EP0308728A1 - Method of operating a once-through steam generator - Google Patents

Method of operating a once-through steam generator Download PDF

Info

Publication number
EP0308728A1
EP0308728A1 EP88114622A EP88114622A EP0308728A1 EP 0308728 A1 EP0308728 A1 EP 0308728A1 EP 88114622 A EP88114622 A EP 88114622A EP 88114622 A EP88114622 A EP 88114622A EP 0308728 A1 EP0308728 A1 EP 0308728A1
Authority
EP
European Patent Office
Prior art keywords
heating surface
steam generator
feed water
evaporator heating
mass flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88114622A
Other languages
German (de)
French (fr)
Other versions
EP0308728B1 (en
Inventor
Eberhard Dipl.-Ing. Wittchow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0308728A1 publication Critical patent/EP0308728A1/en
Application granted granted Critical
Publication of EP0308728B1 publication Critical patent/EP0308728B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/12Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating with superimposed recirculation during starting and low-load periods, e.g. composite boilers

Definitions

  • the invention relates to a method for operating a once-through steam generator in accordance with the preamble of patent claim 1.
  • Such a method is known from pages 751 to 753 from "VGB-Kraftwerkstechnik 56", number 12, Dec. 1976 and relates to the once-through steam generator with full load circulation of a combined gas / steam turbine system.
  • a constant amount of exhaust gas flows to the continuous steam generator regardless of its load from a gas turbine.
  • the excess air in the combustion chamber is always kept approximately the same size despite the different load of the continuous steam generator in that a partial flow of this exhaust gas from the gas turbine bypassing the combustion chamber and thus the first evaporator heating surface formed by the wall of this combustion chamber of the continuous steam generator on the flue gas side in front of the second evaporator heating surface in the convection space is introduced.
  • the feed water is constantly fed into both evaporator heating surfaces which are connected in parallel to each other, in proportions that always occur automatically.
  • the first evaporator heating surface formed by the wall of the combustion chamber absorbs less and less heat until this first evaporator heating surface only acts as feed water preheater at low load and the majority of the heat transfer to the second evaporator heating surface takes place in the convection room.
  • the invention is based on the object, in particular the drive power of the feed water pump for the once-through steam generator Especially to reduce at full load of the continuous steam generator and thereby reduce the investment costs for a feed water pump, a feed water preheater and a feed water pipeline, but also to make the operation of the continuous steam generator more economical.
  • the method of the type mentioned in the introduction has the method steps according to the characterizing part of patent claim 1.
  • the feed water mass flow in the first evaporator heating surface forming the wall of the combustion chamber does not continue to rise above a certain load of the continuous steam generator, but that the increase in feed water mass flow required as the load increases further flows into the second evaporator heating surface located in the convection space.
  • the flow velocity and thus the friction pressure loss in the first evaporator heating surface do not increase further, and the feed water pump only has to overcome this friction pressure loss even at full load because of the second evaporator heating surface connected in parallel on the water side.
  • the second evaporator heating surface located in the convection space and switched off is not flowed through and is therefore not cooled, so that it in turn cannot cool the flue gas in the convection space.
  • the flue gas therefore has a sufficiently high temperature so that a system downstream of the convection room and equipped with catalytic converters can work perfectly to remove nitrogen oxide from the flue gas.
  • Claims 2 and 3 are directed to advantageous developments of the method according to the invention.
  • the friction pressure loss to be overcome by the feed water pump insofar as it arises in the first evaporator heating surface, and thus also the output of the feed water pump can be set to the lowest possible value.
  • the continuous steam generator according to FIG 1 has a combustion chamber 2 with not shown, e.g. Coal dust burners that open into this combustion chamber 2.
  • the combustion chamber 2 is formed by a tube wall 3, which is a first evaporator heating surface.
  • the combustion chamber 2 is followed by a blasting chamber 4 with a horizontal train 5 on the flue gas side, which merges into a convection chamber 6 with a flue gas outlet channel 7.
  • the blasting chamber 4, the horizontal train 5 and the convection chamber 6 have steam-cooled, gas-tight tube walls.
  • High-pressure superheater and intermediate superheater heating surfaces 27 are arranged within the upper part of the blasting chamber 4, within the horizontal train 5 and within the upper part of the convection chamber 6.
  • a second evaporator heating surface 8 and an economizer heating surface 9 are also arranged within the convection space 6.
  • the flue gas outlet channel 7 leads to a system 10 containing catalysts for removing nitrogen oxide from the flue gas.
  • a feed water pipeline 11 with a feed water pump 12 and a feed water preheater 13 leads to the economiser heating surface 9.
  • the economizer heating surface 9 are connected on the water side via a pipe 14, which contains a flow meter 15, the pipe wall 3 forming the first evaporator heating surface and, via a further pipe 16, which contains a water control valve 17, the second evaporator heating surface 8 located in the convection chamber 6.
  • the second evaporator heating surface 8 with an upstream water control valve 17 and the tube wall 3 forming the first evaporator heating surface are connected in parallel on the water side and connected on the outlet side to a passage collector 18 which, as shown in FIG. 2, is in principle a tube into which the outlet 3a of the first evaporator heating surface and Outlet 8a of the second evaporator heating surface is located in a straight line of diameter of the tube opposite.
  • the tube wall of the blasting chamber 4 is followed by a water-steam separation container 19, the steam-side outlet 20 to a high-pressure superheater heating surface 27 and the water-side outlet 21, into which a pump 22 is connected, for lead the water-side entrance of the economiser heating surface 9.
  • This water-steam separation container 19 can also be connected behind the outputs of the tube wall 3 forming the first evaporator heating surface and the second evaporator heating surface 8.
  • the load of the continuous steam generator in percent of the full load is plotted on the abscissa and the feed water mass flow in the continuous steam generator in percent of the feed water mass flow at full load is plotted on the ordinate.
  • the solid line I represents the feed water mass flow through the pipeline 14 into the tube wall 3 forming the first evaporator heating surface and the dash-dotted line II represents the feed water mass flow through the pipeline 16 into the second evaporator heating surface 8, which is arranged in the convection space 6.
  • the water entering the two evaporator heating surfaces is also referred to as feed water.
  • the water control valve 17 is closed, and the feed water mass flow conveyed by the feed pump 12 through the pipe wall 3 forming the first evaporator heating surface is overlaid by a circulating water mass flow promoted by the pump 22, so that the total water mass flow through the pipe wall 3 is up to 40 at each partial load % of full load has the same value.
  • the water control valve 17 initially remains closed, the circulating water mass flow conveyed by the pump 22 is zero and the feed water mass flow through the tube wall 3 forming the first evaporator heating surface increases linearly with the load of the continuous steam generator.
  • the water control valve 17 Only when the flow meter 15 in the pipeline 14 a mass flow of feed water into the pipe wall 3, e.g. of 80% of the feed water mass flow in the continuous steam generator at full load indicates, the water control valve 17 is opened. When the load of the once-through steam generator is increased further, the water control valve 17 is always only opened so far that the feed water mass flow through the pipeline 14 into the pipe wall 3 always maintains the value 80% of the feed water mass flow in the flow steam generator at full load, while the part going beyond 80% this feed water mass flow is supplied to the second evaporator heating surface 8.
  • the friction pressure loss in the first evaporator heating surface consisting of the tube wall 3 is always greater than the friction pressure loss in the second evaporator heating surface 8 due to the strong heating in the combustion chamber 2 and the high flow rate required in the tubes of this tube wall 3, the friction pressure loss of the two increases on the water side evaporator heating surfaces connected in parallel at a load greater than 80% of the full load and even at full load of the once-through steam generator do not significantly depend on the friction pressure loss at 80% of the full load. As a result, the feed water pump output can be saved if the load of the once-through steam generator exceeds 80% of the full load.
  • the continuous steam generator according to FIG. 4 differs from that according to FIG. 1 in that the feed water mass flow for the second evaporator heating surface 8 is branched off in front of the economizer heating surface 9. Otherwise, the continuous steam generator according to FIG. 4 corresponds to that according to FIG. 1.
  • the economiser heating surface 9 can be made geometrically smaller than the continuous steam generator according to FIG. 1, so that the temperature of the flue gas that arrives at the system 10 is higher in the part-load range when the second evaporator heating surface 8 is switched off than in the continuous steam generator according to FIG. 1.
  • the water control valve 17 can still flow a small feed water mass flow into the second evaporator heating surface 8 in its closed position, so that this evaporator heating surface 8 does not heat to an impermissibly high level in the flue gas at partial load.
  • the water control valve 17 is open above a certain partial load of the continuous steam generator, for example above 80% of the full load of the continuous steam generator, it can also be used as an injection valve for other heating surfaces which are connected downstream of the two evaporator heating surfaces on the water side.
  • the feed water mass flow into the once-through steam generator can therefore be briefly increased or reduced.
  • the water control valve 17 is opened or closed in the same cycle, so that the feed water mass flow into the first evaporator heating surface formed by the tube wall 3 is kept at the predetermined value.
  • the change in the feed water mass flow in the once-through steam generator has a very rapid effect on the temperature of the heating surfaces which are switched on the water side of the two evaporator heating surfaces, since the length of the tubes of the second evaporator heating surface 8 is considerably less than that of the tubes of the tube wall 3, which are the first Evaporator heating surface forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

