EP2180251A1 - Continuous-flow steam generator - Google Patents

Continuous-flow steam generator Download PDF

Info

Publication number
EP2180251A1
EP2180251A1 EP08015863A EP08015863A EP2180251A1 EP 2180251 A1 EP2180251 A1 EP 2180251A1 EP 08015863 A EP08015863 A EP 08015863A EP 08015863 A EP08015863 A EP 08015863A EP 2180251 A1 EP2180251 A1 EP 2180251A1
Authority
EP
European Patent Office
Prior art keywords
tubes
combustion chamber
steam generator
gas
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08015863A
Other languages
German (de)
French (fr)
Inventor
Martin Effert
Joachim Dr. Franke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP08015863A priority Critical patent/EP2180251A1/en
Priority to JP2011525521A priority patent/JP5225469B2/en
Priority to DK09782426.2T priority patent/DK2324286T3/en
Priority to PL09782426T priority patent/PL2324286T3/en
Priority to US13/062,704 priority patent/US20110203536A1/en
Priority to PCT/EP2009/061239 priority patent/WO2010028978A2/en
Priority to AU2009290998A priority patent/AU2009290998B2/en
Priority to EP09782426.2A priority patent/EP2324286B1/en
Priority to CN200980135065.4A priority patent/CN102149968B/en
Publication of EP2180251A1 publication Critical patent/EP2180251A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/08Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating with fixed point of final state of complete evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B19/00Water-tube boilers of combined horizontally-inclined type and vertical type, i.e. water-tube boilers of horizontally-inclined type having auxiliary water-tube sets in vertical or substantially vertical arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/067Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating at critical or supercritical pressure

Definitions

  • the invention relates to a continuous steam generator having a combustion chamber with a number of burners for fossil fuel, the heating gas side in a top region via a horizontal gas is followed by a vertical gas train, the Um chargedswand the combustion chamber in a lower region of gas-tight welded together, a Wasserabscheidesystem flow medium side upstream evaporator tubes and in an upper region of gas-tight welded together, the Wasserabscheidesystem flow medium side downstream superheater tubes is formed.
  • a fossil-fueled steam generator the energy of a fossil fuel is used to generate superheated steam, which can then be supplied to power a steam turbine, for example, in a power plant.
  • steam temperatures and pressures steam generators are usually designed as a water tube boiler, d. h., The supplied water flows in a number of tubes which receive the energy in the form of radiant heat of the burner flames and / or by convection of the resulting during combustion flue gas.
  • the steam generator tubes usually form the combustion chamber wall by being welded together in gas-tight fashion.
  • the combustion chamber downstream side of the combustion chamber arranged Dampfampfererrohe can be provided in the exhaust duct.
  • Fossil fueled steam generators can be categorized by a variety of criteria: Steam generators may generally be designed as natural, forced circulation or continuous flow steam generators. In a continuous steam generator, the heating of a number of evaporator tubes leads to a complete Evaporation of the flow medium in the evaporator tubes in one go.
  • the flow medium - usually water - is supplied to the evaporator tubes downstream superheater tubes after its evaporation and overheated there.
  • this description is only valid for partial loads with subcritical pressure of water (P Kri ⁇ 221 bar) - where at no temperature water and steam can occur simultaneously and thus no phase separation is possible - valid in the evaporator. For the sake of clarity, however, this illustration will be used throughout the following description.
  • the position of the evaporation end point ie the location at which the water content of the flow is completely evaporated, is variable and mode-dependent.
  • the evaporation end point is, for example, in an end region of the evaporator tubes, so that the overheating of the evaporated flow medium already begins in the evaporator tubes.
  • a continuous steam generator In contrast to a natural or forced circulation steam generator, a continuous steam generator is not subject to any pressure limitation, so that it can be designed for live steam pressures far above the critical pressure of water.
  • such a continuous steam generator is usually operated with a minimum flow of flow medium in the evaporator tubes in order to ensure reliable cooling of the evaporator tubes.
  • the pure mass flow through the evaporator usually no longer suffices for cooling the evaporator tubes, so that an additional throughput of flow medium is superimposed on the passage of flow medium through the evaporator in circulation.
  • the operationally provided minimum flow of flow medium in the evaporator tubes is thus not completely evaporated during startup or during low load operation in the evaporator tubes, so that in such an operating mode at the end of the evaporator tubes still unevaporated flow medium, in particular a water-vapor mixture, is present.
  • the evaporator tubes of the continuous steam generator are usually designed for a flow through unvaporised flow medium after passing through the combustion chamber walls, continuous steam generators are usually designed so that even when starting and in low load operation, a water ingress into the superheater tubes is reliably avoided.
  • the evaporator tubes are usually connected to the superheater tubes connected downstream via a Wasserabscheidesystem.
  • the water separator causes a separation of the emerging during the start or in low load operation of the evaporator tubes water-steam mixture in water and in steam.
  • the steam is supplied to the water separator downstream superheater tubes, whereas the separated water can be fed back to the evaporator tubes, for example via a circulating pump or discharged through a decompressor.
  • steam generators may continue to be classified, for example, into vertical and horizontal types.
  • a draw-in and two-pass boiler are distinguished.
  • the flue gas produced by the combustion in the combustion chamber always flows vertically from bottom to top. All arranged in the flue gas heating surfaces are flue gas side above the combustion chamber. Tower boilers offer a comparatively simple construction and easy control of the stresses caused by the thermal expansion of the tubes. Furthermore, all heating surfaces of the arranged in the flue gas duct steam generator tubes are horizontal and therefore completely drainable, which may be desirable in frost-prone environments.
  • a steam generator designed as a two-pass boiler usually the walls of the first draft, i. H. the combustion chamber completely switched as an evaporator.
  • the evaporator tubes flow medium side downstream Wasserabscheidesystem is accordingly arranged at the upper end of the combustion chamber.
  • the evaporator heating surfaces must be sufficiently cooled over the entire load range of the steam generator.
  • the mass flow required for cooling must be safely supplied to each individual tube.
  • the occurring stresses due to the thermal expansion of the individual pipes between adjacent pipes must not exceed the permissible values.
  • the temperatures of the flow medium are to be limited both in the absolute height and in the difference to the adjacent tubes, otherwise damage to the combustion chamber walls could arise.
  • mixing points can be used in the combustion chamber walls connected as evaporators.
  • the flow medium is discharged from the evaporator tubes, mixed and redistributed to the other evaporator tubes.
  • Such a system must be designed behind the mixing point for a uniform distribution of a water and vapor mixture.
  • Such a construction is accordingly technically complex and brings a significant increase in manufacturing costs.
  • the invention is therefore based on the object to provide a continuous steam generator of the type mentioned above, which has a particularly long life in a relatively simple construction.
  • This object is achieved according to the invention in that the boundary between the regions of the evaporator tubes and the superheater tubes is arranged essentially horizontally around the combustion chamber in the region of the bottom of the horizontal gas flue.
  • the invention is based on the consideration that a comparatively long service life would be achievable with a simultaneously simple construction if comparatively low temperature imbalances in the steam generator tubes could be achieved without arranging an additional mixing point in the evaporator tubes.
  • the water separator system present in the steam generator also collects the water leaving the evaporator tubes in circulation operation and separates it from the steam. In continuous operation, the incoming steam is mixed and distributed to the flow medium side downstream superheater tubes. At the same time, temperature imbalances are considerably reduced. Based on the knowledge that the water separation system thus fundamentally fulfills the function of a mixing point, it can thus be used as a mixing point within the combustion chamber wall by lowering it, for example into the region of the bottom of the horizontal gas flue, without the need for an additional mixing system.
  • this position of the water separation system ensures that the boundary between the regions of the evaporator tubes and the superheater tubes is arranged substantially horizontally around the combustion chamber in the region of the bottom of the horizontal gas flue.
  • the boundary between the regions of the evaporator tubes and the superheater tubes is arranged substantially horizontally around the combustion chamber at the height of the edge formed by the surrounding wall and bottom of the horizontal gas flue.
  • all welded to the tubes of the walls of the horizontal gas flue tubes of the combustion chamber are also designed as superheater tubes.
  • evaporator and superheater tubes were welded in parallel at this point. This is particularly problematic when hot starting the steam generator, as occur by filling the evaporator tubes with cold flow medium significant temperature differences to the unfilled superheater tubes.
  • the Wasserabscheidesystems in the height of the edge formed by the combustion chamber wall and the bottom of the horizontal gas flue occurs such a vertical separation point no longer and it is an overall safer operation of the steam generator at the same time comparatively long life achieved.
  • In Zweizugdampferzeugern may be inclined inwardly to the improvement of the gas flow facing the vertical gas part of the Um chargedswand below the horizontal gas and thus form a projecting into the combustion chamber nose with the bottom of the adjacent horizontal gas.
  • the boundary between the regions of the evaporator tubes and the superheater tubes is advantageously arranged substantially horizontally around the combustion chamber directly above the nose.
  • the bottom of the horizontal gas flue is gas-tight welded together, the Wasserabscheidesystem flow medium side upstream evaporator tubes formed.
  • the bottom of the horizontal gas flue is in fact suitable for being designed as an additional evaporator heating surface, since its tubes are not welded parallel to the vertically bored, connected as superheater walls of the horizontal gas flue and therefore the stresses remain relatively low due to the different thermal expansion.
  • the advantages associated with the invention are in particular that by the arrangement of the boundary between the areas of the evaporator tubes and the superheater tubes substantially horizontally surrounding the combustion chamber in the region of the bottom of the horizontal gas flue double use of Wasserabscheidesystems as a mixing point to reduce temperature differences between parallel Pipes becomes possible. Furthermore, one of the main drawbacks in Zweizugkessel, namely the vertical separation point between Wandsammlung vom, which are connected as evaporators and those that are connected as a superheater eliminated. This can be achieved by avoiding such voltages, a total safer operation and a longer life of the steam generator especially at the hot start of the steam generator, in which occur at this separation point high temperature differences and voltages when filling the evaporator tubes with comparatively cold flow medium.
  • FIG. 1 An embodiment of the invention is explained in more detail with reference to a drawing.
  • the figure shows a continuous steam generator in Zweizugbauweise in a schematic representation.
  • the continuous steam generator 1 according to the figure comprises a combustion chamber 2 designed as a vertical gas train, which is followed by a horizontal gas train 6 in an upper region 4. At the horizontal gas train 6, another vertical gas train 8 connects.
  • a number not shown burner is provided which burn a liquid or solid fuel in the combustion chamber.
  • the surrounding wall 12 of the combustion chamber 2 is formed from steam generator tubes which are welded together in a gastight manner and into which a flow medium, usually water, is pumped in by a pump (not shown in greater detail), which is heated by the heat generated by the burners.
  • the steam generator tubes can be aligned either spirally or vertically. In a helical arrangement, a comparatively higher design effort is required, but the resulting imbalances between parallel connected pipes are comparatively lower than in the case of a perpendicularly annealed combustion chamber 2.
  • the steam generator tubes in the lower part 10 of the combustion chamber 2 are designed as evaporator tubes.
  • the flow medium is first evaporated in them and fed via pipes 14 to a Wasserabscheidesystem not shown in detail.
  • not yet evaporated water is collected and removed.
  • the generated steam is conducted into the walls of the combustion chamber 2 and distributed to the superheater tubes arranged in the upper region 4 and in the walls of the horizontal gas flue 6.
  • Such a separation not yet evaporated water is necessary in particular during start-up operation, if for safe cooling of the evaporator tubes larger amount of flow medium must be pumped, as can be evaporated in an evaporator tube run.
  • the continuous steam generator 1 shown further comprises for improving the flue gas duct a nose 16, which merges directly into the bottom 18 of the horizontal gas flue 6 and projects into the combustion chamber 2. Furthermore, a grid 20 is arranged from further superheater tubes in the transition region from the combustion chamber 2 to the horizontal gas flue 6 in the flue gas duct.
  • the boundary 22 between evaporator tubes and superheater tubes at the level of the bottom 18 of the horizontal gas flue 6 is located directly above the nose 16.
  • the Wasserabscheidesystem not only acts as a separator in the start-up but also in continuous operation as a mixing point, since in the Wasserabscheidesystem the entire flow medium collected from the evaporator tubes, mixed and redistributed to the superheater tubes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

