EP2367917A1 - Composition lubrifiante contenant un composé issu d'un acide hydroxycarboxylique - Google Patents

Composition lubrifiante contenant un composé issu d'un acide hydroxycarboxylique

Info

Publication number
EP2367917A1
EP2367917A1 EP09764995A EP09764995A EP2367917A1 EP 2367917 A1 EP2367917 A1 EP 2367917A1 EP 09764995 A EP09764995 A EP 09764995A EP 09764995 A EP09764995 A EP 09764995A EP 2367917 A1 EP2367917 A1 EP 2367917A1
Authority
EP
European Patent Office
Prior art keywords
hydroxy
carboxylic acid
derivative
acid
imide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09764995A
Other languages
German (de)
English (en)
Inventor
Stuart L. Bartley
Mark R. Baker
Shubhamita Basu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lubrizol Corp
Original Assignee
Lubrizol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lubrizol Corp filed Critical Lubrizol Corp
Publication of EP2367917A1 publication Critical patent/EP2367917A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • C10M129/76Esters containing free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/16Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/20Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/22Carboxylic acids or their salts
    • C10M105/24Carboxylic acids or their salts having only one carboxyl group bound to an acyclic carbon atom, cycloaliphatic carbon atom or hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/36Esters of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/42Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/42Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids
    • C10M105/44Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids derived from the combination of monocarboxylic acids, dicarboxylic acids and dihydroxy compounds only and having no free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/42Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids
    • C10M105/46Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids derived from the combination of monohydroxy compounds, dihydroxy compounds and dicarboxylic acids only and having no free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/50Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/08Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic sulfur-, selenium- or tellurium-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/12Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic compound containing atoms of elements not provided for in groups C10M141/02 - C10M141/10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/124Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms containing hydroxy groups; Ethers thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/106Thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/043Ammonium or amine salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/061Esters derived from boron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/36Seal compatibility, e.g. with rubber
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/76Reduction of noise, shudder, or vibrations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/34Lubricating-sealants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/14Chemical after-treatment of the constituents of the lubricating composition by boron or a compound containing boron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives

