EP2366496B1 - Machine-outil manuelle dotée d'une poignée - Google Patents

Machine-outil manuelle dotée d'une poignée Download PDF

Info

Publication number
EP2366496B1
EP2366496B1 EP20110001856 EP11001856A EP2366496B1 EP 2366496 B1 EP2366496 B1 EP 2366496B1 EP 20110001856 EP20110001856 EP 20110001856 EP 11001856 A EP11001856 A EP 11001856A EP 2366496 B1 EP2366496 B1 EP 2366496B1
Authority
EP
European Patent Office
Prior art keywords
tool
hand
handle
gear
operated power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20110001856
Other languages
German (de)
English (en)
Other versions
EP2366496A1 (fr
Inventor
Stefan Tulodziecki
Ulrich Kasper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Festool GmbH
Original Assignee
Festool Group and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Festool Group and Co KG filed Critical Festool Group and Co KG
Publication of EP2366496A1 publication Critical patent/EP2366496A1/fr
Application granted granted Critical
Publication of EP2366496B1 publication Critical patent/EP2366496B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/008Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B23/00Portable grinding machines, e.g. hand-guided; Accessories therefor
    • B24B23/02Portable grinding machines, e.g. hand-guided; Accessories therefor with rotating grinding tools; Accessories therefor
    • B24B23/03Portable grinding machines, e.g. hand-guided; Accessories therefor with rotating grinding tools; Accessories therefor the tool being driven in a combined movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B23/00Portable grinding machines, e.g. hand-guided; Accessories therefor
    • B24B23/04Portable grinding machines, e.g. hand-guided; Accessories therefor with oscillating grinding tools; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/001Gearings, speed selectors, clutches or the like specially adapted for rotary tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/02Construction of casings, bodies or handles

