparations of crystalline spray-drying particles. With the help of this second drying zone, first a removal of the solvent and then a crystallization of the matrix-forming agent in the spray tower. By a second drying step, the complete drying of the crystallized particles takes place before a deposition takes place in the collecting vessel of the spray dryer.
  • the temperature for the spray-drying process is below 135 ° C
  • drying gas 2 (Einströmtemperatur), preferably below 105 0 C of the drying gas 1.
  • drying gas 2 the temperature of which is between 300 0 C and 400 0 C and the ratio of drying gas 1 to drying gas between 20 to 1 and 3 to 1.
  • the resulting initial temperature is in the range of about 50 0 C to 70 0 C.
  • the present invention provides spray-dried crystalline powders having improved properties in terms of their properties, such as flowability, dispersibility, and storage and process stability.
  • the present invention is characterized by high constancy of the application of the active substance with varied flow.
  • the present invention thus solves problems which have arisen in the previous formulation development, in particular in the use of mannitol-containing spray-drying powders, since their insufficient crystallinity had a negative influence on the physical and chemical stability of the powders.
  • the active ingredient (or a physiologically acceptable salt thereof) is physically stably incorporated as a solid in a crystalline solid matrix of an adjuvant.
  • the active ingredient can be incorporated into the solid matrix with the method according to the invention in such a way that this excipient serves as a matrix former and thus improves the physical stability of the spray-dried particles. Surprisingly, it was found that the solve the aforementioned objects by the crystalline matrix particles prepared by the process according to the invention.
  • matrix formers can be sugars, polyols, polymers, amino acids, di-, tri-, oligo-, polypeptides, proteins, or also salts.
  • particularly suitable sugars are raffinose and galactose.
  • sugar alcohols examples include mannitol, xylitol, maltitol, galactitol, arabinitol, adonitol, lactitol, sorbitol (glucitol), pyranosylsorbitol, inositol, myoinositol and meso-erythritol , Mannitol, xylitol, maltitol and sorbitol may be mentioned as preferred.
  • particularly suitable amino acids examples include leucine, lysine and glycine may preferably be called leucine.
  • Tg Tg of less than 40 0 C.
  • the mannitol plays an outstanding role here.
  • DSC Differential Scanning Calorimetry
  • the increase of the heat capacity is recorded as a function of the temperature.
  • a solid is called crystalline if its smallest parts are regularly arranged. The opposite is amorphous.
  • Methods for determining crystallinity are DSC, density measurement, X-ray diffraction, IR spectroscopy or NMR.
  • crystalline is understood as meaning when the pulverulent formulations have a crystallinity of at least 90%, preferably at least 92.5% and in particular at least 95%.
  • a crystallinity of at least 96%, of at least 97%, of at least 98%, and of at least 99% The crystallinity in the sense of the present invention can be determined here in accordance with the information in the section "Methods".
  • Inhalable powders which are provided according to the preparation process according to the invention contain a pharmaceutical active substance.
  • the inhalable powders which are provided according to the preparation process according to the invention contain a combination of 2 or 3 active pharmaceutical ingredients.
  • a "pharmaceutically active substance is to be understood as meaning a substance, a medicament, a composition or a combination thereof which has a pharmacological, mostly positive, effect on an organism, an organ, and / or a cell, if the active substance interacts with the organism, organ or the cell is brought into contact. Incorporated into a patient, the effect can be local or systemic.
  • chemical compounds (active substances) listed below can be used alone or in combination as a drug-relevant constituent of the inhalable powders according to the invention.
  • W is a pharmacologically active agent and (for example) selected from the group consisting of betamimetics, anticholinergics, corticosteroids, PDE4 inhibitors, LTD4 antagonists, EGFR inhibitors, dopamine agonists, HIV antihistamines, PAF - Antagonists and PB kinase inhibitors.
  • a pharmacologically active agent selected from the group consisting of betamimetics, anticholinergics, corticosteroids, PDE4 inhibitors, LTD4 antagonists, EGFR inhibitors, dopamine agonists, HIV antihistamines, PAF - Antagonists and PB kinase inhibitors.
  • W is a pharmacologically active agent and (for example) selected from the group consisting of betamimetics, anticholinergics, corticosteroids, PDE4 inhibitors, LTD4 antagonists, EGFR inhibitors, dopamine agonists, HIV antihistamines, PAF - Antagonists and
  • W represents a betamimetics combined with an anticholinergic, corticosteroids, PDE4 inhibitors, EGFR inhibitors or LTD4 antagonists,
  • W represents an anticholinergic agent combined with a betamimetics, corticosteroids, PDE4 inhibitors, EGFR inhibitors or LTD4 antagonists
  • W represents a corticosteroid combined with a PDE4 inhibitor
  • W represents a PDE4 Inhibitors combined with an EGFR inhibitor or LTD4 antagonist
  • W represents an EGFR inhibitor combined with a LTD4 antagonist.
  • Preferred betamimetics for this purpose are compounds selected from the group consisting of albuterol, arformoterol, bambuterol, bitolterol, broxaterol, carbuterol, clenbuterol, fenoterol, formoterol, hexoprenaline, ibuterol, isoetharines, isoprenaline, levosalbutamol, mabuterol, meluadrine, metaproterenol , Orciprenaline, Pirbuterol, Procaterol, Reproterol, Rimiterol, Ritodrine, Salmefamol, Salmeterol, Soterenol, Sulphone terol, Terbutaline, Tiaramide, Tolubuterol, Zinterol, CHF-1035, HOKU-81, KUL-1248 and
  • the acid addition salts of the betamimetics are selected from the group consisting of hydrochloride, hydrobromide, hydroiodide, hydrosulfate, hydrophosphate, hydromethanesulfonate, hydronitrate, hydromaleate, hydroacetate, hydrocitrate, hydrofumarate, hydrotartrate, hydroxalate, hydrosuccinate, hydrobenzoate and hydro-p-toluenesulfonate ,
  • Preferred anticholinergic compounds are compounds which are selected from the group consisting of tiotropium salts, preferably the bromide salt, oxitropium salts, preferably the bromide salt, flutropium salts, preferably the bromide salt, ipratropium salts, preferably the bromide salt, glycopyrronium salts, preferably the bromide salt, trospium salts the chloride salt, tolterodine.
  • tiotropium salts preferably the bromide salt, oxitropium salts, preferably the bromide salt, flutropium salts, preferably the bromide salt, ipratropium salts, preferably the bromide salt, glycopyrronium salts, preferably the bromide salt, trospium salts the chloride salt, tolterodine.
  • the abovementioned salts may preferably contain chloride, bromide, iodide, sulfate, phosphate, methanesulfonate, nitrate, maleate, acetate, citrate, fumarate, tartrate, oxalate, succinate, benzoate or p-toluenesulfonate, with chloride, bromide, iodide, sulfate, methanesulfonate or p-toluenesulfonate being preferred as counterions.
  • the chlorides, bromides, iodides and methanesulfonates are particularly preferred.
  • anticholinergics are selected from the salts of the formula AC-I
  • X ⁇ is a single negatively charged anion, preferably an anion selected from the group consisting of fluoride, chloride, bromide, iodide, sulfate, phosphate, methanesulfonate, nitrate, maleate, acetate, citrate, fumarate, tartrate, oxalate, succinate, benzoate and p-Toluenesulfonate, preferably a singly negatively charged anion, more preferably an anion selected from the group consisting of fluoride, chloride, bromide, methanesulfonate and p-toluenesulfonate, most preferably bromide, optionally in the form of their racemates, enantiomers or hydrates.
  • anion selected from the group consisting of fluoride, chloride, bromide, iodide, sulfate, phosphate, methanesulfonate, nitrate, maleate, acetate,
  • X ⁇ can have the meanings given above.
  • Further preferred anticholinergics are selected from the salts of the formula AC-2 wherein R is either methyl or ethyl and in which X ⁇ may have the abovementioned meanings.
  • the compound of the formula AC-2 may also be present in the form of the free base AC-2-base.
  • Preferred corticosteroids are compounds selected from the group consisting of beclomethasone, betamethasone, budesonide, butixocort, ciclesonide, deflazacort, dexamethasone, etiprednol, flunisolide, fluticasone, loteprednol, mometasone, prednisolone, prednisone, rofleponide, triamcinolone, RPR - 106541, NS-126, ST-26 and
  • any reference to steroids includes reference to their optional salts or derivatives, hydrates or solvates.
  • Examples of possible salts and derivatives of steroids may be: alkali metal salts, such as sodium or potassium salts, sulfobenzoates, phosphates, isonicotinates, acetates, dichloroacetates, propionates, dihydrogen phosphates, palmitates, pivalates or even furoates.
  • Preferred PDE4 inhibitors are compounds selected from the group consisting of enprofylline, theophylline, roflumilast, ariflo (cilomilast), tofimilast, pumafentrin, lirimilast, arofylline, atizoram, D-4418, bay 198004, BY343, CP-325,366, D-4396 (Sch-351591), AWD-12-281 (GW-842470), NCS-613, CDP-840, D-4418, PD-168787, T-440, T-2585, V- 11294A, Cl-1018, CDC-801, CDC-3052, D-22888, YM-58997, Z-15370 and
  • the acid addition salts of the PDE4 inhibitors are selected from the group consisting of hydrochloride, hydrobromide, hydroiodide, hydrosulfate, hydrophosphate, hydromethanesulfonate, hydronitrate, hydromaleate, hydroacetate, hydrocitrate, hydrofumarate, hydrotartrate, hydroxalate, hydrosuccinate, hydrobenzoate and hydro-p-toluenesulfonate ,
  • Preferred LTD4 antagonists here are compounds selected from the group consisting of montelukast, pranlukast, zafhiukast, MCC-847 (ZD-3523), MN-001, MEN-91507 (LM-1507), VUF-5078 , VUF-K-8707, L-733321 and - l - (((R) - (3- (2- (6,7-Difluoro-2-quinolinyl) ethenyl) phenyl) -3- (2- (2-hydroxy-2-propyl) phenyl) thio) methylcyclopropane -acetic acid,
  • these acid addition salts are selected from the group consisting of hydrochloride, hydrobromide, hydroiodide, hydrosulfate, hydrophosphate, hydromethanesulfonate, hydronitrate, hydromaleate, hydroacetate, hydrocitrate, hydro fumarate, hydrotartrate, hydroxalate, hydrosuccinate, hydrobenzoate and hydro-p-toluenesulfonate.
  • salts or derivatives which the LTD4-antagonists are capable of forming include: alkali metal salts, such as, for example, sodium or potassium salts, alkaline earth salts, sulphobenzoates, phosphates, isonicotinates, acetates, propionates, dihydrogenphosphates, palmitates, pivalates or furoates.
  • alkali metal salts such as, for example, sodium or potassium salts, alkaline earth salts, sulphobenzoates, phosphates, isonicotinates, acetates, propionates, dihydrogenphosphates, palmitates, pivalates or furoates.
  • the EGFR inhibitors used are preferably compounds selected from the group consisting of cetuximab, trastuzumab, ABX-EGF, Mab ICR-62 and - 4 - [(3-chloro-4-fluorophenyl) amino] -6- ⁇ [4- (morpholin-4-yl) -1-oxo-2-butene-1-yl] amino ⁇ -7-cyclopropylmethoxyquinazoline
  • these acid addition salts are selected from the group consisting of hydrochloride, hydrobromide, hydroiodide, hydrosulfate, hydrophosphate, hydromethanesulfonate, hydronitrate, hydromaleate, hydroacetate, hydrocitrate, hydrofumarate, hydrotartrate, hydroxalate, hydrosuccinate, hydrobenzoate and hydro-p-toluenesulfonate.
  • Preferred dopamine agonists are compounds selected from the group consisting of bromocriptine, cabergoline, alpha-dihydroergocryptine, lisuride, pergolide, pramipexole, roxindole, ropinirole, talipexole, terguride and viozan, optionally in the form of their racemates, enantiomers , Diastereomers and optionally in the form of their pharmacologically acceptable acid addition salts, solvates or hydrates.
  • these acid addition salts are preferred selected from the group consisting of hydrochloride, hydrobromide, hydroiodide, hydrosulfate, hydrophosphate, hydromethanesulfonate, hydronitrate, hydromaleate, hydroacetate, hydrocitrate, hydrofumarate, hydrotartrate, hydroxalate, hydrosuccinate, hydrobenzoate and hydro-p-toluenesulfonate.
  • Hl antihistamines here preferably compounds are used, which are selected from the group consisting of epinastine, cetirizine, azelastine, fexofenadine, levocabastine, loratadine, mizolastine, ketotifen, emedastine, dimetindene, clemastine, bamipine, Cexchlorpheniramin, pheniramine, doxylamine, chlorphenoxamine , Dimenhydrinat, Diphenhy dramin, promethazine, ebastine, desloratidine and meclocine, optionally in the form of their racemates, enantiomers, diastereomers and optionally in the form of their pharmacologically acceptable acid addition salts, solvates or hydrates.
  • these acid addition salts are selected from the group consisting of hydrochloride, hydrobromide, hydroiodide, hydrosulfate, hydrophosphate, hydromethanesulfonate, hydronitrate, hydromaleate, hydroacetate, hydrocitrate, hydrofumarate, hydrotartrate, hydroxalate, hydrosuccinate, hydrobenzoate and hydro-p-toluenesulfonate.
  • substance formulations or substance mixtures all inhalable compounds are used, such as e.g. also inhalable macromolecules, as disclosed in EP 1 003 478.
  • substances, substance formulations or substance mixtures are used for the treatment of respiratory diseases, which are used in the inhalation area.
  • the compound may be derived from the group of derivatives of ergot alkaloids, the triptans, the CGRP inhibitors, the phosphodiesterase V inhibitors, optionally in the form of their racemates, enantiomers or diastereomers, optionally in the form of their pharmacologically acceptable acid addition salts, their solvates and / or hydrates.
  • the proportion of the corresponding matrix former in the powders according to the invention is more than 20% (w / w), particularly preferably more than 30% (w / w) of the dry mass of the powder.
  • the proportion of the corresponding matrix former for example the polyol or Mannitolanteil more than 20% (w / w) of the dry mass of the powder, preferably between 30-80% (w / w), more preferably between 30-70% (w / w).
  • the proportion of the corresponding matrix former can therefore be approximately 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98 or 99% (w / w) of the dry mass of the powder.
  • the corresponding embodiments apply in particular to powders in which polyols, in particular in which mannitol is used as matrix former.
  • the powder according to the invention comprises matrix formers in a concentration such that the ratio of active ingredient: matrix former is 1: 999 to 1: 1, more preferably from 1:99 to 1: 2 (data: w / w).
  • active substance also means a combination of active substances.
  • the proportion of the active ingredient or the sum of the active ingredients is normally between 0.1 and 50% (w / w), preferably between 0.2 and 40% (w / w). w), also preferably between 0.2 to 30% (w / w) and between 0.2 to 20% (w / w) of the total weight of the powder.
  • the inhalable powders according to the invention contain a pharmaceutical active ingredient from the group of the EGFR antagonists.
  • Inventive inhalable powders with an active ingredient from this active ingredient group have an active ingredient content of between 10 and 80% (w / w), preferably between 20 and 80% (w / w), more preferably between 30 and 80% (w / w) on Total weight of the powder can be.
  • the invention comprises corresponding production methods for producing inhalable powders according to the invention.
  • powders can be mixed both directly as powder inhalants (multidose systems, pre-metered multi-dose systems and single-dose systems) and as components which are mixed with other (eg coarse-grained) auxiliary substances. use.
  • Mannitol contain, are particularly stable on storage, especially at temperatures greater than 20 0 C, and are characterized by a high dispersibility, said drying takes place in the spray chamber by supplying a second drying gas. By supplying the second drying gas thus takes place a second drying step, which within the spray drying process before the
  • the energy input of the second drying step is preferably to be selected such that the starting temperature is in the range of 40 0 C to 100 0 C.
  • Production processes according to the invention comprise the following steps:
  • the characteristic value Q ( 5.8 ) between 50% and 100% and (ii) the average droplet size X50 in the range from 1 ⁇ m to 20 ⁇ m, preferably from 1 ⁇ m to 8 ⁇ m, particularly preferably from 1 ⁇ m to 3 ⁇ m , is achieved
  • a second drying gas (2) after-drying of the aerosol in the spray chamber by a second drying gas (2), the temperature of the drying gas (2) being between 200 ° C. and 400 ° C.