Zur Verringerung der Antriebsleistung der Speisewasserpumpe (12) insbesondere bei Vollast eines Durchlaufdampferzeugers wird bei Überschreiten eines bestimmten Wertes eines Speisewassermassenstromes in den Durchlaufdampferzeuger der Fluß eines Speisewassermassenteilstromes in eine zu einer ersten, durch die Rohrwand (3) einer Brennkammer (2) des Durchlaufdampferzeugers gebildeten Verdampferheizfläche wasserseitig parallelgeschaltete zweite Verdampferheizfläche (8) eingeschaltet, die sich in einem der Brennkammer (2) rauchgasseitig nachgeschalteten Konvektionsraum (6) befindet; bei Unterschreiten des besagten Wertes des Speisewassermassenstromes in den Durchlaufdampferzeuger wird der Fluß des Speisewassermassenteilstromes in die zweite Verdampferheizfläche (8) wieder ausgeschaltet.In order to reduce the drive power of the feed water pump (12), in particular when a continuous steam generator is under full load, if a certain value of a feed water mass flow into the continuous steam generator is exceeded, the flow of a feed water mass flow into a first evaporator heating surface formed by the tube wall (3) of a combustion chamber (2) of the continuous steam generator second evaporator heating surface (8) connected in parallel on the water side and located in a convection space (6) downstream of the combustion chamber (2) on the flue gas side; if the value of the feed water mass flow in the continuous steam generator is undershot, the flow of the feed water mass flow into the second evaporator heating surface (8) is switched off again.