The generator (1) has a combustion chamber (2) with a set of burners for fossil fuels. An outer wall (12) of the chamber is formed in a lower region (10) and in an upper region (4) from evaporation tubes and from superheater tubes, respectively. The evaporation and superheater tubes are welded together in a gas-tight manner and mounted upstream and downstream of a water separator system on a flow medium side. A limit (22) is horizontally arranged between regions of the evaporation and superheater tubes around the chamber, in a region of a bottom (18) of a horizontal gas slope (6).

Description

Die Erfindung betrifft einen Durchlaufdampferzeuger mit einer Brennkammer mit einer Anzahl von Brennern für fossilen Brennstoff, der heizgasseitig in einem oberen Bereich über einen Horizontalgaszug ein Vertikalgaszug nachgeschaltet ist, wobei die Umfassungswand der Brennkammer in einem unteren Bereich aus gasdicht miteinander verschweißten, einem Wasserabscheidesystem strömungsmediumsseitig vorgeschalteten Verdampferrohren und in einem oberen Bereich aus gasdicht miteinander verschweißten, dem Wasserabscheidesystem strömungsmediumsseitig nachgeschalteten Überhitzerrohren gebildet ist.The invention relates to a continuous steam generator having a combustion chamber with a number of burners for fossil fuel, the heating gas side in a top region via a horizontal gas is followed by a vertical gas train, the Umfassungswand the combustion chamber in a lower region of gas-tight welded together, a Wasserabscheidesystem flow medium side upstream evaporator tubes and in an upper region of gas-tight welded together, the Wasserabscheidesystem flow medium side downstream superheater tubes is formed.

In einem fossil befeuerten Dampferzeuger wird die Energie eines fossilen Brennstoffs zur Erzeugung von überhitztem Dampf genutzt, der anschließend beispielsweise in einem Kraftwerk einer Dampfturbine zur Stromerzeugung zugeführt werden kann. Insbesondere bei den in einer Kraftwerksumgebung üblichen Dampftemperaturen und -drücken werden Dampferzeuger üblicherweise als Wasserrohrkessel ausgeführt, d. h., das zugeführte Wasser fließt in einer Anzahl von Rohren, welche die Energie in Form von Strahlungswärme der Brennerflammen und/oder durch Konvektion vom bei der Verbrennung entstehenden Rauchgas aufnehmen.In a fossil-fueled steam generator, the energy of a fossil fuel is used to generate superheated steam, which can then be supplied to power a steam turbine, for example, in a power plant. In particular, in the usual in a power plant environment steam temperatures and pressures steam generators are usually designed as a water tube boiler, d. h., The supplied water flows in a number of tubes which receive the energy in the form of radiant heat of the burner flames and / or by convection of the resulting during combustion flue gas.

