EP2368045B1 - Carter de compresseur à cavités optimisées - Google Patents

Carter de compresseur à cavités optimisées Download PDF

Info

Publication number
EP2368045B1
EP2368045B1 EP09795410.1A EP09795410A EP2368045B1 EP 2368045 B1 EP2368045 B1 EP 2368045B1 EP 09795410 A EP09795410 A EP 09795410A EP 2368045 B1 EP2368045 B1 EP 2368045B1
Authority
EP
European Patent Office
Prior art keywords
cavities
casing
compressor according
cavity
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09795410.1A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2368045A1 (fr
Inventor
Xavier Jean Agneray
Jérôme Jean BERT
Alexandre Franck Chartoire
Armel Touyeras
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP2368045A1 publication Critical patent/EP2368045A1/fr
Application granted granted Critical
Publication of EP2368045B1 publication Critical patent/EP2368045B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts
    • F04D29/547Ducts having a special shape in order to influence fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • Y10S415/914Device to control boundary layer

Definitions

  • the field of the present invention is that of propulsion and more particularly that of axial or axial-centrifugal compressors for propulsion assembly (turbojet or turboprop, referred to as turbomachines in the following description) and more specifically to high-pressure compressors heavily loaded.
  • the aeronautical turbomachines are mainly constituted by one or more compressors, in which the air sucked into the air intake is compressed, by a combustion chamber in which the injected fuel is burned, then by a turbine in which the burnt gases are relaxed to drive the compressor or compressors and finally by an ejection device.
  • Aeronautical compressors consist of blades, or blades, which are rotated inside a housing that seals the air stream with the outside of the engine. It is known that the clearance between the ends of the compressor blades and the casing forming the inner wall of the air flow line degrades the efficiency of the engine of the turbomachine.
  • this game can significantly modify and degrade the operation of the compressor until the occurrence of a phenomenon of "pumping", which results from the stalling of the airflow from the surface of the blades.
  • the control of the air circulation at the end of the blades is thus a major challenge to obtain both a good aerodynamic efficiency of the compressor and a sufficient margin against the pumping phenomenon.
  • the document US 5762470 discloses a housing with an annular cavity, placed in communication with the vein through a succession of cuts, specifying the optimal geometry for the cavity and for the cuts; it does not specify what is the relative position for cavities vis-à-vis dawn. It also describes an annular cavity 3, set back from the vein and closed by a grooved grid 3B, the object of which is to allow loss dissipation in the circumferential direction.
  • This configuration has the disadvantage of a risk of parasite reinjection at the blade, via a groove 5 adjacent to the groove in question, which penalizes performance.
  • the present invention aims to overcome these disadvantages by providing a compressor housing with cavities, improved aerodynamic performance.
  • the subject of the invention is a compressor for a turbomachine comprising a housing, at least one compressor stage consisting of a fixed blade wheel and a blade wheel positioned downstream of said wheel.
  • This configuration ensures both a good suction of the air into the cavity and feedback as far upstream as possible from the set of blades. Moreover, the cavities do not communicate between them eliminates any circumferential recirculation, and therefore the risk of a parasitic reinjection at the blade which would come from the adjacent cavity, which would penalize the performance of the compressor. Reinjection is done exclusively as far upstream as possible from the blade set.
  • the upstream end of the cavities makes, in the plane of symmetry of the cavity, an angle ⁇ for the reinjection of the air, equal to 90 plus or minus 5 ° with the portion of the casing situated upstream of said cavity . This avoids recirculation internal to the cavity that would be unfavorable to the efficiency of the compressor.
  • the invention also relates to a turbomachine comprising a compressor having at least one of the characteristics described above.
  • a compressor stage comprising a stator blade, or fixed blade 2, positioned upstream of a rotor blade, or mobile blade 1, attached to a disk 3, or directly integral with this disk according to a technology called monoblock blisk).
  • the vanes are held in place by attachment to a compressor casing 4, which surrounds the blades 1 leaving a predefined clearance with them.
  • the blades have at the casing 4 a length of rope C ax. , measured axially between the outermost point of the leading edge and the outermost point of the trailing edge.