Description

Die Erfindung betrifft ein Verfahren zum Betreiben eines Durch­laufdampferzeugers entsprechend dem Oberbegriff des Patentan­spruches 1.The invention relates to a method for operating a once-through steam generator in accordance with the preamble of patent claim 1.

Ein derartiges Verfahren ist aus den Seiten 751 bis 753 aus "VGB-Kraftwerkstechnik 56", Heft 12, Dez. 1976 bekannt und bezieht sich auf den Durchlaufdampferzeuger mit Vollastumwäl­zung einer kombinierten Gas/Dampfturbinenanlage. Von einer Gasturbine strömt dem Durchlaufdampferzeuger unabhängig von seiner Last eine konstante Abgasmenge zu. Der Luftüberschuß in der Brennkammer wird trotz unterschiedlicher Last des Durch­laufdampferzeugers dadurch stets etwa gleich groß gehalten, daß ein Teilstrom dieses Abgases der Gasturbine unter Umgehung der Brennkammer und damit der durch die Wand dieser Brennkammer des Durchlaufdampferzeugers gebildeten ersten Verdampferheiz­fläche rauchgasseitig vor der zweiten Verdampferheizfläche in den Konvektionsraum eingeführt wird. Das Speisewasser wird ständig in beide zueinander parallelgeschaltete Verdampferheiz­flächen geleitet, und zwar in Anteilen, die sich stets von selbst einstellen.Such a method is known from pages 751 to 753 from "VGB-Kraftwerkstechnik 56", number 12, Dec. 1976 and relates to the once-through steam generator with full load circulation of a combined gas / steam turbine system. A constant amount of exhaust gas flows to the continuous steam generator regardless of its load from a gas turbine. The excess air in the combustion chamber is always kept approximately the same size despite the different load of the continuous steam generator in that a partial flow of this exhaust gas from the gas turbine bypassing the combustion chamber and thus the first evaporator heating surface formed by the wall of this combustion chamber of the continuous steam generator on the flue gas side in front of the second evaporator heating surface in the convection space is introduced. The feed water is constantly fed into both evaporator heating surfaces which are connected in parallel to each other, in proportions that always occur automatically.

Bei Vollast des Durchlaufdampferzeugers findet in beiden Ver­dampferheizflächen Verdampfung statt. Mit sinkender Last nimmt die erste, durch die Wand der Brennkammer gebildete Verdampfer­heizfläche immer weniger Wärme auf, bis diese erste Verdampfer­heizfläche bei Kleinlast nur noch als Speisewasservorwärmer wirkt und der größte Teil der Wärmeübertragung an die zweite Verdampferheizfläche im Konvektionsraum stattfindet.At full load of the continuous steam generator, evaporation takes place in both evaporator heating surfaces. As the load decreases, the first evaporator heating surface formed by the wall of the combustion chamber absorbs less and less heat until this first evaporator heating surface only acts as feed water preheater at low load and the majority of the heat transfer to the second evaporator heating surface takes place in the convection room.

Die Erfindung geht von der Aufgabe aus, die Antriebsleistung der Speisewasserpumpe für den Durchlaufdampferzeuger insbe­ sondere bei Vollast des Durchlaufdampferzeugers zu verringern und dadurch die Investitionskosten für eine Speisewasserpumpe, einen Speisewasservorwärmer und eine Speisewasserrohrleitung zu senken, aber auch den Betrieb des Durchlaufdampferzeugers wirtschaftlicher zu gestalten.The invention is based on the object, in particular the drive power of the feed water pump for the once-through steam generator Especially to reduce at full load of the continuous steam generator and thereby reduce the investment costs for a feed water pump, a feed water preheater and a feed water pipeline, but also to make the operation of the continuous steam generator more economical.

Zur Lösung dieser Aufgabe hat das Verfahren der eingangs erwähnten Art erfindungsgemäß die Verfahrensschritte nach dem kennzeichnenden Teil des Patentanspruches 1.To achieve this object, the method of the type mentioned in the introduction has the method steps according to the characterizing part of patent claim 1.

Dadurch wird erreicht, daß der Speisewassermassenstrom in die erste, die Wand der Brennkammer bildende Verdampferheiz­fläche oberhalb einer bestimmten Last des Durchlaufdampferzeu­gers nicht weiter ansteigt, sondern daß der bei weiter stei­gender Last erforderliche Zuwachs des Speisewassermassenstromes in die zweite, im Konvektionsraum befindliche Verdampferheiz­fläche strömt. Dadurch steigen auch die Strömungsgeschwindig­keit und damit der Reibungsdruckverlust in der ersten Ver­dampferheizfläche nicht weiter an, und die Speisewasserpumpe hat auch bei Volllast wegen der wasserseitig parallelgeschal­teten zweiten Verdampferheizfläche nur diesen Reibungsdruckver­lust zu überwinden.It is thereby achieved that the feed water mass flow in the first evaporator heating surface forming the wall of the combustion chamber does not continue to rise above a certain load of the continuous steam generator, but that the increase in feed water mass flow required as the load increases further flows into the second evaporator heating surface located in the convection space. As a result, the flow velocity and thus the friction pressure loss in the first evaporator heating surface do not increase further, and the feed water pump only has to overcome this friction pressure loss even at full load because of the second evaporator heating surface connected in parallel on the water side.