Im Bereich der Brenner bilden die Dampferzeugerrohre dabei üblicherweise die Brennkammerwand, indem sie gasdicht miteinander verschweißt werden. In weiteren, der Brennkammer rauchgasseitig nachgeschalteten Bereichen können auch im Abgaskanal angeordnete Dampferzeugerrohe vorgesehen sein.In the field of burners, the steam generator tubes usually form the combustion chamber wall by being welded together in gas-tight fashion. In further, the combustion chamber downstream side of the combustion chamber arranged Dampfampfererrohe can be provided in the exhaust duct.

Fossil befeuerte Dampferzeuger sind anhand einer Vielzahl von Kriterien kategorisierbar: Dampferzeuger können generell als Naturumlauf-, Zwangumlauf- oder Durchlaufdampferzeuger ausgelegt sein. In einem Durchlaufdampferzeuger führt die Beheizung einer Anzahl von Verdampferrohren zu einer vollständigen Verdampfung des Strömungsmediums in den Verdampferrohren in einem Durchgang. Das Strömungsmedium - üblicherweise Wasser - wird nach seiner Verdampfung den Verdampferrohren nachgeschalteten Überhitzerrohren zugeführt und dort überhitzt. Diese Beschreibung ist genau genommen nur bei Teillasten mit unterkritischem Druck von Wasser (PKri ≈ 221 bar)- wo bei keiner Temperatur Wasser und Dampf gleichzeitig vorkommen können und damit auch keine Phasentrennung möglich ist - im Verdampfer gültig. Der Anschaulichkeit halber wird diese Darstellung jedoch in der folgenden Beschreibung durchgehend verwendet. Die Position des Verdampfungsendpunkts, d. h. der Ort, an dem der Wasseranteil der Strömung vollständig verdampft ist, ist dabei variabel und betriebsartabhängig. Beim Volllastbetrieb eines derartigen Durchlaufdampferzeugers liegt der Verdampfungsendpunkt beispielsweise in einem Endbereich der Verdampferrohre, so dass die Überhitzung des verdampften Strömungsmediums bereits in den Verdampferrohren beginnt.Fossil fueled steam generators can be categorized by a variety of criteria: Steam generators may generally be designed as natural, forced circulation or continuous flow steam generators. In a continuous steam generator, the heating of a number of evaporator tubes leads to a complete Evaporation of the flow medium in the evaporator tubes in one go. The flow medium - usually water - is supplied to the evaporator tubes downstream superheater tubes after its evaporation and overheated there. Specifically, this description is only valid for partial loads with subcritical pressure of water (P Kri ≈ 221 bar) - where at no temperature water and steam can occur simultaneously and thus no phase separation is possible - valid in the evaporator. For the sake of clarity, however, this illustration will be used throughout the following description. The position of the evaporation end point, ie the location at which the water content of the flow is completely evaporated, is variable and mode-dependent. During full load operation of such a continuous steam generator, the evaporation end point is, for example, in an end region of the evaporator tubes, so that the overheating of the evaporated flow medium already begins in the evaporator tubes.

Ein Durchlaufdampferzeuger unterliegt im Gegensatz zu einem Natur- oder Zwangumlaufdampferzeuger keiner Druckbegrenzung, so dass er für Frischdampfdrücke weit über dem kritischen Druck von Wasser ausgelegt werden kann.In contrast to a natural or forced circulation steam generator, a continuous steam generator is not subject to any pressure limitation, so that it can be designed for live steam pressures far above the critical pressure of water.

Im Schwachlastbetrieb oder beim Anfahren wird ein derartiger Durchlaufdampferzeuger üblicherweise mit einem Mindeststrom an Strömungsmedium in den Verdampferrohren betrieben, um eine sichere Kühlung der Verdampferrohre zu gewährleisten. Dazu reicht gerade bei niedrigen Lasten von beispielsweise weniger als 40 % der Auslegungslast der reine Durchlaufmassenstrom durch den Verdampfer üblicherweise nicht mehr zur Kühlung der Verdampferrohre aus, so dass dem Durchlauf an Strömungsmedium durch den Verdampfer im Umlauf ein zusätzlicher Durchsatz an Strömungsmedium überlagert wird. Der betriebsgemäß vorgesehene Mindeststrom an Strömungsmedium in den Verdampferrohren wird somit beim Anfahren oder im Schwachlastbetrieb in den Verdampferrohren nicht vollständig verdampft, so dass bei einer derartigen Betriebsart am Ende der Verdampferrohre noch unverdampftes Strömungsmedium, insbesondere ein Wasser-DampfGemisch, vorhanden ist.During low load operation or during startup, such a continuous steam generator is usually operated with a minimum flow of flow medium in the evaporator tubes in order to ensure reliable cooling of the evaporator tubes. For this purpose, just at low loads of, for example, less than 40% of the design load, the pure mass flow through the evaporator usually no longer suffices for cooling the evaporator tubes, so that an additional throughput of flow medium is superimposed on the passage of flow medium through the evaporator in circulation. The operationally provided minimum flow of flow medium in the evaporator tubes is thus not completely evaporated during startup or during low load operation in the evaporator tubes, so that in such an operating mode at the end of the evaporator tubes still unevaporated flow medium, in particular a water-vapor mixture, is present.

Da die den Verdampferrohren des Durchlaufdampferzeugers üblicherweise erst nach einer Durchströmung der Brennkammerwände nachgeschalteten Überhitzerrohre jedoch nicht für eine Durchströmung unverdampften Strömungsmediums ausgelegt sind, sind Durchlaufdampferzeuger üblicherweise derart ausgelegt, dass auch beim Anfahren und im Schwachlastbetrieb ein Wassereintritt in die Überhitzerrohre sicher vermieden wird. Dazu sind die Verdampferrohre üblicherweise mit den ihnen nachgeschalteten Überhitzerrohren über ein Wasserabscheidesystem verbunden. Der Wasserabscheider bewirkt dabei eine Trennung des beim Anfahren oder im Schwachlastbetrieb aus den Verdampferrohren austretenden Wasser-Dampf-Gemisches in Wasser und in Dampf. Der Dampf wird den dem Wasserabscheider nachgeschalteten Überhitzerrohren zugeführt, wohingegen das abgeschiedene Wasser beispielsweise über eine Umwälzpumpe wieder den Verdampferrohren zugeführt oder über einen Entspanner abgeführt werden kann.However, since the evaporator tubes of the continuous steam generator are usually designed for a flow through unvaporised flow medium after passing through the combustion chamber walls, continuous steam generators are usually designed so that even when starting and in low load operation, a water ingress into the superheater tubes is reliably avoided. For this purpose, the evaporator tubes are usually connected to the superheater tubes connected downstream via a Wasserabscheidesystem. The water separator causes a separation of the emerging during the start or in low load operation of the evaporator tubes water-steam mixture in water and in steam. The steam is supplied to the water separator downstream superheater tubes, whereas the separated water can be fed back to the evaporator tubes, for example via a circulating pump or discharged through a decompressor.

Basierend auf der Strömungsrichtung des Gasstroms können Dampferzeuger weiterhin beispielsweise in vertikale und horizontale Bauarten eingeteilt werden. Bei fossil befeuerten Dampferzeugern in vertikaler Bauweise werden dabei üblicherweise Einzug- und Zweizugkessel unterschieden.Based on the flow direction of the gas flow, steam generators may continue to be classified, for example, into vertical and horizontal types. In fossil-fueled steam generators in vertical construction usually a draw-in and two-pass boiler are distinguished.