Definitions

  • the invention relates to a lubricating composition
  • a lubricating composition comprising (a) a compound derived from a hydroxy-carboxylic acid, and (b) an oil of lubricating viscosity.
  • the invention further provides for the use of the lubricating composition for lubricating a limited slip differential.
  • a limited slip differential in a vehicle typically employs a wet multi- plate clutch, i.e., clutch plates which are immersed in a lubricant.
  • the limited slip differential typically has bevel gear or spur gear planetary systems which distribute the drive torque evenly to the two driving wheels irrespective of their rotational speed. This makes it possible for the driven wheels to roll during cornering without slip between the wheel and road surface in spite of their different rotational speed.
  • dispersants and sulphur- and/or phosphorus- containing extreme pressure agents may be used. Examples of lubricants of this type are disclosed in US Patents 4,308,154; 5,547,586; 4,180,466; 3,825,495; and European Patent Application 0 399 764 Al .
  • Lubricants containing compounds suitable for (i) deposit control (US Patent 3,284,409), and (ii) wear performance are described in International Application WO 96/037585, US Patent Application 2002/0119895, and US Patent 5,487,838.
  • a lubricating composition and method as disclosed herein is capable of providing an acceptable level of at least one of (i) lubricant thermal stability, (ii) lubricant oxidative stability, (iii) high static coefficient of friction, (iv) fuel economy, (v) deposit control, (vi) seal compatibility, (vii) cleanliness and (viii) low tendency towards noise, vibration and harshness (NVH) often manifested as chatter (i.e. an abnormal noise typically referred to as a low-frequency "growl” and "groan”, particularly during higher-speed cornering manoeuvres).
  • chatter i.e. an abnormal noise typically referred to as a low-frequency "growl" and "groan”, particularly during higher-speed cornering manoeuvres.
  • the lubricant composition and method disclosed herein may also be suitable for limited slip systems having one or more distinct plate materials.
  • the plate materials may be steel, paper, ceramic, carbon fibers and systems employing a mixture of plate types such as steel on ceramic, carbon fibers in paper or steel on paper.
  • the invention provides a method of lubricating a limited slip differential comprising supplying to the limited slip differential a lubricating composition comprising (a) a derivative of (or a compound derived from) a hydroxy-carboxylic acid, and (b) an oil of lubricating viscosity.
  • the invention provides for the use of a lubricating composition
  • a lubricating composition comprising (a) a derivative of (or a compound derived from) a hydroxy-carboxylic acid, and (b) an oil of lubricating viscosity in a limited slip differential to provide an acceptable level of at least one of (i) lubricant thermal stability, (ii) lubricant oxidative stability, (iii) friction coefficient, (iv) fuel economy, (v) deposit control, (vi) seal compatibility, and (vii) chattering (abnormal noise).
  • the use provides an acceptable level of friction coefficient.
  • the present invention provides a lubricating composition and method as disclosed herein above.
  • the lubricating composition of the present invention includes a derivative of (or a compound derived from) a hydroxy-carboxylic acid, or mixtures thereof.
  • a derivative of is meant to encompass materials that are literally “derived from” the indicated hydroxy- carboxylic acid as well as those materials that are potentially “derivable from” the hydroxy-carboxylic acid, whether or not they are actually prepared using the indicated acid as a starting material.
  • Derivatives of hydroxy-carboxylic acids include materials prepared or preparable by reaction of the acid group and/or the alcohol group, such as esters, amides, and imides and mixtures of multiple such functionalities.
  • the hydroxy-carboxylic acid includes monohydroxy monocarboxylic acids, polyhydroxy monocarboxylic acids, monohydroxy polycarboxylic acids and polyhydroxy polycarboxylic acids.
  • hydroxy polycarboxylic acids may be monohydroxy polycarboxylic acids such as citric acid or polyhydroxy polycarboxylic acids such as tartaric acid.
  • the derivative of (or compound derived from) a hydroxy-carboxylic acid includes amide, ester or imide derivatives of a hydroxy-carboxylic acid, or mixtures thereof.
  • the derivative of a hydroxy-carboxylic acid may be a derivative of a hydroxy- polycarboxylic acid such as tartaric acid.
  • an amide, ester or imide derivative of a hydroxy-carboxylic acid may be at least one of hydroxy-carboxylic acid di- ester, a hydroxy-carboxylic acid di-amide, a hydroxy-carboxylic acid mono- imide, a hydroxy-carboxylic acid di-imide, a hydroxy-carboxylic acid ester- amide, a hydroxy-carboxylic acid ester-imide, and a hydroxy-carboxylic acid imide-amide.
  • the amide, ester or imide derivative of a hydroxy-carboxylic acid may be at least one of the group consisting of a hydroxy-carboxylic acid di-ester, a hydroxy-carboxylic acid di-amide, and a hydroxy-carboxylic acid ester-amide.
  • Examples of a suitable a hydroxy-carboxylic acid include citric acid, tartaric acid, lactic acid, glycolic acid, hydroxy-propionic acid, hydroxyglutaric acid, or mixtures thereof.
  • the amide, ester or imide derivative of a hydroxy-carboxylic acid may be derived from tartaric acid, citric acid, hydroxy-succinic acid, dihydroxy mono-acids, mono-hydroxy diacids, or mixtures thereof.
  • the amide, ester or imide derivative of a hydroxy-carboxylic acid includes a derivative or (or compound derived from) tartaric acid or citric acid.
  • the amide, ester or imide derivative of a hydroxy-carboxylic acid includes a compound derived from tartaric acid.
  • the derivative of a hydroxy-carboxylic acid may be selected from the group consisting of a hydroxy-carboxylic acid di-ester, a hydroxy- carboxylic acid di-amide, a hydroxy-carboxylic acid imide, a hydroxy- carboxylic acid di-imide, a hydroxy-carboxylic acid ester-amide, a hydroxy- carboxylic acid ester-imide, and a hydroxy-carboxylic acid imide-amide.
  • the derivative of a hydroxy-carboxylic acid may be selected from the group consisting of a hydroxy-carboxylic acid imide, a hydroxy-carboxylic acid di-imide, a hydroxy-carboxylic acid ester-imide, and a hydroxy-carboxylic acid imide-amide.
  • the derivative of a hydroxy-carboxylic acid may be selected from the group consisting of a hydroxy-carboxylic acid imide and a hydroxy- carboxylic acid di-imide.
  • the derivative of a hydroxy-carboxylic acid may be derivative of tartaric acid, an imide derivative of citric acid, or mixtures thereof.
  • the derivative of a hydroxy-carboxylic acid may be imide derivative of tartaric acid, an imide derivative of citric acid, or mixtures thereof.
  • the derivative of a hydroxy-carboxylic acid is either an ester or imide.
  • the ester derivative of a hydroxy-carboxylic acid may be a tartrate.
  • the imide derivative of a hydroxy-carboxylic acid may be a tartrimide.
  • the derivative of (or compound derived from) a hydroxy-carboxylic acid may be imide derivative of a hydroxy-carboxylic acid.
  • US Patent Applications US 60/939949 (filed May 24, 2007), now WO2008/147704, and US 60/939952 (filed May 24, 2007), now WO 2008/147700 disclose suitable hydroxy-carboxylic acid compounds, and methods of preparing the same.
  • the amide, ester or imide derivative of a hydroxy-carboxylic acid may be represented by Formula (1) (that is, Ia or Ib):
  • n' is 0 to 10 for Formula (Ib), and 1 to 10 for Formula (Ia); p is 1 to 5;
  • X is independently -CH 2 -, >CHR 4 , >CR 4 R 5 , >CHOR 6 , >C(OH)CO 2 R 6 , >C(CO 2 R 6 ) 2 , -CH 3 , -CH 2 R 4 or CHR 4 R 5 , -CH 2 OR 6 , -CH(CO 2 R 6 ) 2 , ⁇ C-R 6 (where ⁇ equals three valences, and may only apply to Formula (Ia)) or mixtures thereof to fulfill the valence of Formula (Ia) and/or (Ib) (typically the compound of Formula (Ia) or (Ib) has at least one X that is hydroxyl- containing (i.e., >CHOR 6 , wherein R 6 is hydrogen));
  • R 1 and R 2 are independently hydrocarbyl groups, typically containing 1 to 150, or 4 to 30, or 8 to 15 carbon atoms;