Ferner wird bei Teillast die zweite, im Konvektionsraum befind­liche und abgeschaltete Verdampferheizfläche nicht durchströmt und dadurch nicht gekühlt, so daß sie ihrerseits auch das Rauchgas im Konvektionsraum nicht kühlen kann. Das Rauchgas hat deshalb eine ausreichend hohe Temperatur, so daß eine dem Kon­vektionsraum nachgeschaltete, mit Katalysatoren ausgestattete Anlage zur Beseitigung von Stickoxid aus dem Rauchgas ein­wandfrei arbeiten kann.Furthermore, at partial load, the second evaporator heating surface located in the convection space and switched off is not flowed through and is therefore not cooled, so that it in turn cannot cool the flue gas in the convection space. The flue gas therefore has a sufficiently high temperature so that a system downstream of the convection room and equipped with catalytic converters can work perfectly to remove nitrogen oxide from the flue gas.

Die Patentansprüche 2 und 3 sind auf vorteilhafte Weiterbil­dungen des erfindungsgemäßen Verfahrens gerichtet.Claims 2 and 3 are directed to advantageous developments of the method according to the invention.

Durch die Weiterbildung nach Patentanspruch 2 können sich der von der Speisewasserpumpe zu überwindende Reibungsdruckver­lust, soweit er in der ersten Verdampferheizfläche entsteht, und damit auch die Leistung der Speisewasserpumpe auf einen möglichst niedrigen Wert einstellen.Through the development according to claim 2, the friction pressure loss to be overcome by the feed water pump, insofar as it arises in the first evaporator heating surface, and thus also the output of the feed water pump can be set to the lowest possible value.

Durch die Weiterbildung nach Patentanspruch 3 können Tempera­turschwankungen abgefangen werden, die bei Lastwechsel oder Feuerungsstörungen in anderen Heizflächen auftreten, die den beiden Verdampferheizflächen wasserseitig nachgeschaltet sind.Through the development according to claim 3, temperature fluctuations can be absorbed, which occur in the event of load changes or combustion faults in other heating surfaces, which are connected downstream of the two evaporator heating surfaces on the water side.

Die Erfindung und ihre Vorteile seien anhand der Zeichnung an zwei Ausführungsbeispielen näher erläutert.

  • FIG 1 zeigt schematisch einen Durchlaufdampferzeuger.
  • FIG 2 zeigt im Querschnitt einen Durchgangssammler des Durch­laufdampferzeugers nach FIG 1.
  • FIG 3 zeigt ein Diagramm zur Betriebsweise des Durchlauf­dampferzeugers nach FIG 1 und FIG 2.
  • FIG 4 zeigt eine Abwandlung der Schaltung von Heizflächen im Konvektionsraum des Durchlaufdampferzeugers nach FIG 1.
The invention and its advantages are explained in more detail with reference to the drawing using two exemplary embodiments.
  • 1 schematically shows a once-through steam generator.
  • 2 shows in cross section a passage collector of the once-through steam generator according to FIG. 1.
  • 3 shows a diagram of the mode of operation of the once-through steam generator according to FIG. 1 and FIG. 2.
  • 4 shows a modification of the switching of heating surfaces in the convection space of the once-through steam generator according to FIG. 1.

Der Durchlaufdampferzeuger nach FIG 1 hat eine Brennkammer 2 mit nicht dargestellten, z.B. Kohlestaubbrennern, die in diese Brennkammer 2 münden. Die Brennkammer 2 ist durch eine Rohrwand 3 gebildet, die eine erste Verdampferheizfläche ist.The continuous steam generator according to FIG 1 has a combustion chamber 2 with not shown, e.g. Coal dust burners that open into this combustion chamber 2. The combustion chamber 2 is formed by a tube wall 3, which is a first evaporator heating surface.

Der Brennkammer 2 ist rauchgasseitig ein Strahlraum 4 mit einem Horizontalzug 5 nachgeschaltet, der in einen Konvektions­raum 6 mit einem Rauchgasaustrittskanal 7 übergeht. Der Strahl­raum 4, der Horizontalzug 5 und der Konvektionsraum 6 haben wasserdampfgekühlte, gasdichte Rohrwände.The combustion chamber 2 is followed by a blasting chamber 4 with a horizontal train 5 on the flue gas side, which merges into a convection chamber 6 with a flue gas outlet channel 7. The blasting chamber 4, the horizontal train 5 and the convection chamber 6 have steam-cooled, gas-tight tube walls.

