EP2364414B1 - Continuous steam generator - Google Patents

Continuous steam generator Download PDF

Info

Publication number
EP2364414B1
EP2364414B1 EP09748302.8A EP09748302A EP2364414B1 EP 2364414 B1 EP2364414 B1 EP 2364414B1 EP 09748302 A EP09748302 A EP 09748302A EP 2364414 B1 EP2364414 B1 EP 2364414B1
Authority
EP
European Patent Office
Prior art keywords
steam generator
nose
combustion chamber
pipes
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09748302.8A
Other languages
German (de)
French (fr)
Other versions
EP2364414A2 (en
Inventor
Martin Effert
Andreas Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL09748302T priority Critical patent/PL2364414T3/en
Priority to EP09748302.8A priority patent/EP2364414B1/en
Publication of EP2364414A2 publication Critical patent/EP2364414A2/en
Application granted granted Critical
Publication of EP2364414B1 publication Critical patent/EP2364414B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • F22B21/341Vertical radiation boilers with combustion in the lower part
    • F22B21/343Vertical radiation boilers with combustion in the lower part the vertical radiation combustion chamber being connected at its upper part to a sidewards convection chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/62Component parts or details of steam boilers specially adapted for steam boilers of forced-flow type

Definitions

  • the invention relates to a continuous steam generator having a combustion chamber with a number of burners for fossil fuel and a surrounding gas-tight welded steam generator tubes Um Publishedswand, wherein the combustion chamber is connected downstream of the gas side in an upper region via a horizontal gas a vertical gas train, wherein the vertical gas train facing part of the surrounding wall is inclined inwardly below the horizontal gas train and thereby forms with the bottom of the adjacent horizontal gas flue a projecting into the combustion chamber nose.
  • a fossil-fueled steam generator the energy of a fossil fuel is used to generate superheated steam, which can then be supplied to power a steam turbine, for example, in a power plant.
  • steam temperatures and pressures steam generators are usually designed as a water tube boiler, d. h., The supplied water flows in a number of tubes which receive the energy in the form of radiant heat of the burner flames and / or by convection of the resulting during combustion flue gas.
  • the steam generator tubes usually form the combustion chamber wall by being welded together in gas-tight fashion.
  • the combustion chamber downstream side of the combustion chamber arranged Dampfampfererrohe can be provided in the exhaust duct.
  • Fossil fueled steam generators can be categorized by a variety of criteria: Steam generators may generally be designed as natural, forced circulation or continuous flow steam generators. In a continuous steam generator, the heating of a number of evaporator tubes leads to a complete Evaporation of the flow medium in the evaporator tubes in one go.
  • the flow medium - usually water - is supplied to the evaporator tubes downstream superheater tubes after its evaporation and overheated there. This description is strictly valid only for partial loads with subcritical pressure of water (P Kri ⁇ 221 bar) in the evaporator. For the sake of clarity, however, this illustration will be used throughout the following description.
  • the position of the evaporation end point ie the location at which the water content of the flow is completely evaporated, is variable and mode-dependent.
  • the evaporation end point is, for example, in an end region of the evaporator tubes, so that the overheating of the evaporated flow medium already begins in the evaporator tubes.
  • a continuous steam generator In contrast to a natural or forced circulation steam generator, a continuous steam generator is not subject to any pressure limitation, so that it can be designed for live steam pressures far above the critical pressure of water.
  • such a continuous steam generator is usually operated with a minimum flow of flow medium in the evaporator tubes in order to ensure reliable cooling of the evaporator tubes.
  • the pure mass flow through the evaporator usually no longer suffices for cooling the evaporator tubes, so that an additional throughput of flow medium is superimposed on the passage of flow medium through the evaporator in circulation.
  • the operationally provided minimum flow of flow medium in the evaporator tubes is thus not completely evaporated during startup or during low load operation in the evaporator tubes, so that in such a mode at the end of the evaporator tubes still unvaporized flow medium, in particular a water-steam mixture is present.
  • the evaporator tubes of the continuous steam generator are usually designed for a flow through unvaporised flow medium after passing through the combustion chamber walls, continuous steam generators are usually designed so that even when starting and in low load operation, a water ingress into the superheater tubes is reliably avoided.
  • the evaporator tubes are usually connected to the superheater tubes connected downstream via a Wasserabscheidesystem.
  • the water separator causes a separation of the emerging during the start or in low load operation of the evaporator tubes water-steam mixture in water and in steam.
  • the steam is supplied to the water separator downstream superheater tubes, whereas the separated water can be fed back to the evaporator tubes, for example via a circulating pump or discharged through a decompressor.
  • steam generators may continue to be classified, for example, into vertical and horizontal types.
  • a draw-in and two-pass boiler are distinguished.
  • the flue gas produced by the combustion in the combustion chamber always flows vertically from bottom to top. All arranged in the flue gas heating surfaces are flue gas side above the combustion chamber. Tower boilers offer a comparatively simple construction and easy control of the stresses caused by the thermal expansion of the tubes. Furthermore, all heating surfaces of the arranged in the flue gas duct steam generator tubes are horizontal and therefore completely drainable, which may be desirable in frost-prone environments.
  • the walls are usually arranged hanging in a boiler stand, so that they can expand freely during heating during operation downwards.
  • the two-steam generator usually comprises four walls per train, in which care must be taken to ensure that the walls of the individual trains extend uniformly, since otherwise unacceptable stresses can occur in the connections of the individual walls.
  • Such Zweugugkessel often include a so-called combustion chamber nose.
  • This nose is a projection which is formed from the combustion chamber wall inclined inwardly at the transition to the horizontal gas flue and the bottom of the horizontal flue.
  • Such a combustion chamber nose improves the flow of the flue gas at the transition to the horizontal gas flue.
  • Another possibility is to divide the tubes of the combustion chamber rear wall at the bottom of the nose flow medium side, so that a part of the tubes is guided in the tube of the nose, another part parallel to it vertically to the boiler frame. But this is only a part of the tubes and the flow medium for the nose available, which can sometimes lead to insufficient cooling of the nose, as this has a relatively high heat input by their exposed position in the combustion chamber. In contrast, the heat input for the removed, vertically upwardly guided support tubes is correspondingly lower, which can cause problems in terms of the distribution of the mass flow. All wall pipes above the nose and the support tubes should have the same possible steam temperatures at the outlet. Furthermore, a complex transition into the nose tube z. B. by changing the pipe pitch or other tube geometry required.
  • the DE 12 44 803 B shows a continuous steam generator with a combustion chamber with a number of burners for fossil fuel and a formed from gas-tight welded together steam generator tubes Um Registeredswand, wherein the combustion chamber is connected downstream of the gas side in a gasizzug in a top region via a horizontal gas train, a vertical gas train a vertical gas flue facing the Um chargedswand below the horizontal gas flue is inclined inwardly and thereby forms with the bottom of the adjacent horizontal flue a nose projecting into the combustion chamber, wherein at least a portion of the steam generator tubes of the nose at the upper end a number of support tubes downstream of the flow medium side, the are guided substantially vertically to the lower end of the nose.
  • the invention has for its object to provide a continuous steam generator of the type mentioned above, which has a simplified construction with a particularly high reliability in operation.
  • This object is achieved by at least part of the steam generator tubes of the nose at the upper end of a number of support tubes downstream of the flow medium side, which are guided substantially vertically to the lower end of the nose.
  • the invention is based on the consideration that a particularly simple technical construction of a continuous steam generator in Zweizugbauweise would be possible if the suspension of the rear wall could happen in the nose in particular by vertically arranged support tubes and thus no additional springs or constant hanger are necessary.
  • care should be taken to ensure that the nose is adequately cooled due to the high heat input.
  • the largest possible part of the tubes of the lower region of the rear wall of the combustion chamber should be led into the nose, so that almost the entire medium flow is available for cooling the nose.
  • complicated distribution systems or separate nose drills as a remedy mean that additional technical design effort is required.
  • At least a portion of the tubes should be performed against the usual flow direction of the bore of the combustion chamber from top to bottom only at the upper end of the nose. These tubes can then serve as support tubes for the rear wall when connected to the lower end of the nose.
  • all steam generator tubes of the vertical gas train facing part of the surrounding wall flow medium side steam generator tubes downstream of the nose. This ensures that the entire flow medium from the combustion chamber rear wall or its lower steam generator tubes flows into the nose and thus ensures sufficient cooling of the nose. Because of its exposed position inside the combustion chamber, the nose has a particularly high heat input.
  • This collector can then collect the branched off for the support tubes flow medium and continue to provide the system via an appropriate forwarding available.
  • the branched off for the support tubes medium flow to the other steam generator tubes of the upper portion of the combustion chamber is connected in parallel and fed back to the system.
  • a full use of the medium flow of the support tubes is possible.
  • the advantages associated with the invention are, in particular, that by the flow-medium side downstream of a number of support tubes, which are guided substantially vertically to the lower end of the nose, at least a portion of the steam generator tubes of the nose at the upper end a particularly simple technical construction while high operational reliability of the steam generator is possible.
  • steam boiler tubes are used to load transfer through the boiler frame and no separate constructions such as constant hanger used, on the other hand stands by this construction, the entire water-steam flow of the rear wall for the nose available and it is ensured sufficient cooling of the combustion chamber.
  • the tube walls largely the same temperatures occur, without a separate and elaborate bore of the nose or a complicated transition with changes in the geometry of the tubes would be required.
  • the continuous steam generator 1 according to the FIG. 1 comprises a trained as a vertical gas flue combustion chamber 2, which is connected downstream of a horizontal region 4 in an upper region 4. At the horizontal gas train 6, another vertical gas train 8 connects.
  • the Um Publishedswand 12 of the combustion chamber 2 is formed from each other gas-tight welded steam generator tubes, in the flow through a pump not shown in detail - usually Water - is pumped, which is heated by the heat generated by the burners.
  • the steam generator tubes can be aligned either spirally or vertically. In a spiral arrangement, a relatively higher design effort is required, but the resulting imbalances - different mass flows and temperatures of the flow medium in parallel pipes - comparatively lower than in the vertical-bore combustion chamber. 2
  • the continuous steam generator 1 further comprises, to improve the flue gas duct, a nose 14 which merges directly into the bottom 16 of the horizontal gas flue 6 and projects into the combustion chamber 2. Due to its exposed position in the interior of the combustion chamber 2, the nose 14 has a particularly high heat input and should therefore have a particularly high throughput of flow medium, so that care is taken to ensure adequate cooling of the nose 14.
  • the trains of the steam generator 1 are arranged suspended in a frame 18, so that the trains of the steam generator 1 can expand unhindered when heated down. So that the walls of the combustion chamber 2 of the steam generator 1 are as uniform as possible, all surrounding walls 12 of the combustion chamber 2 should have approximately the same temperature, so that a uniform heating and expansion takes place. This is easiest to accomplish by the entire support structure consists of steam generator tubes.
  • the steam generator tubes 20 of the lower region of the rear wall of the combustion chamber 2 first open at the point A (for the geometric position of the points A to D, these are also in FIG. 1 shown) in a collector 22 and are passed on to point B.
  • point A for the geometric position of the points A to D, these are also in FIG. 1 shown
  • point B where, first of all the mass flow of A is performed in the tubing of the nose 14.
  • the entire mass flow from the steam generator tubes 20 of the combustion chamber rear wall is available for cooling the nose.
  • the mass flow is divided, a part of the tubes runs as a support tubes 24 to the point D on the ceiling of the steam generator, another part is guided from point C as support tubes 26 down to point B.
  • the support tubes 24, 26 form a continuous support structure for the rear wall of the combustion chamber from steam generator tubes.
  • the support tubes 26 open into a collector 28 at point B and the medium flow is supplied via a connecting line 30 to the point B downstream pipes or a water-steam separation system.
  • a use of the medium flow from the support tubes 26 is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Gas Burners (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