  • R 3 is a hydrocarbyl group
  • R 4 and R 5 are independently keto-containing groups (such as acyl groups), ester groups or hydrocarbyl groups, or -OR 6 , or -CO 2 R 6 , or -OH (typically not more than one -OH when X is >CR 4 R 5 ); and
  • R 6 is independently hydrogen or a hydrocarbyl group, typically containing 1 to 150, or 4 to 30, or 8 to 15 carbon atoms.
  • the compound of Formula (1) has m, n, X, and R 1 , R 2 and R 6 defined as follows: m is 0 or 1, n is 1 to 2, X is >CHOR 6 , and R 1 , R 2 and R 6 are independently hydrocarbyl groups containing 4 to 30 carbon atoms.
  • Y and Y' are both -O-.
  • the compound of Formula (1) has m, n, X, Y, Y' and R 1 , R 2 and R 6 defined as follows: m is 0 or 1 , n is 1 to 2, X is >CHOR 6 ; Y and Y' are both -O-, and R 1 , R 2 and R 6 are independently hydrogen or hydrocarbyl groups containing 4 to 30 carbon atoms.
  • the di-esters, di-amides, ester-amide, ester-imide compounds of Formula (1) may be prepared by reacting a dicarboxylic acid (such as tartaric acid), with an amine or alcohol, optionally in the presence of a known esterification catalyst.
  • a dicarboxylic acid such as tartaric acid
  • an amine or alcohol optionally in the presence of a known esterification catalyst.
  • ester-imide compounds it is necessary to have at least three carboxylic acid groups (such as citric acid).
  • the amine or alcohol typically has sufficient carbon atoms to fulfill the requirements of R 1 and/or R 2 as defined in Formula (1).
  • R 1 and R 2 are independently linear or branched hydrocarbyl groups. In one embodiment the hydrocarbyl groups are branched. In one embodiment the hydrocarbyl groups are linear.
  • the R 1 and R 2 may be incorporated into Formula (1) by either an amine or an alcohol.
  • the alcohol includes both monohydric alcohol and polyhydric alcohol.
  • the carbon atoms of the alcohol may be linear chains, branched chains, or mixtures thereof.
  • Examples of a suitable branched alcohol include 2-ethylhexanol, isotridecanol, Guerbet alcohols, or mixtures thereof.
  • Examples of a monohydric alcohol include methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, heptadecanol, octadecanol, nonadecanol, eicosanol, or mixtures thereof.
  • the monohydric alcohol contains 5 to 20 carbon atoms.
  • the alcohol includes either a monohydric alcohol or a polyhydric alcohol.
  • a suitable polyhydric alcohol examples include ethylene glycol, propylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,5-pentane diol, 1,6-hexane diol, glycerol, sorbitol, pentaerythritol, trimethylolpropane, starch, glucose, sucrose, methylglucoside, or mixtures thereof.
  • the polyhydric alcohol is used in a mixture along with a monohydric alcohol. Typically, in such a combination the monohydric alcohol constitutes at least 60 mole percent, or at least 90 mole percent of the mixture.
  • the tartaric acid used for preparing the tartrates of the invention can be commercially available, and it is likely to exist in one or more isomeric forms such as d-tartaric acid, 1-tartaric acid, d,l-tartaric acid or mesotartaric acid, often depending on the source (natural) or method of synthesis (from maleic acid).
  • a racemic mixture of d-tartaric acid and 1-tartaric acid is obtained from a catalysed oxidation of maleic acid with hydrogen peroxide (with tungstic acid catalyst).
  • These derivatives can also be prepared from functional equivalents to the diacid readily apparent to those skilled in the art, such as esters, acid chlorides, or anhydrides.
  • resultant tartrates may be solid, semi-solid, or liquid oil depending on the particular alcohol used in preparing the tartrate.
  • the tartrates are advantageously soluble and/or stably dispersible in such oleaginous compositions.
  • compositions intended for use in oils are typically oil-soluble and/or stably dispersible in an oil in which they are to be used.
  • oil-soluble as used in this specification and appended claims does not necessarily mean that all the compositions in question are miscible or soluble in all proportions in all oils.
  • composition is soluble in an oil (mineral, synthetic, etc.) or in a formulated lubricant in which it is intended to function, to an extent which permits the solution to exhibit one or more of the desired properties.
  • oil mineral, synthetic, etc.
  • formulated lubricant in which it is intended to function, to an extent which permits the solution to exhibit one or more of the desired properties.
  • solutions be true solutions in the strict physical or chemical sense. They may instead be micro-emulsions or colloidal dispersions which, for the purpose of this invention, exhibit properties sufficiently close to those of true solutions to be, for practical purposes, interchangeable with them within the context of this invention.
  • the derivative of (or compound derived from) a hydroxy-carboxylic acid may be present in the lubricating composition in an amount in the range of
  • the lubricating composition further includes an amine salt of a phosphoric acid ester.
  • the phosphoric acid utilised to prepare the phosphoric acid ester amine salt may be either a phosphoric acid or a thiophosphoric acid.
  • the amine salt of a phosphoric acid ester may contain ester groups each having 1 to 30, 6 to 30, 8 to 30, 10 to 24 or 12 to 20, or 16 to 20 carbon atoms, with the proviso that a portion or all of ester groups are sufficiently long to solubilise the amine salt of a phosphoric acid ester in an oil of lubricating viscosity.
  • ester groups containing 4 or more carbon atoms are particularly useful.
  • ester groups include isopropyl, methyl-amyl
  • ester groups is selected from the group consisting of isopropyl, methyl-amyl (may also be referred to as 1,3-dimethyl butyl), 2-ethylhexyl, heptyl, octyl, nonyl, decyl, and mixtures thereof.
  • the amines which may be suitable for use as the amine salt include primary amines, secondary amines, tertiary amines, and mixtures thereof.
  • the amines include those with at least one hydrocarbyl group, or, in certain embodiments, two or three hydrocarbyl groups.
  • the hydrocarbyl groups may contain 2 to 30 carbon atoms, or in other embodiments 8 to 26, or 10 to 20, or
  • Primary amines include ethylamine, propylamine, butylamine,
  • fatty amines include commercially available fatty amines such as "Armeen®” amines (products available from Akzo Chemicals, Chicago, Illinois), such as Armeen C, Armeen O, Armeen OL, Armeen T, Armeen HT, Armeen S and Armeen SD, wherein the letter designation relates to the fatty group, such as coco, oleyl, tallow, or stearyl groups.
  • suitable secondary amines include dimethylamine, diethylamine, dipropylamine, dibutylamine, diamylamine, dihexylamine, diheptylamine, methylethylamine, ethylbutylamine, ethylamylamine, dicoco- amine and di-2-ethylhexylamine.
  • the secondary amines may be cyclic amines such as piperidine, piperazine and morpholine.
  • the amine may also be a tertiary-aliphatic primary amine.
  • the aliphatic group in this case may be an alkyl group containing 2 to 30, or 6 to 26, or 8 to 24 carbon atoms.
  • Tertiary alkyl amines include monoamines such as tert-butylamine, tert-hexylamine, 1 -methyl- 1-amino-cyclohexane, tert- octylamine, tert-decylamine, tertdodecylamine, tert-tetradecylamine, tert- hexadecylamine, tert-octadecylamine, tert-tetracosanylamine, and tert- octacosanylamine.
  • the amine salt of a phosphorus acid ester may be a reaction product of a C 12 - 20 alkyl phosphoric acid with a tertiary C 11-22 alkyl primary amine.
  • the amine salt of a phosphorus acid ester includes an amine with CI l to C 14 tertiary alkyl primary amino groups or mixtures thereof.
  • the amine salt of a phosphorus compound includes an amine with C 14 to C18 tertiary alkyl primary amines or mixtures thereof.
  • the amine salt of a phosphorus compound includes an amine with C 18 to C22 tertiary alkyl primary amines or mixtures thereof.
  • the amine salt of a phosphorus acid ester includes the reaction product of octadecenyl phosphoric acid with Primene 81RTM.
  • Mixtures of amines may also be used in the invention.
  • a useful mixture of amines is "PrimeneTM 8 IR” and “PrimeneTM JMT.”
  • PrimeneTM 8 IR and PrimeneTM JMT are mixtures of CI l to C 14 tertiary alkyl primary amines and Cl 8 to C22 tertiary alkyl primary amines respectively.