Innerhalb des oberen Teiles des Strahlraumes 4, innerhalb des Horizontalzuges 5 und innerhalb des oberen Teiles des Konvektionsraumes 6 sind Hochdrucküberhitzer- und Zwischen­überhitzerheizflächen 27 angeordnet. Rauchgasseitig hinter diesen Hochdrucküberhitzer- und Zwischenüberhitzerheizflächen 27 sind innerhalb des Konvektionsraumes 6 ferner eine zweite Verdampferheizfläche 8 und eine Economiserheizfläche 9 ange­ordnet. Der Rauchgasaustrittskanal 7 führt zu einer Kataly­satoren enthaltenden Anlage 10 zum Beseitigen von Stickoxid aus dem Rauchgas.High-pressure superheater and intermediate superheater heating surfaces 27 are arranged within the upper part of the blasting chamber 4, within the horizontal train 5 and within the upper part of the convection chamber 6. On the flue gas side, behind these high-pressure superheater and intermediate superheater heating surfaces 27, a second evaporator heating surface 8 and an economizer heating surface 9 are also arranged within the convection space 6. The flue gas outlet channel 7 leads to a system 10 containing catalysts for removing nitrogen oxide from the flue gas.

Zur Economiserheizfläche 9 führt eine Speisewasserrohrleitung 11 mit einer Speisewasserpumpe 12 und einem Speisewasservorwär­mer 13.A feed water pipeline 11 with a feed water pump 12 and a feed water preheater 13 leads to the economiser heating surface 9.

Der Economiserheizfläche 9 sind wasserseitig über eine Rohr­leitung 14, die einen Durchflußmesser 15 enthält, die die erste Verdampferheizfläche bildende Rohrwand 3 und über eine weitere Rohrleitung 16, die ein Wasserregelventil 17 enthält, die im Konvektionsraum 6 befindliche zweite Verdampferheiz­fläche 8 nachgeschaltet. Die zweite Verdampferheizfläche 8 mit vorgeschaltetem Wasserregelventil 17 und die die erste Verdampferheizfläche bildende Rohrwand 3 sind wasserseitig parallelgeschaltet und ausgangsseitig an einem Durchgangssamm­ler 18 angeschlossen, der, wie FIG 2 zeigt, im Prinzip ein Rohr ist, in das der Ausgang 3a der ersten Verdampferheizfläche und der Ausgang 8a der zweiten Verdampferheizfläche sich in einer Durchmessergeraden des Rohres gegenüber befindlich münden.The economizer heating surface 9 are connected on the water side via a pipe 14, which contains a flow meter 15, the pipe wall 3 forming the first evaporator heating surface and, via a further pipe 16, which contains a water control valve 17, the second evaporator heating surface 8 located in the convection chamber 6. The second evaporator heating surface 8 with an upstream water control valve 17 and the tube wall 3 forming the first evaporator heating surface are connected in parallel on the water side and connected on the outlet side to a passage collector 18 which, as shown in FIG. 2, is in principle a tube into which the outlet 3a of the first evaporator heating surface and Outlet 8a of the second evaporator heating surface is located in a straight line of diameter of the tube opposite.

Von diesem Durchgangssammler 18 gehen radial gerichtet die Rohrleitungen 4a zur Rohrwand des Strahlraumes 4 ab.From this passage collector 18, the pipelines 4a extend radially to the pipe wall of the blasting chamber 4.

Der Rohrwand des Strahlraumes 4 ist ein Wasser-Dampf-Trenn­behälter 19 nachgeschaltet, dessen dampfseitiger Ausgang 20 zu einer Hochdrucküberhitzerheizfläche 27 und dessen wasser­seitiger Ausgang 21, in den eine Pumpe 22 geschaltet ist, zum wasserseitigen Eingang der Economiserheizfläche 9 führen. Die­ser Wasser-Dampf-Trennbehälter 19 kann auch hinter die Ausgänge der die erste Verdampferheizfläche bildenden Rohrwand 3 und der zweiten Verdampferheizfläche 8 geschaltet sein.The tube wall of the blasting chamber 4 is followed by a water-steam separation container 19, the steam-side outlet 20 to a high-pressure superheater heating surface 27 and the water-side outlet 21, into which a pump 22 is connected, for lead the water-side entrance of the economiser heating surface 9. This water-steam separation container 19 can also be connected behind the outputs of the tube wall 3 forming the first evaporator heating surface and the second evaporator heating surface 8.

Im Diagramm nach FIG 3 sind auf der Abszisse die Last des Durchlaufdampferzeugers in Prozent der Vollast und auf der Ordinate der Speisewassermassenstrom in den Durchlaufdampf­erzeuger in Prozent des Speisewassermassenstromes bei Vollast aufgetragen.In the diagram according to FIG. 3, the load of the continuous steam generator in percent of the full load is plotted on the abscissa and the feed water mass flow in the continuous steam generator in percent of the feed water mass flow at full load is plotted on the ordinate.

Die durchgezogene Linie I repräsentiert den Speisewassermassen­strom durch die Rohrleitung 14 in die die erste Verdampferheiz­fläche bildende Rohrwand 3 und die strichpunktierte Linie II den Speisewassermassenstrom durch die Rohrleitung 16 in die zweite Verdampferheizfläche 8, die im Konvektionsraum 6 ange­ordnet ist. Hierbei ist also auch das in die beiden Verdampfer­heizflächen eintretende Wasser als Speisewasser bezeichnet.The solid line I represents the feed water mass flow through the pipeline 14 into the tube wall 3 forming the first evaporator heating surface and the dash-dotted line II represents the feed water mass flow through the pipeline 16 into the second evaporator heating surface 8, which is arranged in the convection space 6. Here, the water entering the two evaporator heating surfaces is also referred to as feed water.