Definitions

  • the invention relates to a hand-held machine tool, in particular a grinding machine and / or a polishing machine, according to the preamble of claim 1.
  • Another hand-held machine tool in which runs between the drive motor and the tool holder, a handle, wherein the drive motor via a transmission member, in particular in the form of a drive belt, is rotatably coupled to the tool holder, for example, goes out DE 43 10 270 A1 out.
  • a hand planer in which a planer roll and a drive motor are arranged at the longitudinal end portions of a handle and that below it.
  • the tool axis and the motor axis of the hand-held machine tool extend transversely to the longitudinal axis of the handle, from one transverse side of the machine housing to the opposite transverse side.
  • the two axes run approximately parallel to a workpiece to be machined with the hand planer.
  • the drive motor is usually in the handle, which is encompassed by the operator, arranged.
  • the handle is the operation of the grinding machine by the heating current engine, which is certainly not ergonomic.
  • a hand-held power tool according to claim 1 is provided.
  • the two axes namely the motor axis and the drive axis extend from the top to the bottom of the machine housing, are preferably approximately perpendicular to the workpiece surface to be processed with the hand-held machine tool.
  • the handle By means of the handle, sufficient pressure can be exerted on the tool, for example a sanding pad or polishing pad.
  • the drive motor is arranged away from the handle, so that it is not heated.
  • the transmission member comprises a transmission belt which is wound around the output part of the drive motor and the drive part of the tool holder.
  • the transmission gear is configured in this preferred embodiment as a belt transmission.
  • the transmission belt can also be indirectly connected to the output part and / or the drive part, for example, wrapped around a with the output part or a rotatably coupled to the drive part pulley can be.
  • the rotary coupling can be realized eg via a gear transmission.
  • a connecting section of the machine housing runs between the tool area and the motor area, wherein a passage opening is provided between the handle and the connecting section, which allows grasping the handle.
  • the connecting portion like the handle, which is conveniently hollow inside or tubular, can be used for various purposes, for example for use as a dust discharge channel, for housing a component of the transfer gear, e.g. the transmission belt, or the like.
  • a fan wheel drivable by the drive motor is arranged between an outflow opening for discharging or blowing out air from the machine housing and the connecting section or the handle.
  • air can be carried or blown through the connecting portion or the handle, which then guides the fan through the discharge opening from the machine housing.
  • the air can be, for example, cooling air or also used for dust removal air.
  • the drive part is a component of a transmission arranged in the tool area for driving the tool holder.
  • the transmission and the drive motor are expediently approximately the same weight, the gear may possibly be slightly heavier, so that a higher load on the tool is available. In any case, a good weight balance between on the one hand the transmission and on the other hand the drive motor is possible if a gear is arranged in the tool area.
  • the tool area and the drive area are expediently designed in the manner of cylinders, which are connected to one another by the connecting section and / or the handle.
  • the transmission is or includes an eccentric gear.
  • the drive part is arranged on or formed by a hollow shaft of the eccentric gear.
  • On or in the hollow shaft is a Tool shaft on which in turn the tool holder is arranged, mounted eccentrically to the drive axis of the drive part.
  • the tool axis is thus expediently eccentric to the drive axis.
  • the tool axis and the drive axis preferably run parallel, at least substantially parallel.
  • the transmission can also be a kind of manual transmission.
  • the gearbox expediently comprises switching means with which it can be connected between at least two operating modes, e.g. different speed levels and / or different tool motion pattern, is switchable for driving the tool.
  • switching means with which it can be connected between at least two operating modes, e.g. different speed levels and / or different tool motion pattern, is switchable for driving the tool.
  • a manually operable switching handle for switching the transmission is expediently arranged on an outer side of the tool region of the machine housing.
  • An actuatable by the shift knob element is preferably arranged in a space between the drive motor and the tool holder, the handle. Such an arrangement is made possible, for example, by providing a clearance between the drive motor and the tool. For example, the actuatable element passes through a gap which is present between a first and a second run of the transmission belt.
  • An actuating gear for shifting the transmission is conveniently located between the handle and the transmission.
  • the actuating gear and the gearbox are preferably coaxial with the drive axis.
  • the drive part and / or the output part are expediently arranged in the region of the underside of the machine housing.
  • the aforementioned connecting portion for connecting the drive area and the tool area.
  • the handle preferably has a tube shape suitable for embracing.
  • the handle extends along the longitudinal axis and is provided for encompassing from a transverse side of the machine housing forth.
  • an approximately round cross section of the handle is particularly ergonomic, polygonal or rounded polygonal cross sections are also conceivable.
  • the handle is suitable for receiving at least one electrical component, for example a controller, an electric adjusting element, in particular a speed controller for the drive motor or the like.
  • the handle forms a flow channel for cooling air or has such.
  • the handle is thus flowed through by cooling air, so that it is quasi cooled from the inside.
  • this cooling air can also be used for the purpose of cooling the arranged in the handle control or the setting with advantage.
  • the drawing shows a hand machine tool 10, which in the present case is designed as a grinding machine or polishing machine, depending on which tool is used.
  • the hand machine tool 10 can be operated in an eccentric mode.
  • a machine housing 11 of the hand-held machine tool 10 comprises a tool area 12 and a motor area 13, which are connected to one another by a handle 14 and a connecting section 15.
  • the machine housing 11 is formed, for example, by two shell-like side parts 16a, 16b, which delimit a receiving space for components to be protected of the hand-held machine tool 10.
  • the motor portion 13 and the tool portion 12 as well as the handle 14 and the connecting portion 15 have a substantially cylindrical shape, wherein the end faces of Cylinder defined by the handle 14 and the connecting portion 15 on the peripheral sides of the cylinder defined by the tool area 12 and the engine area 13.
  • a drive motor 17 is housed, in this case an electric motor, wherein pneumatic motors or other drive principles are also conceivable.
  • the drive motor 17 is supplied with electrical energy via an electrical connection 18.
  • the hand-held power tool 10 is therefore a wired electrical machine, whereby a battery operation, thus a wireless variant is well within the scope of the invention.
  • the electrical connection 18 is arranged on a rear side 19 of the machine housing and is preferably suitable for fastening a connection cable by means of a known quick connection technology.
  • the tool region 12 forms a front side 20 of the machine housing 11.
  • the connecting section 15 extends on a lower side 21, the handle 14 on an upper side 22 of the machine housing 11.
  • a tool holder 23 for holding and receiving exemplified tools 24 or 25 is further arranged.
  • the tool holder 23 is arranged on the front side of a tool shaft 26.
  • the tool holder 23 advantageously has a bayonet 118, wherein also other fastening means, e.g. Clamp or screw means are possible.