Die Erfindung betrifft einen Durchlaufdampferzeuger mit einer Brennkammer mit einer Anzahl von Brennern für fossilen Brennstoff und einer aus gasdicht miteinander verschweißten Dampferzeugerrohren gebildeten Umfassungswand, wobei der Brennkammer heizgasseitig in einem oberen Bereich über einen Horizontalgaszug ein Vertikalgaszug nachgeschaltet ist, wobei ein dem Vertikalgaszug zugewandter Teil der Umfassungswand unterhalb des Horizontalgaszuges einwärts geneigt ist und dadurch mit dem Boden des angrenzenden Horizontalgaszuges eine in die Brennkammer hineinstehende Nase bildet.The invention relates to a continuous steam generator having a combustion chamber with a number of burners for fossil fuel and a surrounding gas-tight welded steam generator tubes Umfassungswand, wherein the combustion chamber is connected downstream of the gas side in an upper region via a horizontal gas a vertical gas train, wherein the vertical gas train facing part of the surrounding wall is inclined inwardly below the horizontal gas train and thereby forms with the bottom of the adjacent horizontal gas flue a projecting into the combustion chamber nose.

In einem fossil befeuerten Dampferzeuger wird die Energie eines fossilen Brennstoffs zur Erzeugung von überhitztem Dampf genutzt, der anschließend beispielsweise in einem Kraftwerk einer Dampfturbine zur Stromerzeugung zugeführt werden kann. Insbesondere bei den in einer Kraftwerksumgebung üblichen Dampftemperaturen und -drücken werden Dampferzeuger üblicherweise als Wasserrohrkessel ausgeführt, d. h., das zugeführte Wasser fließt in einer Anzahl von Rohren, welche die Energie in Form von Strahlungswärme der Brennerflammen und/oder durch Konvektion vom bei der Verbrennung entstehenden Rauchgas aufnehmen.In a fossil-fueled steam generator, the energy of a fossil fuel is used to generate superheated steam, which can then be supplied to power a steam turbine, for example, in a power plant. In particular, in the usual in a power plant environment steam temperatures and pressures steam generators are usually designed as a water tube boiler, d. h., The supplied water flows in a number of tubes which receive the energy in the form of radiant heat of the burner flames and / or by convection of the resulting during combustion flue gas.