  • the housing 4 is hollowed out with multiple cavities 5 regularly arranged on its circumference, opposite the path of passage of the blades 1. These cavities have, roughly, in section, the shape of a rectangle with rounded corners, extending over a length L2. This cavity 5 is offset upstream of the motor, with respect to the leading edge of the moving blade 1.
  • the length of the cover of the blade 1 by the cavity 5 has a value L1, less than L2.
  • a series of cavities 5 are aligned along the circumference of the casing 4.
  • the axis of these cavities is slightly inclined with respect to the longitudinal direction of the motor.
  • the number of cavities is much greater than the number of blades 1 constituting the mobile wheel of the compressor stage. This number is in practice between 2 and 4 times the number of moving blades 1.
  • the distribution of the cavities, as shown in FIG. figure 2 is a uniform arrangement; in a version not shown it can be made irregular to break the aerodynamic excitation on the blades that could be caused by these cavities, including the ends of each of the two half-shells that constitute the housing.
  • the cavity 5 has two parallel sides connecting at their outer end by a half-circumference. It sinks into the casing 4 in an inclined direction, in the direction of rotation of the blades, relative to a perpendicular to the tangent plane to the vein.
  • a maximum inclination is sought but it is limited for reasons of manufacture of the housing; in practice the angle of inclination ⁇ with respect to the tangent plane to the vein is between 45 ° and 60 °.
  • the depth of the cavity 5 is defined by the desired aerodynamic characteristics, again taking into account the manufacturing constraints.
  • the cavity 5 is roughly the shape of a rectangle whose short side, upstream, intersects the housing at an angle ⁇ , measured from the crankcase curve resulting from its cutting by the plane of symmetry of the cavity and which is upstream of the cavity; this angle ⁇ is close to 90 °.
  • the downstream portion of the cavity has a substantially circular shape.
  • the figure 5 shows the case of a casing 4 with a local withdrawal of vein 6 at the blades 1 commonly called “trench". As shown, this shrinkage decreases as it moves downstream of the engine.
  • This type of housing is also likely to receive cavities 5 of the type described above.
  • the local vein withdrawal 6 begins in this case at or downstream of the upstream end of the cavity 5 and ends at or slightly downstream of the trailing edge of the blades 1.
  • the invention relates to an optimization of the geometric characteristics of the cavities 5 and their positioning relative to the blades 1. It allows a very significant improvement of the operability of the compressor (in terms of yield and margin to pumping) thanks to its management of the flow in the clearance between blades and crankcase and its reinjection upstream of the mobile blading wheel 1. This improvement is particularly noticeable in the context of a highly loaded compressor, having blades of three-dimensional shape (forward arrow blades) and reduced inter-stage distances to limit the overall length of the compressor.
  • the downstream shape of the cavity 5, where the fluid is sucked is optimized for better guidance of the fluid upstream, and its upstream shape is optimized to ensure reinjection into the vein as close as possible to the radial direction. Its length is optimized to ensure the reinjection of the fluid as far upstream as possible from the blade.
  • the effectiveness of the present invention therefore comes from the combination of a limited axial overlap of the blade and a reinjection upstream of the blade at an optimized angle.
  • the assembly improves the efficiency of the compressor under steady-state operating conditions as well as under a strong aerodynamic stress intermediate between the nominal operating line and the stability limit (or pumping line) of the compressor. This is due to the fact that the local losses of efficiency induced by the shift L1 are compensated by the gain brought by the control of the recirculation of the air.
  • cavities associated with an abradable deposit can be directly machined directly into the housing or implanted via a coating technology by a specific insert, fixed to the housing.
  • this technology is applicable to any type of compressor, whether axial or centrifugal, and that it is intended for a turbojet engine or a turboprop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
EP09795410.1A 2008-12-23 2009-12-16 Carter de compresseur à cavités optimisées Active EP2368045B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0858990A FR2940374B1 (fr) 2008-12-23 2008-12-23 Carter de compresseur a cavites optimisees.
PCT/EP2009/067326 WO2010072638A1 (fr) 2008-12-23 2009-12-16 Carter de compresseur a cavites optimisees