  • the amine salt of a phosphorus acid ester is the reaction product of a C 14 to C18 alkylated phosphoric acid with Primene 81RTM which is a mixture of Cl 1 to C 14 tertiary alkyl primary amines.
  • Examples of the amine salt of a phosphorus acid ester include the reaction product(s) of isopropyl, methyl-amyl (1,3-dimethyl butyl or mixtures thereof), 2-ethylhexyl, heptyl, octyl, nonyl or decyl dithiophosphoric acids with ethylene diamine, morpholine, or Primene 81RTM, and mixtures thereof.
  • Examples of the amine salt of a phosphorus acid ester include the reaction product(s) of tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl or eicosyl dithiophosphoric acids with ethylene diamine, morpholine, or Primene 81RTM, and mixtures thereof.
  • the amine salt of a phosphorus acid ester includes the reaction product of octadecenyl dithiophosphoric acid with Primene 81RTM.
  • the amine salt of a phosphorus compound may be an amine salt of either (i) a hydroxy-substituted di- ester of phosphoric acid, or (ii) a phosphorylated hydroxy-substituted di- or tri- ester of phosphoric acid.
  • a hydroxy-substituted di- ester of phosphoric acid or (ii) a phosphorylated hydroxy-substituted di- or tri- ester of phosphoric acid.
  • the amine salt of a phosphoric acid is a compound described in US Patent 3,197,405.
  • the amine salt of a phosphorus compound other than those disclosed above may be prepared by any one of examples 1 to 25 of US Patent 3,197,405.
  • the amine salt of a phosphorus compound other than those disclosed above is a reaction product prepared from a dithiophosphoric acid is reacting with an epoxide or a glycol. This reaction product is further reacted with a phosphorus acid, anhydride, or lower ester (where "lower” signifies 1 to 8, or 1 to 6, or 1 to 4, or 1 to 2 carbon atoms in the alcohol-derived portion of the ester).
  • the epoxide includes an aliphatic epoxide or a styrene oxide.
  • useful epoxides include ethylene oxide, propylene oxide, butene oxide, octene oxide, dodecene oxide, styrene oxide and the like.
  • the epoxide is propylene oxide.
  • the glycols include aliphatic glycols having 2 to 12, or 2 to 6, or 2 to 3 carbon atoms.
  • the dithiophosphoric acids, glycols, epoxides, inorganic phosphorus reagents and methods of reacting the same are described in U.S. Patent numbers 3,197,405 and 3,544,465. The resulting acids are then salted with amines.
  • dithiophosphoric acid based product is prepared by adding phosphorus pentoxide (about 64 grams) at 58 0 C over a period of 45 minutes to 514 grams of hydroxypropyl O,O-di(l ,3- dimethylbutyl)phosphorodithioate (prepared by reacting di(l,3-dimethylbutyl)- phosphorodithioic acid with 1.3 moles of propylene oxide at 25 0 C). The mixture is heated at 75 0 C for 2.5 hours, mixed with a diatomaceous earth and filtered at 70 0 C. The filtrate contains 11.8% by weight phosphorus, 15.2% by weight sulphur, and an acid number of 87 (bromophenol blue).
  • the amine salt of a phosphorus acid ester may be present at 0 wt % to 5 wt %, or 0.01 wt % to 5 wt %, or 0.01 wt % to 2 wt %, or 0.25 wt % to 1 wt % of the lubricating composition.
  • the lubricating composition comprises an oil of lubricating viscosity.
  • oils include natural and synthetic oils, oil derived from hydrocracking, hydro gen ation, and hydrofinishing, unrefined, refined and re- refined oils and mixtures thereof.
  • Unrefined oils are those obtained directly from a natural or synthetic source generally without (or with little) further purification treatment.
  • Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Purification techniques are known in the art and include solvent extraction, secondary distillation, acid or base extraction, filtration, percolation and the like.
  • Re-refined oils are also known as reclaimed or reprocessed oils, and are obtained by processes similar to those used to obtain refined oils and often are additionally processed by techniques directed to removal of spent additives and oil breakdown products.
  • Natural oils useful in making the inventive lubricants include animal oils (e.g., lard oil), vegetable oils (e.g., castor oil), mineral lubricating oils such as liquid petroleum oils and solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types and oils derived from coal or shale or mixtures thereof.
  • Synthetic lubricating oils are useful and include hydrocarbon oils such as polymerised and interpolymerised olefins (e.g., polybutylenes, polypropylenes, propyleneisobutylene copolymers); poly(l-hexenes), poly(l- octenes), poly(l-decenes), and mixtures thereof; alkylbenzenes (e.g.
  • dodecylbenzenes tetradecylbenzenes, dinonylbenzenes, di-(2-ethylhexyl)- benzenes); polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenyls); alkylated diphenyl ethers and alkylated diphenyl sulphides and the derivatives, analogs and homo logs thereof or mixtures thereof.
  • polyphenyls e.g., biphenyls, terphenyls, alkylated polyphenyls
  • alkylated diphenyl ethers alkylated diphenyl sulphides and the derivatives, analogs and homo logs thereof or mixtures thereof.
  • Other synthetic lubricating oils include polyol esters (such as Priolube®3970), diesters, liquid esters of phosphorus-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, and the diethyl ester of decane phosphonic acid), or polymeric tetrahydrofurans.
  • Synthetic oils may be produced by Fischer-Tropsch reactions and typically may be hydroisomerised Fischer-Tropsch hydrocarbons or waxes. In one embodiment oils may be prepared by a Fischer-Tropsch gas-to-liquid synthetic procedure as well as other gas-to-liquid oils.
  • Oils of lubricating viscosity may also be defined as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines.
  • the five base oil groups are as follows: Group I (sulphur content >0.03 wt %, and/or ⁇ 90 wt % saturates, viscosity index 80-120); Group II (sulphur content ⁇ 0.03 wt %, and >90 wt % saturates, viscosity index 80-120); Group III (sulphur content ⁇ 0.03 wt %, and >90 wt % saturates, viscosity index >120); Group IV (all polyalphaolefins (PAOs)); and Group V (all others not included in Groups I, II, III, or IV).
  • PAOs polyalphaolefins
  • the oil of lubricating viscosity includes an API Group I, Group II, Group III, Group IV, Group V oil or mixtures thereof. Often the oil of lubricating viscosity is an API Group I, Group II, Group III, Group IV oil or mixtures thereof. Alternatively the oil of lubricating viscosity is often an API Group II, Group III or Group IV oil or mixtures thereof. [0062] The amount of the oil of lubricating viscosity present is typically the balance remaining after subtracting from 100 wt % the sum of the amount of the borated phospholipid, the amine salt of a phosphoric acid ester, and the other performance additives.
  • the lubricating composition may be in the form of a concentrate and/or a fully formulated lubricant. If the lubricating composition disclosed herein is in the form of a concentrate (which may be combined with additional oil to form, in whole or in part, a finished lubricant), the ratio of the of components of the lubricating composition to the oil of lubricating viscosity and/or to diluent oil include the ranges of 1 :99 to 99: 1 by weight or 80:20 to 10:90 by weight. When in the form of a concentrate, the present invention may be part of a full lubricant composition or may be a supplemental additive package or "top treat". Other Performance Additives
  • the composition of the invention optionally further includes at least one other performance additive.
  • the other performance additives include dispersants, metal deactivators, detergents, viscosity modifiers, extreme pressure agents (typically boron- and/or sulphur- and/or phosphorus- containing), antiwear agents, antioxidants (such as hindered phenols, aminic antioxidants or molybdenum compounds), corrosion inhibitors, foam inhibitors, demulsifiers, pour point depressants, seal swelling agents, friction modifiers and mixtures thereof.