  • drying gas (2) is between 20: 1 and 3: 1,
  • drying gas coefficient Vl is between 100 K and 2000 K and the drying coefficient Vl is between 250 K and 4000 K and
  • the drug concentration to be set limits are set, which are given by the fact that the surface properties of the particles including the particle size can be optimized by a certain ratio between drop size and solids concentration.
  • a concentration between 1 wt .-% and 20 wt .-%, in a preferred manner between 2 wt .-% and 10 wt .-%, in a very preferred manner between 3 wt .-% and 8 wt .-% to choose.
  • the drop size to be chosen during the process can be determined by the
  • Parameter X 50 which is in the range of 1 .mu.m to 20 .mu.m, preferably from 1 .mu.m to 8 .mu.m and particularly preferably from 1 .mu.m to 3 .mu.m, and the characteristic value Q (5.8), which is between 30% and 100% and preferred between 60% and 100%.
  • the parameter X50 for the droplet size the mean, volume-related droplet size is.
  • the characteristic value Q denotes (5 .8), the amount of particles of Droplet, which is based on the volume distribution of the droplets below 5.8 microns.
  • the droplet sizes were determined in the context of the present invention by means of laser diffraction (Fraunhoferbeugung). More detailed information can be found in the experimental descriptions of the invention.
  • Inventive method is characterized in that the spray mist is exposed to a drying process by introducing at least two drying gas streams. It proves to be advantageous if the drying gas stream (1) in the immediate vicinity of the generation of the spray in a rectified manner is introduced into the spray chamber. In contrast, the inflow of the second drying gas takes place as a supplementary drying of the aerosol before the
  • Particle separation by inflow of a drying gas (2) in the counterflow direction inside the spray chamber is also characterized in that the final drying of the spray-dried particles takes place in such a way that the particles are present in aerosolized form, preferably in the spray chamber.
  • the aerosol obtained by such a process consisting of dried particles, which are present in the dispersed state in the volume flow of the drying gas is discharged from the spray chamber (see Figure 1: outlet of the spray chamber, marked with numeral 4).
  • the separation of the dried solid particles from the drying gas flow takes place in the usual manner. This can be done for example by separation by means of a cyclone.
  • Parameters that are included in the drying step are the inlet temperature and mass flow of the drying gas (1) and the drying gas (2) and the mass flow of the spray liquid (Ml) and the starting temperature of the drying gas.
  • the ratio of the mass flow of the respective drying gas (MgI, MgT) and the mass flow of the spray liquid (Ml) in conjunction with the temperature difference (ATl, ATT) between the respective drying gas (Tl, TT) and the outlet temperature (Ta) an important role.
  • the inlet temperature Tl of the drying gas (1) - the drying gas (1) is characterized by numeral 1 in Fig. 1 - here represents the temperature, which has the drying gas when introduced into the spray cylinder (measuring point see paragraph 7, Fig. 1).
  • the mass flow of the drying gas Mg represents the amount of gas determined as mass per unit time, wherein MgI indicates the mass flow of the drying gas (1) and MgI the mass flow of the drying gas (2).
  • the starting temperature (Ta) of the drying gas can be determined according to FIG. 1 at the measuring point 6 (number 6, FIG. 1).
  • the inlet temperature Tl of the drying gas (2) - the drying gas (2) is characterized by numeral 2 in Fig. 1 - here represents the temperature of the drying gas (2), which can be measured before introducing the drying gas into the spray cylinder (see paragraph 5 , Fig. 1). Under the mass flow of
  • Spray liquid (Ml) (see paragraph 3, Fig. 1) is the amount (determined as mass) of spray solution per unit time.
  • the temperature differences AT1 and AT1 respectively represent the temperature differences between the measuring points of the inventive process marked according to FIG. 1.
  • the method for providing the inhalable powders according to the invention can be characterized by the drying coefficient V1 and the drying coefficient V1.
  • the parameters Vl and Vl are accessible according to the mathematical relations equation 1 and equation 2.
  • the method for providing the inhalable powders according to the invention is characterized in that the inlet temperature of the drying gas (1) between 80 0 C to 150 0 C, preferably from 90 0 C to 140 0 C and particularly preferably from 100 0 C to 130 0 C and the inlet temperature of the drying gas (2) is between 200 0 C and 400 0 C. Furthermore, the drying of the spray is carried out such that the drying coefficient Vl (see equation 1) has a value between 100 K to 2000 K, preferably between 200 K to 1500 K and more preferably between 400 K to 1000 K and the drying coefficient Vl (see equation 2) has a value between 250 K to 4000 K, preferably between 500 K to 3000 K and more preferably between 1000 K to 2000 K.
  • the process step of drying is characterized in that the ratio of the mass flow MgI: mass flow MgI is between 20: 1 and 3: 1.
  • the production method is also characterized in that the starting temperature of the drying gas, measured at the outlet of the spray chamber has a temperature of 40 0 C to 90 0 C, preferably 40 0 C to 90 0 C.
  • Fig. 1 The manufacturing apparatus shown in Fig. 1 represents an embodiment by means of which the inventive method can be performed.
  • the drawing
  • the spray solution (3) is sprayed in the spray chamber, for example with the aid of a commercial two-fluid nozzle.
  • the drying gas (1) is heated and introduced into the spray chamber in cocurrent to the spray. With the number (7), the measuring point of the inlet temperature of the spray gas (1) is marked.
  • the drying gas (2) is heated and introduced in countercurrent to the spray cylinder. With the number (5), the measuring point of the inlet temperature of the drying gas (2) is marked.
  • Labeling No. (6) represents the measurement point for the exit temperature of the drying gas, where (4) represents the outlet for the dried aerosol / drying gas.
  • the method according to the invention thus makes it possible to provide inhalation powders, the particles containing a crystalline matrix former, preferably mannitol.
  • Particles according to the invention may contain active substances, the active substance or agents being incorporated into the crystalline adjuvant component, so that the active substance (s) are physically and chemically stabilized by this "scaffold formation.”
  • active substances the active substance or agents being incorporated into the crystalline adjuvant component, so that the active substance (s) are physically and chemically stabilized by this "scaffold formation.”
  • it is surprisingly found that physically stable microparticles are present can be prepared, which allow a high proportion of active ingredient.
  • Characterized are powder thus produced by a particle size, for example as measured by laser diffraction, by an average particle size X50 in the range of 1 .mu.m to 10 .mu.m, preferably from 1 .mu.m to 6 .mu.m.
  • the term "average particle size" as used herein refers to the 50% value from the volume distribution measured by a laser diffractometer according to the dry dispersion method.
  • pharmaceutical preparations are also included, these being characterized by predosing the inhalable powders into a dose container.
  • the dose containers may preferably be made of a material which, at least at the contact surface with the inhalable powder, has a material which is selected from the group of synthetic plastics.
  • Filled capsules containing the inhalable powders according to the invention may be mentioned as a preferred pre-dosed pharmaceutical preparation.
  • the filling thereof is carried out according to methods known in the art of empty capsules with the inhalable powders according to the invention.
  • those capsules are preferably used whose material is selected from the group of synthetic plastics, more preferably selected from the group consisting of polyethylene, polycarbonate, polyester, polypropylene and polyethylene terephthalate. Polyethylene, polycarbonate or polyethylene terephthalate are particularly preferred synthetic synthetic materials.
  • polyethylene is used as one of the capsule materials which are particularly preferred according to the invention, preference is given to polyethylene having a density between 900 and 1000 kg / m, preferably 940-980 kg / m, particularly preferably about 960-970 kg / m 3 (high-density polyethylene ) for use.
  • the synthetic plastics in the context of the invention can be processed in many ways by means of the manufacturing process known in the art.
  • Preferred in the context of the invention is the injection molding processing of plastics.
  • Particularly preferred is the injection molding technique waiving the use of mold release agents. This production process is well defined and characterized by a particularly good reproducibility.
  • the capsules are treated as powder reservoirs into which the pharmaceutical preparations according to the invention are filled in a product-contacting manner.
  • powder reservoirs according to the invention are designed such that at least the material which contacts the pharmaceutical preparation is selected from a material from the group of synthetic plastics.
  • Another aspect of the present invention relates to the aforementioned capsules containing the above-mentioned inhalable powder of the invention.
  • These capsules may contain about 1 to 25 mg, preferably about 2 to 25 mg, more preferably about 3 to 20 mg of inhalable powder.
  • the capsules 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 , 23, 24 or 25 mg inhalation powder.
  • the present invention further relates to an inhalation kit consisting of one or more of the capsules described above containing a content of inhalable powder according to the invention in combination with a dry powder inhaler.
  • the present invention further relates to the use of the inhalable powders according to the invention for the preparation of a medicament for the treatment of
  • Respiratory diseases in particular for the treatment of COPD and / or asthma, characterized in that the inhaler disclosed in WO2004047796 (see FIG. 1 there) is used.
  • Example 1 (drying with additional drying gas (2)): Production of inhalation powder by means of spray drying to provide embedding particles.
  • the particles thus obtained contain a combination of active ingredients (glucocorticoid, anticholinergic and beta-agonists) in a crystalline mannitol matrix.
  • beta-agonist CL provides the substance 2H-l, 4-benzoxazin-3 (4H) -one, 6-hydroxy-8- [(1R) -1-hydroxy-2- [[2- (4-methoxyphenyl) - 1, 1 -dimethylethyl] ethyl] -, monohydrochloride and tiotropium BR the substance tiotropium bromide, as it is known from the European patent application EP 418 716 Al, is.
  • Spray drying is carried out with a BÜCHI Mini-Spray Dryer (B-191) in combination with a two-substance nozzle (Büchi, 0.5 mm, item 4363).
  • the spray dryer was modified to remove the aspirator.
  • About the process gas inlet N 2 is supplied as drying gas (about 17 m 3 / h with about 90 0 C), so that the device is flowed through in the overpressure range (corresponds to drying gas (I)).
  • drying gas (I) drying gas
  • ambient air is sucked in and fed to the process (about 3 m 3 / h with about 400 0 C) (corresponds to drying gas (2)).
  • the output filter between cyclone and aspirator has been removed and the gas outlet directly drained.
  • Nozzle gas flow rate is determined by an external measuring device (Kobold DSM212) and decoupled from the original variable area flowmeter.
  • the nozzle is operated at a gas flow rate of 18 l / min (about 2 bar overpressure).
  • the solvent throughput is about 16 g / min.
  • the resulting outlet temperature is in the range of approx. 58 ° C.
  • the process parameters used are listed in Table 2.
  • Table 2 Spray drying parameters Example 1 ⁇ Drying with additional drying gas (2)).
  • composition of the powder obtained according to Example 1 is shown in Table 3.
  • Table 3 Composition of solid particles (calculated) Example 1 (drying with additional drying gas (2J).
  • the "volume fraction ⁇ 5 microns after application” is stable the inhalable powders according to Example 1.
  • the decrease in the "volume fraction ⁇ 5 microns after application” after storage (1 week, open, 40 0 C / 75% rh) is negligible.
  • Negligible is a decrease of less than 5% points, preferably less than 4% points, more preferably less than 3% points and most preferably less than 2% points and most outstandingly less than 1% points after storage ( 1 week, open, 40 ° C / 75% rh).
  • % percentage points are to be understood as percentages based on 100% (volume percent).
  • Measuring instrument Laser diffraction spectrometer (HELOS), Sympatec (particle size determination by means of fraunhof diffraction) Dispersion unit: Dry disperser RODOS with suction funnel, Sympatec
  • Focal length 100 mm (measuring range: 0.9 - 175 ⁇ m)
  • Measuring time / waiting time approx. 15 s (in the case of 200 mg)
  • the powder is then placed on the front half of the vibrating trough (from about 1 cm from the front
  • the frequency of the vibrating trough is varied so that the
  • the inhaler HandiHaler® is used for the determination.
  • the inhalable powder to be analyzed is filled into capsule size 3 plastic capsules (polyethylene) as disclosed in EP 1100474.
  • the inhalation capsules are filled with 20 mg.
  • the HandiHaler® is operated with compressed air (8) via a gas connection at the inlet opening of the capsule chamber.
  • the applied flow rates are 39 l / min and 60 l / min (preferably 39 l / min, as this corresponds to a pressure drop on the HandiHaler® of 4 kPa).
  • a time-controlled 2-way solenoid valve (9) compressed air is supplied to the inhaler (12) over a period of 10 seconds.
  • the flow rate adjustment is made via a flow control valve (10) and flow rate control via a Kobold DMS-614C3FD23L mass flow meter (11).
  • the particle size distribution is determined directly at the aerosol cloud by measuring the particle size at a distance of 2 ⁇ 0.5 cm behind the powder outlet from the inhaler using the HELOS laser diffractometer Sympatec GmbH, Clausthal-Zellerfeld (13). Directly behind the measuring zone the particles are sucked off by a vacuum cleaner (14).
  • TDSC Temperature Modulated DSC
  • Sample crucible standard crucible, perforated
  • the glass step is determined by means of the TA Instruments software (Universal 2000, Version 4.2) from the RevCP signal via the function "Analyze / Glass Transition "
  • the limit points are hereby set to the baseline before and after the glass step, eg at McPhillips et al., [McPhillips, H., Craig, DQM; Royall, PG; Hill, L .: Characterization of the glass transition of HPMC using modulated temperature differential scanning calorimetry; International Journal of Pharmaceutics (1999) No. 180 , 83-90].
  • the degree of crystallinity can be calculated from the magnitudes Cp slope at the glass transition of the sample (ACp (p)), the Cp slope of the fully amorphous matrix former (ACp (M, a)) and the proportion of sample present in the sample Matrix former (A (M)) according to Equation 3,
  • Matrix former A (M) [%] Mass fraction of the matrix former in the sample
  • Amorphous reference material for determining crystallinity is Amorphous reference material for determining crystallinity
  • the preparation of the amorphous reference substance is done for example by melting and sudden cooling (quenching) of the substance.
  • 10 + 2 mg of the matrix former are weighed in a DSC crucible and heated in the TMDSC apparatus to about 10 to 30 0 C above the melting temperature.
  • the crucible is removed at this temperature and immediately immersed in cryogenic liquid nitrogen.
  • the determination of the Cp increase ACp (Ma) takes place in which the sample of the completely amorphous matrix former is placed in the furnace of the TMDSC apparatus and measured after production.
  • the measurement is started at least 20 0 C below the expected glass transition point.
  • the measurement is carried out according to the device parameters listed above (TA Instruments Software, Universal 2000, Version 4.2) via the function "Analyze / Glass Transition !).
  • the median value X 50 is the drop size below which 50% of the drop quantity lies.
  • the characteristic value Q (5 .8 ) value describes the percentage of drops that are below 5.8 ⁇ m in size. H 2 O is used as solution.
  • the characteristic value is designated as mean droplet size X50.
  • Dispersing unit RODOS / dispersing pressure: 3 bar