Publications (2)

Publication Number Publication Date
EP2368045A1 EP2368045A1 (fr) 2011-09-28
EP2368045B1 true EP2368045B1 (fr) 2017-12-13

Family

ID=40823269

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09795410.1A Active EP2368045B1 (fr) 2008-12-23 2009-12-16 Carter de compresseur à cavités optimisées

Country Status (9)

Country Link
US (1) US8845269B2 (zh)
EP (1) EP2368045B1 (zh)
JP (1) JP5686743B2 (zh)
CN (1) CN102265039B (zh)
BR (1) BRPI0923622B1 (zh)
CA (1) CA2747989C (zh)
FR (1) FR2940374B1 (zh)
RU (1) RU2514459C2 (zh)
WO (1) WO2010072638A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3913231A1 (fr) 2020-05-22 2021-11-24 Safran Aero Boosters Piège à débris

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102022351B (zh) * 2010-12-08 2012-06-27 北京航空航天大学 一种拓宽高负荷轴流压气机稳定工作范围的方法
FR2969230B1 (fr) 2010-12-15 2014-11-21 Snecma Aube de compresseur a loi d'empilage amelioree
US8678740B2 (en) * 2011-02-07 2014-03-25 United Technologies Corporation Turbomachine flow path having circumferentially varying outer periphery
FR2988146B1 (fr) 2012-03-15 2014-04-11 Snecma Carter pour roue a aubes de turbomachine ameliore et turbomachine equipee dudit carter
FR2989744B1 (fr) 2012-04-19 2014-06-13 Snecma Carter de compresseur a cavites au calage optimise
FR2989742B1 (fr) * 2012-04-19 2014-05-09 Snecma Carter de compresseur a cavites a forme amont optimisee
JP6010348B2 (ja) * 2012-06-01 2016-10-19 三菱日立パワーシステムズ株式会社 軸流圧縮機及びこれを備えたガスタービン
US20140093355A1 (en) * 2012-09-28 2014-04-03 United Technologies Corporation Extended indentation for a fastener within an air flow
WO2014158236A1 (en) * 2013-03-12 2014-10-02 United Technologies Corporation Cantilever stator with vortex initiation feature
DE102013219818B3 (de) * 2013-09-30 2015-02-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Axialverdichter
JP2016118165A (ja) * 2014-12-22 2016-06-30 株式会社Ihi 軸流機械およびジェットエンジン
US9926806B2 (en) 2015-01-16 2018-03-27 United Technologies Corporation Turbomachine flow path having circumferentially varying outer periphery
CN106286394B (zh) * 2016-10-14 2018-08-10 中国科学院工程热物理研究所 一种压气机连通式收缩缝机匣处理方法及装置
EP3543541A4 (en) * 2016-11-18 2020-07-08 Mitsubishi Heavy Industries, Ltd. COMPRESSOR, AND METHOD FOR PRODUCING BLADE THEREOF
WO2020231798A1 (en) 2019-05-14 2020-11-19 Carrier Corporation Centrifugal compressor including diffuser pressure equalization feature
US11473438B2 (en) * 2019-06-04 2022-10-18 Honeywell International Inc. Grooved rotor casing system using additive manufacturing method
US20230151825A1 (en) * 2021-11-17 2023-05-18 Pratt & Whitney Canada Corp. Compressor shroud with swept grooves
US11970985B1 (en) 2023-08-16 2024-04-30 Rolls-Royce North American Technologies Inc. Adjustable air flow plenum with pivoting vanes for a fan of a gas turbine engine

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1518293A (en) * 1975-09-25 1978-07-19 Rolls Royce Axial flow compressors particularly for gas turbine engines
US4645417A (en) * 1984-02-06 1987-02-24 General Electric Company Compressor casing recess
GB2245312B (en) * 1984-06-19 1992-03-25 Rolls Royce Plc Axial flow compressor surge margin improvement
SU1560812A1 (ru) * 1987-05-13 1990-04-30 Харьковский авиационный институт им.Н.Е.Жуковского Осевой компрессор
JPH04203204A (ja) * 1990-11-29 1992-07-23 Hitachi Ltd 流体機械
RU2034175C1 (ru) * 1993-03-11 1995-04-30 Центральный институт авиационного моторостроения им.П.И.Баранова Турбокомпрессор
GB9400254D0 (en) * 1994-01-07 1994-03-02 Britisch Technology Group Limi Improvements in or relating to housings for axial flow fans
US6375419B1 (en) * 1995-06-02 2002-04-23 United Technologies Corporation Flow directing element for a turbine engine
US6290458B1 (en) * 1999-09-20 2001-09-18 Hitachi, Ltd. Turbo machines
US6338609B1 (en) * 2000-02-18 2002-01-15 General Electric Company Convex compressor casing
DE10135003C1 (de) * 2001-07-18 2002-10-02 Mtu Aero Engines Gmbh Verdichtergehäusestruktur
US6585479B2 (en) * 2001-08-14 2003-07-01 United Technologies Corporation Casing treatment for compressors
JP3919496B2 (ja) * 2001-10-15 2007-05-23 ヤンマー株式会社 ラジエータファンおよびこれを用いたエンジン冷却装置
AU2003207365A1 (en) 2002-02-28 2003-09-09 Daimlerchrysler Ag Anti-stall tip treatment means for turbo-compressors
JP4527403B2 (ja) 2002-02-28 2010-08-18 エムテーウー・アエロ・エンジンズ・ゲーエムベーハー ターボコンプレッサ用再循環構造
EP1530670B1 (de) * 2002-08-23 2006-05-10 MTU Aero Engines GmbH Rezirkulationsstruktur für turboverdichter
DE10330084B4 (de) * 2002-08-23 2010-06-10 Mtu Aero Engines Gmbh Rezirkulationsstruktur für Turboverdichter
GB2418956B (en) * 2003-11-25 2006-07-05 Rolls Royce Plc A compressor having casing treatment slots
GB2435904B (en) * 2006-03-10 2008-08-27 Rolls Royce Plc Compressor Casing
EP1862641A1 (de) * 2006-06-02 2007-12-05 Siemens Aktiengesellschaft Ringförmiger Strömungskanal für eine in Axialrichtung von einem Hauptstrom durchströmbare Strömungsmaschine
DE102007037924A1 (de) * 2007-08-10 2009-02-12 Rolls-Royce Deutschland Ltd & Co Kg Strömungsarbeitsmaschine mit Ringkanalwandausnehmung
DE102007056953B4 (de) * 2007-11-27 2015-10-22 Rolls-Royce Deutschland Ltd & Co Kg Strömungsarbeitsmaschine mit Ringkanalwandausnehmung
FR2931906B1 (fr) 2008-05-30 2017-06-02 Snecma Compresseur de turbomachine avec un systeme d'injection d'air.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3913231A1 (fr) 2020-05-22 2021-11-24 Safran Aero Boosters Piège à débris
BE1028337A1 (fr) 2020-05-22 2021-12-17 Safran Aero Boosters Piège à débris