  • An eccentric weight 117 is advantageously arranged on the tool holder 23.
  • the eccentric weight 117 stands as a circle segment section from the drive part 33 downwards in the direction of the tool holder 23 from.
  • an eccentric 27 is provided, with the eccentric movements of the tool shaft 26 can be generated.
  • the eccentric 27 is disposed in the tool area 12 of the machine housing 11. It would be possible, for example, instead of the eccentric 27, for example, also. to accommodate a manual transmission with multiple speed levels in the tool area 12.
  • the eccentric 27 forms, so to speak, a main gear of the hand-held power tool 10th
  • a distance between the drive motor 17 and the driven eccentric 27 and the tool holder 23 with respect to a longitudinal axis 28 of the machine housing 11 is present. This distance is bridged by a transmission gear 29, which rotatably couples the drive motor 17 with the eccentric 27.
  • the transmission gear 29 has a transmission member 30 in which it is present and a transmission belt 31. Conceivable, however, would be a transmission by means of a toothed gear or a transmission rod, for example, a propeller shaft.
  • the transmission belt 31 couples an output part 32 of the drive motor 17 to a drive part 33 of the eccentric 27, thus a drive part for the tool holder 23.
  • Matching the transmission belt 31 is at the output member 32 and the drive member 33 to pulleys or pulleys around which the transmission belt 31 is wound.
  • edges 34 are advantageously provided, between which the transmission belt 31 finds secure hold.
  • a corrugation 35 on the components 31, 32 and / or 33 is also expedient, so that reliable operation and reliable hold of the transmission belt 31 on the output part 32 and / or drive part 33 are ensured as well.
  • the drive member 33 rotates about a drive axis 36, to which a tool axis 37 of the tool holder 23 is eccentric by an eccentric 38, but parallel.
  • a motor shaft 39 of the drive motor 17 rotates about a motor shaft 40.
  • the output member 32 is rotatably mounted on the motor shaft 39.
  • the drive shaft 36 and the motor shaft 40 each extend from the top 22 to the bottom 21 of the machine housing 11.
  • the arrangement is such that the motor shaft 40 and the drive shaft 36 are parallel to each other, whereby inclination are conceivable.
  • it does not necessarily have to be such that the tool axis 37 and the drive axle 36 are parallel to one another, even if this is preferred.
  • the motor shaft 40 and the drive axle 36 extend perpendicular to a machining surface 41 of the tool 24 or 25, and therefore also perpendicular to a workpiece surface to be machined.
  • the remote arrangement of drive motor 17 and eccentric 27 in the hand-held machine tool 10 allows an ergonomically advantageous housing various components, such as a controller 42 which is arranged in the interior of the handle 14. From the controller 42, a board is exemplified. Coupled directly to the control 42 is an adjusting element 43, for example an adjusting element for setting a rotational speed.
  • a motor switch 45 is arranged, which is ergonomically placed. Namely, an operator can comfortably grasp the handle 14 by grasping around the handle 14 through a through-hole 46 provided between the handle 14 and the connecting portion 15. The motor switch 45 can then be conveniently pressed with, for example, the thumb to turn the drive motor 17 on and off.
  • the handle extends somewhat obliquely downwards, that is to say in the direction of the tool holder 23, so that a kind of waisting is provided at the transitional area between the tool region 12 and the handle 14, which is ergonomically advantageous.
  • the handle is slightly enlarged, which allows a comfortable palm rest.
  • the connecting portion 15 is not only used for stiffening and reinforcing purposes, but also contains functional elements, namely, for example, a receiving space for the transmission member 30.
  • the connecting portion 15 has a relatively large transverse width, which also benefits the stability of the machine housing 11.
  • a wide receiving space for the transmission belt 31 is created, so that its dreams 47 from the output part 32 to the drive part 33 and back again can have a relatively large distance from each other.
  • the strands 47 run close to side walls 48 of the connecting portion 15th
  • a dust discharge channel 49 is arranged in the connecting section 15.
  • the dust removal channel 49 extends in a channel housing 50, which encapsulates the dust removal channel 49, as far as it runs in the interior of the machine housing 11. Thus dust-laden air does not enter the interior of the machine housing 11.
  • the dust removal channel 49 extends from the tool holder 23 to a configured for connection of a suction hose discharge port 51 on the rear side 19 of the machine housing 11, that is also on the output member 32 over.
  • the channel housing 50 accordingly has an adapted outer contour, expediently also to provide movement space for the transmission member 30.
  • the space concept of the hand-held machine tool 10 also enables optimum cooling of the components which heat up during operation, also with regard to ergonomic handling.
  • Cooling air can namely flow through inlet openings 52 on side sections of a peripheral wall 53 of the tool area 12 and on the side walls 48, near the tool area 12 into the machine housing 11.
  • the cooling air then flows on the one hand on the eccentric 27, so that this is cooled, wherein the cooling air flowing there is introduced in particular in the connecting portion 15, on the other hand through the handle 14 through, where it cools the controller 42 and also for a pleasant Temperature of the handle 14 for the operator ensures, then to the drive motor 17 pass before the cooling air leaves the machine housing 11 through discharge openings 54 on the rear side 19.
  • all the essential components in the interior of the machine housing 11 are cooled.
  • a fan 55 which is arranged on the motor shaft 39, generates the cooling air flow. It goes without saying that a fan wheel can also be provided for generating a dust removal air stream, for example where a speed sensor 56 is arranged on the motor shaft 39.
  • the fan 55 is arranged close to the outflow openings 54, namely in the vicinity of the underside 21. Thus, therefore, the fan 55 and the output member 32 are positioned side by side. It is understood that even at the top 22 of the machine housing 11, for example, a fan wheel would be conceivable.
  • a fan wheel could also be provided, for example, on a transmission designed differently from the eccentric gear 27 in order to generate the air flow in the tool area 12.
  • the drive motor 17, which heats up relatively strongly during operation, is arranged away from the handle 14 in the space concept of the hand-held power tool 10, which represents a clear difference from conventional grinding machines in which the motor is arranged in the handle. Furthermore, the machine housing 11 is optimally balanced, so to speak, since the drive motor 17 can be counterweight for the eccentric gear.
  • the drive member 33 is rotatably connected to a drive shaft 57, for example in one piece with this.
  • the drive shaft 57 is mounted by means of drive shaft bearings 58, 59 rotatably about the drive shaft 36 to a transmission housing 60 of the eccentric 27.
  • the drive shaft bearings 58, 59 are arranged, for example, in bearing receivers, in particular stages, of the transmission housing 60.
  • the drive shaft bearings 58, 59 are ball bearings, although other types of rolling bearings or slide bearings are also conceivable.
  • the drive shaft 57 rotates centrically to the transmission housing 60th
  • the drive shaft 57 is configured here as a hollow shaft which receives the tool shaft 26.
  • a middle, rod-like portion of the tool shaft 26 penetrates a central portion of the drive shaft 57, which is there, as it were, fitted.
  • the bearings 58, 59 are located between tool shaft bearings 61, 62, which are arranged on opposite end portions of the drive shaft 57, for example, on a bearing receiving part 63 on the tool holder 23 opposite side and in an interior of the drive part 33.
  • the bearing receiving part 63 is rotatably connected to the drive shaft 57, could also be integral therewith.