  • the total combined amount of the other performance additives (excluding the viscosity modifiers) present on an oil free basis may include ranges of 0 wt % to 25 wt %, or 0.01 wt % to 20 wt %, or 0.1 wt % to 15 wt % or 0.5 wt % to 10 wt %, or 1 to 5 wt % of the composition. Although one or more of the other performance additives may be present, it is common for the other performance additives to be present in different amounts relative to each other.
  • the lubricating composition is free of molybdenum- containing additives. Viscosity Modifiers
  • the lubricating composition further includes one or more viscosity modifiers.
  • the viscosity modifier may be present in an amount of 0.5 wt % to 70 wt %, 1 wt % to 60 wt %, or 5 wt % to 50 wt %, or 10 wt % to 50 wt % of the lubricating composition.
  • Viscosity modifiers include (a) polymethacrylates, (b) esterified copolymers of (i) a vinyl aromatic monomer and (ii) an unsaturated carboxylic acid, anhydride, or derivatives thereof, (c) esterified interpolymers of (i) an alpha-olefin; and (ii) an unsaturated carboxylic acid, anhydride, or derivatives thereof, or (d) hydrogenated copolymers of styrene-butadiene, (e) ethylene- propylene copolymers, (f) polyisobutenes, (g) hydrogenated styrene-isoprene polymers, (h) hydrogenated isoprene polymers, or (i) mixtures thereof.
  • the viscosity modifier includes (a) a polymethacrylate, (b) an esterified copolymer of (i) a vinyl aromatic monomer; and (ii) an unsaturated carboxylic acid, anhydride, or derivatives thereof, (c) an esterified interpolymer of (i) an alpha-olefin; and (ii) an unsaturated carboxylic acid, anhydride, or derivatives thereof, or (d) mixtures thereof.
  • Extreme pressure agents include compounds containing boron and/or sulphur and/or phosphorus.
  • the extreme pressure agent may be present in the lubricating composition at 0 wt % to 20 wt %, or 0.05 wt % to 10 wt %, or 0.1 wt % to 8 wt % of the lubricating composition.
  • the extreme pressure agent is a sulphur- containing compound.
  • the sulphur-containing compound may be a sulphurised olefin, a polysulphide, or mixtures thereof.
  • the sulphurised olefin include a sulphurised olefin derived from propylene, isobutylene, pentene; an organic sulphide and/or polysulphide including benzyldisulphide; bis-(chlorobenzyl) disulphide; dibutyl tetrasulphide; di-tertiary butyl polysulphide; and sulphurised methyl ester of oleic acid, a sulphurised alkylphenol, a sulphurised dipentene, a sulphurised terpene, a sulphurised Diels- Alder adduct, an alkyl sulphenyl N '
  • the extreme pressure agent sulphur-containing compound includes a dimercaptothiadiazole or derivative, or mixtures thereof.
  • dimercaptothiadiazole examples include 2,5-dimercapto-l,3,4-thia- diazole or a hydrocarbyl-substituted 2,5-dimercapto-l,3,4-thiadiazole, or oligomers thereof.
  • the oligomers of hydrocarbyl-substituted 2,5-dimercapto- 1,3,4-thiadiazole typically form by forming a sulphur-sulphur bond between 2,5-dimercapto-l,3,4-thiadiazole units to form derivatives or oligomers of two or more of said thiadiazole units.
  • Suitable 2,5-dimercapto-l,3,4-thiadiazole derived compounds include 2,5-bis(tert-nonyldithio)-l,3,4-thiadiazole or 2-tert- nonyldithio-5-mercapto-l,3,4-thiadiazole.
  • the number of carbon atoms on the hydrocarbyl substituents of the hydrocarbyl-substituted 2,5-dimercapto-l,3,4-thiadiazole typically include 1 to 30, or 2 to 20, or 3 to 16.
  • the extreme pressure agent includes a boron- containing compound.
  • the boron-containing compound includes a borate ester (which in some embodiments may also be referred to as a borated epoxide), a borated alcohol, a borated dispersant or mixtures thereof.
  • the boron-containing compound may be a borate ester or a borated alcohol.
  • the borate ester may be prepared by the reaction of a boron compound and at least one compound selected from epoxy compounds, halohydrin compounds, epihalohydrin compounds, alcohols and mixtures thereof.
  • the alcohols include dihydric alcohols, trihydric alcohols or higher alcohols, with the proviso for one embodiment that hydroxyl groups are on adjacent carbon atoms i.e. vicinal.
  • Boron compounds suitable for preparing the borate ester include the various forms selected from the group consisting of boric acid (including metaboric acid, HBO 2 , orthoboric acid, H3BO3, and tetraboric acid, H2B4O7), boric oxide, boron trioxide and alkyl borates.
  • the borate ester may also be prepared from boron halides.
  • suitable borate ester compounds include tripropyl borate, tributyl borate, tripentyl borate, trihexyl borate, triheptyl borate, trioctyl borate, trinonyl borate and tridecyl borate.
  • the borate ester compounds include tributyl borate, tri-2-ethylhexyl borate or mixtures thereof.
  • the boron-containing compound is a borated dispersant, typically derived from an N-substituted long chain alkenyl succinimide.
  • the borated dispersant includes a polyisobutylene succinimide. Borated dispersants are described in more detail in US Patents 3,087,936; and Patent 3,254,025.
  • the borated dispersant may be used in combination with a sulphur-containing compound or a borate ester.
  • the extreme pressure agent is other than a borated dispersant.
  • the number average molecular weight of the hydrocarbon from which the long chain alkenyl group was derived includes ranges of 350 to 5000, or 500 to 3000, or 550 to 1500.
  • the long chain alkenyl group may have a number average molecular weight of 550, or 750, or 950 to 1000.
  • the N-substituted long chain alkenyl succinimides are borated using a variety of agents including boric acid (for example, metaboric acid, HBO 2 , orthoboric acid, H 3 BO 3 , and tetraboric acid, H 2 B 4 O 7 ), boric oxide, boron trioxide, and alkyl borates.
  • boric acid for example, metaboric acid, HBO 2 , orthoboric acid, H 3 BO 3 , and tetraboric acid, H 2 B 4 O 7
  • boric oxide for example, metaboric acid, HBO 2 , orthoboric acid, H 3 BO 3 , and tetraboric acid, H 2 B 4 O 7
  • boric oxide for example, metaboric acid, HBO 2 , orthoboric acid, H 3 BO 3 , and tetraboric acid, H 2 B 4 O 7
  • boric oxide for example, metaboric acid, HBO 2 , orthoboric acid, H 3 BO 3 , and tetrabor
  • the borated dispersant may be prepared by blending the boron compound and the N-substituted long chain alkenyl succinimides and heating them at a suitable temperature, such as, 80 0 C to 250 0 C, or 90 0 C to 230 0 C, or
  • the molar ratio of the boron compounds to the N-substituted long chain alkenyl succinimides may have ranges including 10: 1 to 1 :4, or 4: 1 to 1 :3; or the molar ratio of the boron compounds to the N-substituted long chain alkenyl succinimides may be 1 :2.
  • Friction modifiers include fatty amines, esters such as borated glycerol esters, fatty phosphites, fatty acid amides, fatty epoxides, borated fatty epoxides, alkoxylated fatty amines, borated alkoxylated fatty amines, metal salts of fatty acids, or fatty imidazolines, condensation products of carboxylic acids and poly alky lene-poly amines.
  • esters such as borated glycerol esters, fatty phosphites, fatty acid amides, fatty epoxides, borated fatty epoxides, alkoxylated fatty amines, borated alkoxylated fatty amines, metal salts of fatty acids, or fatty imidazolines, condensation products of carboxylic acids and poly alky lene-poly amines.
  • the lubricating composition may contain phosphorus- or sulphur- containing antiwear agents other than compounds described as an extreme pressure agent of the amine salt of a phosphoric acid ester described above.
  • antiwear agent may include a non-ionic phosphorus compound (typically compounds having phosphorus atoms with an oxidation state of +3 or +5), a metal dialkyldithiophosphate (typically zinc dialkyldithiophosphates), a metal mono- or di- alkylphosphate (typically zinc phosphates), or mixtures thereof.
  • the non-ionic phosphorus compound includes a phosphite ester, a phosphate ester, or mixtures thereof.
  • a more detailed description of the non- ionic phosphorus compound include column 9, line 48 to column 11, line 8 of US 6,103,673.
  • the lubricating composition of the invention further includes a dispersant.
  • the dispersant may be a succinimide dispersant (for example N-substituted long chain alkenyl succinimides), a Mannich dispersant, an ester-containing dispersant, a condensation product of a fatty hydrocarbyl monocarboxylic acylating agent with an amine or ammonia, an alkyl amino phenol dispersant, a hydrocarbyl-amine dispersant, a polyether dispersant or a poly ether amine dispersant.