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Otolaryngology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Die Erfindung betrifft Herstellverfahren für die Bereitstellung von Inhalationspulver, sowie die mit diesem Verfahren hergestellten stabilen und kristallinen Inhalationspulver. Ebenso betrifft die Erfindung die Verwendung dieser Inhalationspulver zur Herstellung eines Arzneimittels zur Behandlung von Atemwegserkrankungen, insbesondere zur Behandlung von COPD (chronic obstructive pulmonary disease = chronisch obstruktive Lungenerkrankung) und Asthma.

Description

NEUE PULVERFORMIGE KRISTALLINE ARZNEIMITTEL ZUR INHALATION
Die Erfindung betrifft stabile Arzneimittelzusammensetzungen zur inhalativen Anwendung, wobei ein oder mehrere Wirkstoffe in einer kristallinen Matrix eines Hilfsstoffes eingebettet sind. Die Erfindung betrifft im besonderen sprühgetrocknete, kristalline und lagerstabile Pulver, wobei ein oder mehrere Wirkstoffe in einer kristallinen Mannitol-Matrix eingebettet vorliegen. Des Weiteren betrifft die Erfindung Verfahren zu deren Herstellung sowie die Verwendung zur Herstellung eines Arzneimittels zur Behandlung von Atemwegserkrnakungen, insbesondere zur Behandlung von COPD (chronic obstructive pulmonary disease = chronisch obstruktive Lungenerkrankung) und Asthma.
Hintergrund der Erfindung Bei der Applikationsform Pulverinhalativa werden Inhalationspulver, die beispielsweise in geeignete Kapseln (Inhaletten) abgefüllt werden, mittels Pulverinhalatoren in der Lunge ausgebracht. Ebenso sind weitere Systeme, in denen die zu applizierende Pulvermenge vordosiert ist (z.B. Blister), als auch Multidose-Pulversysteme bekannt. Alternativ dazu kann eine inhalative Anwendung auch durch Applikation geeigneter pulverförmiger Inhalationsaerosole, die beispielsweise in HFAl 34a, HFA227 oder deren Gemisch als Treibgas suspendiert sind, erfolgen.
Bei der Pulverinhalation werden die Mikropartikel eines reinen Wirkstoffs durch die Atemwege auf der Lungenoberfläche, z.B. in den Alveolen, mittels des Inhalationsvorganges appliziert. Diese Partikel sedimentieren auf der Oberfläche und können erst nach dem Lösevorgang durch aktive und passive Transportvorgänge im Körper aufgenommen werden.
Bekannt in der Literatur sind Inhalationssysteme, in denen der Wirkstoff in Form von Feststoffpartikeln entweder als mikronisierte Suspension in einem passenden Lösungsmittelsystem als Träger vorliegt oder in Form eines trockenen Pulvers. Üblicherweise werden Pulverinhalativa, z.B. in Form von Kapseln zur Inhalation, auf Basis der allgemeinen Lehre, wie sie in DE-A- 179 22 07 beschrieben ist, hergestellt. Ein kritischer Faktor bei solchen Mehrstoffsystemen ist eine gleichmäßige Verteilung des Arzneimittels in der Pulvermischung. Ein weiterer bedeutender Aspekt bei Pulverinhalativa ist, dass bei der inhalativen Applikation des Wirkstoffes nur Teilchen einer bestimmten aerodynamischen Größe in das Zielorgan Lunge gelangen. Die mittlere Teilchengröße dieser lungengängigen Partikel (inhalierbarer Anteil) liegt im Bereich weniger Mikrometer, typischerweise zwischen 0.1 und 10 μm, vorzugsweise unterhalb von 6 μm. Solche Partikel werden üblicherweise durch Mikronisierung (Luftstrahlmahlung) erzeugt. Daraus ergibt sich oftmals, dass solche Partikel durch diesen mechanischen Schritt hinsichtlich ihrer Kristalleigenschaften komplex zusammengesetzt sein können.
Literaturbekannt ist, dass mittels Sprühtrocknung Partikel im Bereich kleiner 10 μm hergestellt werden können. Die Sprühtrocknung von reinen Wirkstoffen für inhalative Zwecke (Pulverinhalation) ist im Stand der Technik ebenfalls beschrieben [z.B.: EP 0 072 046 Al; WO 2000 000176 Al; US 6019968; A. Chawla, K.M.G. Taylor, J.M. Newton, M.C.R. Johnson, Int. J. Pharm, 108 (3), (1994), 233-240]. Besonders im Bereich der pulmonalen Therapie ist die Sprühtrocknung ein geeignetes Verfahren um peptid-/proteinhaltige Pulver zur Behandlung verschiedener Erkrankungen herzustellen [US 5,626,874; US 5,972,388]
Dem Fachmann bekannt sind hierbei Formulierungssysteme, wobei Co-Sprühmikronisate aus Wirkstoffen und physiologisch unbedenklichen Hilfsstoffen [WO 9952506] zur inhalativen Applikation offenbart sind. Ebenso bekannt sind Pulverzubereitungen beinhaltend Co-Sprühmikronisate aus SLPI Protein in physiologisch unbedenklichen Trägermaterialien [WO 9917800]; Co-sprühgetrocknetes Interferon mit einem Trägermaterial [WO 9531479] und Co-Sprühmikronisate aus einem Wirkstoff und Cellulose-Derivaten [WO 9325198].
Die spezifische Verwendung von Mannitol als Hilfsstoff für Co-Sprühmikronisate zur Stabilisierung von Peptiden und Proteinen ist in WO 05/020953 beschrieben. Hierin werden Formulierungen offenbart, die dadurch gekennzeichnte sind, dass komplexe Proteine in einer amorphen Matrix in Form von Einbettungspartikeln vorliegen, die sich durch eine gute Langzeitstabilität und Inhalierbarkeit auszeichnen.
Übliche inhalative Sprühtrocknungsformulierungen sowie deren Herstellverfahren basieren somit in dem Konzept, dass der primär durch die Sprühtrocknung erhaltene amorphe beziehungsweise glasartige Zustand stabilisiert und zum Zwecke der Langzeitstabilität beibehalten wird. Die Eigenschaft der Langzeitstabilität im Sinne der Erfindung kann durch Stresslagerung simuliert werden. Dabei kann eine Lagerung gemäß den Bedingungen „40°C bei 75% relativer Feuchte, 1 Woche offen gelagert" als Merkmal herangezogen werden, um eine Bewertung zu treffen, dass eine inhalative Formulierung als Langzeit-stabil gilt. Nachtrocknungsverfahren, wie sie beispielsweise durch WO
05/020953 offenbart sind, dienen hierbei zur Reduktion des Wasseranteils, um somit den amorphen Zustand dieser Sprühtrocknungsformulierungen zu stabilisieren, die mit einer ungeregelten Kristallisation einhergehen kann.
Aufgabe der Erfindung ist es, kristalline Partikel für die inhalative Applikation bereitzustellen, wobei mindestens eine pharmazeutisch aktive Substanz in eine kristalline Matrix eines Hilfsstoffes eingebettet ist.
Eine weitere Aufgabe der Erfindung besteht darin, die stabilisierende Wirkung des kristallinen Zustandes für sprühgetrocknete inhalierbare Einbettungsungspartikel nutzbar zu machen.
Eine grundsätzliche Aufgabe der Erfindung besteht darin, sprühgetrocknete Pulver zur Verfügung zustellen, die sich durch eine gute Langzeitstabilität und Inhalierbarkeit auszeichnen. Entscheidend hierbei ist eine ausgewogene Balance zwischen beiden Kriterien.
Aufgabe der Erfindung ist es auch, Herstellverfahren zur Bereitstellung der erfindungsgemäßen inhalierbaren Pulver bereitzustellen.
Eine weitere Aufgabe der vorliegenden Erfindung besteht darin, pharmazeutische Zubereitungen für die inhalative Applikation, sei es in Form eines trockenen Pulvers, eines treibgashaltigen Dosieraerosols oder einer treibgasfreien Inhalationslösung.
Zusammenfassung der Erfindung
Überraschenderweise wurde gefunden, dass die aus dem Stand der Technik genannten Vorgehensweisen nicht dazu geeignet sind, Inhalationspulver bereitzustellen, die einen oder mehrere pharmazeutische Wirkstoffe und einen Matrixbildner enthalten, wobei der Matrixbildner in kristalliner Form vorliegt. Die Pulver zeichnen sich durch eine hohe Stabilität aus.
Im Rahmen der vorliegenden Erfindungen werden unter stabilen Inhalationspulvern solche Inhalationspulver verstanden, deren Eigenschaften auch über einen längeren Zeitraum unverändert erhalten bleiben. Inhalationspulver verändern dann ihre Eigenschaften nicht, wenn sowohl die chemische Stabilität der einzelnen Komponenten in der Pulvermischung als auch deren physikalische bzw. physikochemische Stabilität gegeben ist. Dies setzt auch voraus, dass die Komponenten der Pulvermischung hinsichtlich ihrer polymorphen und morphologischen Eigenschaften unverändert bleiben. Für Inhalationspulver spielt die physikalische Stabilität eine herausragende Rolle.
In einer bevorzugten Ausführungsform besteht das Pulver überwiegend aus feinteiligen inhalierbaren Partikeln mit einer mittleren aerodynamischen Teilchengröße (mass median aerodynamic diameter = MMAD) von <10 μm, vorzugsweise von 0,5-7, 5μm, weiter bevorzugt von l-5μm. Die Matrixbildner können hierbei Zucker, Polyole, Polymere oder eine Kombination aus diesen sein. Bevorzugt sind hierbei Polyole, wobei dem Mannitol eine herausragende Rolle zukommt.
Erfindungsgemäße Pulver zeichnen sich dadurch aus, dass diese einen hohen inhalierbaren Anteil aufweisen. Die Fine Particle Dose stellt dabei die Menge an inhalierbaren Wirkstoffpartikeln ( < 5μm) dar, wie sie auf Basis der Pharm. Eur. 2.9.18 (European Pharmacopoeia, 6th edition 2008, Apparatus D - Andersen Cascade Impactor) bzw. USP30-NF25 <601> bestimmbar ist. Im Rahmen der vorliegenden Erfindung werden die inhalierbaren Partikel als
„Volumenanteil < 5μm nach Ausbringung" bestimmt. Darunter versteht man den Anteil des Inhalationspulvers, deren Partikel kleiner als 5 μm sind, gemessen mittels Laserbeugung (angegeben in [%]). Hierbei erfolgt die Erzeugung der Aerosolwolke durch eine Deagglomeration der Probe mittels Ausbringung aus einem Inhalator (Handihaler).
Die erfindungsgemäßen Pulver stellen Formulierungen von pharmazeutischen Produkten, vorwiegend für inhalative Applikationen, dar, die eines der hier beschriebenen erfindungsgemäßen Pulver enthalten. In diesem Zusammenhang umfasst die Erfindung auch pharmazeutische Zusammensetzungen, die die erfindungsgemäßen Pulver als treibgashaltige Dosieraerosole oder als treibgasfreie Inhalationslösungen enthalten. Die Erfindung stellt ferner ein Verfahren, bestehend aus Sprühtrocknung und zusätzlicher, integrierter zweiter Trocknungszone, zur Herstellung von Zubereitungen kristalliner Sprühtrocknungspartikel, bereit. Mit Hilfe dieser zweiten Trocknungszone erfolgt zunächst ein Entzug des Lösungsmittels und anschließend eine Kristallisation des Matrixbildners im Sprühturm. Durch eine zweite Trockenstufe findet die vollständige Trocknung der kristallisierten Partikel statt, noch bevor eine Abscheidung im Sammelgefäß des Sprühtrockners erfolgt.
Die Temperatur für den Sprühtrocknungsprozess liegt unterhalb von 135°C
(Einströmtemperatur), vorzugsweise unterhalb von 1050C des Trocknungsgas 1. Als zweite Trocknungsstufe wird Umgebungsluft angesaugt und dem Prozess zugeführt (Trocknungsgas 2), wobei die Temperatur desselben zwischen 3000C und 4000C liegt und das Verhältnis Trocknungsgas 1 zu Trocknungsgas 2 zwischen 20 zu 1 und 3 zu 1 liegt. Die resultierende Ausgangstemperatur liegt im Bereich von ca. 500C bis 700C.
Die vorliegende Erfindung stellt sprühgetrocknete kristalline Pulver mit verbesserten Eigenschaften in Bezug auf deren Eigenschaften wie Fließeigenschaft, Dispergierbarkeit und Lager- und Prozessstabilität zur Verfügung. Die vorliegende Erfindung weist sich durch hohe Konstanz der Ausbringung des Wirkstoffes bei variiertem Fluss aus. Die vorliegende Erfindung löst somit Probleme, die sich bei der bisherigen Formulierungsentwicklung, insbesondere bei der Verwendung von mannitolhaltigen Sprütrocknungspulvern ergeben haben, da deren unzureichende Kristallinität einen negativen Einfluss auf die physikalische und chemische Stabilität der Pulver hatten.
Detaillierte Beschreibung der Erfindung
Mittels des erfindungsgemäßen Verfahrens zur Herstellung eines Inhalationspulvers zur pulmonalen (oder nasalen) Inhalation wird der Wirkstoff (oder ein physiologisch verträgliches Salz davon) physikalisch stabil als Feststoff in eine kristalline Feststoffmatrix eines Hilfsstoffes eingebaut.
Durch entsprechende Auswahl von Hilfsstoffen, kann mit dem erfindungsgemäßen Verfahren der Wirkstoff derartig in die Feststoffmatrix eingearbeitet werden, so dass dieser Hilfsstoff als Matrixbildner dient und damit die physikalische Stabilität der sprühgetrockneten Partikel verbessert. Überraschenderweise wurde gefunden, dass die nach dem erfindungsgemäßen Verfahren hergestellten kristallinen Matrixpartikel die eingangs genannten Aufgaben lösen.
Matrixbildner können grundsätzlich Zucker, Polyole, Polymere, Aminosäuren, Di-, Tri-, Oligo-, Polypeptide, Proteine, oder auch Salze sein. Als Beispiele besonders geeigneter Zucker sind hierbei Raffinose und Galactose zu nennen.Als Beispiele besonders geeigneter Zuckeralkohole sind hierbei Mannitol, Xylitol, Maltitol, Galaktitol, Arabinitol, Adonitol, Laktitol, Sorbitol (Glucitol), Pyranosylsorbitol, Inositol, Myoinositol und meso-Erythritol zu nennen, bevorzugt sind Mannitol, Xylitol, Maltitol und Sorbitol zu nennen. Als Beispiele für besonders geeignete Aminosäuren können Leucin, Lysin und Glycin bevorzugt Leucin genannt werden. Erfindungsgemäß bevorzugt erweisen sich als Matrixbildner Zucker sowie deren korrespondierenden Alkohole als vorteilhaft, die einen Tg- Wert von kleiner 400C aufweisen. Dem Mannitol kommt hierbei eine herausragende Rolle zu. Der Tg eines Pulvers lässt sich experimentell mittels DSC bestimmen (DSC = Differential Scanning Calorimetry) (Breen et al, 2001, Pharm. Res., 18(9), 1345-1353). Hierbei wird die Zunahme der Wärmekapazität in Abhängigkeit von der Temperatur aufgezeichnet.
Ein Festkörper wird kristallin genannt, wenn seine kleinsten Teile regelmäßig angeordnet sind. Das Gegenteil dazu ist amorph. Methoden zur Bestimmung der Kristallinität sind DSC, Dichtemessung, Röntgenbeugung, IR-Spektroskopie oder NMR. Unter kristallin im Sinne der vorliegenden Erfindung versteht man, wenn die pulverförmigen Formulierungen eine Kristallinität von mindestens 90%, vorzugsweise mindestens 92,5% und insbesondere mindestens 95% besitzt. Ebenso insbesondere bevorzugt sind eine Kristallinität von mindestens 96%, von mindestens 97%, von mindestens 98%, sowie von mindestens 99%. Die Kristallinität im Sinne der vorliegenden Erfindung ist hierbei gemäß den Angaben im Abschnitt „Methoden" bestimmbar.
Inhalationspulver, welche entsprechend dem erfindungsgemäßen Herstellverfahren bereitgestellt werden, enthalten einen pharmazeutischen Wirkstoff. In einer eigenständigen Ausführungsform enthalten die Inhalationspulver, welche entsprechend dem erfindungsgemäßen Herstellverfahren bereitgestellt werden, eine Kombination von 2 oder 3 pharmazeutischen Wirkstoffen. Unter einem „pharmazeutischen Wirkstoff ist eine Substanz, ein Arzneimittel, eine Zusammensetzung oder eine Kombination hieraus zu verstehen, die einen pharmakologischen, zumeist positiven, Effekt auf einen Organismus, ein Organ, und/oder eine Zelle ausübt, wenn der Wirkstoff mit dem Organismus, Organ oder der Zelle in Kontakt gebracht wird. Eingebracht in einen Patienten, kann der Effekt zu einem lokal oder systemisch sein.