Bei Teillast kleiner als oder gleich z.B. 40 % der Vollast ist das Wasserregelventil 17 geschlossen, und dem durch die Speisepumpe 12 geförderten Speisewassermassenstrom durch die die erste Verdampferheizfläche bildende Rohrwand 3 wird ein durch die Pumpe 22 geförderter Umwälzwassermassenstrom über­lagert, so daß der Gesamtwassermassenstrom durch die Rohrwand 3 bei jeder Teillast bis zu 40 % der Vollast den gleichen Wert hat.At partial load less than or equal to e.g. 40% of the full load, the water control valve 17 is closed, and the feed water mass flow conveyed by the feed pump 12 through the pipe wall 3 forming the first evaporator heating surface is overlaid by a circulating water mass flow promoted by the pump 22, so that the total water mass flow through the pipe wall 3 is up to 40 at each partial load % of full load has the same value.

Bei Teillast höher als 40 % der Vollast bleibt das Wasserregel­ventil 17 zunächst noch geschlossen, der durch die Pumpe 22 geförderte Umwälzwassermassenstrom ist Null und der Speise­wassermassenstrom durch die die erste Verdampferheizfläche bildende Rohrwand 3 steigt mit der Last des Durchlaufdampfer­zeugers linear an.At partial load higher than 40% of the full load, the water control valve 17 initially remains closed, the circulating water mass flow conveyed by the pump 22 is zero and the feed water mass flow through the tube wall 3 forming the first evaporator heating surface increases linearly with the load of the continuous steam generator.

Erst wenn der Durchflußmesser 15 in der Rohrleitung 14 einen Speisewassermassenstrom in die Rohrwand 3, z.B. von 80 % des Speisewassermassenstromes in den Durchlaufdampferzeuger bei Vollast anzeigt, wird das Wasserregelventil 17 geöffnet. Bei weiterer Steigerung der Last des Durchlaufdampferzeugers wird das Wasserregelventil 17 immer nur so weit geöffnet, daß der Speisewassermassenteilstrom durch die Rohrleitung 14 in die Rohrwand 3 stets den Wert 80 % des Speisewassermassenstromes in den Durchlaufdampferzeuger bei Vollast konstant beibehält, während der über 80 % hinausgehende Teil dieses Speisewasser­massenstromes der zweiten Verdampferheizfläche 8 zugeführt wird.Only when the flow meter 15 in the pipeline 14 a mass flow of feed water into the pipe wall 3, e.g. of 80% of the feed water mass flow in the continuous steam generator at full load indicates, the water control valve 17 is opened. When the load of the once-through steam generator is increased further, the water control valve 17 is always only opened so far that the feed water mass flow through the pipeline 14 into the pipe wall 3 always maintains the value 80% of the feed water mass flow in the flow steam generator at full load, while the part going beyond 80% this feed water mass flow is supplied to the second evaporator heating surface 8.

Da der Reibungsdruckverlust in der aus der Rohrwand 3 be­stehenden ersten Verdampferheizfläche aufgrund der starken Beheizung in der Brennkammer 2 und der deswegen erforderlichen hohen Durchströmungsgeschwindigkeit in den Rohren dieser Rohrwand 3 stets größer ist als der Reibungsdruckverlust in der zweiten Verdampferheizfläche 8, steigt der Reibungsdruckverlust der beiden wasserseitig parallelgeschalteten Verdampferheiz­flächen bei einer Last größer als 80 % der Vollast und selbst bei Vollast des Durchlaufdampferzeugers nicht wesentlich über den Reibungsdruckverlust bei 80 % der Vollast an. Dadurch kann bei einer 80 % der Vollast übersteigenden Last des Durchlauf­dampferzeugers Leistung der Speisewasserpumpe eingespart werden.Since the friction pressure loss in the first evaporator heating surface consisting of the tube wall 3 is always greater than the friction pressure loss in the second evaporator heating surface 8 due to the strong heating in the combustion chamber 2 and the high flow rate required in the tubes of this tube wall 3, the friction pressure loss of the two increases on the water side evaporator heating surfaces connected in parallel at a load greater than 80% of the full load and even at full load of the once-through steam generator do not significantly depend on the friction pressure loss at 80% of the full load. As a result, the feed water pump output can be saved if the load of the once-through steam generator exceeds 80% of the full load.

Entsprechend umgekehrt wird ausgehend von Vollast des Dampf­erzeugers mit sinkender Last des Durchlaufdampferzeugers ver­fahren und insbesondere das Wasserregelventil 17 immer nur so weit geschlossen, daß der Speisewasserstrom durch die Rohr­leitung 14 in die Rohrwand 3 stets den Wert 80 % des Speise­wasserstromes in den Durchlaufdampferzeuger bei Vollast beibe­hält, bis schließlich eine Teillast von 80 % der Vollast er­reicht ist, bei der das Wasserregelventil 17 geschlossen ist.Conversely, proceeding from full load of the steam generator with decreasing load of the continuous steam generator, and in particular the water control valve 17 is always only closed to such an extent that the feed water flow through the pipeline 14 into the pipe wall 3 always maintains the value 80% of the feed water flow in the continuous steam generator at full load, until finally a partial load of 80% of the full load is reached, at which the water control valve 17 is closed.