  • a projection of the bearing receiving part 63, located in the interior the drive shaft 57 is located, could also serve for transverse support (transverse to the axes 36, 37), but this is not the case here, since the support on the two tool shaft bearings 61, 62 takes place.
  • the gear housing 60 is now rotatably received in the machine housing 11, for which suitable form-fitting contours, screws and the like are provided.
  • a floating storage by means of rubber rings or other elastic elements, for example, is possible.
  • the tool shaft bearings 61, 62 form a tool shaft bearing. If the drive shaft 57 is now driven by the drive part 33, a bearing friction of the tool shaft bearings 61, 62 ensures that the tool shaft 26 is also taken to this rotation about the drive axle 36 and thus performs a rotational movement. When no braking torque acts on the tool shaft 26, the tool shaft 26 rotates at the same speed as the drive shaft 57.
  • Such an operation mode of the eccentric gear 27 is hereinafter referred to as the free rotation eccentric mode F.
  • the tool holder 23 can also be placed in a forced rotation, whereby it undergoes so-called hypercycloidal movements, i. on the one hand, a rotation about the drive axis 36, on the other hand, a superimposed eccentric caused by the eccentricity 38.
  • This mode is referred to as forced rotation eccentric mode Z, so that the hand machine tool with the eccentric modes F and Z a total of two rotation eccentric modes F , Z has.
  • a forcible rotation guide 64 which includes a rolling element 65 and a rolling base 66. At least in forced rotation eccentric mode Z is the rolling elements 65 with the tool shaft 26 rotatably and the rolling base 66 with the gear housing 60 rotatably, thus also the machine housing 11, rotatably. This is emphasized because by canceling one or both of the aforementioned rotational strengths, the forced rotation could be canceled, which is not the case in the embodiment. Rather, the rolling element 65 and the rolling base 66 are displaced relative to each other so that they are engaged in the forced rotation eccentric mode Z to effect the forced rotation. In the other rotation eccentric mode, namely the free rotation eccentric mode F, the rolling element 65 and the rolling base 66 are separated from each other.
  • the rolling element 65 is configured as a planetary gear, which is arranged in the interior of a rolling gear 66 forming the ring gear. In the forced rotation eccentric mode Z, there is a form fit between these two components, so that the rolling element 65 with its toothing on the outer circumference meshes with the toothing on the inner circumference of the rolling base 66.
  • an only eccentric mode N is possible in which the tool 24 or 25 does not rotate about the drive axis 36, but only performs the eccentric 38 caused by the eccentric movements when the drive motor 17 is running.
  • rotational angle guide means 67 are engaged with the tool shaft 26.
  • the rotation angle guide means 67 comprise a first linear guide 68, and a second linear guide 69, which are at right angles to each other at an angle, in the present case.
  • a guide axis q of the first linear guide 68 runs, for example, transversely to the longitudinal axis 28, a guide axis 1 of the second linear guide 69 parallel to the longitudinal axis 28, wherein of course other orientations of the first and second linear guides 68, 69 relative to each other and / or the machine housing 11 in principle would also be possible.
  • the linear guides 68, 69 include first and second guide members 70, 71 and a guide base 72 rotatable relative to the gear housing 60.
  • the second guide member 71 is sandwiched between the first guide member 70 and the guide base 72.
  • the second guide element 71 forms an intermediate layer.
  • the second guide element 71 is designed in the manner of a carriage, which is mounted so as to be bidirectionally movable between the first guide element 70 and the guide base 72, namely along the guide axes 1 and q of the two linear guides 68, 69.
  • the guide base 72 is rotatable with respect to the gear housing 60 except for a buffering, but linearly displaceable.
  • a holder 73 has e.g. Linear guide bushings, grooves or the like comprehensive sliding guides 74, in which guide projections 75 of the guide base 72 are mounted so as to move along a control axis, for example parallel to the drive axis 36th
  • a coupling by means of a rotary adjustment or other angular positions of the adjusting axis to the drive shaft 36 would also be possible depending on the type of actuation of the rotation angle guide means for engaging and disengaging with the tool shaft 26.
  • the guide projections 75 protrude from the guide base 72 in the direction of the holder 73. This in turn is rotatably held in a receptacle 76.
  • the receptacle 76 is located, for example, on a cover 77 of the transmission housing 60.
  • a spring 78 loads the rotation angle guide means 67 in the coupling position.
  • the spring 78 is supported on the one hand on the holder 73 and on the other hand on the guide base 72 from.
  • the spring 78 is further penetrated by a pin 79 which also penetrates into a mating bore on the guide base 72 to provide further stabilization thereof.
  • the holder 73 is configured as an elastic holder. It comprises for example a block-like buffer 73b made of rubber or an elastic plastic, in which the sliding guides 74 are accommodated.
  • the two sliding guides 74 are radially away from the drive axle 36, along which the central pin 79 extends.
  • a torque acts on the sliding guides 74.
  • the sliding guides 74 can rotate slightly about the drive axis 36, namely around a buffer path 80.
  • the buffer path 80 is advantageously limited by rotational stops 81. When the guide projections 75 are designed around the buffer path 80 at the maximum, they strike the rotation stops 81.
  • this operating state is extremely rare, so that a vibration-poor operation of the hand-held power tool 10 is possible by the designed as an elastic buffer holder 73.
  • the corresponding guides are in the present case configured as sliding guides, it being expedient to use matching metal materials or plastics, e.g. Brass on steel or the like, so that the rotation angle guide means 67 operate with low friction, which reduces the noise and is also energy efficient.
  • linear guides 68 and / or 69 could have some play transverse to their axes q and 1.
  • the first guide member 70 which is formed here by a projection 82 on the rolling body 65, in engagement with a guide receptacle 83 on the second guide member 71, so to speak, the intermediate element.
  • From the second guide element 71 is upwards, ie in the direction of the guide base 72, side guides 160 from.
  • side guides 160 configured as walls (frame-like configurations or hooks are also possible) are inwardly, ie in the direction of the guide base 72, retaining projections 161 from, so that the guide base 72 from the side can be guided forth under the guide projections 163.
  • the retaining projections 161 hold the second guide element 71 on the guide base 72, in particular when disengaging from the tool shaft 26.
  • the rotation angle guide means 67 are balanced so to speak.
  • a balance recess 62 is arranged on the projection 82.
  • Further guidance measures can be taken so that, for example, a guide projection 163 is arranged in the guide receptacle 83 and engages in the direction of a guide recess 164 on the associated projection 82 of the rolling element 65.
  • the eccentric 27 is easily switchable. A one-hand operation for switching between the operating modes F, Z and N is possible. There are not several controls or controls required, but it is sufficient a single handle 84, which is designed here as a rotary handle. Schiebebetuschistsbeatene, bevel gear or the like would be optional in other embodiments, but are not realized in the hand-held power tool 10.
  • the shift handle 84 is disposed on the top 22 of the machine housing 11 so that it can be easily gripped. Conveniently, the arrangement of the switching handle 84 on the head portion 44 of the tool area 12.
  • the switching handle 84 are provided appropriately marks that represent the operating modes F, N and Z symbolically, so that an operator at the respective rotational position of the control handle 84 directly set respectively recognize the selected operating mode.