  • succinimide dispersant for example N-substituted long chain alkenyl succinimides
  • a Mannich dispersant for example N-substituted long chain alkenyl succinimides
  • an ester-containing dispersant for example N-substituted long chain alkenyl succinimides
  • the succinimide dispersant includes a polyisobutylene-substituted succinimide, wherein the polyisobutylene from which the dispersant is derived may have a number average molecular weight of 400 to 5000, or 950 to 1600.
  • Suitable ester-containing dispersants are typically high molecular weight esters. These materials are described in more detail in U.S. Patents 4,234,435 and 3,172,892.
  • the dispersant includes a borated dispersant.
  • the borated dispersant includes a succinimide dispersant including a polyisobutylene succinimide, wherein the polyisobutylene from which the dispersant is derived may have a number average molecular weight of 400 to
  • Borated dispersants are described in more detail above within the extreme pressure agent description.
  • Dispersant viscosity modifiers include functionalised polyolefins, for example, ethylene-propylene copolymers that have been functionalized with the reaction product of maleic anhydride and an amine, a polymethacrylate functionalised with an amine, or esterified styrene- maleic anhydride copolymers reacted with an amine may also be used in the composition of the invention.
  • functionalised polyolefins for example, ethylene-propylene copolymers that have been functionalized with the reaction product of maleic anhydride and an amine, a polymethacrylate functionalised with an amine, or esterified styrene- maleic anhydride copolymers reacted with an amine may also be used in the composition of the invention.
  • Corrosion inhibitors include l-amino-2-propanol, octylamine octanoate, condensation products of dodecenyl succinic acid or anhydride and/or a fatty acid such as oleic acid with a polyamine.
  • Metal deactivators include derivatives of benzotriazoles (typically tolyltriazole), 1 ,2,4-triazoles, benzimidazoles, 2-alkyldithiobenzimidazoles or
  • the metal deactivators may also be described as corrosion inhibitors.
  • Foam inhibitors include copolymers of ethyl acrylate and 2- ethylhexylacrylate and optionally vinyl acetate.
  • Demulsifiers include trialkyl phosphates, and various polymers and copolymers of ethylene glycol, ethylene oxide, propylene oxide, or mixtures thereof.
  • Pour point depressants including esters of maleic anhydride-styrene, polymethacrylates, polyacrylates or polyacrylamides.
  • the limited slip differential typically incorporates a self-contained lubricant supply isolated from the lubricant disposed in the differential housing or carrier.
  • the self-contained lubricant of the limited slip differential is generally different from the lubricant supplied to a manual transmission or an automatic transmission fluid.
  • one lubricant is typically sufficient to lubricate all of the transmission constituents.
  • An axle gear may have any one of a number of different types of differentials.
  • a differential typically has three major functions. The first function is to transmit engine power to the wheels. The second function is act as the final gear reduction in the vehicle, slowing the rotational speed from the transmission to the wheels. The third function is to transmit the power to the wheels while allowing them to rotate at different speeds.
  • a number of differentials are known and include an open differential, a clutch-type limited slip differential, a viscous coupling differential, a Torsen differential and a locking differential. All of these differentials may be generically referred to as axle gears.
  • Axle gears typically require a lubricant.
  • the lubricant formulation is dependent on the type of axle gear, and the operating conditions of the axle gear.
  • an open differential axle gear is believed to require antiwear and/or extreme pressure additives.
  • a limited slip differential typically requires a friction modifier because, in addition to an open differential (known from many axle fluids), a spring pack and a clutch pack are typically present.
  • the clutch pack may contain one or more reaction plates (often made from steel) and one or more friction plates.
  • the friction plates are known, and may be made from a number of materials including paper, carbon, graphite, steel and a composite.
  • the lubricating composition suitable for the limited slip differential may have a sulphur content in the range of 0.3 wt % to 5 wt %, or 0.5 wt % to 5 wt %, or 0.5 wt % to 3 wt % or 0.8 wt % to 2.5 wt %, or 1 wt % to 2 wt %.
  • the lubricating composition suitable for the limited slip differential may be a fully formulated fluid.
  • the lubricating composition suitable for the limited slip differential may be a top treat concentrate.
  • the concentrate may be added at 0.2 wt % to 10 wt %, or 0.5 wt % to 7 wt % relative to the amount of lubricant in a limited slip differential.
  • Comparative Example 1 is the same commercially available axle fluid as EXl, except the oleyl tartrimides is not added.
  • Each test has a total of 600 cycles (six pressures x four speeds x twenty- five cycles).
  • a 600 cycle mu-PVT or friction map is conducted before and after a durability cycle to assess the change in friction performance.
  • the durability cycle consists of a constant apply pressure of 570 kPa at a fluid temperature of 80 0 C and cycling the plate differential speed between 120 and 0 rpm.
  • One complete cycle consists of 5 seconds at 0 rpm and 5 seconds at 120 rpm. This is repeated for a total of 2500 cycles.
  • the primary measurement is an NVH rating that depicts the variation in the torque signal during each discrete speed event or the difference between the minimum and maximum friction coefficient obtained during the event. This measurement assigns a number to the magnitude of the torque signal variation according to the following table:
  • the lubricating composition of the invention is capable of providing a limited slip differential with a low tendency towards post durability NVH often manifested as chatter.
  • some of the materials described above may interact in the final formulation, so that the components of the final formulation may be different from those that are initially added.
  • the products formed thereby, including the products formed upon employing lubricant composition of the present invention in its intended use, may not be susceptible of easy description. Nevertheless, all such modifications and reaction products are included within the scope of the present invention; the present invention encompasses lubricant composition prepared by admixing the components described above.
  • hydrocarbyl substituent or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of the molecule and having predominantly hydrocarbon character.
  • hydrocarbyl groups include:
  • hydrocarbon substituents that is, aliphatic (e.g., alkyl or alkenyl), alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form a ring);
  • aliphatic e.g., alkyl or alkenyl
  • alicyclic e.g., cycloalkyl, cycloalkenyl
  • aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form a ring);
  • substituted hydrocarbon substituents that is, substituents containing non-hydrocarbon groups which, in the context of this invention, do not alter the predominantly hydrocarbon nature of the substituent (e.g., halo (especially chloro and fluoro), hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulphoxy);
  • hetero substituents that is, substituents which, while having a predominantly hydrocarbon character, in the context of this invention, contain other than carbon in a ring or chain otherwise composed of carbon atoms;
  • heteroatoms include sulphur, oxygen, nitrogen, and encompass substituents as pyridyl, furyl, thienyl and imidazolyl.
  • substituents as pyridyl, furyl, thienyl and imidazolyl.
  • no more than two, preferably no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; typically, there will be no non-hydrocarbon substituents in the hydrocarbyl group.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)