Die im folgenden aufgeführten chemischen Verbindungen (Wirkstoffe) können dabei allein oder in Kombination als Arzneimittel-relevanter Bestandteil der erfindungsgemäßen Inhalationspulver Eingang finden.
In den unten genannten Verbindungen ist W einen pharmakologisch, aktiver Wirkstoff und (beispielsweise) ausgewählt aus der Gruppe bestehend aus Betamimetika, Anticholinergika, Corticosteroiden, PDE4-Inhibitoren, LTD4-Antagonisten, EGFR- Hemmern, Dopamin- Agonisten, Hl -Antihistaminika, PAF -Antagonisten und PB -Kinase Inhibitoren. Weiterhin können zwei- oder dreifach Kombinationen von W kombiniert werden und zur Anwendung in der erfindungsgemäßen Vorrichtung gelangen. Beispielhaft genannte Kombinationen von W wären:
W stellt ein Betamimetika dar, kombiniert mit einem Anticholinergika, Corticosteroide, PDE4-Inhibitore, EGFR-Hemmern oder LTD4-Antagonisten,
W stellt ein Anticholinergika dar, kombiniert mit einem Betamimetika, Corticosteroiden, PDE4-Inhibitoren, EGFR-Hemmern oder LTD4-Antagonisten, W stellt ein Corticosteroiden dar, kombiniert mit einem PDE4-Inhibitoren, EGFR- Hemmern oder LTD4-Antagonisten - W stellt ein PDE4-Inhibitoren dar, kombiniert mit einem EGFR-Hemmern oder LTD4- Antagonisten W stellt ein EGFR-Hemmern dar, kombiniert mit einem LTD4-Antagonisten.
Als Betamimetika gelangen hierbei vorzugsweise Verbindungen zur Anwendung, die ausgewählt sind aus der Gruppe bestehend aus Albuterol, Arformoterol, Bambuterol, Bitolterol, Broxaterol, Carbuterol, Clenbuterol, Fenoterol, Formoterol, Hexoprenaline, Ibuterol, Isoetharine, Isoprenaline, Levosalbutamol, Mabuterol, Meluadrine, Metaproterenol, Orciprenaline, Pirbuterol, Procaterol, Reproterol, Rimiterol, Ritodrine, Salmefamol, Salmeterol, Soterenol, Sulphonterol, Terbutaline, Tiaramide, Tolubuterol, Zinterol, CHF-1035, HOKU-81, KUL-1248 und
3-(4- {6-[2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl-phenyl)-ethylamino]-hexyloxy} - butyl)-benzyl-sulfonamid
5-[2-(5,6-Diethyl-indan-2-ylamino)-l-hydroxy-ethyl]-8-hydroxy-lH-quinolin-2-on 4-Hydroxy-7-[2-{[2-{[3-(2-phenylethoxy)propyl]sulphonyl}ethyl]-amino}ethyl]- 2(3H)-benzothiazolon 1 -(2-Fluor-4-hydroxyphenyl)-2- [4-( 1 -benzimidazolyl)-2-methyl-2-butylamino] ethanol l-[3-(4-Methoxybenzyl-amino)-4-hydroxyphenyl]-2-[4-(l-benzimidazolyl)-2-methyl-
2-butylamino]ethanol l-[2H-5-hydroxy-3-oxo-4H-l,4-benzoxazin-8-yl]-2-[3-(4-N,N-dimethylaminophenyl)- 2-methyl-2-propylamino] ethanol l-[2H-5-hydroxy-3-oxo-4H-l,4-benzoxazin-8-yl]-2-[3-(4-methoxyphenyl)-2-methyl-2- propylamino]ethanol l-[2H-5-hydroxy-3-oxo-4H-l,4-benzoxazin-8-yl]-2-[3-(4-n-butyloxyphenyl)-2-methyl-
2-propylamino] ethanol - l-[2H-5-hydroxy-3-oxo-4H-l,4-benzoxazin-8-yl]-2-{4-[3-(4-methoxyphenyl)-l,2,4- triazol-3-yl]-2-methyl-2-butylamino} ethanol
5-Hydroxy-8-(l-hydroxy-2-isopropylaminobutyl)-2H-l,4-benzoxazin-3-(4H)-on l-(4-Amino-3-chlor-5-trifluormethylphenyl)-2-tert.-butylamino)ethanol
6-Hydroxy-8- { 1 -hydroxy-2-[2-(4-methoxy-phenyl)- 1 , 1 -dimethyl-ethylamino]-ethyl} - 4H-benzo[l,4]oxazin-3-on
6-Hydroxy-8- { 1 -hydroxy-2-[2-(4-phenoxy-essigsäureethylester)- 1 , 1 -dimethyl- ethylamino]-ethyl} -4H-benzo[ 1 ,4]oxazin-3-on
6-Hydroxy-8- { 1 -hydroxy-2-[2-(4-phenoxy-essigsäure)- 1 , 1 -dimethyl-ethylamino]- ethyl} -4H-benzo[ 1 ,4]oxazin-3-on - 8- {2-[l , 1 -Dimethyl-2-(2,4,6-trimethylphenyl)-ethylamino]- 1 -hydroxy-ethyl} -6- hydroxy-4H-benzo[l,4]oxazin-3-on
6-Hydroxy-8- { 1 -hydroxy-2-[2-(4-hydroxy-phenyl)- 1 , 1 -dimethyl-ethylamino]-ethyl} -
4H-benzo[l,4]oxazin-3-on
6-Hydroxy-8- { 1 -hydroxy-2-[2-(4-isopropyl-phenyl)-l , 1 dimethyl-ethylamino]-ethyl} - 4H-benzo[l,4]oxazin-3-on
8- (2-[2-(4-Ethyl-phenyl)- 1 , 1 -dimethyl-ethylamino]-l -hydroxy-ethyl} -6-hydroxy-4H- benzo[l,4]oxazin-3-on
8- (2-[2-(4-Ethoxy-phenyl)- 1 , 1 -dimethyl-ethylamino]-l -hydroxy-ethyl} -6-hydroxy-4H- benzo[l,4]oxazin-3-on - 4-(4-{2-[2-Hydroxy-2-(6-hydroxy-3-oxo-3,4-dihydro-2H-benzo[l,4]oxazin-8-yl)- ethylamino]-2-methyl-propyl}-phenoxy)-buttersäure
8- {2- [2-(3 ,4-Difluor-phenyl)- 1 , 1 -dimethyl-ethylamino] - 1 -hydroxy-ethyl} -6-hydroxy-
4H-benzo[l,4]oxazin-3-on
1 -(4-Ethoxy-carbonylamino-3 -cyano-5 -fluorophenyl)-2-(tert. -butylamino)ethanol 2-Hydroxy-5 -( 1 -hydroxy-2- {2- [4-(2-hydroxy-2-phenyl-ethylamino)-phenyl] - ethylamino } -ethyl)-benzaldehyd
N-[2-Hydroxy-5-(l -hydroxy-2- {2-[4-(2-hydroxy-2-phenyl-ethylamino)-phenyl]- ethylamino } -ethyl)-phenyl] -formamid - 8-Hydroxy-5-(l -hydroxy-2- {2-[4-(6-methoxy-biphenyl-3-ylamino)-phenyl]- ethylamino } -ethyl)- 1 H-quinolin-2-on
8-Hydroxy-5 - [ 1 -hydroxy-2-(6-phenethylamino-hexylamino)-ethyl] - 1 H-quinolin-2-on
5-[2-(2- {4-[4-(2-Amino-2-methyl-propoxy)-phenylamino]-phenyl} -ethylamino)- 1 - hydroxy-ethyl]-8-hydroxy- 1 H-quinolin-2-on - [3-(4-{6-[2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl-phenyl)-ethylamino]-hexyloxy}- butyl)-5 -methyl-phenyl] -harnstoff
4-(2- {6-[2-(2,6-Dichloro-benzyloxy)-ethoxy]-hexylamino} - 1 -hydroxy-ethyl)-2- hydroxymethyl-phenol
3-(4- {6-[2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl-phenyl)-ethylamino]-hexyloxy} - butyl)-benzylsulfonamid
3-(3- {7-[2-Hydroxy-2-(4-hydroxy-3-hydroxymethyl-phenyl)-ethylamino]-heptyloxy} - propyl)-benzylsulfonamid
4-(2- {6-[4-(3-Cyclopentanesulfonyl-phenyl)-butoxy]-hexylamino} - 1 -hydroxy-ethyl)-2- hydroxymethyl-phenol - N-Adamantan-2-yl-2-(3- (2-[2-hydroxy-2-(4-hydroxy-3-hydroxymethyl-phenyl)- ethylamino]-propyl}-phenyl)-acetamid
gegebenenfalls in Form ihrer Racemate, Enantiomere, Diastereomere und gegebenenfalls in Form ihrer pharmakologisch verträglichen Säureadditionssalze, Solvate oder Hydrate. Erfmdungsgemäß bevorzugt sind die Säureadditionssalze der Betamimetika ausgewählt aus der Gruppe bestehend aus Hydrochlorid, Hydrobromid, Hydroiodid, Hydrosulfat, Hydrophosphat, Hydromethansulfonat, Hydronitrat, Hydromaleat, Hydroacetat, Hydro- citrat, Hydrofumarat, Hydrotartrat, Hydrooxalat, Hydrosuccinat, Hydrobenzoat und Hydro- p-toluolsulfonat.
Als Anticholinergika gelangen hierbei vorzugsweise Verbindungen zur Anwendung, die ausgewählt sind aus der Gruppe bestehend aus Tiotropiumsalzen, bevorzugt das Bromidsalz, Oxitropiumsalzen, bevorzugt das Bromidsalz, Flutropiumsalzen, bevorzugt das Bromidsalz, Ipratropiumsalzen, bevorzugt das Bromidsalz, Glycopyrroniumsalzen, bevorzugt das Bromidsalz, Trospiumsalzen, bevorzugt das Chloridsalz, Tolterodin. In den vorstehend genannten Salzen stellen die Kationen die pharmakologisch aktiven Bestandteile dar. Als Anionen können die vorstehend genannten Salze bevorzugt enthalten Chlorid, Bromid, Iodid, Sulfat, Phosphat, Methansulfonat, Nitrat, Maleat, Acetat, Citrat, Fumarat, Tartrat, Oxalat, Succinat, Benzoat oder p-Toluolsulfonat, wobei Chlorid, Bromid, Iodid, Sulfat, Methansulfonat oder p-Toluolsulfonat als Gegenionen bevorzugt sind. Von allen Salzen sind die Chloride, Bromide, Iodide und Methansulfonate besonders bevorzugt.
Ebenfalls bevorzugte Anticholinergika sind ausgewählt aus den Salzen der Formel AC-I
worin X ~ ein einfach negativ geladenes Anion, bevorzugt ein Anion ausgewählt aus der Gruppe bestehend aus Fluorid, Chlorid, Bromid, Iodid, Sulfat, Phosphat, Methansulfonat, Nitrat, Maleat, Acetat, Citrat, Fumarat, Tartrat, Oxalat, Succinat, Benzoat und p-Toluolsulfonat, bevorzugt ein einfach negativ geladenes Anion, besonders bevorzugt ein Anion ausgewählt aus der Gruppe bestehend aus Fluorid, Chlorid, Bromid, Methansulfonat und p- Toluolsulfonat, insbesondere bevorzugt Bromid, bedeutet gegebenenfalls in Form ihrer Racemate, Enantiomere oder Hydrate. Von besonderer Bedeutung sind solche Arzneimittelkombinationen, die die Enantiomere der Formel AC-l-en
enthalten, worin X ~ die vorstehend genannten Bedeutungen aufweisen kann. Weiterhin bevorzugte Anticholinergika sind ausgewählt aus den Salzen der Formel AC-2 worin R entweder Methyl oder Ethyl bedeuten und worin X ~ die vorstehend genannte Bedeutungen aufweisen kann. In einer alternativen Ausführungsform kann die Verbindung der Formel AC-2 auch in Form der freien Base AC-2-base vorliegen.
Weiterhin genannte Verbindungen sind:
2,2-Diphenylpropionsäuretropenolester-Methobromid 2,2-Diphenylpropionsäurescopinester-Methobromid - 2-Fluor-2,2-Diphenylessigsäurescopinester-Methobromid 2-Fluor-2,2-Diphenylessigsäuretropenolester-Methobromid 3,3',4,4'-Tetrafluorbenzilsäuretropenolester-Methobromid 3,3',4,4'-Tetrafluorbenzilsäurescopinester-Methobromid 4,4'-Difluorbenzilsäuretropenolester-Methobromid - 4,4'-Difluorbenzilsäurescopinester-Methobromid 3,3'-Difluorbenzilsäuretropenolester-Methobromid 3,3'-Difluorbenzilsäurescopinester-Methobromid 9-Hydroxy-fluoren-9-carbonsäuretropenolester-Methobromid 9-Fluor-fluoren-9-carbonsäuretropenolester-Methobromid - 9-Hydroxy-fluoren-9-carbonsäurescopinester-Methobromid 9-Fluor-fluoren-9-carbonsäurescopinester-Methobromid 9-Methyl-fluoren-9-carbonsäuretropenolester-Methobromid 9-Methyl-fluoren-9-carbonsäurescopinester-Methobromid B enzilsäurecy clopropy ltropinester-Methobromid - 2,2-Diphenylpropionsäurecyclopropyltropinester-Methobromid
9-Hydroxy-xanthen-9-carbonsäurecyclopropyltropinester-Methobromid 9-Methyl-fluoren-9-carbonsäurecyclopropyltropinester-Methobromid
9-Methyl-xanthen-9-carbonsäurecyclopropyltropinester-Methobromid
9-Hydroxy-fluoren-9-carbonsäurecyclopropyltropinester-Methobromid
4,4'-Difluorbenzilsäuremethylestercyclopropyltropinester-Methobromid - 9-Hydroxy-xanthen-9-carbonsäuretropenolester-Methobromid
9-Hydroxy-xanthen-9-carbonsäurescopinester-Methobromid
9-Methyl-xanthen-9-carbonsäuretropenolester-Methobromid
9-Methyl-xanthen-9-carbonsäurescopinester-Methobromid
9-Ethyl-xanthen-9-carbonsäuretropenolester-Methobromid - 9-Difluormethyl-xanthen-9-carbonsäuretropenolester-Methobromid
9-Hydroxymethyl-xanthen-9-carbonsäurescopinester-Methobromid Die vorstehend genannten Verbindungen sind im Rahmen der vorliegenden Erfindung auch als Salze einsetzbar, in denen statt des Methobromids, die Salze Metho-X zur Anwendung gelangen, wobei X die vorstehend für X" genannten Bedeutungen haben kann.
Als Corticosteroide gelangen hierbei vorzugsweise Verbindungen zur Anwendung, die ausgewählt sind aus der Gruppe bestehend aus Beclomethason, Betamethason, Budesonid, Butixocort, Ciclesonid, Deflazacort, Dexamethason, Etiprednol, Flunisolid, Fluticason, Loteprednol, Mometason, Prednisolon, Prednison, Rofleponid, Triamcinolon, RPR- 106541, NS-126, ST-26 und
6,9-Difluor- 17-[(2-furanylcarbonyl)oxy]- 11 -hydroxy- 16-methyl-3-oxo-androsta- 1 ,A- dien- 17-carbothionsäure (S)-fluoromethylester
6,9-Difluor- 11 -hydroxy- 16-methyl-3-oxo- 17-propionyloxy-androsta- 1 ,4-dien- 17- carbothionsäure (S)-(2-oxo-tetrahydro-furan-3 S-yl)ester, - 6α,9α-difluoro-l lß-hydroxy-16α-methyl-3-oxo-17α-(2,2,3,3-tertamethylcyclo- propylcarbonyl)oxy-androsta- 1 ,4-diene- 17ß-carbonsäure cyanomethyl ester gegebenenfalls in Form ihrer Racemate, Enantiomere oder Diastereomere und gegebenenfalls in Form ihrer Salze und Derivate, ihrer Solvate und/oder Hydrate. Jede Bezugnahme auf Steroide schließt eine Bezugnahme auf deren gegebenenfalls existierende Salze oder Derivate, Hydrate oder Solvate mit ein. Beispiele möglicher Salze und Derivate der Steroide können sein: Alkalisalze, wie beispielsweise Natrium- oder Kaliumsalze, Sulfobenzoate, Phosphate, Isonicotinate, Acetate, Dichloroacetate, Propionate, Dihydrogenphosphate, Palmitate, Pivalate oder auch Furoate. Als PDE4-Inhibitoren gelangen hierbei vorzugsweise Verbindungen zur Anwendung, die ausgewählt sind aus der Gruppe bestehend aus Enprofyllin, Theophyllin, Roflumilast, Ariflo (Cilomilast), Tofimilast, Pumafentrin, Lirimilast, Arofyllin, Atizoram, D-4418, Bay- 198004, BY343, CP-325,366, D-4396 (Sch-351591), AWD-12-281 (GW-842470), NCS- 613, CDP-840, D-4418, PD-168787, T-440, T-2585, V-11294A, Cl-1018, CDC-801, CDC-3052, D-22888, YM-58997, Z-15370 und
N-(3,5-Dichloro-l-oxo-pyridin-4-yl)-4-difluormethoxy-3- cyclopropylmethoxybenzamid
- (-)p-[(4aR*,10öS*)-9-Ethoxy-l,2,3,4,4a,10b-hexahydro-8-methoxy-2- methylbenzo[s][l,6]naphthyridin-6-yl]-N,N-diisopropylbenzamid
(R)-(+)- 1 -(4-Brombenzyl)-4-[(3-cyclopentyloxy)-4-methoxyphenyl]-2-pyrrolidon 3-(Cyclopentyloxy-4-methoxyphenyl)- 1 -(4-N'-[N-2-cyano-S-methyl- isothioureido]benzyl)-2-pyrrolidon cis[4-Cyano-4-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan- 1 -carbonsäure] - 2-carbomethoxy-4-cyano-4-(3 -cyclopropylmethoxy-4-difluoromethoxy- phenyl)cyclohexan- 1 -on cis[4-Cyano-4-(3-cyclopropylmethoxy-4-difluormethoxyphenyl)cyclohexan- 1 -ol] (R)-(+)-Ethyl[4-(3-cyclopentyloxy-4-methoxyphenyl)pyrrolidin-2-yliden]acetat (S)-(-)-Ethyl[4-(3-cyclopentyloxy-4-methoxyphenyl)pyrrolidin-2-yliden]acetat - 9-Cyclopentyl-5,6-dihydro-7-ethyl-3-(2-thienyl)-9H-pyrazolo[3,4-c]-l,2,4-triazolo[4,3- a]pyridin
- 9-Cyclopentyl-5,6-dihydro-7-ethyl-3-(tert-butyl)-9H-pyrazolo[3,4-c]-l,2,4- triazolo[4,3-a]pyridin gegebenenfalls in Form ihrer Racemate, Enantiomere, Diastereomere und gegebenenfalls in Form ihrer pharmakologisch verträglichen Säureadditionssalze, Solvate oder Hydrate. Erfmdungsgemäß bevorzugt sind die Säureadditionssalze der PDE4-Inhibitoren ausgewählt aus der Gruppe bestehend aus Hydrochlorid, Hydrobromid, Hydroiodid, Hydrosulfat, Hydrophosphat, Hydromethansulfonat, Hydronitrat, Hydromaleat, Hydroacetat, Hydrocitrat, Hydrofumarat, Hydrotartrat, Hydrooxalat, Hydrosuccinat, Hydrobenzoat und Hydro-p-toluolsulfonat.
Als LTD4-Antagonisten gelangen hierbei vorzugsweise Verbindungen zur Anwendung, die ausgewählt sind aus der Gruppe bestehend aus Montelukast, Pranlukast, Zafhiukast, MCC-847 (ZD-3523), MN-001, MEN-91507 (LM- 1507), VUF-5078, VUF-K-8707, L- 733321 und - l-(((R)-(3-(2-(6,7-Difluor-2-quinolinyl)ethenyl)phenyl)-3-(2-(2-hydroxy-2- propyl)phenyl)thio)methylcyclopropan-essigsäure,