  • the motor switch 45 blocks an adjustment of the control handle 84 when it drives the drive 17 turns on. It is also possible that the switching handle 84 blocks the motor switch 45 when no unique switching position is set. Between a drive switch and a gearshift switch of a hand-held machine tool according to the invention, a locking of the gearshift switch by the engine switch and / or vice versa in at least one position of the engine switch or the gearshift switch is expediently provided.
  • the switching handle 84 forms a component of switching means 85 for switching the eccentric gear 27.
  • the switching handle 84 acts via a coupling joint, which in the present case is designed as a universal joint 86 (other joints would be conceivable) on an actuating member 87, which in turn is coupled with a link operating member 88 in turn. in the present case is rotationally coupled.
  • the actuator 87 is configured as a kind of cap for the transmission.
  • the actuating member 87 is rotatably mounted on a front of the cover 77 projecting portion of the bolt 79.
  • a projection 89 of the lid 77 engages in a receptacle 90 of the actuating member 87, so that in this respect a rotary guide is realized.
  • the actuator 87 can rotate on the cover 77, in the embodiment about the drive shaft 36, wherein an axial offset would be optional.
  • the slide actuator 88 includes an annular body 91 which is also rotatably mounted about the drive axle 36 within the transmission housing 60. From the annular body 91 are pivot bearing projections 92 radially outward from which engage in a rotary guide 93 of the gear housing 60.
  • the rotary guide 93 is designed for example as an annular groove.
  • the rotary guide 93 is, for example, between the lid 77 and formed the gear housing 60, which facilitates the assembly of the slide actuator 88.
  • the switching handle 84 rotates about an axis which is angled relative to the drive axis 36, wherein the angular offset between the axis of rotation of the control handle 84 and the axis of rotation of the actuating member 87 actuated by it is bridged by the coupling joint designed as a universal joint 86.
  • the driving projections 94 are driving projections 94, for example three, frontally from, i.
  • the driving projections 94 penetrate the cover 77. This has this ring grooves 95, for example, on the outer circumference of the receptacle 90.
  • the driving projections 94 engage in driving recesses 96 of the actuator 87 rotatably (a rotational game would be conceivable), so that the actuator 87 entrains the slide actuator 88 in a rotary actuator.
  • the slide actuator 88 can naverstellen to one hand to adjust the position of the rotation angle guide means 67 relative to the tool shaft 26 (switching between the modes F and N) and on the other hand, the relative position of the rolling base 66 to the rolling element 65 (switching between the operating modes Z and F).
  • the switching sequence is such that the eccentric 27 passes from the forced rotation eccentric Z mode in the free rotation eccentric mode F and from there into the only Exzentermodus N and vice versa (N - F - Z).
  • counter track followers 97 slide on one Gate 98 of the slide actuator 88 along and from a lower portion (closer to the first guide member 70) to a higher portion 100 (farther from the first guide member 70), so that thereby the second guide member 71 and the guide base 72 of the first guide member 70 opposite the spring force of the spring 78 are lifted.
  • the linear guide engagement between the guide elements 70, 71 is then canceled, so that the tool shaft 26 can rotate freely.
  • the SchmidtissenGermaner 97 can in turn get back into the lower portion 99, so that the guide elements 70, 71 engage and the eccentric cam mode N is set.
  • the SchmidtissenGermaner 97 are presently designed as radially outwardly projecting projections of the second guide member 71.
  • the "package" of guide base 72 and second guide member 71 can be moved into the interior of the ring body 91 in turn or something out of it to switch between the two operating modes N and F.
  • the slide actuator 88 For actuation of the rolling base 66, ie for their adjustment in the forced rotation eccentric mode Z or out, the slide actuator 88 also has link follower 101, which cooperate with a counter runner 102 of a counter link member 103.
  • the Schmidtkulissenglied 103 includes an annular body 104, on the front side of the counter-backdrop 102 is arranged. The Schmidtkulissenglied 103 in turn actuates the rolling base 66th
  • the Wälzbasis 66 and the Jacobkulissenglied 103 are both rotationally fixed, as well as with respect to the drive shaft 36 firmly connected to each other, so that an adjustment of the Gegenkulissengliedes 103 causes an adjustment of the Wälzbasis 66 directly and vice versa.
  • the Wälzbasis 66 is locked with the Jacobkulissenglied 103, for example.
  • the Gegenkulisse 102 is a ring backdrop, so that the slide follower 101 slides on rotation of the slide operating member 88 on the counter-guide 102 along.
  • the Jacobkulisse 102 now has deep portions 106 and higher portions 107, which are rotatably offset by 120 ° to each other corresponding to the gate followers 101, so that an annular uniform support of the gate follower 101 is given to the Schmidtisse 102 and vice versa.
  • this is also the case with the upper pair of links, since the counter-link followers 97 are arranged diametrically opposite one another, so that a uniform support of the rotational-angle guide means 67 on the link 98 is possible.
  • Theellesmaschineer 97 are formed by the Drehlagervorsprüngen 92, at least from the radially inner portions. On the underside of these rotary bearing projections 92 locking projections 108 are arranged, which slide on the counter-guide 102 along. Now, when the slide followers 101 slide along the higher portions 107, thereby the counter link member 103 is force-applied in a direction away from the rolling element 65, so that the rolling base 66 is moved away from the rolling element 65 and disengages. Then, the tool shaft 26 is free of the forced rotation guide 64 and can rotate freely relative to the drive shaft 36.
  • the free rotation eccentric mode F is set.
  • the rolling base 66 and the counter link element 103 firmly connected thereto are non-rotatable with respect to the drive axle 36, but can be adjusted parallel to the drive axle 36 by means of linear guides 110.
  • the linear guides 110 comprise guide rods 111, which are fixedly connected to the lid 77. In any case, the linear guides 110 extend parallel to the drive axle 36 and are fixed relative to the gear housing 60.
  • the guide rods 111 penetrate guide seats 112 on the counter link member 103 and the rolling base 66 provided on respective guide projections 113.
  • the guide projections 113 are radially outward of the Annular body 104 and the annular Wälzbasis before and are also against rotation in grooves 114 on the inner circumference of the gear housing 60, so that the combination as Wälzbasis 66 and counter link member 103 is exclusively linearly movable, but secured against rotation.
  • the bayonet 118 comprises a bayonet disc 119, which is spring-loaded by means of a spring arrangement, for example a spring assembly 120.
  • a screw 121 penetrates the spring assembly 120 and the bayonet disc 119 and is screwed from below into the tool shaft 26.
  • the spring assembly 120 loads the bayonet plate 119 in the direction of a pressure plate 122.
  • From the bayonet disc 119 are bayonet projections 123, 124 radially outwardly from, wherein the bayonet projection 124 is narrower than the other two bayonet projections 123.
  • the projections 123, 124 together form a rotation angle coding 125.
  • the bayonet projections 123, 124 can be inserted through bayonet recesses 126, 127 on bayonet receptacles 128 or 129, ie machine mounts, the tools 24, 25, wherein subsequently the tool 24 or 25 is rotated relative to the tool holder 23, so that the projections 123, 124 come with Schugreifvorsprüngen 130 of the bayonet receptacles 128, 129 for abutment or abut against rotational stops 131.