Abstract

L'invention porte sur une composition lubrifiante comprenant (a) un composé issu d'un acide hydroxycarboxylique et (b) une huile de viscosité lubrifiante. L'invention porte en outre sur l'utilisation de la composition lubrifiante pour la lubrification d'un différentiel à glissement limité.
EP09764995A 2008-12-09 2009-12-08 Composition lubrifiante contenant un composé issu d'un acide hydroxycarboxylique Withdrawn EP2367917A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12093208P 2008-12-09 2008-12-09
PCT/US2009/067091 WO2010077630A1 (fr) 2008-12-09 2009-12-08 Composition lubrifiante contenant un composé issu d'un acide hydroxycarboxylique

Publications (1)

Publication Number Publication Date
EP2367917A1 true EP2367917A1 (fr) 2011-09-28

Family

ID=42072863

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09764995A Withdrawn EP2367917A1 (fr) 2008-12-09 2009-12-08 Composition lubrifiante contenant un composé issu d'un acide hydroxycarboxylique

Country Status (8)

Country Link
US (1) US20120172265A1 (fr)
EP (1) EP2367917A1 (fr)
JP (1) JP5455170B2 (fr)
KR (1) KR101679093B1 (fr)
CN (2) CN102307976A (fr)
AU (1) AU2009333576B2 (fr)
CA (1) CA2746319C (fr)
WO (1) WO2010077630A1 (fr)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101725568B1 (ko) 2009-06-04 2017-04-10 더루우브리졸코오포레이션 마찰 조정제와 점도 조정제를 함유하는 윤활 조성물
US20130324448A1 (en) 2012-05-08 2013-12-05 The Lubrizol Corporation Antiwear Composition and Method of Lubricating Driveline Device
JP5692874B2 (ja) * 2009-08-18 2015-04-01 ザ ルブリゾル コーポレイションThe Lubrizol Corporation 摩耗防止組成物および駆動系装置を潤滑する方法
US20120202727A1 (en) * 2009-08-18 2012-08-09 The Lubrizol Corporation Antiwear Composition and Method of Lubricating an Internal Combustion Engine
EP2558557A1 (fr) 2010-04-15 2013-02-20 The Lubrizol Corporation Huiles de graissage à faible teneur en cendres pour moteurs diesels
KR101848109B1 (ko) 2010-08-23 2018-04-11 더루우브리졸코오포레이션 방향족 분산제와 티탄을 함유하는 윤활제
KR101952294B1 (ko) 2011-02-16 2019-04-22 더루우브리졸코오포레이션 동력전달장치를 윤활처리하는 방법
CA2827438A1 (fr) 2011-02-17 2012-08-23 The Lubrizol Corporation Lubrifiants possedant une bonne retention du tbn
US9267092B2 (en) 2011-05-04 2016-02-23 The Lubrizol Corporation Motorcycle engine lubricant
US20140228265A1 (en) 2011-10-20 2014-08-14 The Lubrizol Corporation Bridged Alkylphenol Compounds
KR20140107604A (ko) * 2011-12-29 2014-09-04 더루우브리졸코오포레이션 차동장치를 위한 미끌림 제한 마찰조정제
CA2863950C (fr) 2012-02-08 2022-06-07 The Lubrizol Corporation Procede de preparation d'un dodecylphenate de metal alcalino-terreux sulfure
CA2868754C (fr) 2012-03-26 2016-07-05 The Lubrizol Corporation Lubrifiants de boite de vitesses manuelle assurant une performance de synchroniseur amelioree
SG11201405645UA (en) 2012-03-26 2014-10-30 Lubrizol Corp Manual transmission lubricants with improved synchromesh performance
CN105143160B (zh) 2013-02-11 2018-11-20 路博润公司 桥联碱土金属烷基酚盐
EP3004297A2 (fr) * 2013-05-30 2016-04-13 The Lubrizol Corporation Compositions synergiques d'additifs pour des huiles d'engrenages industrielles
KR102244342B1 (ko) 2013-07-31 2021-04-27 더루우브리졸코오포레이션 비금속성 표면을 가진 싱크로나이저를 포함하는 변속기를 윤활처리하는 방법
EP3080169B1 (fr) 2013-12-10 2022-08-17 The Lubrizol Corporation Procédé de préparation de polymères greffés fonctionnalisés
JP6130309B2 (ja) * 2014-01-14 2017-05-17 Jxtgエネルギー株式会社 ディファレンシャルギヤ装置用潤滑油組成物
EP3119860A1 (fr) 2014-03-19 2017-01-25 The Lubrizol Corporation Lubrifiants contenant des mélanges de polymères
CA2944879A1 (fr) 2014-04-04 2015-10-08 The Lubrizol Corporation Procede de preparation d'un dodecylphenate soufre d'un metal alcalinoterreux
CN106471104A (zh) 2014-05-06 2017-03-01 路博润公司 防腐蚀添加剂
US10793802B2 (en) 2014-11-12 2020-10-06 The Lubrizol Corporation Mixed phosphorus esters for lubricant applications
WO2017079016A1 (fr) 2015-11-06 2017-05-11 The Lubrizol Corporation Lubrifiant à haut taux de pyrophosphate
WO2017079017A1 (fr) 2015-11-06 2017-05-11 The Lubrizol Corporation Lubrifiant d'engrenage à faible viscosité
WO2017105747A1 (fr) 2015-12-18 2017-06-22 The Lubrizol Corporation Polymères oléfiniques fonctionnalisés par un azote pour lubrifiants de moteur
WO2017147380A1 (fr) 2016-02-24 2017-08-31 The Lubrizol Corporation Compositions lubrifiantes pour moteurs à injection directe
US11384308B2 (en) 2016-07-20 2022-07-12 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
WO2018017449A1 (fr) 2016-07-20 2018-01-25 The Lubrizol Corporation Sels d'amines de phosphate d'alkyle utilisables dans des lubrifiants
KR102647296B1 (ko) 2017-08-17 2024-03-13 더루브리졸코오퍼레이션 드라이브 라인 윤활제용 질소-작용화된 올레핀 중합체
EP3781655A1 (fr) 2018-04-18 2021-02-24 The Lubrizol Corporation Lubrifiant à teneur élevée en pyrophosphate
EP3911723B1 (fr) 2019-01-17 2024-05-08 The Lubrizol Corporation Fluides de traction
CA3145817A1 (fr) 2019-07-01 2021-01-07 The Lubrizol Corporation Additifs basiques sans cendres et compositions lubrifiantes les contenant
US20230023443A1 (en) 2019-12-20 2023-01-26 The Lubrizol Corporation Lubricant composition containing a detergent derived from cashew nut shell liquid
CN115038777A (zh) 2020-01-31 2022-09-09 路博润公司 用于生产烷基水杨酸的方法和由其衍生的高碱性洗涤剂
JP2023531518A (ja) 2020-06-25 2023-07-24 ザ ルブリゾル コーポレイション 潤滑剤用途のための環状ホスホネートエステル
WO2022150464A1 (fr) 2021-01-06 2022-07-14 The Lubrizol Corporation Additifs de base sans cendres et compositions lubrifiantes les contenant
WO2024019952A1 (fr) 2022-07-18 2024-01-25 The Lubrizol Corporation Composés de contrôle de dépôt pour compositions lubrifiantes