Der Durchlaufdampferzeuger nach FIG 4 unterscheidet sich von dem nach FIG 1 dadurch, daß der Speisewassermassenstrom für die zweite Verdampferheizfläche 8 vor der Economiserheizfläche 9 abgezweigt wird. Im übrigen entspricht der Durchlaufdampf­erzeuger nach FIG 4 dem nach FIG 1.The continuous steam generator according to FIG. 4 differs from that according to FIG. 1 in that the feed water mass flow for the second evaporator heating surface 8 is branched off in front of the economizer heating surface 9. Otherwise, the continuous steam generator according to FIG. 4 corresponds to that according to FIG. 1.

Beim Durchlaufdampferzeuger nach FIG 4 kann die Economiser­heizfläche 9 geometrisch kleiner ausgeführt sein als beim Durchlaufdampferzeuger nach FIG 1, so daß die Temperatur des Rauchgases, das zur Anlage 10 gelangt, im Teillastbereich bei ausgeschalteter zweiter Verdampferheizfläche 8 höher ist ist als beim Durchlaufdampferzeuger nach FIG 1.4, the economiser heating surface 9 can be made geometrically smaller than the continuous steam generator according to FIG. 1, so that the temperature of the flue gas that arrives at the system 10 is higher in the part-load range when the second evaporator heating surface 8 is switched off than in the continuous steam generator according to FIG. 1.

Günstigerweise kann das Wasserregelventil 17 in seiner Ver­schlußstellung noch einen geringen Speisewassermassenstrom in die zweite Verdampferheizfläche 8 einströmen lassen, so daß sich diese Verdampferheizfläche 8 bei Teillast nicht unzulässig hoch im Rauchgas erhitzt.Conveniently, the water control valve 17 can still flow a small feed water mass flow into the second evaporator heating surface 8 in its closed position, so that this evaporator heating surface 8 does not heat to an impermissibly high level in the flue gas at partial load.

Es ist umso vorteilhafter, je niedriger die Teillast des Durch­laufdampferzeugers ist, bei dem der Fluß des Speisewassermas­senteilstromes in die zweite Verdampferheizfläche 8 durch Öffnen des Wasserregelventils 17 eingeschaltet wird. Mit einer nicht dargestellten Regeleinrichtung kann deshalb dem Speise­wassermassenteilstrom in die erste Verdampferheizfläche ein Wert vorgegeben werden, der nicht überschritten werden darf und der z.B. konstant oder auch gerade so hoch sein kann, daß die Dampftemperatur am Ausgang der die erste Verdampferheiz­fläche bildenden Rohrwand 3 einen zulässigen Grenzwert nicht überschreitet.It is all the more advantageous the lower the partial load of the once-through steam generator, in which the flow of the feed water mass flow into the second evaporator heating surface 8 is switched on by opening the water control valve 17. With a control device, not shown, a value can therefore be given to the feed water mass flow into the first evaporator heating surface which must not be exceeded and which e.g. can be constant or just so high that the steam temperature at the outlet of the tube wall 3 forming the first evaporator heating surface does not exceed a permissible limit value.

Ist das Wasserregelventil 17 oberhalb einer bestimmten Teillast des Durchlaufdampferzeugers, z.B. oberhalb von 80 % der Vollast des Durchlaufdampferzeugers, geöffnet, kann es auch als Ein­spritzventil für andere Heizflächen verwendet werden, die den beiden Verdampferheizflächen wasserseitig nachgeschaltet sind.If the water control valve 17 is open above a certain partial load of the continuous steam generator, for example above 80% of the full load of the continuous steam generator, it can also be used as an injection valve for other heating surfaces which are connected downstream of the two evaporator heating surfaces on the water side.

Bei Lastwechseln oder Feuerungsstörungen kann deshalb der Spei­sewassermassenstrom in den Durchlaufdampferzeuger kurzzeitig erhöht oder reduziert werden. Das Wasserregelventil 17 wird im gleichen Takt geöffnet oder geschlossen, so daß der Speise­wassermassenteilstrom in die erste, durch die Rohrwand 3 ge­bildete Verdampferheizfläche auf dem vorgegebenen Wert gehalten wird. Die Änderung des Speisewassermassenstromes in den Durch­laufdampferzeuger wirkt sich auf die Temperatur der Heizflä­chen, die den beiden Verdampferheizflächen wasserseitig wach­geschaltet sind, sehr schnell aus, da die Länge der Rohre der zweiten Verdampferheizfläche 8 wesentlich geringer ist als die der Rohre der Rohrwand 3, die die erste Verdampferheizfläche bildet.In the event of load changes or combustion faults, the feed water mass flow into the once-through steam generator can therefore be briefly increased or reduced. The water control valve 17 is opened or closed in the same cycle, so that the feed water mass flow into the first evaporator heating surface formed by the tube wall 3 is kept at the predetermined value. The change in the feed water mass flow in the once-through steam generator has a very rapid effect on the temperature of the heating surfaces which are switched on the water side of the two evaporator heating surfaces, since the length of the tubes of the second evaporator heating surface 8 is considerably less than that of the tubes of the tube wall 3, which are the first Evaporator heating surface forms.