  • the bayonet recesses 126 extend over larger rotational angular distances than the narrower bayonet recess 127. Only the narrower bayonet projection 124 passes through them. Thus, it is only possible that rotation-angle-sensitive tool 25, namely the delta plate to attach to the tool holder 23 when the tool holder 23 and the tool 25 are rotationally correct to each other. Thus, therefore, the recesses 126, 127 form a counter-coding 132, which cooperates with the rotation angle coding 125.
  • the tools 24, 25 have on their advantageous elastic bottom expediently Velcro or other fastening means 180 for attachment of a sanding sheet or a polishing element.
  • Suction openings 181 are also advantageously arranged on the underside, which communicate via channels leading to the top of the tools 24, 25 with a suction space 117b, which is connected to the dust discharge channel 49.
  • the tools 24, 25 are provided with annular seals 149 which seal on the tool holder 23 in the mounted state in cooperation with the tool holder 23, the suction chamber 117b.
  • the spring force of the spring assembly 120 which applies a contact surface 130b of the tools 24, 25 to the pressure plate 122, is sufficient to reliably hold the tool 24 on the bayonet 118 even when the drive motor 17 is switched off.
  • the rotation lock comprises a latch 133, which is expediently actuated by a push handle 134.
  • the latch 133 acts in its locking position in which it engages or engages behind one of the bayonet projections 123 or 124, as the second, the rotation stops 131 opposite rotational stop.
  • the latch 133 is advantageously spring-loaded in the locking position.
  • the operator only has to operate the push handle 134, i. in the direction of the working surface 41 of the tool 25 to adjust the latch 133 in its release position.
  • the locking occurs almost automatically when the delta tool 25 is rotated to its correct position, namely, when its tip 135 faces the front 20 of the machine housing 11.
  • the rotation angle guide means 67 have advantages: Namely, if they are in the eccentric only mode N, the tool holder 23 can no longer rotate about the drive shaft 36. A fastening and releasing the tool 24 is thus very easy to accomplish by a simple rotational movement.
  • the rotation angle guide means 67 functions as a so-called spindle stop.
  • the rotation angle guide means 67 are, which is advantageous in the tool 25, in only one angular position of the tool shaft 26 with the drive shaft 57 into engagement, so that the rotational angular position of the tool holder 23 to the operating position of the tool 25 in relation to the machine housing 11 fits (tip 135 to the front 20), but alternatively, another or more other angular positions are conceivable, so the tip 135 could protrude obliquely or laterally transversely in front of the machine housing 11.
  • the protrusion 82 on the rolling element 65 is configured such that it fits in the guide seat 83 only in the correct rotational angle position relative to the second guide element 71.
  • guide surfaces 136, 137 have different distances from the tool axis 37 intersecting diagonals of the rolling element 65, corresponding to guide surfaces 138 and 139 on the associated guide receptacle 83.
  • the guide surfaces 136-139 By off-center or eccentric arrangement of the guide surfaces 136-139, it is only possible, they engage with each other when the rotational angle of the projection 82, and therefore also the thus rotatably fixed tool shaft 26 and the tool holder 23 to the rotational position of the machine side rotational angle stable second guide element 71 fits.
  • the rotation angle guides 67 are in the cam-only mode N, i. the guide members 70, 71 are engaged also matches the rotational angular position of the rotational angle sensitive tool 25 so that the tip 135 fits forward to the front 20.
  • the tool 25 has an actuating projection 140.
  • This is suitable, for example, for gripping the tool 25 in order to rotate it.
  • the actuating projection 140 also fulfills a blocking function in which it interacts with a blocking body 141.
  • the locking contour 142 passes through a mounting path 143 when mounted on the tool holder 23 and finally assumes an end position 144 in the mounted state.
  • the locking contour 142 cooperates with the locking body 141 and that alternately such that when located in the end position 144 tool 25, an adjustment of the eccentric 27 in one of the rotation eccentric modes F or Z not possible is and vice versa, when the eccentric 27 is adjusted in one of these modes, it is not possible to attach the tool 25 to the tool holder 23.
  • the blocking body 141 is guided on the outside of the transmission housing 60 linear.
  • the transmission housing 60 is therefore closed so far.
  • This measure is particularly advantageous because the locking body 141 projecting in front of the outer contour of the machine housing 11, namely down, at least when he has a in FIG. 10a shown, to the tools 24 or 25 vorverInstitut first position assumes, so to speak, a tool locking position.
  • a passage opening 145 through which a locking projection 146 passes out of the machine housing 11 a risk that dust enters the interior of the machine housing 11.
  • the transmission housing 60 is encapsulated.
  • the locking projection 146 projects from an angular section 147, which in turn protrudes angularly from a rod section 148 of the locking body 141 radially outward (relative to the gear housing 60).
  • the rod portion 148 is guided directly on the outer circumference of the transmission housing 60, ie it is adapted to the contour of the gear housing 60.
  • a radial offset between the transmission housing 60 and an outer periphery of the seal 149 which has the tool 25 to the tool holder 23 out, bridged.
  • the locking projection 146 acts in its first position in an area outside the seal 149, namely on the locking contour 142nd
  • An Axialverstellweg the locking body 141 is limited by linear stops.
  • the angle section 147 strikes, for example, on the drive part 33, in particular its lower edge.
  • a circumferential projection 150 acts in the transition region between the gear housing 60 and cover 77 as a longitudinal stop, namely a step 151 of the locking body 141 on the Circumferential projection 150 strikes.
  • the axial travel of the locking body 141 is limited.
  • the bevel gear 152 For its actuation in the first position now acts a bevel gear 152 (other gear, for example, toothed or rope gears are conceivable).
  • the bevel gear 152 comprises an actuator bevel 153 on the actuator 87 and a locking body inclined surface 154 at the upper, free end of the locking body 141.
  • the actuator bevel 153 is provided on an actuating projection 155 which projects radially outward in front of the actuator 87.
  • the actuator 87 When the actuator 87 is rotated counterclockwise, at least in the direction of the locking body 141, the two inclined surfaces 153, 154 slide along each other, wherein the locking body 141 in the direction of the tool holder 23rd is adjusted (see arrow in FIG. 10b ). However, when the actuator 87 is rotated in the opposite direction, the lock body 141 is exposed to the top so that it can move from its first position to the second position.
  • the blocking body 141 is advantageously loaded by a spring 156 in the second position.
  • the spring 156 rests on the one hand on the machine housing 11, i. on the outer circumference of the passage opening 145, and on the other hand on the locking body 141, specifically the angle section 147th
  • the brake member 170 is an annular brake member, which with its front side on a brake plate 171, the Tool holder 23 annular surrounds, rubs.
  • the brake plate 171, so to speak, a brake ring is, so to speak expediently a replaceable component that can be replaced when worn.
  • a brake segment 172 still protrudes from the brake plate 171 at an angle, on which, due to the eccentricity 38, the tool 24 rubs along in a specific rotational angle position and thereby experiences a braking torque.
  • the brake segment 172 and the brake member 170 are not constantly, but only in certain rotational angle states with each other, so that the braking effect does not take place over an entire rotation of the tool 24, but only partial movements. As a result, an advantageous braking effect can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Claims (13)