Bei einem Einzug- oder Turmkessel strömt das durch die Verbrennung in der Brennkammer erzeugte Rauchgas stets senkrecht von unten nach oben. Sämtliche im Rauchgaskanal angeordneten Heizflächen liegen rauchgasseitig oberhalb der Brennkammer. Turmkessel bieten eine vergleichsweise einfache Konstruktion und einfache Beherrschung der durch die thermische Ausdehnung der Rohre entstehenden Spannungen. Weiterhin sind sämtliche Heizflächen der im Rauchgaskanal angeordneten Dampferzeugerrohre horizontal und daher vollständig entwässerbar, was in frostgefährdeten Umgebungen erwünscht sein kann.In a feeder or tower boiler, the flue gas produced by the combustion in the combustion chamber always flows vertically from bottom to top. All arranged in the flue gas heating surfaces are flue gas side above the combustion chamber. Tower boilers offer a comparatively simple construction and easy control of the stresses caused by the thermal expansion of the tubes. Furthermore, all heating surfaces of the arranged in the flue gas duct steam generator tubes are horizontal and therefore completely drainable, which may be desirable in frost-prone environments.

Beim Zweizugkessel ist in einem oberen Bereich der Brennkammer rauchgasseitig ein Horizontalgaszug nachgeschaltet, welcher in einen Vertikalgaszug mündet. In diesem zweiten vertikalen Gaszug strömt das Gas üblicherweise senkrecht von oben nach unten. Es erfolgt beim Zweizugkessel also eine mehrfache Umlenkung des Rauchgases. Vorteile dieser Bauweise sind beispielsweise die niedrigere Bauhöhe und die daraus resultierenden geringeren Herstellkosten.When Zweizugkessel a horizontal gas train is downstream of flue gas side in an upper region of the combustion chamber, which opens into a vertical gas train. In this second vertical throttle cable, the gas usually flows vertically from top to bottom. It takes place at the two-pass boiler so a multiple deflection of the flue gas. Advantages of this design are, for example, the lower height and the resulting lower production costs.

In einem als Zweizugkessel ausgebildeten Dampferzeuger sind üblicherweise die Wände des ersten Zuges, d. h. der Brennkammer vollständig als Verdampfer geschaltet. Das den Verdampferrohren strömungsmediumsseitig nachgeschaltete Wasserabscheidesystem ist dementsprechend am oberen Ende der Brennkammer angeordnet.In a steam generator designed as a two-pass boiler, usually the walls of the first draft, i. H. the combustion chamber completely switched as an evaporator. The evaporator tubes flow medium side downstream Wasserabscheidesystem is accordingly arranged at the upper end of the combustion chamber.

Aufgrund von Unterschieden sowohl in der Geometrie der Einzelrohre als auch in deren Beheizung stellen sich dabei allerdings unterschiedliche Massenströme und Temperaturen des Strömungsmediums in parallelen Rohren ein. Diese so genannten Schieflagen müssen aus folgenden Gründen begrenzt werden:Due to differences in the geometry of the individual tubes as well as in their heating, however, different mass flows and temperatures of the flow medium in parallel tubes set. These so-called imbalances must be limited for the following reasons:

Zum einen müssen die Verdampferheizflächen über den gesamten Lastbereich des Dampferzeugers ausreichend gekühlt werden. Der zur Kühlung erforderliche Massenstrom muss jedem Einzelrohr sicher zugeführt werden. Weiterhin dürfen die auftretenden Spannungen durch die thermische Ausdehnung der Einzelrohre zwischen benachbarten Rohren die zulässigen Werte nicht überschreiten. Die Temperaturen des Strömungsmediums sind sowohl in der absoluten Höhe als auch in der Differenz zu den benachbarten Rohren zu begrenzen, da sonst Beschädigungen der Brennkammerwände entstehen könnten.On the one hand, the evaporator heating surfaces must be sufficiently cooled over the entire load range of the steam generator. The mass flow required for cooling must be safely supplied to each individual tube. Furthermore, the occurring stresses due to the thermal expansion of the individual pipes between adjacent pipes must not exceed the permissible values. The temperatures of the flow medium are to be limited both in the absolute height and in the difference to the adjacent tubes, otherwise damage to the combustion chamber walls could arise.

Zur Verringerung von Temperaturschieflagen in den Verdampferrohren können beispielsweise Mischstellen in den als Verdampfer geschalteten Brennkammerwänden eingesetzt sein. Dabei wird das Strömungsmedium aus den Verdampferrohren ausgeleitet, gemischt und neu auf die weiteren Verdampferrohre verteilt. Ein derartiges System muss hinter der Mischstelle für eine gleichmäßige Verteilung eines Wasser- und Dampfgemisches ausgelegt werden. Eine derartige Konstruktion ist dementsprechend technisch aufwendig und bringt eine erhebliche Erhöhung der Herstellungskosten mit sich.To reduce temperature imbalances in the evaporator tubes, for example, mixing points can be used in the combustion chamber walls connected as evaporators. The flow medium is discharged from the evaporator tubes, mixed and redistributed to the other evaporator tubes. Such a system must be designed behind the mixing point for a uniform distribution of a water and vapor mixture. Such a construction is accordingly technically complex and brings a significant increase in manufacturing costs.

Der Erfindung liegt daher die Aufgabe zugrunde, einen Durchlaufdampferzeuger der oben genannten Art anzugeben, welcher bei einer vergleichsweise einfachen Bauweise eine besonders lange Lebensdauer aufweist.The invention is therefore based on the object to provide a continuous steam generator of the type mentioned above, which has a particularly long life in a relatively simple construction.

Diese Aufgabe wird erfindungsgemäß gelöst, indem die Grenze zwischen den Bereichen der Verdampferrohre und der Überhitzerrohre im Wesentlichen horizontal umlaufend um die Brennkammer im Bereich des Bodens des Horizontalgaszuges angeordnet ist.This object is achieved according to the invention in that the boundary between the regions of the evaporator tubes and the superheater tubes is arranged essentially horizontally around the combustion chamber in the region of the bottom of the horizontal gas flue.

Die Erfindung geht dabei von der Überlegung aus, dass eine vergleichsweise hohe Lebensdauer bei einer gleichzeitig einfachen Bauweise erreichbar wäre, wenn vergleichsweise geringe Temperaturschieflagen in den Dampferzeugerrohren ohne Anordnung einer zusätzlichen Mischstelle in den Verdampferrohren erreichbar wären.The invention is based on the consideration that a comparatively long service life would be achievable with a simultaneously simple construction if comparatively low temperature imbalances in the steam generator tubes could be achieved without arranging an additional mixing point in the evaporator tubes.

Auch das im Dampferzeuger vorhandene Wasserabscheidesystem sammelt im Umwälzbetrieb das aus den Verdampferrohren austretende Wasser und trennt es vom Dampf ab. Im Durchlaufbetrieb wird der eintretende Dampf gemischt und auf die strömungsmediumsseitig nachgeschalteten Überhitzerrohre verteilt. Dabei werden Temperaturschieflagen erheblich reduziert. Ausgehend von der Erkenntnis, dass das Wasserabscheidesystem somit grundsätzlich die Funktion einer Mischstelle erfüllt, kann dieses somit durch ein Tieferlegen beispielsweise in den Bereich des Bodens des Horizontalgaszuges als Mischstelle innerhalb der Brennkammerwand verwendet werden, ohne dass ein zusätzliches Mischsystem erforderlich wird.The water separator system present in the steam generator also collects the water leaving the evaporator tubes in circulation operation and separates it from the steam. In continuous operation, the incoming steam is mixed and distributed to the flow medium side downstream superheater tubes. At the same time, temperature imbalances are considerably reduced. Based on the knowledge that the water separation system thus fundamentally fulfills the function of a mixing point, it can thus be used as a mixing point within the combustion chamber wall by lowering it, for example into the region of the bottom of the horizontal gas flue, without the need for an additional mixing system.