Im Bereich der Brenner bilden die Dampferzeugerrohre dabei üblicherweise die Brennkammerwand, indem sie gasdicht miteinander verschweißt werden. In weiteren, der Brennkammer rauchgasseitig nachgeschalteten Bereichen können auch im Abgaskanal angeordnete Dampferzeugerrohe vorgesehen sein.In the field of burners, the steam generator tubes usually form the combustion chamber wall by being welded together in gas-tight fashion. In further, the combustion chamber downstream side of the combustion chamber arranged Dampfampfererrohe can be provided in the exhaust duct.

Fossil befeuerte Dampferzeuger sind anhand einer Vielzahl von Kriterien kategorisierbar: Dampferzeuger können generell als Naturumlauf-, Zwangumlauf- oder Durchlaufdampferzeuger ausgelegt sein. In einem Durchlaufdampferzeuger führt die Beheizung einer Anzahl von Verdampferrohren zu einer vollständigen Verdampfung des Strömungsmediums in den Verdampferrohren in einem Durchgang. Das Strömungsmedium - üblicherweise Wasser - wird nach seiner Verdampfung den Verdampferrohren nachgeschalteten Überhitzerrohren zugeführt und dort überhitzt. Diese Beschreibung ist genau genommen nur bei Teillasten mit unterkritischem Druck von Wasser (PKri ≈ 221 bar) im Verdampfer gültig. Der Anschaulichkeit halber wird diese Darstellung jedoch in der folgenden Beschreibung durchgehend verwendet. Die Position des Verdampfungsendpunkts, d. h. der Ort, an dem der Wasseranteil der Strömung vollständig verdampft ist, ist dabei variabel und betriebsartabhängig. Beim Volllastbetrieb eines derartigen Durchlaufdampferzeugers liegt der Verdampfungsendpunkt beispielsweise in einem Endbereich der Verdampferrohre, so dass die Überhitzung des verdampften Strömungsmediums bereits in den Verdampferrohren beginnt.Fossil fueled steam generators can be categorized by a variety of criteria: Steam generators may generally be designed as natural, forced circulation or continuous flow steam generators. In a continuous steam generator, the heating of a number of evaporator tubes leads to a complete Evaporation of the flow medium in the evaporator tubes in one go. The flow medium - usually water - is supplied to the evaporator tubes downstream superheater tubes after its evaporation and overheated there. This description is strictly valid only for partial loads with subcritical pressure of water (P Kri ≈ 221 bar) in the evaporator. For the sake of clarity, however, this illustration will be used throughout the following description. The position of the evaporation end point, ie the location at which the water content of the flow is completely evaporated, is variable and mode-dependent. During full load operation of such a continuous steam generator, the evaporation end point is, for example, in an end region of the evaporator tubes, so that the overheating of the evaporated flow medium already begins in the evaporator tubes.

Ein Durchlaufdampferzeuger unterliegt im Gegensatz zu einem Natur- oder Zwangumlaufdampferzeuger keiner Druckbegrenzung, so dass er für Frischdampfdrücke weit über dem kritischen Druck von Wasser ausgelegt werden kann.In contrast to a natural or forced circulation steam generator, a continuous steam generator is not subject to any pressure limitation, so that it can be designed for live steam pressures far above the critical pressure of water.

Im Schwachlastbetrieb oder beim Anfahren wird ein derartiger Durchlaufdampferzeuger üblicherweise mit einem Mindeststrom an Strömungsmedium in den Verdampferrohren betrieben, um eine sichere Kühlung der Verdampferrohre zu gewährleisten. Dazu reicht gerade bei niedrigen Lasten von beispielsweise weniger als 40 % der Auslegungslast der reine Durchlaufmassenstrom durch den Verdampfer üblicherweise nicht mehr zur Kühlung der Verdampferrohre aus, so dass dem Durchlauf an Strömungsmedium durch den Verdampfer im Umlauf ein zusätzlicher Durchsatz an Strömungsmedium überlagert wird. Der betriebsgemäß vorgesehene Mindeststrom an Strömungsmedium in den Verdampferrohren wird somit beim Anfahren oder im Schwachlastbetrieb in den Verdampferrohren nicht vollständig verdampft, so dass bei einer derartigen Betriebsart am Ende der Verdampferrohre noch unverdampftes Strömungsmedium, insbesondere ein Wasser-DampfGemisch, vorhanden ist.During low load operation or during startup, such a continuous steam generator is usually operated with a minimum flow of flow medium in the evaporator tubes in order to ensure reliable cooling of the evaporator tubes. For this purpose, just at low loads of, for example, less than 40% of the design load, the pure mass flow through the evaporator usually no longer suffices for cooling the evaporator tubes, so that an additional throughput of flow medium is superimposed on the passage of flow medium through the evaporator in circulation. The operationally provided minimum flow of flow medium in the evaporator tubes is thus not completely evaporated during startup or during low load operation in the evaporator tubes, so that in such a mode at the end of the evaporator tubes still unvaporized flow medium, in particular a water-steam mixture is present.

Da die den Verdampferrohren des Durchlaufdampferzeugers üblicherweise erst nach einer Durchströmung der Brennkammerwände nachgeschalteten Überhitzerrohre jedoch nicht für eine Durchströmung unverdampften Strömungsmediums ausgelegt sind, sind Durchlaufdampferzeuger üblicherweise derart ausgelegt, dass auch beim Anfahren und im Schwachlastbetrieb ein Wassereintritt in die Überhitzerrohre sicher vermieden wird. Dazu sind die Verdampferrohre üblicherweise mit den ihnen nachgeschalteten Überhitzerrohren über ein Wasserabscheidesystem verbunden. Der Wasserabscheider bewirkt dabei eine Trennung des beim Anfahren oder im Schwachlastbetrieb aus den Verdampferrohren austretenden Wasser-Dampf-Gemisches in Wasser und in Dampf. Der Dampf wird den dem Wasserabscheider nachgeschalteten Überhitzerrohren zugeführt, wohingegen das abgeschiedene Wasser beispielsweise über eine Umwälzpumpe wieder den Verdampferrohren zugeführt oder über einen Entspanner abgeführt werden kann.However, since the evaporator tubes of the continuous steam generator are usually designed for a flow through unvaporised flow medium after passing through the combustion chamber walls, continuous steam generators are usually designed so that even when starting and in low load operation, a water ingress into the superheater tubes is reliably avoided. For this purpose, the evaporator tubes are usually connected to the superheater tubes connected downstream via a Wasserabscheidesystem. The water separator causes a separation of the emerging during the start or in low load operation of the evaporator tubes water-steam mixture in water and in steam. The steam is supplied to the water separator downstream superheater tubes, whereas the separated water can be fed back to the evaporator tubes, for example via a circulating pump or discharged through a decompressor.

Basierend auf der Strömungsrichtung des Gasstroms können Dampferzeuger weiterhin beispielsweise in vertikale und horizontale Bauarten eingeteilt werden. Bei fossil befeuerten Dampferzeugern in vertikaler Bauweise werden dabei üblicherweise Einzug- und Zweizugkessel unterschieden.Based on the flow direction of the gas flow, steam generators may continue to be classified, for example, into vertical and horizontal types. In fossil-fueled steam generators in vertical construction usually a draw-in and two-pass boiler are distinguished.