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1248643B (de) 1959-03-30 1967-08-31 The Lubrizol Corporation, Cleveland, Ohio (V. St. A.) Verfahren zur Herstellung von öllöslichen aeylierten Aminen
US3087936A (en) 1961-08-18 1963-04-30 Lubrizol Corp Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound
US3197405A (en) 1962-07-09 1965-07-27 Lubrizol Corp Phosphorus-and nitrogen-containing compositions and process for preparing the same
US3381022A (en) 1963-04-23 1968-04-30 Lubrizol Corp Polymerized olefin substituted succinic acid esters
US3284409A (en) 1965-06-22 1966-11-08 Lubrizol Corp Substituted succinic acid-boron-alkylene amine phosphatide derived additive and lubricating oil containing same
US3544465A (en) 1968-06-03 1970-12-01 Mobil Oil Corp Esters of phosphorodithioates
US3825495A (en) 1971-02-19 1974-07-23 Sun Research Development Lubricant for controlled-slip differential
US4180466A (en) 1971-02-19 1979-12-25 Sun Ventures, Inc. Method of lubrication of a controlled-slip differential
US4234435A (en) 1979-02-23 1980-11-18 The Lubrizol Corporation Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation
US4308154A (en) 1979-05-31 1981-12-29 The Lubrizol Corporation Mixed metal salts and lubricants and functional fluids containing them
FR2512458A1 (fr) 1981-09-10 1983-03-11 Lubrizol Corp Compositions, concentres, compositions lubrifiantes et procedes pour augmenter les economies de combustible dans les moteurs a combustion interne
US4741848A (en) * 1986-03-13 1988-05-03 The Lubrizol Corporation Boron-containing compositions, and lubricants and fuels containing same
GB8911732D0 (en) 1989-05-22 1989-07-05 Ethyl Petroleum Additives Ltd Lubricant compositions
ATE169665T1 (de) 1991-04-18 1998-08-15 Lubrizol Corp Reaktionsprodukt einer borhaltigen verbindung mit einem phospholipid sowie schmiermittel und wässrige flüssigkeiten, die dieses enthalten
JP2859083B2 (ja) * 1993-05-25 1999-02-17 出光興産株式会社 自動車リミテッドスリップデファレンシャル用潤滑油組成物
US5547586A (en) 1994-05-02 1996-08-20 Rossmark Medical Publishers, Inc. Method and apparatus for the desalination of salt containing water
EP0828806A1 (fr) 1995-05-26 1998-03-18 The Lubrizol Corporation Lubrifiants comprenant des compositions contenant du molybdene et leurs procedes d'utilisation
US20020119895A1 (en) 1995-05-26 2002-08-29 Susan P. Cook Lubricants with molybdenum containing compositions and methods of using the same
US6103673A (en) 1998-09-14 2000-08-15 The Lubrizol Corporation Compositions containing friction modifiers for continuously variable transmissions
KR100415909B1 (ko) * 2001-04-30 2004-01-24 (주)메디엔스 인삼추출물이 함유된 연질 캅셀 피막의 제조 방법 및 제조된 연질캅셀 피막
JP4199945B2 (ja) * 2001-10-02 2008-12-24 新日本石油株式会社 潤滑油組成物
JP5042106B2 (ja) * 2002-04-08 2012-10-03 株式会社豊田中央研究所 自動変速機用潤滑油組成物
JP2004155924A (ja) * 2002-11-07 2004-06-03 Tonengeneral Sekiyu Kk 変速機用潤滑油組成物
US7635668B2 (en) * 2004-03-16 2009-12-22 The Lubrizol Corporation Hydraulic composition containing a substantially nitrogen free dispersant
US7651987B2 (en) 2004-10-12 2010-01-26 The Lubrizol Corporation Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof
US7807611B2 (en) 2004-10-12 2010-10-05 The Lubrizol Corporation Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof
JP4885442B2 (ja) * 2004-11-26 2012-02-29 Jx日鉱日石エネルギー株式会社 潤滑油組成物及びそれを用いた駆動伝達装置
CA2606747A1 (fr) * 2005-05-13 2006-11-23 The Lubrizol Corporation Utilisation d'alkoxylates d'acide gras pour empecher le calage de soupapes d'admission dans un moteur
CA2625029C (fr) * 2005-10-11 2014-12-23 The Lubrizol Corporation Produit d'amines et d'acide hydroxy utilise comme modificateur de frottement adaptes aux liquides de transmission automatique
BRPI0719343A2 (pt) 2006-11-28 2014-02-11 Lubrizol Corp Composição lubrificante de baixo teor de enxofre, baixo teor de fósforo, baixo teor de cinzas, adequada para o uso em um motor de combustão interna e métodos para lubrificar um motor de combustão interna e para produzir composição.
US20080182770A1 (en) 2007-01-26 2008-07-31 The Lubrizol Corporation Antiwear Agent and Lubricating Compositions Thereof
US20080274921A1 (en) * 2007-05-04 2008-11-06 Ian Macpherson Environmentally-Friendly Lubricant Compositions
CA2688098C (fr) * 2007-05-24 2016-04-19 The Lubrizol Corporation Composition lubrifiante contenant un agent anti-usure
US20100093573A1 (en) * 2007-05-24 2010-04-15 The Lubrizol Corporation Lubricating Composition Containing Sulphur, Phosphorus and Ashfree Antiwear Agent and Amine Containing Friction Modifier

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2010077630A1 *

Also Published As

Publication number Publication date
KR20110106865A (ko) 2011-09-29
CA2746319C (fr) 2017-09-19
AU2009333576A1 (en) 2011-06-23
CN102307976A (zh) 2012-01-04
JP5455170B2 (ja) 2014-03-26
WO2010077630A1 (fr) 2010-07-08
AU2009333576A2 (en) 2011-06-30
US20120172265A1 (en) 2012-07-05
KR101679093B1 (ko) 2016-11-23
JP2012511593A (ja) 2012-05-24
CA2746319A1 (fr) 2010-07-08
AU2009333576B2 (en) 2016-05-26
CN105602652A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
CA2746319C (fr) Composition lubrifiante contenant un compose issu d'un acide hydroxycarboxylique
EP2046926B1 (fr) Composition lubrifiante multi-dispersante
AU2010295801A1 (en) Lubricating composition containing an ester
AU2009342167B2 (en) Antiwear composition and method of lubricating driveline device
EP2430133B1 (fr) Methode de lubrification avec une composition lubrifiante contenant un dérivé de l'acide malique
WO2008027883A2 (fr) Composition lubrifiante
US9309478B2 (en) Lubricating composition containing metal carboxylate
EP2240560B1 (fr) Procédé de lubrification d'un différentiel à verrouillage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110624

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171115

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180327