Zusätzlich wird durch diese Position des Wasserabscheidesystems erreicht, dass die Grenze zwischen den Bereichen der Verdampferrohre und der Überhitzerrohre im Wesentlichen horizontal umlaufend um die Brennkammer im Bereich des Bodens des Horizontalgaszuges angeordnet ist.In addition, this position of the water separation system ensures that the boundary between the regions of the evaporator tubes and the superheater tubes is arranged substantially horizontally around the combustion chamber in the region of the bottom of the horizontal gas flue.

In vorteilhafter Ausgestaltung ist die Grenze zwischen den Bereichen der Verdampferrohre und der Überhitzerrohre im Wesentlichen horizontal umlaufend um die Brennkammer in der Höhe der von Umfassungswand und Boden des Horizontalgaszuges gebildeten Kante angeordnet. Durch eine derartige Anordnung sind sämtliche mit den Rohren der Wände des Horizontalgaszuges verschweißten Rohre der Brennkammer ebenfalls als Überhitzerrohre ausgelegt. Bei der bisherigen Bauweise mit einer vollständig aus Verdampferrohren gebildeten Brennkammer waren an dieser Stelle Verdampfer- und Überhitzerrohre parallel verschweißt. Dies ist insbesondere beim Heißstart des Dampferzeugers problematisch, da durch die Befüllung der Verdampferrohre mit kaltem Strömungsmedium erhebliche Temperaturunterschiede zu den ungefüllten Überhitzerrohren auftreten. Durch die Anordnung des Wasserabscheidesystems in der Höhe der von Brennkammerwand und Boden des Horizontalgaszuges gebildeten Kante tritt eine derartige vertikale Trennstelle nicht mehr auf und es ist ein insgesamt sichererer Betrieb des Dampferzeugers bei einer gleichzeitig vergleichsweise hohen Lebensdauer erzielbar.In an advantageous embodiment, the boundary between the regions of the evaporator tubes and the superheater tubes is arranged substantially horizontally around the combustion chamber at the height of the edge formed by the surrounding wall and bottom of the horizontal gas flue. By such an arrangement, all welded to the tubes of the walls of the horizontal gas flue tubes of the combustion chamber are also designed as superheater tubes. In the previous design with a combustion chamber formed entirely from evaporator tubes evaporator and superheater tubes were welded in parallel at this point. This is particularly problematic when hot starting the steam generator, as occur by filling the evaporator tubes with cold flow medium significant temperature differences to the unfilled superheater tubes. By arranging the Wasserabscheidesystems in the height of the edge formed by the combustion chamber wall and the bottom of the horizontal gas flue occurs such a vertical separation point no longer and it is an overall safer operation of the steam generator at the same time comparatively long life achieved.

Bei Zweizugdampferzeugern kann zur Verbesserung der Gasströmung ein dem Vertikalgaszug zugewandter Teil der Umfassungswand unterhalb des Horizontalgaszuges einwärts geneigt sein und dadurch mit dem Boden des angrenzenden Horizontalgaszuges eine in die Brennkammer hineinstehende Nase bilden. Bei derartigen Dampferzeugern ist die Grenze zwischen den Bereichen der Verdampferrohre und der Überhitzerrohre vorteilhafterweise im Wesentlichen horizontal umlaufend um die Brennkammer direkt oberhalb der Nase angeordnet.In Zweizugdampferzeugern may be inclined inwardly to the improvement of the gas flow facing the vertical gas part of the Umfassungswand below the horizontal gas and thus form a projecting into the combustion chamber nose with the bottom of the adjacent horizontal gas. In such steam generators, the boundary between the regions of the evaporator tubes and the superheater tubes is advantageously arranged substantially horizontally around the combustion chamber directly above the nose.

In einer weiteren vorteilhaften Ausgestaltung ist der Boden des Horizontalgaszuges aus gasdicht miteinander verschweißten, dem Wasserabscheidesystem strömungsmediumsseitig vorgeschalteten Verdampferrohren gebildet. Der Boden des Horizontalgaszuges ist nämlich geeignet, um als zusätzliche Verdampferheizfläche ausgelegt zu werden, da dessen Rohre nicht parallel mit den senkrecht berohrten, als Überhitzer geschalteten Wänden des Horizontalgaszuges verschweißt sind und daher die Belastungen durch die unterschiedliche thermische Ausdehnung vergleichsweise gering bleiben.In a further advantageous embodiment, the bottom of the horizontal gas flue is gas-tight welded together, the Wasserabscheidesystem flow medium side upstream evaporator tubes formed. The bottom of the horizontal gas flue is in fact suitable for being designed as an additional evaporator heating surface, since its tubes are not welded parallel to the vertically bored, connected as superheater walls of the horizontal gas flue and therefore the stresses remain relatively low due to the different thermal expansion.

Die mit der Erfindung verbundenen Vorteile bestehen insbesondere darin, dass durch die Anordnung der Grenze zwischen den Bereichen der Verdampferrohre und der Überhitzerrohre im Wesentlichen horizontal umlaufend um die Brennkammer im Bereich des Bodens des Horizontalgaszuges eine Doppelnutzung des Wasserabscheidesystems als Mischstelle zur Verringerung von Temperaturdifferenzen zwischen parallel geschalteten Rohren möglich wird. Weiterhin wird einer der Hauptnachteile beim Zweizugkessel, nämlich die vertikale Trennstelle zwischen Wandheizflächen, die als Verdampfer und solchen, die als Überhitzer geschaltet sind, beseitigt. Damit kann insbesondere beim Heißstart des Dampferzeugers, bei dem an dieser Trennstelle hohe Temperaturdifferenzen und Spannungen beim Befüllen der Verdampferrohre mit vergleichsweise kaltem Strömungsmedium auftreten, durch die Vermeidung derartiger Spannungen ein insgesamt sichererer Betrieb und eine längere Lebensdauer des Dampferzeugers erreicht werden.The advantages associated with the invention are in particular that by the arrangement of the boundary between the areas of the evaporator tubes and the superheater tubes substantially horizontally surrounding the combustion chamber in the region of the bottom of the horizontal gas flue double use of Wasserabscheidesystems as a mixing point to reduce temperature differences between parallel Pipes becomes possible. Furthermore, one of the main drawbacks in Zweizugkessel, namely the vertical separation point between Wandheizflächen, which are connected as evaporators and those that are connected as a superheater eliminated. This can be achieved by avoiding such voltages, a total safer operation and a longer life of the steam generator especially at the hot start of the steam generator, in which occur at this separation point high temperature differences and voltages when filling the evaporator tubes with comparatively cold flow medium.

Durch die tiefere Anordnung des Wasserabscheidesystems und damit der Grenze zwischen Verdampfer- und Überhitzerrohren in der Brennkammer ist weiterhin eine geringere Überhitzung am Wasserabscheidesystem und ein insgesamt materialschonenderes Anfahren des Dampferzeugers möglich, wodurch wiederum die Lebensdauer des Dampferzeugers erhöht wird und weiterhin kostengünstigere Materialien zu dessen Herstellung verwendet werden können.Due to the lower arrangement of the Wasserabscheidesystems and thus the boundary between evaporator and superheater tubes in the combustion chamber, a lower overheating on Wasserabscheidesystem and a more gentle material startup of the steam generator is still possible, which in turn increases the life of the steam generator and continues to use less expensive materials for its production can be.