Bei einem Einzug- oder Turmkessel strömt das durch die Verbrennung in der Brennkammer erzeugte Rauchgas stets senkrecht von unten nach oben. Sämtliche im Rauchgaskanal angeordneten Heizflächen liegen rauchgasseitig oberhalb der Brennkammer. Turmkessel bieten eine vergleichsweise einfache Konstruktion und einfache Beherrschung der durch die thermische Ausdehnung der Rohre entstehenden Spannungen. Weiterhin sind sämtliche Heizflächen der im Rauchgaskanal angeordneten Dampferzeugerrohre horizontal und daher vollständig entwässerbar, was in frostgefährdeten Umgebungen erwünscht sein kann.In a feeder or tower boiler, the flue gas produced by the combustion in the combustion chamber always flows vertically from bottom to top. All arranged in the flue gas heating surfaces are flue gas side above the combustion chamber. Tower boilers offer a comparatively simple construction and easy control of the stresses caused by the thermal expansion of the tubes. Furthermore, all heating surfaces of the arranged in the flue gas duct steam generator tubes are horizontal and therefore completely drainable, which may be desirable in frost-prone environments.

Beim Zweizugkessel ist in einem oberen Bereich der Brennkammer rauchgasseitig ein Horizontalgaszug nachgeschaltet, welcher in einen Vertikalgaszug mündet. In diesem zweiten vertikalen Gaszug strömt das Gas üblicherweise senkrecht von oben nach unten. Es erfolgt beim Zweizugkessel also eine mehrfache Umlenkung des Rauchgases. Vorteile dieser Bauweise sind beispielsweise die niedrigere Bauhöhe und die daraus resultierenden geringeren Herstellkosten.When Zweizugkessel a horizontal gas train is downstream of flue gas side in an upper region of the combustion chamber, which opens into a vertical gas train. In this second vertical Gas train usually flows the gas vertically from top to bottom. It takes place at the two-pass boiler so a multiple deflection of the flue gas. Advantages of this design are, for example, the lower height and the resulting lower production costs.

In einem als Zweizugkessel ausgebildeten Dampferzeuger werden üblicherweise die Wände hängend in einem Kesselgerüst angeordnet, so dass sie sich bei Erwärmung im Betrieb frei nach unten ausdehnen können. Dabei umfasst der Zweizugdampferzeuger üblicherweise vier Wände pro Zug, bei denen darauf zu achten ist, dass sich die Wände der einzelnen Züge gleichmäßig ausdehnen, da sonst unzulässig Spannungen in den Verbindungen der einzelnen Wände auftreten können.In a steam generator designed as a two-pass boiler, the walls are usually arranged hanging in a boiler stand, so that they can expand freely during heating during operation downwards. In this case, the two-steam generator usually comprises four walls per train, in which care must be taken to ensure that the walls of the individual trains extend uniformly, since otherwise unacceptable stresses can occur in the connections of the individual walls.

Weiterhin umfassen derartige Zweizugkessel häufig eine so genannte Brennkammernase. Diese Nase ist ein Vorsprung, der aus der am Übergang zum Horizontalgaszug nach innen geneigten Brennkammerwand und dem Boden des Horizontalgaszuges gebildet wird. Eine derartige Brennkammernase verbessert den Fluss des Rauchgases am Übergang zum Horizontalgaszug.Furthermore, such Zweugugkessel often include a so-called combustion chamber nose. This nose is a projection which is formed from the combustion chamber wall inclined inwardly at the transition to the horizontal gas flue and the bottom of the horizontal flue. Such a combustion chamber nose improves the flow of the flue gas at the transition to the horizontal gas flue.

Nachteilig ist dabei jedoch, dass durch die Brennkammernase die Berohrung der Brennkammerrückwand, d. h. der dem Horizontalgaszug und dem zweiten Vertikalgaszug zugewandten Wand, unterbrochen wird. Das Gewicht der Rückwand muss also üblicherweise durch eine gesonderte Konstruktion zwischen oberem und unterem Ende der Nase in das Kesselgerüst derart eingeleitet werden, dass sich bei Erwärmung oder Belastung - z. B. durch Innendruck, Ascheablagerung oder Eigengewicht - die Rückwand in gleichem Maße bewegt wie die anderen Wände. Zur Lösung dieses Problems existieren bislang verschiedene Ansätze:

  • Beispielsweise kann das obere und das untere Ende der Nase mittels Zugstangen und Federn bzw. so genannten Konstanthängern, die trotz Änderung des Federwegs immer annähernd die gleiche Kraft übertragen, geschehen. Eine derartige Konstruktion passt sich also der unterschiedlichen Ausdehnung der Wände an. Unterschiedliche Lasten z. B. durch wechselnden Innendruck bzw. durch Ascheablagerungen verursachen jedoch hohe Spannungen an den Verbindungen zu den Seitenwänden. Außerdem sind diese Konstanthänger kostenaufwändig.
The disadvantage here, however, that the bore of the combustion chamber rear wall, ie the horizontal gas flue and the second vertical gas train facing wall is interrupted by the combustion chamber. The weight of the rear wall must therefore usually be introduced by a separate construction between the upper and lower end of the nose in the boiler structure such that when heated or load -. As by internal pressure, ash deposition or weight - the back wall moves to the same extent as the other walls. To solve this problem, there are different approaches:
  • For example, the upper and the lower end of the nose by means of tie rods and springs or so-called constant pendants, which always transfer despite changing the spring travel almost the same force happen. Such a construction So adapts to the different extent of the walls. Different loads z. B. by changing internal pressure or by ash deposits cause high voltages at the connections to the side walls. In addition, these constant hangers are expensive.

Eine weitere Möglichkeit besteht in der einfachen Weiterführung der Rohre der unteren Brennkammer in vertikaler Richtung bis zum Aufhängepunkt im Kesselgerüst. Damit hat die Verbindung vom unteren Ende der Nase bis zum Kesselgerüst annähernd gleiche Temperaturen wie die Seitenwände und die Vorderwand. Allerdings muss die Berohrung der Nase dann separat erfolgen, was einen zusätzlichen Aufwand an Verbindungsrohren bedeutet.Another possibility is the simple continuation of the tubes of the lower combustion chamber in the vertical direction to the suspension point in the boiler frame. Thus, the connection from the lower end of the nose to the boiler frame has approximately the same temperatures as the side walls and the front wall. However, the nose must then be carried out separately, which means an additional burden on connecting pipes.