- l-(((l(R)-3(3-(2-(2,3-Dichlorthieno[3,2-b]pyridin-5-yI)-(E)-ethenyl)phenyl)-3-(2-(l- hydroxy-l-methylethyl)phenyl)propyl)thio)methyl)cyclopropanessigsäure - [2-[[2-(4-tert-Butyl-2-thiazolyl)-5-benzofuranyl]oxymethyl]phenyl]essigsäure gegebenenfalls in Form ihrer Racemate, Enantiomere, Diastereomere und gegebenenfalls in Form ihrer pharmakologisch verträglichen Säureadditionssalze, Solvate oder Hydrate. Erfmdungsgemäß bevorzugt sind diese Säureadditionssalze ausgewählt aus der Gruppe bestehend aus Hydrochlorid, Hydrobromid, Hydroiodid, Hydrosulfat, Hydrophosphat, Hydromethansulfonat, Hydronitrat, Hydromaleat, Hydroacetat, Hydrocitrat, Hydro fumarat, Hydrotartrat, Hydrooxalat, Hydrosuccinat, Hydrobenzoat und Hydro-p-toluolsulfonat. Unter Salzen oder Derivaten zu deren Bildung die LTD4-Antagonisten gegebenenfalls in der Lage sind, werden beispielsweise verstanden: Alkalisalze, wie beispielsweise Natriumoder Kaliumsalze, Erdalkalisalze, Sulfobenzoate, Phosphate, Isonicotinate, Acetate, Propionate, Dihydrogenphosphate, Palmitate, Pivalate oder auch Furoate.
Als EGFR-Hemmer gelangen hierbei vorzugsweise Verbindungen zur Anwendung, die ausgewählt sind aus der Gruppe bestehend aus Cetuximab, Trastuzumab, ABX-EGF, Mab ICR-62 und - 4-[(3-Chlor-4-fluorphenyl)amino]-6- {[4-(morpholin-4-yl)- 1 -oxo-2-buten- 1 -yl] amino }- 7-cyclopropylmethoxy-chinazolin
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(N,N-diethylamino)-l-oxo-2-buten-l-yl]- amino } -7-cyclopropylmethoxy-chinazolin 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(N,N-dimethylamino)-l-oxo-2-buten-l- yl] amino } -7-cyclopropylmethoxy-chinazolin
4-[(R)-(I -Phenyl-ethyl)amino] -6- {[4-(morpholin-4-yl)- 1 -oxo-2-buten- 1 -yl] amino} -7- cyclopentyloxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-l-oxo- 2-buten- 1 -yl] amino } -7-cyclopropylmethoxy-chinazolin - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-l-oxo- 2-buten- 1 -yljamino} -7-[(S)-(tetrahydrofuran-3-yl)oxy]-chinazolin 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-2-methoxymethyl-6-oxo-morpholin-4- yl)- 1 -oxo-2-buten- 1 -yljamino} -7-cyclopropylmethoxy-chinazolin 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[2-((S)-6-methyl-2-oxo-morpholin-4-yl)-ethoxy]- 7-methoxy-chinazolin 4-[(3-Chlor-4-fluorphenyl)amino]-6-({4-[N-(2-methoxy-ethyl)-N-methyl-amino]-l- oxo-2-buten- 1 -yl} amino)-7-cyclopropylmethoxy-chinazolin 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(N,N-dimethylamino)-l-oxo-2-buten-l- yl] amino } -V-cyclopentyloxy-chinazolin - 4-[(R)-(l-Phenyl-ethyl)amino]-6-{[4-(N,N-bis-(2-methoxy-ethyl)-amino)-l-oxo-2- buten- 1 -yljamino} -7-cyclopropylmethoxy-chinazolin
- 4-[(R)-(l-Phenyl-ethyl)amino]-6-({4-[N-(2-methoxy-ethyl)-N-ethyl-amino]-l-oxo-2- buten- 1 -yl} amino)-7-cyclopropylmethoxy-chinazolin
- 4-[(R)-(l-Phenyl-ethyl)amino]-6-({4-[N-(2-methoxy-ethyl)-N-methyl-amino]-l-oxo-2- buten- 1 -yl} amino)-7-cyclopropylmethoxy-chinazolin
4- [(R)-( 1 -Phenyl-ethyl)amino] -6-( {4- [N-(tetrahydropyran-4-yl)-N-methyl-amino] - 1 - oxo-2-buten- 1 -yl} amino)-7-cyclopropylmethoxy-chinazolin
4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(N,N-dimethylamino)-l-oxo-2-buten-l- yl] amino } -7-((R)-tetrahydrofuran-3 -yloxy)-chinazolin - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(N,N-dimethylamino)-l-oxo-2-buten-l- yl] amino } -7-((S)-tetrahydrofuran-3 -yloxy)-chinazolin
4-[(3-Chlor-4-fluorphenyl)amino]-6-({4-[N-(2-methoxy-ethyl)-N-methyl-amino]-l- oxo-2-buten- 1 -yl} amino)-7-cyclopentyloxy-chinazolin
4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(N-cyclopropyl-N-methyl-amino)-l-oxo-2- buten- 1 -yl]amino} -7-cyclopentyloxy-chinazolin
4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(N,N-dimethylamino)-l-oxo-2-buten-l- yl] amino } -7- [(R)-(tetrahy drofuran-2-yl)methoxy]-chinazolin
4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(N,N-dimethylamino)-l-oxo-2-buten-l- yl] amino } -7- [(S)-(tetrahydrofuran-2-yl)methoxy] -chinazolin - 4-[(3-Ethinyl-phenyl)amino]-6,7-bis-(2-methoxy-ethoxy)-chinazolin
4-[(3-Chlor-4-fluorphenyl)amino]-7-[3-(morpholin-4-yl)-propyloxy]-6-[(vinyl- carbonyl)amino] -chinazolin
4-[(R)-(I -Phenyl-ethyl)amino]-6-(4-hydroxy-phenyl)-7H-pyrrolo[2,3-d]pyrimidin
3-Cyano-4-[(3-chlor-4-fluorphenyl)amino]-6-{[4-(N,N-dimethylamino)-l -oxo-2-buten- 1 -yl] amino } -7-ethoxy-chinolin
4-{[3-Chlor-4-(3-fluor-benzyloxy)-phenyl]amino}-6-(5-{[(2-methansulfonyl- ethyl)amino]methyl}-furan-2-yl)chinazolin
- 4-[(R)-(l-Phenyl-ethyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-l-oxo-2- buten- 1 -yl]amino} -7-methoxy-chinazolin 4-[(3-Chlor-4-fluorphenyl)amino]-6- {[4-(morpholin-4-yl)- 1 -oxo-2-buten- 1 -yljamino} -
7- [(tetrahydrofuran-2-yl)methoxy] -chinazolin
4-[(3-Chlor-4-fluorphenyl)amino]-6-( {4-[N,N-bis-(2-methoxy-ethyl)-amino]- 1 -oxo-2- buten- 1 -yl} amino)-7-[(tetrahydrofuran-2-yl)methoxy]-chinazolin - 4-[(3-Ethinyl-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-l-oxo-2- buten- 1 -yljamino} -chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-[2-(2,2-dimethyl-6-oxo-morpholin-4-yl)-ethoxy]-
7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-[2-(2,2-dimethyl-6-oxo-morpholin-4-yl)-ethoxy]- 7- [(R)-(tetrahydrofuran-2-yl)methoxy] -chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-7-[2-(2,2-dimethyl-6-oxo-morpholin-4-yl)-ethoxy]-
6-[(S)-(tetrahydrofuran-2-yl)methoxy]-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6- {2-[4-(2-oxo-morpholin-4-yl)-piperidin- 1 -yl]- ethoxy } -7-methoxy-chinazolin - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[l-(tert.-butyloxycarbonyl)-piperidin-4-yloxy]-7- methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(trans-4-amino-cyclohexan- 1 -yloxy)-7-methoxy- chinazolin
4- [(3 -Chlor-4-fluor-phenyl)amino] -6-(trans-4-methansulfonylamino-cyclohexan- 1 - yloxy)-7-methoxy-chinazolin
4- [(3 -Chlor-4-fluor-phenyl)amino] -6-(tetrahydropyran-3 -yloxy)-7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(l-methyl-piperidin-4-yloxy)-7-methoxy- chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6- { 1 -[(morpholin-4-yl)carbonyl]-piperidin-4-yl- oxy} -7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6- { 1 -[(methoxymethyl)carbonyl]-piperidin-4-yl- oxy } -7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(piperidin-3-yloxy)-7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-[ 1 -(2-acetylamino-ethyl)-piperidin-4-yloxy]-7- methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-ethoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-((S)-tetrahydrofuran-3-yloxy)-7-hydroxy- chinazolin
4- [(3 -Chlor-4-fluor-phenyl)amino] -6-(tetrahydropyran-4-yloxy)-7-(2-methoxy- ethoxy)-chinazolin 4- [(3 -Chlor-4-fluor-phenyl)amino] -6- {trans-4-[(dimethylamino)sulfonylamino] - cyclohexan- 1 -yloxy } -7-methoxy-chinazolin
4- [(3 -Chlor-4-fluor-phenyl)amino] -6- {trans-4-[(morpholin-4-yl)carbonylamino] - cyclohexan- 1 -yloxy} -7-methoxy-chinazolin - 4-[(3-Chlor-4-fluor-phenyl)amino]-6- {trans-4-[(morpholin-4-yl)sulfonylamino]- cyclohexan- 1 -yloxy} -7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-(2-acetylamino- ethoxy)-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-(2- methansulfonylamino-ethoxy)-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6- { 1 -[(piperidin- 1 -yl)carbonyl]-piperidin-4-yloxy} -
7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(l-aminocarbonylmethyl-piperidin-4-yloxy)-7- methoxy-chinazolin - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4-{N-[(tetrahydropyran-4-yl)carbonyl]-N- methyl-amino } -cyclohexan- 1 -yloxy)-7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4-{N-[(morpholin-4-yl)carbonyl]-N-methyl- amino } -cyclohexan- 1 -yloxy)-7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4-{N-[(morpholin-4-yl)sulfonyl]-N-methyl- amino} -cyclohexan- l-yloxy)-7-methoxy- chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(trans-4-ethansulfonylamino-cyclohexan-l- yloxy)-7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(l-methansulfonyl-piperidin-4-yloxy)-7-ethoxy- chinazolin - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(l-methansulfonyl-piperidin-4-yloxy)-7-(2- methoxy-ethoxy)-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-[l-(2-methoxy-acetyl)-piperidin-4-yloxy]-7-(2- methoxy-ethoxy)-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4-acetylamino-cyclohexan- 1 -yloxy)-7- methoxy-chinazolin
4-[(3-Ethinyl-phenyl)amino]-6-[ 1 -(tert.-butyloxycarbonyl)-piperidin-4-yloxy]-7- methoxy-chinazolin
4- [(3 -Ethinyl-phenyl)amino] -6-(tetrahydropyran-4-yloxy] -7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4- {N-[(piperidin- 1 -yl)carbonyl]-N-methyl- amino } -cyclohexan- 1 -yloxy)-7-methoxy-chinazolin 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4- {N-[(4-methyl-piperazin- 1 -yl)carbonyl]-N- methyl-amino } -cyclohexan- 1 -yloxy)-7-methoxy-chinazolin
4- [(3 -Chlor-4-fluor-phenyl)amino] -6- {cis-4- [(morpholin-4-yl)carbonylamino] - cyclohexan- 1 -yloxy } -7-methoxy-chinazolin - 4-[(3-Chlor-4-fluor-phenyl)amino]-6- { 1 -[2-(2-oxopyrro lidin- 1 -yl)ethyl]-piperidin-4- yloxy } -7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6- { 1 -[(morpholin-4-yl)carbonyl]-piperidin-4- yloxy}-7-(2-methoxy-ethoxy)-chinazolin
4- [(3 -Ethinyl-phenyl)amino] -6-( 1 -acetyl-piperidin-4-yloxy)-7-methoxy-chinazolin - 4-[(3-Ethinyl-phenyl)amino]-6-(l-methyl-piperidin-4-yloxy)-7-methoxy-chinazolin
4-[(3-Ethinyl-phenyl)amino]-6-(l-methansulfonyl-piperidin-4-yloxy)-7-methoxy- chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(l-methyl-piperidin-4-yloxy)-7(2-methoxy- ethoxy)-chinazolin - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(l-isopropyloxycarbonyl-piperidin-4-yloxy)-7- methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(cis-4-methylamino-cyclohexan- 1 -yloxy)-7- methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-{cis-4-[N-(2-methoxy-acetyl)-N-methyl-amino]- cyclohexan- 1 -yloxy} -7-methoxy-chinazolin
4-[(3-Ethinyl-phenyl)amino]-6-(piperidin-4-yloxy)-7-methoxy-chinazolin
4-[(3-Ethinyl-phenyl)amino]-6-[ 1 -(2 -methoxy-acetyl)-piperidin-4-yloxy] -7-methoxy- chinazolin
4-[(3-Ethinyl-phenyl)amino]-6- { 1 -[(morpholin-4-yl)carbonyl]-piperidin-4-yloxy} -7- methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6- { 1 -[(cis-2,6-dimethyl-morpholin-4-yl)carbonyl]- piperidin-4-yloxy} -7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6- { 1 -[(2-methyl-morpholin-4-yl)carbonyl]- piperidin-4-yloxy} -7-methoxy-chinazolin - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{l-[(S,S)-(2-oxa-5-aza-bicyclo[2.2.1]hept-5- yl)carbonyl]-piperidin-4-yloxy} -7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6- { 1 -[(N-methyl-N-2-methoxyethyl- amino)carbonyl]-piperidin-4-yloxy} -7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(l-ethyl-piperidin-4-yloxy)-7-methoxy- chinazolin 4-[(3-Chlor-4-fluor-phenyl)amino]-6- { 1 -[(2-methoxyethyl)carbonyl]-piperidin-4- yloxy } -7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6- { 1 -[(3-methoxypropyl-amino)-carbonyl]- piperidin-4-yloxy} -7-methoxy-chinazolin - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[cis-4-(N-methansulfonyl-N-methyl-amino)- cyclohexan- 1 -yloxy] -7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-[cis-4-(N-acetyl-N-methyl-amino)-cyclohexan- 1 - yloxy] -7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(trans-4-methylamino-cyclohexan- 1 -yloxy)-7- methoxy-chinazolin
4- [(3 -Chlor-4-fluor-phenyl)amino] -6- [trans-4-(N-methansulfonyl-N-methyl-amino)- cyclohexan- 1 -yloxy] -7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(trans-4-dimethylamino-cyclohexan- 1 -yloxy)-7- methoxy-chinazolin - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-(trans-4- {N-[(morpholin-4-yl)carbonyl]-N- methyl-amino } -cyclohexan- 1 -yloxy)-7-methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-[2-(2,2-dimethyl-6-oxo-morpholin-4-yl)-ethoxy]-
7-[(S)-(tetrahydrofuran-2-yl)methoxy]-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(l-methansulfonyl-piperidin-4-yloxy)-7- methoxy-chinazolin
4-[(3-Chlor-4-fluor-phenyl)amino]-6-(l-cyano-piperidin-4-yloxy)-7-methoxy- chinazolin gegebenenfalls in Form ihrer Racemate, Enantiomere, Diastereomere und gegebenenfalls in Form ihrer pharmakologisch verträglichen Säureadditionssalze, Solvate oder Hydrate. Erfmdungsgemäß bevorzugt sind diese Säureadditionssalze ausgewählt aus der Gruppe bestehend aus Hydrochlorid, Hydrobromid, Hydroiodid, Hydrosulfat, Hydrophosphat, Hydromethansulfonat, Hydronitrat, Hydromaleat, Hydroacetat, Hydrocitrat, Hydrofumarat, Hydrotartrat, Hydrooxalat, Hydrosuccinat, Hydrobenzoat und Hydro-p-toluolsulfonat.
Als Dopamin- Agonisten gelangen hierbei vorzugsweise Verbindungen zur Anwendung, die ausgewählt sind aus der Gruppe bestehend aus Bromocriptin, Cabergolin, Alpha- Dihydroergocryptin, Lisurid, Pergolid, Pramipexol, Roxindol, Ropinirol, Talipexol, Tergurid und Viozan, gegebenenfalls in Form ihrer Racemate, Enantiomere, Diastereomere und gegebenenfalls in Form ihrer pharmakologisch verträglichen Säureadditionssalze, Solvate oder Hydrate. Erfmdungsgemäß bevorzugt sind diese Säureadditionssalze ausgewählt aus der Gruppe bestehend aus Hydrochlorid, Hydrobromid, Hydroiodid, Hydrosulfat, Hydrophosphat, Hydromethansulfonat, Hydronitrat, Hydromaleat, Hydroacetat, Hydrocitrat, Hydrofumarat, Hydrotartrat, Hydrooxalat, Hydrosuccinat, Hydrobenzoat und Hydro-p-toluolsulfonat.
Als Hl -Antihistaminika gelangen hierbei vorzugsweise Verbindungen zur Anwendung, die ausgewählt sind aus der Gruppe bestehend aus Epinastin, Cetirizin, Azelastin, Fexofenadin, Levocabastin, Loratadin, Mizolastin, Ketotifen, Emedastin, Dimetinden, Clemastin, Bamipin, Cexchlorpheniramin, Pheniramin, Doxylamin, Chlorphenoxamin, Dimenhydrinat, Diphenhy dramin, Promethazin, Ebastin, Desloratidin und Meclozin, gegebenenfalls in Form ihrer Racemate, Enantiomere, Diastereomere und gegebenenfalls in Form ihrer pharmakologisch verträglichen Säureadditionssalze, Solvate oder Hydrate. Erfindungsgemäß bevorzugt sind diese Säureadditionssalze ausgewählt aus der Gruppe bestehend aus Hydrochlorid, Hydrobromid, Hydroiodid, Hydrosulfat, Hydrophosphat, Hydromethansulfonat, Hydronitrat, Hydromaleat, Hydroacetat, Hydrocitrat, Hydrofumarat, Hydrotartrat, Hydrooxalat, Hydrosuccinat, Hydrobenzoat und Hydro-p-toluolsulfonat.
Als pharmazeutisch wirksame Substanzen, Substanzformulierungen oder Substanzmischungen werden alle inhalierbaren Verbindungen eingesetzt, wie z.B. auch inhalierbare Makromoleküle, wie in EP 1 003 478 offenbart. Vorzugsweise werden Substanzen, Substanzformulierungen oder Substanzmischungen zur Behandlung von Atemwegserkrankungen eingesetzt, die im inhalativen Bereich Verwendung finden.