Ein Ausführungsbeispiel der Erfindung ist anhand einer Zeichnung näher erläutert. Darin zeigt die Figur einen Durchlaufdampferzeuger in Zweizugbauweise in schematischer Darstellung.An embodiment of the invention is explained in more detail with reference to a drawing. Therein, the figure shows a continuous steam generator in Zweizugbauweise in a schematic representation.

Der Durchlaufdampferzeuger 1 gemäß der Figur umfasst eine als Vertikalgaszug ausgebildete Brennkammer 2, der in einem oberen Bereich 4 ein Horizontalgaszug 6 nachgeschaltet ist. An den Horizontalgaszug 6 schließt sich ein weiterer Vertikalgaszug 8 an.The continuous steam generator 1 according to the figure comprises a combustion chamber 2 designed as a vertical gas train, which is followed by a horizontal gas train 6 in an upper region 4. At the horizontal gas train 6, another vertical gas train 8 connects.

Im unteren Bereich 10 der Brennkammer 2 ist eine Anzahl nicht näher gezeigter Brenner vorgesehen, die einen flüssigen oder festen Brennstoff in der Brennkammer verbrennen. Die Umfassungswand 12 der Brennkammer 2 ist aus miteinander gasdicht verschweißten Dampferzeugerrohren gebildet, in die durch eine nicht näher gezeigte Pumpe ein Strömungsmedium - üblicherweise Wasser - eingepumpt wird, welches durch die von den Brennern erzeugte Wärme geheizt wird. Im unteren Bereich 10 der Brennkammer 2 können die Dampferzeugerrohre entweder spiralförmig oder senkrecht ausgerichtet sein. Bei einer spiralförmigen Anordnung ist ein vergleichsweise höherer Konstruktionsaufwand erforderlich, dafür sind die entstehenden Schieflagen zwischen parallel geschalteten Rohren vergleichsweise geringer als bei senkrecht berohrter Brennkammer 2.In the lower region 10 of the combustion chamber 2, a number not shown burner is provided which burn a liquid or solid fuel in the combustion chamber. The surrounding wall 12 of the combustion chamber 2 is formed from steam generator tubes which are welded together in a gastight manner and into which a flow medium, usually water, is pumped in by a pump (not shown in greater detail), which is heated by the heat generated by the burners. In the lower region 10 of the combustion chamber 2, the steam generator tubes can be aligned either spirally or vertically. In a helical arrangement, a comparatively higher design effort is required, but the resulting imbalances between parallel connected pipes are comparatively lower than in the case of a perpendicularly annealed combustion chamber 2.

Die Dampfererzeugerrohre im unteren Teil 10 der Brennkammer 2 sind als Verdampferrohre ausgelegt. Das Strömungsmedium wird in ihnen zunächst verdampft und über Rohrleitungen 14 einem nicht näher gezeigten Wasserabscheidesystem zugeführt. Im Wasserabscheidesystem wird noch nicht verdampftes Wasser gesammelt und abgeführt. Der erzeugte Dampf wird in die Wände der Brennkammer 2 geleitet und auf die in die im oberen Bereich 4 und in den Wänden des Horizontalgaszuges 6 angeordneten Überhitzerrohre verteilt. Eine derartige Abscheidung noch nicht verdampften Wassers ist insbesondere im Anfahrbetrieb notwendig, wenn zur sicheren Kühlung der Verdampferrohre eine größere Menge an Strömungsmedium eingepumpt werden muss, als in einem Verdampferrohrdurchlauf verdampft werden kann.The steam generator tubes in the lower part 10 of the combustion chamber 2 are designed as evaporator tubes. The flow medium is first evaporated in them and fed via pipes 14 to a Wasserabscheidesystem not shown in detail. In the water separation system not yet evaporated water is collected and removed. The generated steam is conducted into the walls of the combustion chamber 2 and distributed to the superheater tubes arranged in the upper region 4 and in the walls of the horizontal gas flue 6. Such a separation not yet evaporated water is necessary in particular during start-up operation, if for safe cooling of the evaporator tubes larger amount of flow medium must be pumped, as can be evaporated in an evaporator tube run.

Der gezeigte Durchlaufdampferzeuger 1 umfasst weiterhin zur Verbesserung der Rauchgasführung eine Nase 16, welche direkt in den Boden 18 des Horizontalgaszuges 6 übergeht und in die Brennkammer 2 hineinragt. Weiterhin ist im Übergangsbereich von der Brennkammer 2 zum Horizontalgaszug 6 im Rauchgaskanal ein Gitter 20 aus weiteren Überhitzerrohren angeordnet.The continuous steam generator 1 shown further comprises for improving the flue gas duct a nose 16, which merges directly into the bottom 18 of the horizontal gas flue 6 and projects into the combustion chamber 2. Furthermore, a grid 20 is arranged from further superheater tubes in the transition region from the combustion chamber 2 to the horizontal gas flue 6 in the flue gas duct.

Insbesondere bei senkrecht berohrter Brennkammer 2 kann es nun zu Temperaturdifferenzen zwischen parallel geschalteten Verdampferrohren kommen, welche den Betrieb des Dampferzeugers durch die unterschiedliche thermische Ausdehnung gefährden können. Um eine Mischung des Strömungsmediums aus verschiedenen Rohren und damit eine Angleichung der Temperatur zu erreichen, ohne zusätzliche Bauteile zu verwenden, ist die Grenze 22 zwischen Verdampferrohren und Überhitzerrohren in der Höhe des Bodens 18 des Horizontalgaszuges 6 direkt oberhalb der Nase 16 angeordnet. Damit fungiert das Wasserabscheidesystem nicht nur als Abscheider im Anfahrbetrieb sondern auch im Durchlaufbetrieb als Mischstelle, da im Wasserabscheidesystem das gesamte Strömungsmedium aus den Verdampferrohren gesammelt, vermischt und erneut auf die Überhitzerrohre verteilt wird.Especially when the combustion chamber 2 is in a vertical position, temperature differences can occur between parallel connected evaporator tubes, which can jeopardize the operation of the steam generator due to the different thermal expansion. In order to achieve a mixture of the flow medium from different tubes and thus an adjustment of the temperature, without using additional components, the boundary 22 between evaporator tubes and superheater tubes at the level of the bottom 18 of the horizontal gas flue 6 is located directly above the nose 16. Thus, the Wasserabscheidesystem not only acts as a separator in the start-up but also in continuous operation as a mixing point, since in the Wasserabscheidesystem the entire flow medium collected from the evaporator tubes, mixed and redistributed to the superheater tubes.

Da nun sowohl der obere Teil 4 der Brennkammer 2 als auch die Wände des Horizontalgaszuges 6 als Überhitzerrohre geschaltet sind, existiert auch keine vertikale Trennstelle im Bereich des Gitters 20 zwischen parallel verschweißten Verdampfer- und Überhitzerrohren. Vielmehr sind lediglich der untere Teil 10 der Brennkammer 2 und der Boden 18 des Horizontalgaszuges als Verdampferrohre geschaltet, wodurch in diesem Bereich lediglich Überhitzerrohre miteinander parallel verschweißt sind.Since now both the upper part 4 of the combustion chamber 2 and the walls of the horizontal gas flue 6 are connected as superheater tubes, there is no vertical separation point in the region of the grid 20 between parallel welded evaporator and superheater tubes. Rather, only the lower part 10 of the combustion chamber 2 and the bottom 18 of the horizontal gas flue are connected as evaporator tubes, whereby in this area only superheater tubes are welded together in parallel.