  1. Machine-outil manuelle, en particulier ponceuse et/ou polisseuse, comprenant un moteur d'entraînement (17) destiné à entraîner un support d'outil (23) pour un outil (24, 25), en particulier un disque de ponçage ou un disque de polissage, étant entendu que le moteur d'entraînement (17) est logé dans un boîtier (11) de la machine-outil manuelle (10) sur le côté supérieur (22) duquel est agencée une poignée (14) pour tenir et guider la machine-outil manuelle (10) et sur le côté inférieur (21), dirigé vers la pièce à travailler lors de l'utilisation de la machine-outil manuelle (10), duquel est agencé un support d'outil (23) pour l'outil (24, 25), étant entendu que par rapport au boîtier (11), une partie motrice (32) du moteur d'entraînement (17) peut être mise en rotation autour d'un axe du moteur (40) et une partie d'entraînement (33) est montée de façon à pouvoir être mise en rotation autour d'un axe d'entraînement (36) afin d'entraîner le support d'outil (23) et elles sont couplées en rotation l'une avec l'autre au moyen d'un mécanisme de transmission (29) présentant un organe de transmission (30), et étant entendu que le support d'outil (23) et la partie d'entraînement (33) sont agencés dans une zone d'outil (12) du boîtier (11) et le moteur d'entraînement (17) dans une zone de moteur (13) du boîtier (11), étant entendu que la zone d'outil (12) et la zone de moteur (13) sont agencées à distance l'une de l'autre par rapport à un axe longitudinal (28) du boîtier (11) dans des zones d'extrémité opposées l'une à l'autre de la poignée (14), étant entendu que l'axe du moteur (40) et/ou l'axe d'entraînement (36) s'étendent depuis le côté supérieur (22) du boîtier (11) vers le côté inférieur (21) du boîtier (11), caractérisée en ce que la partie d'entraînement (33) fait partie intégrante d'un mécanisme agencé dans la zone d'outil (12) destiné à entraîner le support d'outil (23) qui comprend ou forme une transmission à excentrique (27) et en ce que la partie d'entraînement (33) est agencée sur un arbre creux de la transmission à excentrique (27) ou formée par celui-ci, étant entendu qu'une prise d'outil (26) sur laquelle le support d'outil (23) est agencé est montée dans l'arbre creux de façon excentrique par rapport à l'axe d'entraînement (36) de la partie d'entraînement (33).
  2. Machine-outil manuelle selon la revendication 1, caractérisée en ce que l'organe de transmission (30) comprend une courroie de transmission (31).
  3. Machine-outil manuelle selon la revendication 1 ou 2, caractérisée en ce que l'axe du moteur (40) et/ou l'axe d'entraînement (36) sont parallèles l'un à l'autre.
  4. Machine-outil manuelle selon l'une des revendications précédentes, caractérisée en ce qu'une section de jonction (15) du boîtier (11), en particulier pour l'organe de transmission (30) et/ou pour une conduite d'évacuation de poussières (49), s'étend entre la zone d'outil (12) et la zone de moteur (13) et en ce qu'il est prévu entre la poignée (14) et la section de jonction (15) une ouverture pénétrante (46) qui permet une saisie sur le pourtour complet de la poignée (14).
  5. Machine-outil manuelle selon la revendication 4, caractérisée en ce que la poignée (14) et la section de jonction (15) relient la zone d'outil (12) et la zone de moteur (13) l'une à l'autre à la manière de montants longitudinaux.
  6. Machine-outil manuelle selon l'une des revendications précédentes, caractérisée en ce qu'une hélice (55) pouvant être entraînée par le moteur d'entraînement (17) est agencée entre une ouverture de sortie (51) destinée au soufflage ou au rejet d'air en dehors du boîtier (11) et la section de jonction (15) ou la poignée (14).
  7. Machine-outil manuelle selon l'une des revendications précédentes, caractérisée en ce que la transmission comprend des moyens de commutation (85) avec lesquels elle peut être commutée entre au moins deux modes de fonctionnement (F, N, Z), en particulier différents niveaux de vitesse de rotation et/ou différents schémas de mouvement d'outil, pour l'entraînement de l'outil (24, 25).
  8. Machine-outil manuelle selon l'une des revendications précédentes, caractérisée en ce qu'un levier de commande (84) pouvant être actionné manuellement, destiné à commuter la transmission, est agencé sur un côté extérieur de la zone d'outil (12) du boîtier (11) et en ce qu'au moins un élément pouvant être actionné par le levier de commande (84) est agencé dans un espace intermédiaire entre le moteur d'entraînement (17) et le support d'outil (23), en étant dirigé vers la poignée (14).
  9. Machine-outil manuelle selon l'une des revendications précédentes, caractérisée en ce qu'un mécanisme d'actionnement destiné à commuter la transmission est agencé entre la poignée (14) et la transmission, étant entendu que le mécanisme d'actionnement et le mécanisme de commutation sont coaxiaux par rapport à l'axe d'entraînement (36).
  10. Machine-outil manuelle selon l'une des revendications précédentes, caractérisée en ce que la partie motrice (32) et/ou la partie d'entraînement (33) sont agencées dans la zone du côté inférieur (21) du boîtier (11).
  11. Machine-outil manuelle selon l'une des revendications précédentes, caractérisée en ce que la poignée (14) présente une forme de tube adaptée à la saisie sur son pourtour et/ou s'étend le long de l'axe longitudinal (28) et est prévue pour une saisie sur son pourtour depuis un côté transversal du boîtier (11).
  12. Machine-outil manuelle selon l'une des revendications précédentes, caractérisée en ce qu'au moins un composant électrique, en particulier une commande (42) et/ou un élément de réglage électrique (43), est agencé dans la poignée (14).
  13. Machine-outil manuelle selon l'une des revendications précédentes, caractérisée en ce que la poignée (14) présente ou forme un canal pour la circulation d'air de refroidissement.
EP20110001856 2010-03-19 2011-03-07 Machine-outil manuelle dotée d'une poignée Active EP2366496B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010012022A DE102010012022A1 (de) 2010-03-19 2010-03-19 Hand-Werkzeugmaschine mit einem Handgriff