Eine weitere Möglichkeit besteht darin, die Rohre der Brennkammerrückwand am unteren Ende der Nase strömungsmediumsseitig aufzuteilen, so dass ein Teil der Rohre in die Berohrung der Nase geführt wird, ein anderer Teil parallel dazu vertikal zum Kesselgerüst. Damit steht aber nur ein Teil der Rohre und des Strömungsmediums für die Nase zur Verfügung, was unter Umständen zu einer nicht ausreichenden Kühlung der Nase führen kann, da diese durch ihre exponierte Position in der Brennkammer einen vergleichsweise hohen Wärmeeintrag aufweist. Im Gegensatz dazu ist der Wärmeeintrag für die entnommenen, vertikal nach oben geführten Tragrohre entsprechend geringer, was Probleme hinsichtlich der Verteilung des Massenstroms hervorrufen kann. Alle Wandrohre oberhalb der Nase und die Tragrohre sollen möglichst gleiche Dampftemperaturen am Austritt aufweisen. Weiterhin ist ein aufwändiger Übergang in die Nasenberohrung z. B. durch Änderung der Rohrteilung oder andere Rohrgeometrie erforderlich.Another possibility is to divide the tubes of the combustion chamber rear wall at the bottom of the nose flow medium side, so that a part of the tubes is guided in the tube of the nose, another part parallel to it vertically to the boiler frame. But this is only a part of the tubes and the flow medium for the nose available, which can sometimes lead to insufficient cooling of the nose, as this has a relatively high heat input by their exposed position in the combustion chamber. In contrast, the heat input for the removed, vertically upwardly guided support tubes is correspondingly lower, which can cause problems in terms of the distribution of the mass flow. All wall pipes above the nose and the support tubes should have the same possible steam temperatures at the outlet. Furthermore, a complex transition into the nose tube z. B. by changing the pipe pitch or other tube geometry required.

Die DE 12 44 803 B zeigt einen Durchlaufdampferzeuger mit einer Brennkammer mit einer Anzahl von Brennern für fossilen Brennstoff und einer aus gasdicht miteinander verschweißten Dampferzeugerrohren gebildeten Umfassungswand, wobei der Brennkammer heizgasseitig in einem oberen Bereich über einen Horizontalgaszug ein Vertikalgaszug nachgeschaltet ist, wobei ein dem Vertikalgaszug zugewandter Teil der Umfassungswand unterhalb des Horizontalgaszuges einwärts geneigt ist und dadurch mit dem Boden des angrenzenden Horizontalgaszuges eine in die Brennkammer hineinstehende Nase bildet, wobei zumindest einem Teil der Dampferzeugerrohre der Nase an deren oberen Ende eine Anzahl von Tragrohren strömungsmediumsseitig nachgeschaltet ist, die im Wesentlichen vertikal zum unteren Ende der Nase geführt sind.The DE 12 44 803 B shows a continuous steam generator with a combustion chamber with a number of burners for fossil fuel and a formed from gas-tight welded together steam generator tubes Umfassungswand, wherein the combustion chamber is connected downstream of the gas side in a gasizzug in a top region via a horizontal gas train, a vertical gas train a vertical gas flue facing the Umfassungswand below the horizontal gas flue is inclined inwardly and thereby forms with the bottom of the adjacent horizontal flue a nose projecting into the combustion chamber, wherein at least a portion of the steam generator tubes of the nose at the upper end a number of support tubes downstream of the flow medium side, the are guided substantially vertically to the lower end of the nose.

Der Erfindung liegt die Aufgabe zugrunde, einen Durchlaufdampferzeuger der oben genannten Art anzugeben, welcher bei einer besonders hohen Zuverlässigkeit im Betrieb eine vereinfachte Konstruktion aufweist.The invention has for its object to provide a continuous steam generator of the type mentioned above, which has a simplified construction with a particularly high reliability in operation.

Diese Aufgabe wird erfindungsgemäß gelöst, indem zumindest einem Teil der Dampferzeugerrohre der Nase an deren oberen Ende eine Anzahl von Tragrohren strömungsmediumsseitig nachgeschaltet ist, die im Wesentlichen vertikal zum unteren Ende der Nase geführt sind.This object is achieved by at least part of the steam generator tubes of the nose at the upper end of a number of support tubes downstream of the flow medium side, which are guided substantially vertically to the lower end of the nose.

Die Erfindung geht dabei von der Überlegung aus, dass ein besonders einfache technische Konstruktion eines Durchlaufdampferzeugers in Zweizugbauweise möglich wäre, wenn die Aufhängung der Rückwand insbesondere im Bereich der Nase durch vertikal angeordnete Tragrohre geschehen könnte und somit keine zusätzlichen Federn oder Konstanthänger notwendig werden. Dabei sollte im Sinne der betrieblichen Sicherheit darauf geachtet werden, dass eine ausreichende Kühlung der Nase selbst aufgrund des hohen Wärmeeintrags erfolgt. Vor diesem Hintergrund sollte daher ein möglichst großer Teil der Rohre des unteren Bereiches der Rückwand der Brennkammer in die Nase geführt werden, so dass nahezu der gesamte Mediumsstrom zur Kühlung der Nase zur Verfügung steht. Allerdings stehen dann keine Rohre mehr als Tragrohre für die Rückwand zur Verfügung. Komplizierte Verteilsysteme oder separate Berohrungen der Nase als Abhilfe bedeuten allerdings wieder einen zusätzlichen technischen Konstruktionsaufwand.The invention is based on the consideration that a particularly simple technical construction of a continuous steam generator in Zweizugbauweise would be possible if the suspension of the rear wall could happen in the nose in particular by vertically arranged support tubes and thus no additional springs or constant hanger are necessary. In the interests of operational safety, care should be taken to ensure that the nose is adequately cooled due to the high heat input. Against this background, therefore, the largest possible part of the tubes of the lower region of the rear wall of the combustion chamber should be led into the nose, so that almost the entire medium flow is available for cooling the nose. However, then there are no pipes available as support tubes for the rear wall. However, complicated distribution systems or separate nose drills as a remedy mean that additional technical design effort is required.

Zur Lösung dieser anscheinend gegensätzlichen Auslegungsziele sollten daher erst am oberen Ende der Nase zumindest ein Teil der Rohre entgegen der sonst üblichen Strömungsrichtung der Berohrung der Brennkammer von oben nach unten geführt werden. Diese Rohre können dann bei einer Verbindung mit dem unteren Ende der Nase als Tragrohre für die Rückwand dienen.To solve these apparently conflicting interpretation goals, therefore, at least a portion of the tubes should be performed against the usual flow direction of the bore of the combustion chamber from top to bottom only at the upper end of the nose. These tubes can then serve as support tubes for the rear wall when connected to the lower end of the nose.

In vorteilhafter Ausgestaltung ist einem weiteren Teil der Dampferzeugerrohre der Nase an deren oberen Ende eine Anzahl von Tragrohren strömungsmediumsseitig nachgeschaltet, die im Wesentlichen vertikal zu einer Decke der Brennkammer geführt sind. Dadurch stehen auch Tragrohre zur Verfügung, die die Nase und den an die Nase angeschlossenen unteren Teil der Brennkammer mit der Decke verbinden und so für eine zuverlässige Aufhängung sorgen. Da diese Tragrohre mit Strömungsmedium durchflossen sind, dehnen sie sich ebenso wie die übrigen Teile der Brennkammer aus und es erfolgt eine gleichmäßige Ausdehnung aller vier Brennkammerwände und es entstehen keine unzulässigen Spannungen an den Verbindungen der Wände.In an advantageous embodiment of a further part of the steam generator tubes of the nose at the upper end of a number of support tubes downstream of the flow medium side, which are guided substantially vertically to a ceiling of the combustion chamber. This also support tubes are available, which connect the nose and connected to the nose lower part of the combustion chamber with the ceiling and so for a reliable Hang up. Since these support tubes are flowed through with flow medium, they expand as well as the other parts of the combustion chamber and there is a uniform expansion of all four combustion chamber walls and there are no inadmissible stresses on the connections of the walls.