Claims (4)

Durchlaufdampferzeuger (1) mit einer Brennkammer (2) mit einer Anzahl von Brennern für fossilen Brennstoff, der heizgasseitig in einem oberen Bereich (4) über einen Horizontalgaszug (6) ein Vertikalgaszug (8) nachgeschaltet ist, wobei die Umfassungswand (12) der Brennkammer (2) in einem unteren Bereich (10) aus gasdicht miteinander verschweißten, einem Wasserabscheidesystem strömungsmediumsseitig vorgeschalteten Verdampferrohren und in einem oberen Bereich (4) aus gasdicht miteinander verschweißten, dem Wasserabscheidesystem strömungsmediumsseitig nachgeschalteten Überhitzerrohren gebildet ist, wobei die Grenze (22) zwischen den Bereichen der Verdampferrohre und der Überhitzerrohre im Wesentlichen horizontal umlaufend um die Brennkammer (2) im Bereich des Bodens (18) des Horizontalgaszuges (6) angeordnet ist.Continuous steam generator (1) with a combustion chamber (2) with a number of burners for fossil fuel, the heating gas side in an upper region (4) via a horizontal gas flue (6) is followed by a vertical gas train (8), wherein the peripheral wall (12) of the combustion chamber (2) in a lower region (10) of gas-tight welded together, a Wasserabscheidesystem flow medium side upstream evaporator tubes and in an upper region (4) gas-tight welded together, the Wasserabscheidesystem flow medium side downstream superheater tubes is formed, the boundary (22) between the areas the evaporator tubes and the superheater tubes substantially horizontally around the combustion chamber (2) in the region of the bottom (18) of the horizontal gas flue (6) is arranged. Durchlaufdampferzeuger (1) nach Anspruch 1, bei dem die Grenze (22) zwischen den Bereichen der Verdampferrohre und der Überhitzerrohre im Wesentlichen horizontal umlaufend um die Brennkammer (2) in der Höhe der von Umfassungswand (12) und Boden (18) des Horizontalgaszuges (6) gebildeten Kante angeordnet ist.Continuous steam generator (1) according to claim 1, wherein the boundary (22) between the regions of the evaporator tubes and the superheater tubes substantially horizontally around the combustion chamber (2) in the height of the surrounding wall (12) and bottom (18) of the horizontal gas flue ( 6) formed edge is arranged. Durchlaufdampferzeuger (1) nach Anspruch 1 oder 2, bei dem ein dem Vertikalgaszug (6) zugewandter Teil der Umfassungswand (12) unterhalb des Horizontalgaszuges (6) einwärts geneigt ist und dadurch mit dem Boden (18) des angrenzenden Horizontalgaszuges (6) eine in die Brennkammer hineinstehende Nase (16) bildet, wobei die Grenze (22) zwischen den Bereichen der Verdampferrohre und der Überhitzerrohre im Wesentlichen horizontal umlaufend um die Brennkammer (2) direkt oberhalb der Nase (16) angeordnet ist.Continuous steam generator (1) according to claim 1 or 2, wherein a vertical gas flue (6) facing part of the Umfassungswand (12) below the horizontal gas flue (6) is inclined inwardly and thereby with the bottom (18) of the adjacent horizontal gas flue (6) an in the combustion chamber protruding nose (16), wherein the boundary (22) between the regions of the evaporator tubes and the superheater tubes is arranged substantially horizontally circumferentially around the combustion chamber (2) directly above the nose (16). Durchlaufdampferzeuger (1) nach einem der Ansprüche 1 bis 3, bei dem der Boden (18) des Horizontalgaszuges (6) aus gasdicht miteinander verschweißten, dem Wasserabscheidesystem strömungsmediumsseitig vorgeschalteten Verdampferrohren gebildet ist.Continuous steam generator (1) according to one of claims 1 to 3, in which the bottom (18) of the horizontal gas flue (6) of gas-tight welded together, the Wasserabscheidesystem Flow medium side upstream evaporator tubes is formed.
EP08015863A 2008-09-09 2008-09-09 Continuous-flow steam generator Withdrawn EP2180251A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP08015863A EP2180251A1 (en) 2008-09-09 2008-09-09 Continuous-flow steam generator
JP2011525521A JP5225469B2 (en) 2008-09-09 2009-09-01 Once-through boiler
DK09782426.2T DK2324286T3 (en) 2008-09-09 2009-09-01 FLOW STEAM GENERATOR
PL09782426T PL2324286T3 (en) 2008-09-09 2009-09-01 Continuous-flow steam generator
US13/062,704 US20110203536A1 (en) 2008-09-09 2009-09-01 Continuous steam generator
PCT/EP2009/061239 WO2010028978A2 (en) 2008-09-09 2009-09-01 Continuous steam generator
AU2009290998A AU2009290998B2 (en) 2008-09-09 2009-09-01 Continuous steam generator
EP09782426.2A EP2324286B1 (en) 2008-09-09 2009-09-01 Continuous-flow steam generator
CN200980135065.4A CN102149968B (en) 2008-09-09 2009-09-01 Straight through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08015863A EP2180251A1 (en) 2008-09-09 2008-09-09 Continuous-flow steam generator

Publications (1)

Publication Number Publication Date
EP2180251A1 true EP2180251A1 (en) 2010-04-28

Family

ID=41796032

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08015863A Withdrawn EP2180251A1 (en) 2008-09-09 2008-09-09 Continuous-flow steam generator
EP09782426.2A Active EP2324286B1 (en) 2008-09-09 2009-09-01 Continuous-flow steam generator

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09782426.2A Active EP2324286B1 (en) 2008-09-09 2009-09-01 Continuous-flow steam generator

Country Status (8)

Country Link
US (1) US20110203536A1 (en)
EP (2) EP2180251A1 (en)
JP (1) JP5225469B2 (en)
CN (1) CN102149968B (en)
AU (1) AU2009290998B2 (en)
DK (1) DK2324286T3 (en)
PL (1) PL2324286T3 (en)
WO (1) WO2010028978A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2182278A1 (en) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Continuous-flow steam generator
EP2213936A1 (en) * 2008-11-10 2010-08-04 Siemens Aktiengesellschaft Continuous-flow steam generator
DE102013215457A1 (en) * 2013-08-06 2015-02-12 Siemens Aktiengesellschaft Continuous steam generator in two-pass boiler design
US10415819B2 (en) * 2016-04-05 2019-09-17 The Babcock & Wilcox Company High temperature sub-critical boiler with common steam cooled wall between furnace and convection pass
US10429062B2 (en) * 2016-04-05 2019-10-01 The Babcock & Wilcox Company High temperature sub-critical boiler with steam cooled upper furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3288117A (en) * 1965-12-01 1966-11-29 Combustion Eng Arrangement of tube circuits in supercritical forced through-flow vapor generator
EP0308728A1 (en) * 1987-09-21 1989-03-29 Siemens Aktiengesellschaft Method of operating a once-through steam generator
US5787844A (en) * 1995-03-06 1998-08-04 Ahlstrom Machinery Oy Economizer system
DE19717158A1 (en) * 1997-04-23 1998-11-05 Siemens Ag Continuous steam generator and method for starting up a continuous steam generator
EP0884526A1 (en) * 1996-12-17 1998-12-16 Babcock-Hitachi Kabushiki Kaisha Boiler
EP1188986A2 (en) * 2000-09-18 2002-03-20 Kvaerner Pulping Oy Arrangement in recovery boiler