Weiterhin kann die Verbindung aus der Gruppe der Derivate von Mutterkornalkaloiden, der Triptane, der CGRP-Hemmern, der Phosphodiesterase- V-Hemmer stammen, gegebenenfalls in Form ihrer Racemate, Enantiomere oder Diastereomere, gegebenenfalls in Form ihrer pharmakologisch verträglichen Säureadditionssalze, ihrer Solvate und/oder Hydrate.
Als Derivate der Mutterkornalkaloide: Dihydroergotamin, Ergotamin.
Im Allgemeinen beträgt der Anteil des entsprechenden Matrixbildners in den erfindungsgemäßen Pulvern mehr als 20% (w/w), besonders bevorzugt mehr als 30% (w/w) der Trockenmasse des Pulvers. In einer weiteren bevorzugten Ausführungsform der Erfindung beträgt der Anteil des entsprechenden Matrixbildners, z.B. der Polyol- oder Mannitolanteil mehr als 20% (w/w) der Trockenmasse des Pulvers, vorzugsweise zwischen 30-80% (w/w), besonders bevorzugt zwischen 30-70% (w/w). Entsprechend dieser Ausfuhrungsformen, kann der Anteil an dem entsprechenden Matrixbildner von daher ungefähr 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98 oder 99% (w/w) der Trockenmasse des Pulvers betragen. Die entsprechenden Ausführungsformen gelten insbesondere für Pulver, bei denen Polyole, insbesondere bei denen Mannitol als Matrixbildner verwendet wird.
In einer weiteren bevorzugten Ausführungsform enthält das erfindungsgemäße Pulver Matrixbildner in einer Konzentration, so dass das Verhältnis Wirkstoff : Matrixbildner 1 :999 bis 1 :1, besonders bevorzugt von 1 :99 bis 1 :2 beträgt (Angaben: w/w). In Sinne dieser Angaben ist unter Wirkstoff gleichrangig auch eine Wirkstoffkombination zu verstehen.
Enthalten die erfindungsgemäßen Pulver Anticholinergika, bevorzugt in Kombination mit Betamimetika und Steroiden, so beträgt der Anteil des Wirkstoffes beziehungsweise der Summe der Wirkstoffe normalerweise zwischen 0,1 bis 50% (w/w), vorzugsweise zwischen 0,2 bis 40% (w/w), ebenso bevorzugt zwischen 0,2 bis 30% (w/w) und zwischen 0,2 bis 20% (w/w) am Gesamtgewicht des Pulvers.
In einer weiteren bevorzugten Form enthalten erfindungsgemäß die Inhalationspulver einen pharmazeutischen Wirkstoff aus der Gruppe der EGFR- Antagonisten. Erfindungsgemäße Inhalationspulver mit einem Wirkstoff aus dieser Wirkstoffgruppe weisen einen Wirkstoffanteil auf, der zwischen 10 und 80% (w/w), vorzugsweise zwischen 20 und 80% (w/w), besonders bevorzugt zwischen 30 und 80% (w/w) am Gesamtgewicht des Pulvers betragen kann.
Weiter bevorzugt ist eine Ausführungsform, in der ausschließlich Mannitol als Matrixbildner eingesetzt ist.
Die Erfindung umfasst entsprechende Herstellverfahren zur Erzeugung erfindungsgemäßer Inhalationspulver. Solche Pulver lassen sich sowohl direkt als Pulverinhalativa (Mehrdosis-Systeme, pre-metered Mehrdosissysteme und Eindosis-Systeme) als auch als Komponente, die mit weiteren (z.B. grobkörnigem) Hilfssto ff abgemischt werden, verwenden.
Im Rahmen der vorliegenden Erfindung wurde überraschenderweise gefunden, dass eine effiziente Nachtrocknung sprühgetrockneter Pulver, die als Matrixbildner Zucker, Aminosäuren oder Polyole, vorzugsweise Mannitol und Leucin, besonders bevorzugt
Mannitol, enthalten, besonders lagerstabil sind, insbesondere bei Temperaturen von größer 200C, und sich durch eine hohe Dispergierbarkeit auszeichnen, wobei diese Nachtrocknung in der Sprühkammer durch Zuführen eines zweiten Trockgases erfolgt. Durch die Zuführung des zweiten Trocknungsgases erfolgt somit ein zweiter Trocknungsschritt, der innerhalb des Sprühtrocknungsprozesses noch vor der
Partikelabscheidung erfolgt. Dabei ist der Energieeintrag des zweiten Trocknungsschrittes bevorzugt derart zu wählen, dass die Ausgangstemperatur im Bereich von 400C bis 1000C liegt.
Erfindungsgemäße Herstellverfahren umfassen folgende Schritte:
(a) Lösen eines oder mehrere Wirkstoffe sowie des Matrixbildners in Wasser, einem organischen Lösungsmittel oder einem organisch-wässrigen Lösungsmittelgemisch zur Herstellung einer Lösung mit einem Feststoffanteil zwischen 1 Gew.-% und 20 Gew.-%, bevorzugt zwischen 2 Gew.-% und 10 Gew.-%, besonders bevorzugt zwischen 3 Gew.-% und 8 Gew.-%,
(b) Versprühen der so gewonnenen Lösung auf übliche Weise, so dass ein Sprühnebel mit einer Tropfengröße mit
(i) dem Kennwert Q(5.8) zwischen 50% und 100% und (ii) der mittleren Tröpfchengröße X50 im Bereich von 1 μm bis 20 μm, bevorzugt von 1 μm bis 8 μm, besonders bevorzugt von 1 μm bis 3 μm, erzielt wird,
(c) Trocknen des so erhaltenen Sprühnebels mit Hilfe eines Trocknungsgases unter Anwendung folgender Parameter:
(i) einer Eingangstemperatur des Trocknungsgases (1) von 8O0C bis 2000C, bevorzugt von 8O0C bis 1500C, weiter bevorzugt von 900C bis 1600C, weiter bevorzugt von 900C bis 1400C weiter bevorzugt von 1000C bis 1500C und besonders bevorzugt von 1000C bis 1300C (ii) Nachtrocknen des Aerosol in der Sprühkammer durch ein zweites Trocknungsgases (2), wobei die Temperatur des Trocknungsgases (2) zwischen 2000C und 4000C liegt,
(iii) das Verhältnis des Volumenstroms Trocknungsgas (1) : Trocknungsgas (2) zwischen 20:1 und 3:1 liegt,
(iv) der Trocknungsgaskoeffizient Vl zwischen 100 K und 2000 K sowie der Trocknungskoeffizient Vl zwischen 250 K und 4000 K liegt und
(v) einer Ausgangstemperatur des Trocknungsgases von 400C bis 900C und
(d) Abtrennen der getrockneten Feststoffpartikel aus dem Trocknungsgasstrom auf übliche Weise.
Als geeignet hat sich herausgestellt, den Wirkstoff oder eine Kombination von Wirkstoffen mit einem oder mehreren Hilfsstoffen, bevorzugt mit einem Polyol, besonders bevorzugt mit Mannitol in Wasser, einem organischen Lösemittel oder einem organisch-wässrigen Lösemittelgemisch zu lösen. Als Lösungsmittel werden dabei erfindungsgemäß neben Wasser organische Lösemittel mit einem Siedepunkt zwischen 400C und 1300C, bevorzugt Alkohole, verwendet. Bevorzugt sind dabei organische Lösungsmittel, die entweder pharmazeutisch verträglich sind oder sich in einem ausreichenden Maß (ggf. zulassungsrelevanten Maß) aus der pharmazeutischen Formulierung entfernen lassen. Besonders bevorzugt werden erfindungsgemäß Ethanol, Methanol, Propanol, Dichlormethan, Wasser oder eine Mischung aus diesen Lösemitteln verwendet. Die Feststoff-Konzentration der Sprühlösung dienen dazu, den Prozess wirtschaftlich zu gestalten. Dabei sind jedoch der einzustellenden Wirkstoffkonzentration Grenzen gesetzt, die dadurch vorgegeben werden, dass die Oberflächeneigenschaften der Partikel inklusive der Partikelgröße durch ein bestimmtes Verhältnis zwischen Tropfengröße und Feststoffkonzentration optimiert werden können. Üblicherweise ist eine Konzentration zwischen 1 Gew.-% und 20 Gew.-%, in bevorzugter Art und Weise zwischen 2 Gew.-% und 10 Gew.-%, in sehr bevorzugter Art und Weise zwischen 3 Gew.-% und 8 Gew.-% zu wählen. Die Tropfengröße, die beim Prozess gewählt werden soll, kann durch den
Parameter X50, der im Bereich von 1 μm bis 20 μm, bevorzugt von 1 μm bis 8 μm und besonders bevorzugt von 1 μm bis 3 μm, liegt, und den Kennwert Q(5.8), der zwischen 30% und 100% und bevorzugt zwischen 60% und 100 % liegt, charakterisiert werden. Dabei stellt der Parameter X50 für die Tropfengröße die mittlere, Volumen-bezogene Tröpfchengröße dar. Dabei bezeichnet der Kennwert Q(5.8) die Teilchenmenge der Tröpfchen, die bezogen auf die Volumenverteilung der Tröpfchen unterhalb von 5.8 μm liegt. Die Tröpfchengrößen wurden im Rahmen der vorliegenden Erfindung mittels Laserbeugung (Fraunhoferbeugung) bestimmt. Detailliertere Angaben dazu sind den experimentellen Beschreibungen der Erfindung zu entnehmen.
Technisch umgesetzt wird dies im Rahmen der Sprühtrocknung, in dem eine entsprechende kommerzielle Düse, z. B. Zweistoffdüse, die in Abhängigkeit des angesetzten Zerstäubungsdruckes und des daraus resultierenden Massestroms des Zerstäubungsgases sowie der Spray-Rate (Volumenstrom "Sprühlösung") diese Charakteristika aufweist, eingesetzt wird. Neben den besonderen Bedingungen, die im eigentlichen Sprühprozess eingehalten werden müssen, um geeignete Tröpfchen für den Trocknungsprozess zu generieren, zeigt sich, dass die Eigenschaften der Partikel durch die Wahl der Trocknungsparameter positiv / gezielt beeinflusst werden können.
Erfindungsgemäßes Verfahren ist dadurch gekennzeichnet, dass der Sprühnebel durch Einleiten von mindestens zwei Trocknungsgasströmen einem Trocknungsprozess ausgesetzt ist. Dabei erweist es sich als vorteilhaft, wenn der Trocknungsgasstrom (1) in unmittelbarer Nähe der Erzeugung des Sprühnebels in gleichgerichteter Art und Weise in die Sprühkammer eingeleitet wird. Dagegen erfolgt der Zustrom des zweiten Trocknungsgases als ergänzende Nachtrocknung des Aerosols noch vor der
Partikelabscheidung durch Zustrom eines Trocknungases (2) in Gegenstromrichtung im Inneren der Sprühkammer. Gekennzeichnet ist dieser Nachtrocknungsschritt auch dadurch, dass die Nachtrocknung der sprühgetrockneten Partikel derart erfolgt, dass die Partikel in aerosolisierter Form vorliegen, bevorzugt in der Sprühkammer. Das durch einen solchen Prozess erhaltene Aerosol, bestehend aus getrockneten Partikeln, welche in dispergiertem Zustand im Volumenstrom des Trockungsgas vorliegen, wird aus der Sprühkammer abgeführt (siehe Fig.1 : Auslass der Sprühkammer, gekennzeichnet mit Ziffer 4). Das Abtrennen der getrockneten Feststoffpartikel aus dem Trocknungsgasstrom erfolgt nach üblicher Art und Weise. Dies kann beispielsweise durch Separation mittels eines Zyklons erfolgen.
Kenngrößen, die in den Trocknungsschritt einfließen, sind Eingangstemperatur und Massenstrom des Trocknungsgases (1) und des Trocknungsgases (2) sowie der Massenstrom der Sprühflüssigkeit (Ml) und die Ausgangstemperatur des Trocknungsgases. Dabei spielt das Verhältnis aus dem Massenstrom des jeweiligen Trocknungsgases (MgI, MgT) und dem Massenstrom der Sprühflüssigkeit (Ml) in Verbindung mit der Temperaturdifferenz (ATl, ATT) zwischen dem jeweiligen Trocknungsgas (Tl, TT) und der Ausgangstemperatur (Ta) eine wichtige Rolle.
Die Eingangstemperatur Tl des Trocknungsgases (1) - das Trocknungsgas (1) ist gekennzeichnet durch Ziffer 1 in Fig. 1 - stellt hierbei die Temperatur dar, die das Trocknungsgas beim Einleiten in den Sprühzylinder aufweist (Messpunkt siehe Ziffer 7, Fig. 1). Der Massenstrom des Trocknungsgases Mg stellt die Menge des Gases bestimmt als Masse pro Zeiteinheit dar, wobei MgI den Massestrom des Trocknungsgases (1) und MgI den Massenstrom des Trocknungsgases (2) angibt. Die Ausgangstemperatur (Ta) des Trocknungsgases kann gemäß Fig. 1 an der Messstelle 6 (Ziffer 6, Fig. 1) bestimmt werden. Die Eingangstemperatur Tl des Trocknungsgases (2) - das Trocknungsgas (2) ist gekennzeichnet durch Ziffer 2 in Fig. 1 - stellt hierbei die Temperatur des Trocknungsgases (2) dar, welche vor Einleiten des Trocknungsgases in die Sprühzylinder gemessen werden kann (siehe Ziffer 5, Fig. 1). Unter dem Massenstrom der
Sprühflüssigkeit (Ml) (siehe Ziffer 3, Fig. 1) versteht man die Menge (bestimmt als Masse) an Sprühlösung pro Zeiteinheit. Die Temperaturdifferenzen ATl und ATl stellen jeweils die Temperaturdifferenzen zwischen den gemäß Fig. 1 gekennzeichneten Messpunkten des erfinderischen Prozesses dar. Erfindungsgemäß kann das Verfahren zur Bereitstellung der erfindungsgemäßen Inhalationspulver durch den Trocknungskoeffizienten Vl und den Trocknungskoeffizienten Vl charakterisiert werden. Die Parameter Vl und Vl sind entsprechend den mathematischen Beziehungen Gleichung 1 und Gleichung 2 zugänglich.
Vl = • Δπ mit ATl = Tl - Ta Gleichung 1
V2 = MiI . AT2 mit ATl = Tl - Ta Gleichung 2
Ml
Das Verfahren zur Bereitstellung der erfindungsgemäßen Inhalationspulver ist dadurch gekennzeichnet, dass die Eingangstemperatur des Trocknungsgases (1) zwischen von 800C bis 1500C, bevorzugt von 900C bis 1400C und besonders bevorzugt von 1000C bis 1300C und die Eingangstemperatur des Trocknungsgases (2) zwischen 2000C und 4000C liegt. Weiterhin erfolgt die Trocknung des Sprühnebels derart, dass der Trocknungskoeffizient Vl (siehe Gleichung 1) einen Wert zwischen 100 K bis 2000 K, bevorzugt zwischen 200 K bis 1500 K und besonders bevorzugt zwischen 400 K bis 1000 K und der Trocknungskoeffizient Vl (siehe Gleichung 2) einen Wert zwischen 250 K bis 4000 K, bevorzugt zwischen 500 K bis 3000 K und besonders bevorzugt zwischen 1000 K bis 2000 K aufweist.
In bevorzugter Art und Weise ist der Prozessschritt des Trocknens dadurch gekennzeichnet, das das Verhältnis des Massenstroms MgI : Massestrom MgI zwischen 20:1 und 3:1 liegt.
Das Herstellverfahren zeichnet sich auch dadurch aus, dass die Ausgangstemperatur des Trocknungsgases, gemessen am Auslass der Sprühkammer eine Temperatur von 400C bis 900C, bevorzugt 400C bis 900C aufweist.
Die in Fig. 1 dargestellte Herstellapparatur stellt ein Ausführungsbeispiel dar, mit Hilfe dessen das erfindungsgemäße Verfahren durchgeführt werden kann. Die Zeichnung
(Fig. 1) zeigt einen modifizierten Sprühtrockner Büchi B-191 mit Nachtrocknungszone.
Gemäß Fig. 1 wird die Sprühlösung (3) in der Sprühkammer beispielsweise mit Hilfe einer handelsüblichen Zweistoffdüse zerstäubt. Das Trocknungsgas (1) wird erwärmt und im Gleichstrom zum Sprühnebel in die Sprühkammer eingeleitet. Mit der Nr. (7) ist die Messstelle der Eingangstemperatur des Sprühgases (1) gekennzeichnet. Das Trocknungsgas (2) wird erwärmt und im Gegenstrom in den Sprühzylinder eingeleitet. Mit der Nr. (5) ist die Messstelle der Eingangstemperatur des Trocknungsgases (2) gekennzeichnet. Kennzeichnung Nr. (6) stellt die Messstelle für die Ausgangstemperatur des Trocknungsgases dar, wobei (4) den Auslass für das getrocknete Aerosol/Trocknungsgas darstellt.
Das erfindungsgemäße Verfahren ermöglicht somit die Bereitstellung von Inhalationspulvern, wobei die Partikel einen kristallinen Matrixbildner, bevorzugt Mannitol enthalten. Erfindungsgemäße Partikel können dabei Wirkstoffe enthalten, wobei der oder die Wirkstoffe in kristalline Hilfsstoffkomponente eingebaut sind, so dass der oder die Wirkstoffe durch diese „Gerüstbildung" des Hilfsstoffes physikalisch und chemisch stabilisiert werden. In einer spezifischen Ausführungsform zeigt sich überraschenderweise, dass hierbei physikalisch stabile Mikropartikel hergestellt werden können, die einen hohen Anteil an Wirkstoff erlauben. Gekennzeichnet sind so hergestellte Pulver durch eine Partikelgröße, z.B. gemessen mittels Laserbeugung, durch eine mittlere Partikelgröße X50 im Bereich von 1 μm bis 10 μm, bevorzugt von 1 μm bis 6 μm. Dabei wird unter der mittleren Partikelgröße im hier verwendeten Sinne der 50 % - Wert aus der Volumenverteilung, gemessen mit einem Laserdiffraktometer nach der Trockendispersionsmethode verstanden.