In weiterer vorteilhafter Ausgestaltung sind allen Dampferzeugerrohren des dem Vertikalgaszug zugewandten Teils der Umfassungswand strömungsmediumsseitig Dampferzeugerrohre der Nase nachgeschaltet. Dadurch ist sichergestellt, dass das gesamte Strömungsmedium aus der Brennkammerrückwand bzw. deren unteren Dampferzeugerrohren in die Nase strömt und somit für eine ausreichende Kühlung der Nase gesorgt ist. Die Nase hat nämlich aufgrund ihrer exponierten Position im Inneren der Brennkammer einen besonders hohen Wärmeeintrag.In a further advantageous embodiment, all steam generator tubes of the vertical gas train facing part of the surrounding wall flow medium side steam generator tubes downstream of the nose. This ensures that the entire flow medium from the combustion chamber rear wall or its lower steam generator tubes flows into the nose and thus ensures sufficient cooling of the nose. Because of its exposed position inside the combustion chamber, the nose has a particularly high heat input.

Vorteilhafterweise ist den zum unteren Ende der Nase geführten Tragrohren ein im Bereich des unteren Endes der Nase angeordneter Sammler nachgeschaltet. Dieser Sammler kann dann das für die Tragrohre abgezweigte Strömungsmedium sammeln und über eine entsprechende Weiterleitung dem System weiter zur Verfügung stellen.Advantageously, the guided to the lower end of the nose support tubes downstream of a arranged in the region of the lower end of the nose collector. This collector can then collect the branched off for the support tubes flow medium and continue to provide the system via an appropriate forwarding available.

Dazu ist den zum unteren Ende der Nase geführten Tragrohren eine Anzahl von Verbindungsrohren nachgeschaltet, die in den Dampferzeugerrohren des oberen Bereichs der Brennkammer nachgeschaltete Rohre münden. Somit wird der für die Tragrohre abgezweigte Mediumsstrom den weiteren Dampferzeugerrohren des oberen Bereichs der Brennkammer parallel geschaltet und dem System wieder zugeführt. Somit ist eine vollständige Nutzung des Mediumsstroms der Tragrohre möglich.For this purpose, the guided to the lower end of the nose support tubes downstream of a number of connecting pipes, which open into the steam generator tubes of the upper portion of the combustion chamber downstream pipes. Thus, the branched off for the support tubes medium flow to the other steam generator tubes of the upper portion of the combustion chamber is connected in parallel and fed back to the system. Thus, a full use of the medium flow of the support tubes is possible.

Die mit der Erfindung verbundenen Vorteile bestehen insbesondere darin, dass durch die strömungsmediumsseitige Nachschaltung einer Anzahl von Tragrohren, die im Wesentlichen vertikal zum unteren Ende der Nase geführt sind, an zumindest einen Teil der Dampferzeugerrohre der Nase an deren oberen Ende eine besonders einfache technische Konstruktion bei gleichzeitiger hoher betrieblicher Zuverlässigkeit des Dampferzeugers möglich ist. Einerseits werden zur Lastübernahme durch das Kesselgerüst vollständig Dampferzeugerrohre verwendet und keine separaten Konstruktionen wie beispielsweise Konstanthänger verwendet, andererseits steht durch diese Konstruktion der gesamte Wasser-Dampf-Strom der Rückwand für die Nase zur Verfügung und es ist eine ausreichende Kühlung der Brennkammernase sichergestellt. Es stellen sich im Übrigen in den Rohrwänden weit gehend gleiche Temperaturen ein, ohne dass eine separate und aufwändige Bohrung der Nase oder ein komplizierter Übergang mit Geometrieänderungen der Rohre erforderlich wäre.The advantages associated with the invention are, in particular, that by the flow-medium side downstream of a number of support tubes, which are guided substantially vertically to the lower end of the nose, at least a portion of the steam generator tubes of the nose at the upper end a particularly simple technical construction while high operational reliability of the steam generator is possible. On the one hand, steam boiler tubes are used to load transfer through the boiler frame and no separate constructions such as constant hanger used, on the other hand stands by this construction, the entire water-steam flow of the rear wall for the nose available and it is ensured sufficient cooling of the combustion chamber. Incidentally, in the tube walls, largely the same temperatures occur, without a separate and elaborate bore of the nose or a complicated transition with changes in the geometry of the tubes would be required.

Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:

FIG 1
schematisch einen fossil beheizten Durchlaufdampferzeuger in Zweizugbauweise, und
FIG 2
eine schematische Darstellung der Verschaltung der einzelnen Dampferzeugerrohre der Brennkammerwand.
An embodiment of the invention will be explained in more detail with reference to a drawing. Show:
FIG. 1
schematically a fossil-heated continuous steam generator in Zweizugbauweise, and
FIG. 2
a schematic representation of the interconnection of the individual steam generator tubes of the combustion chamber wall.

Gleiche Teile sind in beiden Figuren mit demselben Bezugszeichen versehen.Identical parts are provided in both figures with the same reference numeral.

Der Durchlaufdampferzeuger 1 gemäß der FIG 1 umfasst eine als Vertikalgaszug ausgebildete Brennkammer 2, der in einem oberen Bereich 4 ein Horizontalgaszug 6 nachgeschaltet ist. An den Horizontalgaszug 6 schließt sich ein weiterer Vertikalgaszug 8 an.The continuous steam generator 1 according to the FIG. 1 comprises a trained as a vertical gas flue combustion chamber 2, which is connected downstream of a horizontal region 4 in an upper region 4. At the horizontal gas train 6, another vertical gas train 8 connects.

Im unteren Bereich 10 der Brennkammer 2 ist eine Anzahl nicht näher gezeigter Brenner vorgesehen, die einen flüssigen oder festen Brennstoff in der Brennkammer 2 verbrennen. Die Umfassungswand 12 der Brennkammer 2 ist aus miteinander gasdicht verschweißten Dampferzeugerrohren gebildet, in die durch eine nicht näher gezeigte Pumpe ein Strömungsmedium - üblicherweise Wasser - eingepumpt wird, welches durch die von den Brennern erzeugte Wärme geheizt wird. Im unteren Bereich 10 der Brennkammer 2 können die Dampferzeugerrohre entweder spiralförmig oder senkrecht ausgerichtet sein. Bei einer spiralförmigen Anordnung ist ein vergleichsweise höherer Konstruktionsaufwand erforderlich, dafür sind die entstehenden Schieflagen - unterschiedliche Massenströme und Temperaturen des Strömungsmediums in parallel geschalteten Rohren - vergleichsweise geringer als bei senkrecht berohrter Brennkammer 2.In the lower region 10 of the combustion chamber 2, a number not shown burner is provided which burn a liquid or solid fuel in the combustion chamber 2. The Umfassungswand 12 of the combustion chamber 2 is formed from each other gas-tight welded steam generator tubes, in the flow through a pump not shown in detail - usually Water - is pumped, which is heated by the heat generated by the burners. In the lower region 10 of the combustion chamber 2, the steam generator tubes can be aligned either spirally or vertically. In a spiral arrangement, a relatively higher design effort is required, but the resulting imbalances - different mass flows and temperatures of the flow medium in parallel pipes - comparatively lower than in the vertical-bore combustion chamber. 2