Also Published As

Publication number Publication date
US8845269B2 (en) 2014-09-30
BRPI0923622A2 (pt) 2020-08-11
US20120003085A1 (en) 2012-01-05
WO2010072638A1 (fr) 2010-07-01
EP2368045A1 (fr) 2011-09-28
RU2514459C2 (ru) 2014-04-27
RU2011130927A (ru) 2013-01-27
BRPI0923622B1 (pt) 2021-01-05
JP2012513561A (ja) 2012-06-14
CA2747989A1 (fr) 2010-07-01
FR2940374B1 (fr) 2015-02-20
JP5686743B2 (ja) 2015-03-18
FR2940374A1 (fr) 2010-06-25
CN102265039B (zh) 2015-03-04
CA2747989C (fr) 2016-08-09
CN102265039A (zh) 2011-11-30

Similar Documents

Publication Publication Date Title
EP2368045B1 (fr) Carter de compresseur à cavités optimisées
EP2085620B1 (fr) Compresseur de turboréacteur
EP1775427A1 (fr) Dispositif de contrôle de jeu entre le sommet d'aube et un anneau fixe dans une turbine à gaz
EP2268926A2 (fr) Carter pour roue a aubes mobiles de turbomachine
FR2883920A1 (fr) Distributeur de turbine avec angle adouci de la cavite de purge
CA2834213A1 (fr) Dispositif d'etancheite pour distributeur de turbine de turbomachine
WO2009156645A1 (fr) Compresseur de turbomachine avec un systeme d'injection d'air
EP2795068B1 (fr) Redresseur de compresseur pour turbomachine
EP2859239B1 (fr) Carter de compresseur a cavités au calage optimisé
EP2859240B1 (fr) Carter de compresseur á cavités a forme amont optimisée
WO2013132190A1 (fr) Générateurs de vortex placés dans le canal inter-aubes d'un redresseur de compresseur
FR3090033A1 (fr) Ensemble d’aube directrice de sortie et de bifurcation pour turbomachine
WO2022106772A1 (fr) Aube comprenant un bouclier ayant une conduite de passage d'air de dégivrage
EP2307738B1 (fr) Couvercle de compresseur de turbomoteur à butée axiale
FR2987866A1 (fr) Profil de bout d'aube
FR3111677A1 (fr) Compresseur de turbomachine, procédé de montage dudit compresseur
FR2989743A1 (fr) Carter de compresseur a cavites de longueurs variees
FR3122450A1 (fr) Ensemble de turbomachine comprenant un carter et un support de traitement aerodynamique en tete d’aubes et turbomachine correspondante
FR3122903A1 (fr) Carter inter-compresseur pour turbomachine à porte hybride d'un système de décharge d'air
WO2023047034A1 (fr) Turbine à gaz haute-pression pour une turbomachine et turbomachine
FR3127518A1 (fr) Étage de turbomachine comprenant au moins un anneau d’étanchéité

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110610

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TOUYERAS, ARMEL

Inventor name: CHARTOIRE, ALEXANDRE FRANCK

Inventor name: BERT, JEROME JEAN

Inventor name: AGNERAY, XAVIER JEAN

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SNECMA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN AIRCRAFT ENGINES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 27/02 20060101AFI20170726BHEP

Ipc: F04D 29/54 20060101ALI20170726BHEP

Ipc: F04D 29/68 20060101ALI20170726BHEP

Ipc: F04D 29/52 20060101ALI20170726BHEP

INTG Intention to grant announced

Effective date: 20170824

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 954678

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009049898

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171213

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180313

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 954678

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180313

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180413

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009049898

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171216

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171216

26N No opposition filed

Effective date: 20180914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221122

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231121

Year of fee payment: 15

Ref country code: FR

Payment date: 20231122

Year of fee payment: 15

Ref country code: DE

Payment date: 20231121

Year of fee payment: 15