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2170345A (en) * 1935-12-18 1939-08-22 Babcock & Wilcox Co Vapor generator
US2087801A (en) * 1937-03-23 1937-07-20 Babcock & Wilcox Co Furnace
US2231872A (en) * 1937-04-16 1941-02-18 Babcock & Wilcox Co Radiant boiler
US2579559A (en) * 1946-12-19 1951-12-25 Babcock & Wilcox Co Steam generator
US2673553A (en) * 1950-03-01 1954-03-30 Babcock & Wilcox Co Multiple furnace fluid heating unit
US2637306A (en) * 1950-12-09 1953-05-05 Babcock & Wilcox Co Fluid cooled furnace
US2797668A (en) * 1952-09-29 1957-07-02 Babcock & Wilcox Co Fuel burning apparatus
US2827022A (en) * 1955-03-16 1958-03-18 Kohlenscheidungs Gmbh Radiant tubular boiler
US2897795A (en) * 1955-10-24 1959-08-04 Babcock & Wilcox Co Plural furnace single drum steam generating unit
US2921565A (en) * 1955-12-16 1960-01-19 Babcock & Wilcox Co Steam generating and superheating unit with downshot burners and gas recirculation temperature control
US2905157A (en) * 1956-04-23 1959-09-22 Combustion Eng Separately fired radiant superheater
US2952975A (en) * 1957-11-15 1960-09-20 Babcock & Wilcox Co Vapor generating and superheating unit
US2946187A (en) * 1958-05-28 1960-07-26 Foster Wheeler Corp Gas and steam cycle power plant having twin supercharged vapor generators
US3072109A (en) * 1958-05-28 1963-01-08 Foster Wheeler Corp Supercharged vapor generator
US3060907A (en) * 1961-07-27 1962-10-30 Riley Stoker Corp Steam generating unit
US3146759A (en) * 1962-03-19 1964-09-01 Riley Stoker Corp Steam generating unit
US3146760A (en) * 1962-07-16 1964-09-01 Riley Stoker Corp Steam generating unit
US3189006A (en) * 1962-11-20 1965-06-15 Combustion Eng Apparatus and method for starting a vapor generating power plant
US3265038A (en) * 1964-09-29 1966-08-09 Combustion Eng Cellulosic fuel furnace having multi-cell burning chamber
US3265039A (en) * 1964-09-29 1966-08-09 Combustion Eng Burning chamber cells formed by horizontal partition-forming tubes
CH532749A (en) * 1970-12-31 1973-01-15 Sulzer Ag Steam generator
CH585876A5 (en) * 1975-05-07 1977-03-15 Ofag Ofenbau Feuerungstech Ag
DE3113417A1 (en) * 1980-10-29 1982-09-02 Ruhrgas Ag, 4300 Essen HEATING SYSTEM WITH AN ABSORPTION HEAT PUMP AND METHOD FOR OPERATING IT
DE3173990D1 (en) * 1981-09-15 1986-04-10 Sulzer Ag Steam generator with a superheater tubular wall
US4745884A (en) * 1987-05-28 1988-05-24 Riley Stoker Corporation Fluidized bed steam generating system
DE59301406D1 (en) * 1992-09-30 1996-02-22 Siemens Ag Process for operating a power plant and system operating thereon
DE19528438C2 (en) * 1995-08-02 1998-01-22 Siemens Ag Method and system for starting a once-through steam generator
JP3916784B2 (en) * 1998-10-26 2007-05-23 バブコック日立株式会社 Boiler structure
US6213059B1 (en) * 1999-01-13 2001-04-10 Abb Combustion Engineering Inc. Technique for cooling furnace walls in a multi-component working fluid power generation system
DE19901621A1 (en) * 1999-01-18 2000-07-27 Siemens Ag Fossil-heated steam generator
DE19914760C1 (en) * 1999-03-31 2000-04-13 Siemens Ag Fossil-fuel through-flow steam generator for power plant
DE19914761C1 (en) * 1999-03-31 2000-09-28 Siemens Ag Fossil fuel through-flow steam generator for electrical power plant has vertical evaporator pipes defined by walls of combustion chamber formed in loop at interface between combustion chamber and horizontal gas flue
DE19929088C1 (en) * 1999-06-24 2000-08-24 Siemens Ag Fossil fuel heated steam generator e.g. for power station equipment
EP1308671A1 (en) * 2001-10-30 2003-05-07 Alstom (Switzerland) Ltd A circulating fluidized bed reactor device
DE10254780B4 (en) * 2002-11-22 2005-08-18 Alstom Power Boiler Gmbh Continuous steam generator with circulating atmospheric fluidized bed combustion
EP1701091A1 (en) * 2005-02-16 2006-09-13 Siemens Aktiengesellschaft Once-through steam generator
EP1710498A1 (en) * 2005-04-05 2006-10-11 Siemens Aktiengesellschaft Steam generator
US7587996B2 (en) * 2006-06-07 2009-09-15 Babcock & Wilcox Power Generation Group, Inc. Circulation system for sliding pressure steam generator
US8096268B2 (en) * 2007-10-01 2012-01-17 Riley Power Inc. Municipal solid waste fuel steam generator with waterwall furnace platens
EP2180250A1 (en) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Continuous-flow steam generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3288117A (en) * 1965-12-01 1966-11-29 Combustion Eng Arrangement of tube circuits in supercritical forced through-flow vapor generator
EP0308728A1 (en) * 1987-09-21 1989-03-29 Siemens Aktiengesellschaft Method of operating a once-through steam generator
US5787844A (en) * 1995-03-06 1998-08-04 Ahlstrom Machinery Oy Economizer system
EP0884526A1 (en) * 1996-12-17 1998-12-16 Babcock-Hitachi Kabushiki Kaisha Boiler
DE19717158A1 (en) * 1997-04-23 1998-11-05 Siemens Ag Continuous steam generator and method for starting up a continuous steam generator
EP1188986A2 (en) * 2000-09-18 2002-03-20 Kvaerner Pulping Oy Arrangement in recovery boiler

Also Published As

Publication number Publication date
US20110203536A1 (en) 2011-08-25
CN102149968A (en) 2011-08-10
AU2009290998A1 (en) 2010-03-18
JP5225469B2 (en) 2013-07-03
WO2010028978A2 (en) 2010-03-18
EP2324286A2 (en) 2011-05-25
CN102149968B (en) 2014-04-30
PL2324286T3 (en) 2013-09-30
JP2012502248A (en) 2012-01-26
WO2010028978A3 (en) 2010-06-17
AU2009290998B2 (en) 2014-03-20
DK2324286T3 (en) 2013-05-13
EP2324286B1 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
EP2321578B1 (en) Continuous steam generator
EP1588095B1 (en) Steam generator
EP2324286B1 (en) Continuous-flow steam generator
EP2324287B1 (en) Continuous-flow steam generator
WO1994027089A2 (en) Steam power plant for generating electric power
EP1848926A2 (en) Continuous steam generator
EP2440847A2 (en) Continuous evaporator
DE19914761C1 (en) Fossil fuel through-flow steam generator for electrical power plant has vertical evaporator pipes defined by walls of combustion chamber formed in loop at interface between combustion chamber and horizontal gas flue
WO2015039831A2 (en) Combined cycle gas turbine plant having a waste heat steam generator
EP3014177B1 (en) Continuous flow steam generator with a two-pass boiler design
DE102010038883C5 (en) Forced once-through steam generator
DE102010038885B4 (en) Once-through steam generator
DE4321619C2 (en) Procedure for starting up power plants after a total failure of steam generation
EP2364414B1 (en) Continuous steam generator
WO2010102869A2 (en) Continuous evaporator
EP2564117B1 (en) Steam generator
EP2567151A2 (en) Method for operating a steam generator
EP1695007A1 (en) Continuous steam generator
DE102016111637A1 (en) Water tube boiler plant for heating a medium, method for producing a heated medium and method for generating electrical energy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKY No designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101029

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Effective date: 20110405

Ref country code: DE

Ref legal event code: 8566