Der Durchlaufdampferzeuger 1 umfasst weiterhin zur Verbesserung der Rauchgasführung eine Nase 14, welche direkt in den Boden 16 des Horizontalgaszuges 6 übergeht und in die Brennkammer 2 hineinragt. Durch ihre exponierte Position im Inneren der Brennkammer 2 weist die Nase 14 einen besonders hohen Wärmeeintrag auf und sollte daher einen besonders hohen Durchsatz an Strömungsmedium aufweisen, so dass für eine ausreichende Kühlung der Nase 14 gesorgt ist.The continuous steam generator 1 further comprises, to improve the flue gas duct, a nose 14 which merges directly into the bottom 16 of the horizontal gas flue 6 and projects into the combustion chamber 2. Due to its exposed position in the interior of the combustion chamber 2, the nose 14 has a particularly high heat input and should therefore have a particularly high throughput of flow medium, so that care is taken to ensure adequate cooling of the nose 14.

Die Züge des Dampferzeugers 1 sind hängend in einem Gerüst 18 angeordnet, so dass sich die Züge des Dampferzeugers 1 bei Erwärmung ungehindert nach unten ausdehnen können. Damit eine möglichst gleichmäßige Ausdehnung aller Wände insbesondere der Brennkammer 2 des Dampferzeugers 1 erfolgt, sollten alle Umfassungswände 12 der Brennkammer 2 ungefähr die gleiche Temperatur aufweisen, so dass eine gleichmäßige Erwärmung und Ausdehnung erfolgt. Dies ist am einfachsten zu bewerkstelligen, indem die gesamte Tragekonstruktion aus Dampferzeugerrohren besteht.The trains of the steam generator 1 are arranged suspended in a frame 18, so that the trains of the steam generator 1 can expand unhindered when heated down. So that the walls of the combustion chamber 2 of the steam generator 1 are as uniform as possible, all surrounding walls 12 of the combustion chamber 2 should have approximately the same temperature, so that a uniform heating and expansion takes place. This is easiest to accomplish by the entire support structure consists of steam generator tubes.

Um einerseits eine Tragekonstruktion insbesondere der dem Horizontalgaszug 6 zugewandten Teil der Umfassungswand 12 der Brennkammer 2 zu ermöglichen und andererseits eine ausreichende Kühlung der Nase 14 sicherzustellen, sind die Dampferzeugerrohre der dem Horizontalgaszug 6 zugewandten Umfassungswand 12 der Brennkammer 2 derart verschaltet, wie in FIG 2 dargestellt.On the one hand to allow a support structure in particular of the horizontal gas flue 6 facing part of the peripheral wall 12 of the combustion chamber 2 and on the other hand to ensure sufficient cooling of the nose 14, the steam generator tubes of the horizontal gas flue 6 facing the surrounding wall 12 of the combustion chamber 2 are interconnected as in FIG. 2 shown.

Die Dampferzeugerrohre 20 des unteren Bereichs der Rückwand der Brennkammer 2 münden zunächst am Punkt A (zur geometrischen Lage der Punkte A bis D sind diese auch in FIG 1 dargestellt) in einen Sammler 22 und werden weiter zum Punkt B geführt. Hier wird zunächst der gesamte Massenstrom von A in die Berohrung der Nase 14 geführt. Somit steht der gesamte Massenstrom aus den Dampferzeugerrohren 20 der Brennkammerrückwand zur Kühlung der Nase zur Verfügung.The steam generator tubes 20 of the lower region of the rear wall of the combustion chamber 2 first open at the point A (for the geometric position of the points A to D, these are also in FIG. 1 shown) in a collector 22 and are passed on to point B. Here, first of all the mass flow of A is performed in the tubing of the nose 14. Thus, the entire mass flow from the steam generator tubes 20 of the combustion chamber rear wall is available for cooling the nose.

Am Punkt C wird der Massenstrom geteilt, ein Teil der Rohre verläuft als Tragrohre 24 zum Punkt D an der Decke des Dampferzeugers, ein weiterer Teil wird vom Punkt C aus als Tragrohre 26 abwärts zum Punkt B geführt. Somit bilden die Tragrohre 24, 26 eine durchgehende Tragekonstruktion für die Rückwand der Brennkammer aus Dampferzeugerrohren. Die Tragrohre 26 münden in einem Sammler 28 am Punkt B und der Mediumsstrom wird über eine Verbindungsleitung 30 den den Punkt B nachgeschalteten Rohren bzw. einem Wasser-Dampf-Abscheidesystem zugeführt. Somit ist auch eine Nutzung des Mediumsstroms aus den Tragrohren 26 möglich.At point C, the mass flow is divided, a part of the tubes runs as a support tubes 24 to the point D on the ceiling of the steam generator, another part is guided from point C as support tubes 26 down to point B. Thus, the support tubes 24, 26 form a continuous support structure for the rear wall of the combustion chamber from steam generator tubes. The support tubes 26 open into a collector 28 at point B and the medium flow is supplied via a connecting line 30 to the point B downstream pipes or a water-steam separation system. Thus, a use of the medium flow from the support tubes 26 is possible.

Claims (5)

  1. Continuous steam generator (1) with a combustion chamber (2) with a number of burners for fossil fuel and a surrounding wall (12) formed of steam generator pipes welded together (20) in a gas-tight manner, wherein a vertical gas flue (8) is connected downstream of the combustion chamber (2) on the hot gas side in an upper area (4) by means of a horizontal gas flue (6), wherein a part of the surrounding wall (12) facing the vertical gas flue (8) and below the horizontal gas flue (6) is inclined inwards and thereby forms, with the bottom (16) of the adjacent horizontal gas flue (6) a nose (14) projecting into the combustion chamber (2) and wherein a number of support pipes (26) are connected downstream of at least one part of the steam generator pipes (20) of the nose (14) at the upper end thereof on the flow medium side, said support pipes (26) being routed essentially vertically to the lower end of the nose (14),
    characterised in that the piping is so arranged that the entire mass flow is routed out of the part of the surrounding wall (12) facing the vertical gas flue(8) below the nose (14) into the nose (14).
  2. Continuous steam generator (1) according to claim 1, in which a number of support pipes (24) are connected downstream of a further part of the steam generator pipes (20) of the nose (14) at the upper end thereof on the flow medium side, said support pipes (24) being routed essentially vertically to a cover of the combustion chamber (2).
  3. Continuous steam generator (1) according to claim 1 or 2, in which steam generator pipes of the nose (14) are connected downstream of all steam generator pipes (20) of all the steam generator pipes (20) of the part of the surrounding wall (12) facing the vertical gas flue (8) on the flow medium side.
  4. Continuous steam generator (1) according to one of claims 1 to 3, in which a collector (28) arranged in the area of the lower end of the nose (14) is downstream of the support pipes (26) routed to the lower end of the nose (14).
  5. Continuous steam generator (1) according to one of claims 1 to 4, in which a number of connecting pipes (30) are connected downstream of the support pipes (26) routed to the lower end of the nose (14), said connecting pipes (30) leading into the pipes downstream of the steam generator pipes of the upper area of the combustion chamber (2).
EP09748302.8A 2008-11-10 2009-10-28 Continuous steam generator Active EP2364414B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL09748302T PL2364414T3 (en) 2008-11-10 2009-10-28 Continuous steam generator
EP09748302.8A EP2364414B1 (en) 2008-11-10 2009-10-28 Continuous steam generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08019643A EP2213936A1 (en) 2008-11-10 2008-11-10 Continuous-flow steam generator
PCT/EP2009/064205 WO2010052158A2 (en) 2008-11-10 2009-10-28 Continuous steam generator
EP09748302.8A EP2364414B1 (en) 2008-11-10 2009-10-28 Continuous steam generator