Publications (2)

Publication Number Publication Date
EP2366496A1 EP2366496A1 (fr) 2011-09-21
EP2366496B1 true EP2366496B1 (fr) 2014-03-05

Family

ID=44027423

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110001856 Active EP2366496B1 (fr) 2010-03-19 2011-03-07 Machine-outil manuelle dotée d'une poignée

Country Status (2)

Country Link
EP (1) EP2366496B1 (fr)
DE (1) DE102010012022A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3551378B1 (fr) * 2016-12-09 2024-02-28 Mirka Ltd. Outil électrique bimode

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013100085A1 (de) * 2013-01-07 2014-07-10 C. & E. Fein Gmbh Oszillierend angetriebene Werkzeugmaschine
DE102013000266A1 (de) * 2013-01-10 2014-07-10 Alfred Raith GmbH Sägen- und Werkzeugfabrikation Schalt- und Steuereinrichtung für ein Elektrowerkzeug und Verfahren zu dessen Steuerung
DE102019121699B4 (de) * 2019-08-12 2023-02-16 Metabowerke Gmbh Gehäuse für ein Elektrohandwerkzeuggerät

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE684810C (de) * 1938-10-26 1939-12-06 Mix & Genest Akt Ges Loesbare kardanische Griffkupplung fuer Drehschalter
US4125968A (en) * 1977-08-10 1978-11-21 Air Tool Service Company High speed grinding tool
DE4118392B4 (de) * 1991-06-05 2010-03-18 Robert Bosch Gmbh Exzenterschleifer
DE4208804A1 (de) * 1992-03-19 1993-09-23 Festo Kg Pistolenartig ausgebildetes elektowerkzeug
DE4310270A1 (de) 1993-03-30 1994-10-06 Festo Kg Handhobelmaschine
DE19647992A1 (de) * 1996-11-20 1998-05-28 Karl Schweikert Motorisch angetriebenes Handwerkzeug zum Bohren, Schrauben oder ähnlichen Verrichtungen
DE10104993A1 (de) * 2001-02-03 2002-08-22 Bosch Gmbh Robert Handwerkzeugmaschine zum Schleifen, Polieren oder dergleichen
DE102008063510A1 (de) * 2008-12-10 2010-06-17 Flex-Elektrowerkzeuge Gmbh Handgehaltene Werkzeugmaschine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3551378B1 (fr) * 2016-12-09 2024-02-28 Mirka Ltd. Outil électrique bimode

Also Published As

Publication number Publication date
DE102010012022A1 (de) 2011-09-22
EP2366496A1 (fr) 2011-09-21

Similar Documents

Publication Publication Date Title
EP2366493B1 (fr) Machine-outil manuelle dotée d'un engrenage excentrique comprenant un moyen de guidage à angle de rotation
EP0836544B1 (fr) Meuleuse portative electrique
EP2283979B1 (fr) Outil manuel doté d'un entraînement par oscillations
EP2366494B1 (fr) Machine-outil manuelle dotée d'un engrenage excentrique à rotation forcée
EP0916456B1 (fr) Outil à main électrique
EP2897515B1 (fr) Système de raccordement d'aspiration
EP2383076B1 (fr) Appareil auxiliaire pour une machine-outil manuelle et machine-outil manuelle en étant équipée
EP2366496B1 (fr) Machine-outil manuelle dotée d'une poignée
WO2018072996A1 (fr) Dispositif de fixation rapide pour machine-outil portative, en particulier une meuleuse d'angle, dotée d'au moins arbre de sortie susceptible d'être entraîné en rotation
WO2019042907A1 (fr) Machine-outil portative
EP1497081B1 (fr) Machine-outil manuelle a arret de rotation de broche
WO2019042908A1 (fr) Machine-outil portative
EP0868264B1 (fr) Outil a main electrique
DE102011051938A1 (de) Werkzeugaufnahmevorrichtung, Werkzeugaufnahmevorrichtung-Werkzeug-Kombination und Werkzeugmaschine
DE102012219638B4 (de) Rohrbandschleifeinheit
EP2366492B1 (fr) Machine-outil manuelle dotée d'un frein radial
EP2366495B1 (fr) Machine-outil manuelle dotée d'un engrenage excentrique et d'un verrou
WO2018072997A1 (fr) Dispositif de fixation rapide pour machine-outil portative, en particulier une meuleuse d'angle dotée d'au moins arbre de sortie susceptible d'être entraîné en rotation
DE10066116B4 (de) Betätigungshandgriff
DE102014216441A1 (de) Handwerkzeugmaschine
DE4333754B4 (de) Handwerkzeugmaschine mit einer Spindelarretierung
DE102022203059A1 (de) Werkzeugaufnahmevorrichtungen für tragbare Werkzeugmaschinen, insbesondere Winkelschleifmaschinen
WO2023099084A1 (fr) Dispositifs de réception d'outil pour machines-outils portatives, en particulier des meuleuses d'angle
DE102020209074A1 (de) Befestigungsvorrichtung für eine Absaugvorrichtung
DE102016224527A1 (de) Handwerkzeugmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20120314

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FESTOOL GROUP GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B25F 5/02 20060101ALI20130909BHEP

Ipc: B24B 23/04 20060101AFI20130909BHEP

Ipc: B25F 5/00 20060101ALI20130909BHEP

Ipc: B24B 23/03 20060101ALI20130909BHEP

INTG Intention to grant announced

Effective date: 20130927

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 654504

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011002249

Country of ref document: DE

Effective date: 20140417

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140605

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011002249

Country of ref document: DE

Representative=s name: BREGENZER, MICHAEL, DIPL.-ING., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FESTOOL GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011002249

Country of ref document: DE

Owner name: FESTOOL GMBH, DE

Free format text: FORMER OWNER: FESTOOL GROUP GMBH & CO. KG, 73240 WENDLINGEN, DE

Effective date: 20140918

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011002249

Country of ref document: DE

Representative=s name: BREGENZER, MICHAEL, DIPL.-ING., DE

Effective date: 20140918

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011002249

Country of ref document: DE

Representative=s name: PATENTANWAELTE BREGENZER UND REULE PARTNERSCHA, DE

Effective date: 20140918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140605

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140705

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011002249

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011002249

Country of ref document: DE

Representative=s name: PATENTANWAELTE BREGENZER UND REULE PARTNERSCHA, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140707

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140307

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

26N No opposition filed

Effective date: 20141208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011002249

Country of ref document: DE

Effective date: 20141208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140307

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110307

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 654504

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160307

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230207

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240313

Year of fee payment: 14

Ref country code: GB

Payment date: 20240304

Year of fee payment: 14