Erfϊndungsgemäß umfasst sind auch Arzneimittelzubereitungen, wobei diese durch eine Vordosierung der Inhalationspulver in ein Dosisbehältnis gekennzeichnet sind. Die Dosisbehältnisse können dabei bevorzugt aus einem Material hergestellt sein, das zumindest an der Kontaktfläche zu dem Inhalationspulver ein Material aufweist, welches ausgewählt ist aus der Gruppe der synthetischen Kunststoffe.
Als eine bevorzugte vordosierte Arzneimittelzubereitung sind befüllte Kapseln zu nennen, die die erfindungsgemäßen Inhalationspulver enthalten. Die Befüllung derselben erfolgt nach im Stand der Technik bekannten Verfahren der leeren Kapseln mit den erfmdungsgemäßen Inhalationspulvern. Hierfür werden besonders bevorzugt solche Kapseln verwendet, deren Material ausgewählt ist aus der Gruppe der synthetischen Kunststoffe, besonders bevorzugt ausgewählt aus der Gruppe bestehend aus Polyethylen, Polycarbonat, Polyester, Polypropylen und Polyethylenterephthalat. Besonders bevorzugt sind als synthetische Kunststoffmaterialien Polyethylen, Polycarbonat oder Polyethylenterephthalat. Wird Polyethylen als eines der erfindungsgemäß besonders bevorzugten Kapselmaterialien verwendet, gelangt vorzugsweise Polyethylen mit einer Dichte zwischen 900 und 1000 kg/m , bevorzugt von 940 - 980 kg/m , besonders bevorzugt von etwa 960 - 970 kg/m3 (high-density Polyethylen) zur Anwendung. Die synthetischen Kunststoffe im Sinne der Erfindung können vielseitig mittels dem im Stand der Technik bekannten Herstellverfahren verarbeitet werden. Bevorzugt im Sinne der Erfindung wird die spritzgusstechnische Verarbeitung der Kunststoffe. Besonders bevorzugt wird die Spritzgusstechnik unter Verzicht auf die Verwendung von Formtrennmitteln. Dieses Herstellverfahren ist wohl definiert und durch eine besonders gute Reproduzierbarkeit gekennzeichnet. Erfindungsgemäß sind den Kapseln Pulverreservoire gleichgestellt, in welche die erfindungsgemäßen Arzneimittelzubereitungen Produkt-berührend abgefüllt sind. Darunter versteht man, dass erfindungsgemäße Pulverreservoire derart ausgestaltet sind, dass zumindest das die Arzneimittelzubereitung kontaktierende Material aus einem Material ausgewählt ist aus der Gruppe der synthetischen Kunststoffe. Ein weiterer Aspekt der vorliegenden Erfindung betrifft vorstehend genannte Kapseln, die vorstehend genanntes erfindungsgemäßes Inhalationspulver enthalten. Diese Kapseln können etwa 1 bis 25 mg, bevorzugt etwa 2 bis 25 mg, besonders bevorzugt etwa 3 bis 20 mg Inhalationspulver enthalten. Entsprechend dieser Ausführungsformen, können die Kapseln 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 oder 25 mg Inhalationspulver enthalten.
Ferner betrifft die vorliegende Erfindung ein Inhalationskit, bestehend aus einer oder mehrerer der vorstehend beschriebenen, durch einen Gehalt an erfindungsgemäßem Inhalationspulver gekennzeichneten Kapseln in Verbindung mit einem Trockenpulver- Inhalator.
Die vorliegende Erfindung betrifft ferner die Verwendung der erfindungsgemäßen Inhalationspulver zur Herstellung eines Arzneimittels zur Behandlung von
Atemwegserkrankungen, insbesondere zur Behandlung von COPD und/oder Asthma, dadurch gekennzeichnet, dass der in WO2004047796 (siehe dort Fig. 1) offenbarte Inhalator zur Anwendung gelangt.
Beispiele
Beispiel 1 (Trocknung mit zusätzlichem Trocknungsgas (2)): Herstellung von Inhalationspulver mittels Sprühtrocknung zur Bereitstellung von Einbettungspartikeln. Die so erhaltenen Partikel enthalten eine Kombination von Wirkstoffen (Glucocorticoid, Anticholinergikum und Beta-Agonisten) in einer kristallinen Mannitolmatrix.
Durchführung:
In einem Erlenmeyerkolben wird das Lösungsmittel (H2OiEtOH 1 :0.9 m/m) vorgelegt. Die Zugabe des Einbettungsmaterials (Mannitol) erfolgt portionsweise unter starkem Rühren (Magnetrührer) und unter Erwärmung (400C) im Ultraschallbad. Sobald die Lösung klar ist, erfolgt die Zugabe der Wirkstoffe. Nach vollständigem Lösen schließt sich umgehend die Sprühtrocknung an. Die Zusammensetzung der Lösung ist in der nachfolgenden Tabelle 1 wiedergegeben. Tabelle 1 : Lösungszusammensetzung Beispiel 1.
Hierbei stellt Beta-Agonist CL die Substanz 2H-l,4-Benzoxazin-3(4H)-one, 6-hydroxy-8- [( 1 R)- 1 -hydroxy-2- [ [2-(4-methoxyphenyl)- 1 , 1 -dimethylethyljamino] ethyl] -, monohydrochloride und Tiotropium BR die Substanz Tiotropiumbromid, wie sie aus der Europäischen Patentanmeldung EP 418 716 Al bekannt ist, dar.
Die Sprühtrocknung erfolgt mit einem BÜCHI Mini-Spray Dryer (B-191) in Verbindung mit einer Zwei-Stoff-Düse (Büchi, 0.5 mm Art.-Nr. 4363). Der Sprühtrockner wurde dahingehend modifiziert, dass der Aspirator entfernt wurde. Über den Prozessgaseintritt wird N2 als Trockengas zugeführt (ca. 17 m3/h mit ca. 900C), so dass das Gerät im Überdruckbereich durchströmt wird (entspricht Trocknungsgas (I)). Als zweite Trocknungsstufe wird Umgebungsluft angesaugt und dem Prozess zugeführt (ca. 3 m3/h mit ca. 4000C) (entspricht Trocknungsgas (2)). Der Ausgangsfilter zwischen Zyklon und Aspirator wurde entfernt und der Gasaustritt direkt abgeleitet. Der Massenstrom des
Düsengasdurchsatzes wird über ein externes Messgerät (Kobold DSM212) ermittelt und von dem ursprünglichen Schwebekörperdurchflussmesser entkoppelt. Die Düse wird bei einem Gasdurchsatz von 18 l/min (ca. 2 bar Überdruck) betrieben. Der Lösungsmitteldurchsatz beträgt ca. 16 g/min. Die resultierende Ausgangstemperatur liegt im Bereich von ca. 58°C. Die verwendeten Prozessparameter sind in Tabelle 2 aufgeführt.
Tabelle 2: Sprühtrocknungsparameter Beispiel 1 {Trocknung mit zusätzlichem Trocknungsgas (2)).
Die Zusammensetzung des gemäß Beispiel 1 erhaltenen Pulvers ist in Tabelle 3 dargestellt.
Tabelle 3: Zusammensetzung Feststoffpartikel (rechnerisch) Beispiel 1 (Trocknung mit zusätzlichem Trocknungsgas (2J).
Charakterisierung der erhaltenen Partikel / des Inhalationspulvers:
Charakteristische Eigenschaften der gemäß Beispiel 2 erhaltenen Inhalationspulver sind in
Tabelle 4 aufgeführt. Es wurden die geometrische mittlere Partikelgröße (Laserbeugung:
Sympatec Trockendispergiergung) direkt nach Herstellung bestimmt.
Darüber hinaus wurden die inhalierbaren Partikel als „Volumenanteil < 5μm nach
Ausbringung" bestimmt. Darunter versteht man die Menge an Pulver, deren Partikel kleiner als 5 μm sind (angegeben in Volumen-%), gemessen mittels Laserbeugung.
Hierbei erfolgt die Erzeugung der Aerosolwolke durch eine Deagglomeration der Probe mittels Ausbringung aus einem Inhalator (Handihaler) - nähere Angaben siehe Abschnitt
Methodenteil.
Es ist ersichtlich, dass der „Volumenanteil < 5μm nach Ausbringung" der Inhalationspulver gemäß Beispiel 1 stabil ist. Die Abnahme des „Volumenanteil < 5μm nach Ausbringung" nach Lagerung (1 Woche, offen, 400C / 75% r.h.) ist vernachlässigbar. Als vernachlässigbar ist eine Abnahme von weniger als 5%-Punkte, bevorzugt weniger als 4%-Punkte, besonders bevorzugt weniger als 3%-Punkte und herausragend bevorzugt weniger als 2%-Punkte und besonders herausragend weniger als 1%-Punkte nach Lagerung (1 Woche, offen, 400C / 75% r.h.) anzusehen. Dabei sind unter der Angabe %-Punkte Prozentanteile bezogen auf 100% zu verstehen (Volumen-Prozent).
Tabelle 4: Pulvereigenschaften Beispiel 1 {Trocknung mit zusätzlichem Trocknungsgas
(2)).
Messmethoden
I) Partikelgrößenbestimmung mittels Laserbeugung (Sympatec Trockendispergierung) zur Bestimmung der mittleren Partikelgröße X50:
Messgerät und Einstellungen:
Die Bedienung der Geräte erfolgte in Übereinstimmung mit den Bedienungsanleitungen des Herstellers.
Messgerät: Laser-Beugungs-Spektrometer (HELOS), Sympatec (Partikelgrößenbestimmung mittels Fraunhoferbeugung) Dispergiereinheit: Trockendispergierer RODOS mit Saugtrichter, Sympatec
Probenmenge: 200 mg ± 150 mg
Produktzufuhr: Schwingrinne Vibri, Fa. Sympatec
Frequenz d. Vibrationsrinne: bis 100 % ansteigend
Dauer der Probenzufuhr: 15 bis 25 sek. (im Fall von 200 mg)
Brennweite: 100 mm (Messbereich: 0,9 - 175 μm)
Messzeit/Wartezeit: ca. 15 s (im Fall von 200 mg)
Zykluszeit: 20 ms
Start/Stop bei: 1 % auf Kanal 28
Dispergiergas: Druckluft
Druck: 3 bar
Unter druck: maximal
Auswertemodus : HRLD
Probenvorbereitung / Produktzufuhr:
Ca. 200 mg der Prüfsubstanz werden auf einem Kartenblatt eingewogen.
Mit einem weiteren Kartenblatt werden alle größeren Agglomerate zerstoßen.
Das Pulver wird dann auf der vorderen Hälfte der Schwingrinne (ab ca. 1 cm vom vorderen
Rand) fein verteilt aufgestreut.
Nach dem Start der Messung wird die Frequenz der Schwingrinne so variiert, dass die
Zufuhr der Probe möglichst kontinuierlich erfolgt. Die Produktmenge darf aber auch nicht zu groß sein damit eine ausreichende Dispergierung erreicht wird. II) Bestimmung des „Volumenanteil < 5μm nach Ausbringung" als Ausbringung aus einem Inhalator (HandiHaler):
Zur Bestimmung wird der Inhalator HandiHaler® verwendet. Das zu analysierende Inhalationspulver wird in Kunststoffkapseln (Polyethylen) der Kapselgröße 3 eingefüllt, wie sie in EP 1100474 offenbart sind. Die Inhalationskapseln werden mit 20 mg befüllt.
Durchführung:
(Die Ausbringung zur Bestimmung des „Volumenanteil < 5μm nach Ausbringung" erfolgt gemäß dem technischen Aufbau siehe Fig. 2.)
Der HandiHaler® wird über einen Gasanschluss an der Eintrittsöffnung der Kapselkammer mit Druckluft (8) betrieben. Die angelegten Flussraten betragen 39 l/min und 60 l/min (bevorzugt bei 39 l/min, da dies einem Druckabfall am HandiHaler® von 4 kPa entspricht). Mit Hilfe eines Zeit-gesteuerten 2-Wege-Magnetventils (9) wird über einen Zeitraum von 10 Sekunden dem Inhalator (12) Druckluft zugeführt. Die Einstellung der Flussrate wird über ein Durchflusskontrollventil (10) und die Kontrolle der Flussrate über ein Massenstromdurchflussmesser Kobold DMS-614C3FD23L (11) vorgenommen. Die Bestimmung der Partikelgrößenverteilung erfolgt direkt an der Aerosolwolke, indem die Partikelgrößenmessung im Abstand von 2 ± 0,5 cm hinter dem Pulveraustritt aus dem Inhalator mittels HELOS-Laserdiffraktometer Sympatec GmbH, Clausthal-Zellerfeld (13) vorgenommen wird. Direkt hinter der Messzone werden die Partikel durch einen Staubsauger (14) abgesaugt.
Messbedingungen: Die Brennweite der Laserdiffraktometrie beträgt f = 100 mm (Messbereich: 0,9 - 175 μm). Die Auswertung erfolgt im hochauflösenden Modus (Fraunhofer HRLD, Softwareversion WINDOX 4.1.2.0) unter der Annahme des Kugelmodells (Formfaktor = 1).
Auswertung: Die Zielgröße „Volumenanteil < 5μm nach Ausbringung" entspricht dem Volumenanteil der Partikel angegeben in Prozent, welche kleiner als 5 μm sind. III) Bestimmung der Kristallinität
Messgerät und Einstellungen: Messgerät: Temperatur modulierte DSC (TMDSC)
Q1000 TA Instruments
Probentiegel: Standardtiegel, gelocht
Probenmenge: 10 mg ± 2 mg
Modulation: ±0,54°C, Periode 40 Sekunden
Heizrate: 5°C/min
Temperaturbereich: -400C bis 2000C
Auswertung:
Software: TA Instruments Universal 2000 (Version 4.2)
RevCP-Signal: Smooth = 4; Stufenanalyse Tg
1. Tg [0C]: Mittelpunkt der Cp-Stufe aus dem RevCp Signal
2. ΔCp [J/(g-°C)]: Anstieg der Wärekapazität am Glasübergang aus dem RevCp Signal
Die Glasstufe wird mittels TA Instruments Software (Universal 2000, Version 4.2) über die Funktion „Analyze/Glass Transition..." aus dem RevCP Signal ermittelt. Die Grenzpunkte werden hierbei auf die Basislinie vor und nach der Glasstufe wie z. B. bei McPhillips et al. beschrieben, angelegt [McPhillips, H.; Craig, D.Q.M.; Royall, P.G.; Hill, L.: Characterisation of the glass transition of HPMC using modulated temperature differential scanning calorimetry; International Journal of Pharmaceutics (1999) No. 180, 83-90].
Sofern die Probe amorphe Anteile aufweist, kann ein Cp-Anstieg am Glasübergang der Probe (ACp(p)) beobachtet werden. Für eine solche Probe kann der Grad an Kristallinität aus den Größen Cp-Anstieg am Glasübergang der Probe (ACp(p)), dem Cp-Anstieg des vollständig amorphen Matrixbildners (ACp(M,a)) und dem Anteil des in der Probe vorhandenen Matrixbildners (A(M)) gemäß Gleichung 3 bestimmt werden,
ACp {P) - 10000
Kristallinität [%] = 100 - (Gleichung 3)
ΔCp(M,a) ' A(M) wobei
ACp(p) [J/(g-°C)]: Cp-Anstieg am Glasübergang der Probe ΔCp(M,a) [J/(g-°C)]: Cp-Anstieg am Glasübergang des vollständig amorphen
Matrixbildners A(M) [%]: Massenanteil des Matrixbildners in der Probe
darstellt.
Amorphes Referenzmaterial zur Bestimmung der Kristallinität:
Zur Bestimmung von ACp(M.a) wird gemäß Gleichung 3 der Matrixbildner in amorpher
Form als Referenzmaterial benötigt. Die Herstellung der amorphen Referenzsubstanz geschieht z.B. durch Schmelzen und schlagartiges Abkühlen (Quenchen) der Substanz. Hierzu werden 10 + 2 mg des Matrixbildners in einem DSC Tiegel eingewogen und im TMDSC-Gerät bis etwa 10 bis 300C über der Schmelztemperatur erhitzt. Der Tiegel wird bei dieser Temperatur entnommen und umgehend in tiefkalten flüssigen Stickstoff getaucht. Die Bestimmung des Cp-Anstieges ACp(M.a) erfolgt, in dem die Probe des vollständig amorphen Matrixbildner im Anschluss an die Herstellung in den Ofen des TMDSC-Gerätes eingebracht und vermessen wird. Die Messung wird mindestens 200C unterhalb des erwarteten Glasübergangpunktes gestartet. Die Messung erfolgt gemäß oben aufgeführten Geräteparameter (TA Instruments Software; Universal 2000, Version 4.2) über die Funktion „Analyze/Glass Transition...").
IV) Bestimmung der Tropfengröße mittels Laserbeugung
Meßmethode: Zur Bestimmung der Tropfengröße wird der Sprühkegel (Spray) der
Düse direkt in der Laser-Meßzone bezüglich der Tropfengrößenverteilung analysiert. Unter dem Medianwert X50 versteht man die Tropfengröße, unterhalb derer 50% der Tropfenmenge liegt. Der Kennwert Q(5.8) - Wert beschreibt den prozentualen Anteil der Tropfen, die eine Größe unterhalb von 5.8 μm aufweisen. Es wird H2O als Lösung verwendet. Der Kennwert wird als mittlere Tröpfchengröße X50 bezeichnet.
Meßgerät: Laser-Beugungs-Spektrometer (HELOS)5Fa. Sympatec
Software: WINDOX Version 4
Dispergiereinheit: RODOS / Dispergierdruck: 3 bar
Brennweite: 100 mm [Meßbereich: 0.9 175 μm] Auswertemodus: Mie (V 4)