Publications (2)

Publication Number Publication Date
EP2364414A2 EP2364414A2 (en) 2011-09-14
EP2364414B1 true EP2364414B1 (en) 2016-01-06

Family

ID=42153329

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08019643A Withdrawn EP2213936A1 (en) 2008-11-10 2008-11-10 Continuous-flow steam generator
EP09748302.8A Active EP2364414B1 (en) 2008-11-10 2009-10-28 Continuous steam generator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08019643A Withdrawn EP2213936A1 (en) 2008-11-10 2008-11-10 Continuous-flow steam generator

Country Status (14)

Country Link
US (1) US8851023B2 (en)
EP (2) EP2213936A1 (en)
JP (1) JP5355704B2 (en)
KR (1) KR101619561B1 (en)
CN (1) CN102245966B (en)
AU (1) AU2009312906B2 (en)
BR (1) BRPI0921214A2 (en)
CA (1) CA2743004A1 (en)
DK (1) DK2364414T3 (en)
MX (1) MX2011004906A (en)
PL (1) PL2364414T3 (en)
RU (1) RU2011123653A (en)
TW (1) TWI512241B (en)
WO (1) WO2010052158A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010061186B4 (en) 2010-12-13 2014-07-03 Alstom Technology Ltd. Forced circulation steam generator with wall heating surface and method for its operation
DE102013215457A1 (en) * 2013-08-06 2015-02-12 Siemens Aktiengesellschaft Continuous steam generator in two-pass boiler design

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3095699A (en) * 1958-12-18 1963-07-02 Babcock & Wilcox Co Combined gas-steam turbine power plant and method of operating the same
US3320934A (en) * 1965-04-05 1967-05-23 Babcock & Wilcox Co Vapor generator
DE1244803B (en) * 1965-07-28 1967-07-20 Steinmueller Gmbh L & C Rear wall projection protruding into the radiation space of a steam generator
NL132447C (en) * 1965-12-01
AT281874B (en) * 1968-07-01 1970-06-10 Siemens Ag Continuous steam generator
DE2557427A1 (en) * 1975-12-19 1977-06-30 Kraftwerk Union Ag CIRCUIT OF A FIRE ROOM LUG IN A FLOW-THROUGH BOILER WITH GAS-TIGHT WELDED WALLS IN TWO CONSTRUCTION
US4864973A (en) * 1985-01-04 1989-09-12 The Babcock & Wilcox Company Spiral to vertical furnace tube transition
CN1112536C (en) 1997-05-09 2003-06-25 西门子公司 Straight-flow boiler with double flue structure
JP2000028106A (en) 1998-07-07 2000-01-25 Mitsubishi Heavy Ind Ltd Horizontal flue part
EP1544540B1 (en) * 2002-09-09 2008-12-17 Babcock-Hitachi Kabushiki Kaisha Furnace wall structure
US7004086B2 (en) * 2004-06-17 2006-02-28 General Electric Company Injection of overfire air through the upper furnace arch for penetration and mixing with flue gas
WO2006032556A1 (en) * 2004-09-23 2006-03-30 Siemens Aktiengesellschaft Fossil-energy heated continuous steam generator
JP2006317023A (en) 2005-05-10 2006-11-24 Ishikawajima Harima Heavy Ind Co Ltd Pipe alignment device
EP2180251A1 (en) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Continuous-flow steam generator
EP2180250A1 (en) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Continuous-flow steam generator

Also Published As

Publication number Publication date
EP2364414A2 (en) 2011-09-14
MX2011004906A (en) 2011-06-16
BRPI0921214A2 (en) 2016-02-23
TW201030286A (en) 2010-08-16
CN102245966A (en) 2011-11-16
EP2213936A1 (en) 2010-08-04
US20110214622A1 (en) 2011-09-08
AU2009312906B2 (en) 2014-03-20
CA2743004A1 (en) 2010-05-14
TWI512241B (en) 2015-12-11
RU2011123653A (en) 2012-12-20
WO2010052158A2 (en) 2010-05-14
WO2010052158A3 (en) 2010-08-19
JP5355704B2 (en) 2013-11-27
KR101619561B1 (en) 2016-05-10
JP2012508362A (en) 2012-04-05
PL2364414T3 (en) 2016-06-30
AU2009312906A1 (en) 2010-05-14
KR20110094042A (en) 2011-08-19
DK2364414T3 (en) 2016-03-21
US8851023B2 (en) 2014-10-07
CN102245966B (en) 2014-05-07

Similar Documents

Publication Publication Date Title
EP1588095B1 (en) Steam generator
EP2321578B1 (en) Continuous steam generator
EP0657010B2 (en) Steam generator
EP0617778A1 (en) Fossil-fuelled continuous steam generator.
EP2324287B1 (en) Continuous-flow steam generator
EP1794495B1 (en) Fossil-energy heated continuous steam generator
EP2324286B1 (en) Continuous-flow steam generator
EP2364414B1 (en) Continuous steam generator
EP2440847A2 (en) Continuous evaporator
EP2438352B1 (en) Once-through evaporator
CH653758A5 (en) Once-through boiler.
EP1166015A1 (en) Fossil-fuel fired continuous-flow steam generator
DE102010038883C5 (en) Forced once-through steam generator
DE102010038885B4 (en) Once-through steam generator
WO2010102869A2 (en) Continuous evaporator
EP2564117B1 (en) Steam generator
EP1533565A1 (en) Once-through steam generator
CH160848A (en) Steam generator with forced water circulation.
DE19507335A1 (en) Steam generator with increased safety and service life
DD260314A1 (en) TRAINING OF THE FIRST TRAIN OF A NATURAL RUN WITH HIGHER PRESSURE LEVEL WORKING, SWIVELED SWIVEL BOILER
CH290701A (en) Steam generating plant.
DE1551005B1 (en) Supercritical forced steam generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110411

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150707

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 769166

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009011994

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160317

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160407

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160506

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009011994

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

26N No opposition filed

Effective date: 20161007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20161027

Year of fee payment: 8

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20161031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161028

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 769166

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009011994

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220818 AND 20220824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231024

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231024

Year of fee payment: 15

Ref country code: DE

Payment date: 20231027

Year of fee payment: 15