Claims

Patentansprüche
1.) Verfahren zur Bereitstellung von Inhalationspulver enthaltend einen kristallinen Matrixbildner, welcher ausgewählt ist aus einer Gruppe bestehend aus Zucker, Polyole, Polymere, Aminosäuren, Proteine, Di-, Tri-, Oligo- und Polypeptide; sowie einen oder mehrere pharmazeutische Wirkstoffe,
dadurch gekennzeichnet, dass eine Sprühlösung, welche den Matrixbildner und den pharmazeutischen Wirkstoff umfasst, sprühgetrocknet wird, umfassend die Schritte: (a) Lösen eines oder mehrerer Wirkstoffe und des Matrixbildners in Wasser, einem organischen Lösungsmittel oder einem organisch-wässrigen Lösungsmittelgemisch zur Herstellung einer Lösung mit einem gelösten Feststoffanteil zwischen 1 Gew.-% und 20 Gew.-%, bevorzugt zwischen 2 Gew.- % und 10 Gew.-%, besonders bevorzugt zwischen 3 Gew.-% und 8 Gew.-%, (b) Versprühen der so gewonnenen Lösung auf üb liehe Weise, so dass ein
Sprühnebel mit einer Tropfengröße mit (i) dem Kennwert Q(5.8) zwischen 50% und 100% und (ii) der mittleren Tröpfchengröße X50 im Bereich von 1 μm bis 20 μm, bevorzugt von 1 μm bis 8 μm, besonders bevorzugt von 1 μm bis 3 μm, erzielt wird,
(c) Trocknen des so erhaltenen Sprühnebels mit Hilfe eines Trocknungsgases unter Anwendung folgender Parameter:
(i) einer Eingangstemperatur des Trocknungsgases (1) von 8O0C bis 2000C, bevorzugt von 900C bis 1600C und besonders bevorzugt von 1000C bis 1500C und
(ii) Nachtrocknen des Aerosol in der Sprühkammer durch ein zweites
Trocknungsgases (2), wobei die Temperatur des Trocknungsgases (2) zwischen 2000C und 4000C liegt,
(iii) das Verhältnis des Volumenstroms Trocknungsgas (1) : Trocknungsgas (2) zwischen 20:1 und 3:1 liegt,
(iv) der Trocknungsgaskoeffizient Vl zwischen 100 K und 2000 K sowie der
Trocknungskoeffizient V2 zwischen 250 K und 4000 K liegt und (v) einer Ausgangstemperatur des Trocknungsgases von 400C bis 900C und
(d) Abtrennen der getrockneten Feststoffpartikel aus dem Trocknungsgasstrom auf übliche Weise.
2.) Verfahren nach Anspruch 1 zur Bereitstellung von Inhalationspulver enthaltend einen kristallinen Matrixbildner dadurch gekennzeichnet, dass der Matrixbildner ausgewählt ist aus einem Polyol.
3.) Verfahren nach Anspruch 2 zur Bereitstellung von Inhalationspulver enthaltend einen kristallinen Matrixbildner dadurch gekennzeichnet, dass der Matrixbildner Mannitol ist.
4.) Verfahren nach einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, dass der oder die Wirkstoffe vorzugsweise ausgewählt aus der Gruppe bestehend aus Anticholinergika, Betamimetika, Steroiden, Phosphodiesterase-IV-Inhibitoren, LTD4- Antagonisten, EGFR-Kinase-Hemmern, Dopamin-Agonisten, Hl -Antihistaminika, PAF -Antagonisten, P13-Kinase Inhibitoren, P38 MAP-Kinase Inhibitoren, Antiallergika und Phosphodiesterase-V-Inhibitoren ist.
5.) Verfahren nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass die Temperatur des Trocknungsgases (2) zwischen 3000C und 3800C liegt.
6.) Verfahren nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, dass das
Verhältnis des Volumenstroms Trocknungsgas (1) : Trocknungsgas (2) zwischen 18: 1 und 10: 1 (Massenverhältnisse) liegt.
7.) Sprühgetrocknetes Pulver erhältlich nach einem Verfahren gemäß Anspruch 1 bis 6, dadurch gekennzeichnet, dass dieses Mannitol als Matrixbildner und als Wirkstoff einen EGFR-Inhibitor enthält, wobei das Verhältnis Wirkstoff : Matrixbildner zwischen 1 : 1 bis 3 : 1 (Massenverhältnisse) liegt.
8.) Sprühgetrocknetes Pulver erhältlich nach einem Verfahren gemäß Anspruch 1 bis 6, dadurch gekennzeichnet, dass dieses Mannitol als Matrixbildner und als Wirkstoff eine Kombination eines Anticholinergikums, Betamimetikums und Steroids wobei das Verhältnis der Summe der Wirkstoffe Wirkstoff : Matrixbildner zwischen 1 :1 bis 3 : 1 (Massenverhältnisse) liegt Inhalationskit enthaltend ein Inhalationsdevice, das zur Applikation von
Inhaltionspulvern aus pul verhaltigen Kapseln verwendet werden kann, und ein sprühgetrocknets Pulver gemäß den Ansprüchen 7 bis 8 enthält.
EP09756312A 2008-11-27 2009-11-23 Neue pulverförmige kristalline arzneimittel zur inhalation Withdrawn EP2370053A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09756312A EP2370053A1 (de) 2008-11-27 2009-11-23 Neue pulverförmige kristalline arzneimittel zur inhalation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08170072 2008-11-27
PCT/EP2009/065621 WO2010060875A1 (de) 2008-11-27 2009-11-23 Neue pulverförmige kristalline arzneimittel zur inhalation
EP09756312A EP2370053A1 (de) 2008-11-27 2009-11-23 Neue pulverförmige kristalline arzneimittel zur inhalation

Publications (1)

Publication Number Publication Date
EP2370053A1 true EP2370053A1 (de) 2011-10-05

Family

ID=40568782

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09756312A Withdrawn EP2370053A1 (de) 2008-11-27 2009-11-23 Neue pulverförmige kristalline arzneimittel zur inhalation

Country Status (5)

Country Link
US (2) US20120135969A1 (de)
EP (1) EP2370053A1 (de)
JP (1) JP2012509922A (de)
CA (1) CA2744655A1 (de)
WO (1) WO2010060875A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110833539A (zh) * 2012-11-09 2020-02-25 丝维塔斯治疗公司 超低密度的肺部粉末

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201113662D0 (en) * 2011-08-08 2011-09-21 Prosonix Ltd Pharmaceutical compositions
EP2705838A1 (de) * 2012-09-06 2014-03-12 Xspray Microparticles Ab Tiotropium-Zubereitungen
CN105324106A (zh) 2013-04-01 2016-02-10 普马特里克斯营业公司 噻托铵干粉
PT107568B (pt) 2014-03-31 2018-11-05 Hovione Farm S A Processo de secagem por atomização para a produção de pós com propriedades melhoradas.
GB201609940D0 (en) * 2016-06-07 2016-07-20 Novabiotics Ltd Microparticles
KR102559152B1 (ko) * 2016-06-30 2023-07-26 필립모리스 프로덕츠 에스.에이. 니코틴 입자

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177101A (ja) * 1982-04-09 1983-10-17 Lion Corp 熱風噴霧乾燥方法
JP2587059B2 (ja) * 1987-07-06 1997-03-05 大川原化工機株式会社 流動層内蔵型噴霧乾燥装置
SE9302777D0 (sv) * 1993-08-27 1993-08-27 Astra Ab Process for conditioning substances
US6582728B1 (en) * 1992-07-08 2003-06-24 Inhale Therapeutic Systems, Inc. Spray drying of macromolecules to produce inhaleable dry powders
JPH0663301A (ja) * 1992-08-19 1994-03-08 Kao Corp 噴霧乾燥方法及び噴霧乾燥装置
ES2245780T3 (es) * 1994-05-18 2006-01-16 Nektar Therapeutics Metodos y composiciones para la formulacion de interferones como un polvo seco.
AU3764199A (en) * 1998-04-29 1999-11-16 Genentech Inc. Spray dried formulations of igf-i
DK1131059T3 (da) * 1998-11-13 2003-06-30 Jago Res Ag Tørpulver til inhalation
US20030018019A1 (en) * 2001-06-23 2003-01-23 Boehringer Ingelheim Pharma Kg Pharmaceutical compositions based on anticholinergics, corticosteroids and betamimetics
WO2004030659A1 (en) * 2002-09-30 2004-04-15 Acusphere, Inc. Sustained release porous microparticles for inhalation
DE10339197A1 (de) * 2003-08-22 2005-03-24 Boehringer Ingelheim Pharma Gmbh & Co. Kg Sprühgetrocknete amorphe Pulver mit geringer Restfeuchte und guter Lagerstabilität
AU2005235419B2 (en) * 2004-04-22 2010-11-04 Boehringer Ingelheim International Gmbh Pharmaceutical combinations containing benzoxazine for treating respiratory diseases
DE102004022926A1 (de) * 2004-05-10 2005-12-15 Boehringer Ingelheim Pharma Gmbh & Co. Kg Sprühgetrocknete Pulver enthaltend zumindest ein 1,4 O-verknüpftes Saccharose-Derivat und Verfahren zu deren Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010060875A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110833539A (zh) * 2012-11-09 2020-02-25 丝维塔斯治疗公司 超低密度的肺部粉末

Also Published As

Publication number Publication date
US20150258030A1 (en) 2015-09-17
WO2010060875A1 (de) 2010-06-03
US20120135969A1 (en) 2012-05-31
CA2744655A1 (en) 2010-06-03
JP2012509922A (ja) 2012-04-26

Similar Documents

Publication Publication Date Title
EP1948274B1 (de) Nadel zum lochen von pulverkapseln für die inhalation
EP2004263B1 (de) Medikamenten-ausgabevorrichtung und medikamentenmagazin
EP2007349B1 (de) Aerosolsuspensionsformulierungen mit tg 227 ea oder tg 134 a als treibmittel
EP2656867B1 (de) Mundstück für einen Inhalator
WO2007048763A1 (de) Inhalator mit mundstück mit mikrobiologischer schutzfunktion
EP2254630A1 (de) Pulverinhalatoren
US20150258030A1 (en) Novel powdered crystalline medicines for inhalation
DE102006044756A1 (de) Inhalator
EP2001601B1 (de) Vorrichtung zur verabreichung von pharmazeutischen zubereitungen
EP2299990A1 (de) Neue einbettungspartikel für die inhalation
EP2170730A1 (de) Neue pulverförmige arzneimittel enthaltend tiotropium und salmeterol sowie laktrose als hilfsstoff
WO2006037736A1 (de) Neue pulverinhalativa auf basis modifizierter laktosemischungen als hilfsstoff
WO2007023167A1 (de) Transcorneales system zur abgabe eines arzneimittel-wirkstoffes
JP5522940B2 (ja) 微粒化方法
EP2244686A1 (de) Verfahren und vorrichtung zur befüllung von kapseln
WO2007048764A2 (de) Treibgasabsorbtion bei dosieraerosolen mit verpackungen
WO2007110402A1 (de) Packmittel für mehrdosispulverinhalatoren mit optimierten entleerungseigenschaften
EP2296624A1 (de) Neue emulsionen zur herstellung von arzneimitteln
DE102007036412A1 (de) Prüfvorrichtung
DE102007052871A1 (de) Kapsel zur Aufnahme von pharmazeutischen Wirkstoffformulierungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150811

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170804