Claims (3)

1. Verfahren zum Betreiben eines Durchlaufdampferzeugers mit einer ersten Verdampferheizfläche, die durch die Rohrwand einer Brennkammer gebildet ist, sowie mit einer zur ersten Ver­dampferheizfläche wasserseitig parallelgeschalteten zweiten Verdampferheizfläche, die sich in einem der Brennkammer rauch­gasseitig nachgeschalteten Konvektionsraum in Strömungsrichtung des Rauchgases gesehen hinter einer Überhitzerheizfläche be­findet,
dadurch gekennzeichnet,
daß bei Überschreiten eines bestimmten Wertes eines Speise­wassermassenstromes in den Durchlaufdampferzeuger der Fluß eines Speisewassermassenteilstromes in die zweite Verdampfer­heizfläche (8) durch Öffnen eines dieser zweiten Verdampfer­heizfläche (8) durchflußmäßig vorgeschalteten Wasserregelven­tiles (17) eingeschaltet und bei Unterschreiten dieses Wertes durch Schließen des Wasserregelventils (17) wieder ausgeschal­tet wird.
1. A method for operating a once-through steam generator with a first evaporator heating surface, which is formed by the tube wall of a combustion chamber, and with a second evaporator heating surface connected in parallel to the first evaporator heating surface on the water side, which is located behind a superheater heating surface in a convection space downstream of the combustion chamber on the flue gas side, seen in the flow direction of the flue gas ,
characterized,
that when a certain value of a feed water mass flow in the once-through steam generator is exceeded, the flow of a feed water mass flow into the second evaporator heating surface (8) is switched on by opening one of the second evaporator heating surfaces (8) upstream of the water control valve (17) and if this value is undershot by closing the water control valve (17) is switched off again.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß der Speisewassermassenteilstrom in die zweite Verdampfer­heizfläche (8) mit dem Wasserregelventil (17) so eingestellt wird, daß der Speisewassermassenteilstrom in die erste Ver­dampferheizfläche einen vorgegebenen Wert nicht überschreitet.
2. The method according to claim 1,
characterized by
that the feed water mass flow into the second evaporator heating surface (8) with the water control valve (17) is set so that the feed water mass flow into the first evaporator heating surface does not exceed a predetermined value.
3. Verfahren nach Anspruch 2,
dadurch gekennzeichnet,
daß der Speisewassermassenstrom in den Durchlaufdampferzeuger kurzzeitig erhöht oder reduziert wird.
3. The method according to claim 2,
characterized,
that the feed water mass flow in the once-through steam generator is briefly increased or reduced.
EP88114622A 1987-09-21 1988-09-07 Method of operating a once-through steam generator Expired - Lifetime EP0308728B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3731728 1987-09-21
DE3731728 1987-09-21

Publications (2)

Publication Number Publication Date
EP0308728A1 true EP0308728A1 (en) 1989-03-29
EP0308728B1 EP0308728B1 (en) 1991-06-05

Family

ID=6336504

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88114622A Expired - Lifetime EP0308728B1 (en) 1987-09-21 1988-09-07 Method of operating a once-through steam generator

Country Status (4)

Country Link
US (1) US4869210A (en)
EP (1) EP0308728B1 (en)
JP (1) JPH01107003A (en)
DE (1) DE3863153D1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4303613A1 (en) * 1993-02-09 1994-08-18 Steinmueller Gmbh L & C Process for generating steam in a once-through steam generator
WO1998048217A1 (en) 1997-04-23 1998-10-29 Siemens Aktiengesellschaft Continuous-flow steam generator and method for starting same
US7053020B2 (en) 2002-09-25 2006-05-30 Shell Oil Company Catalyst systems for ethylene oligomerisation to linear alpha olefins
US7238764B2 (en) 2000-10-03 2007-07-03 Shell Oil Company Process for the co-oligomerisation of ethylene and alpha olefins
US7304159B2 (en) 2001-08-01 2007-12-04 Shell Oil Company Ligands and catalyst systems thereof for ethylene oligomerisation to linear alpha olefins
US7547783B2 (en) 2004-03-24 2009-06-16 Shell Oil Company Transition metal complexes
WO2010028978A2 (en) * 2008-09-09 2010-03-18 Siemens Aktiengesellschaft Continuous steam generator
WO2010029022A2 (en) * 2008-09-09 2010-03-18 Siemens Aktiengesellschaft Continuous steam generator
DE102010028720A1 (en) * 2010-05-07 2011-11-10 Siemens Aktiengesellschaft Method for operating a steam generator
DE102013215457A1 (en) * 2013-08-06 2015-02-12 Siemens Aktiengesellschaft Continuous steam generator in two-pass boiler design

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0439765T3 (en) * 1990-01-31 1995-10-02 Siemens Ag A steam generator
AT394627B (en) * 1990-08-27 1992-05-25 Sgp Va Energie Umwelt METHOD FOR STARTING A HEAT EXCHANGER SYSTEM FOR STEAM GENERATION AND A HEAT EXCHANGER SYSTEM FOR STEAM GENERATION
DE4142376A1 (en) * 1991-12-20 1993-06-24 Siemens Ag FOSSIL FIRED CONTINUOUS STEAM GENERATOR
US5713311A (en) * 1996-02-15 1998-02-03 Foster Wheeler Energy International, Inc. Hybrid steam generating system and method
BE1010594A3 (en) * 1996-09-02 1998-11-03 Cockerill Mech Ind Sa Process for conducting the boiler boiler and forced circulation for its implementation.
DE19721854A1 (en) * 1997-05-26 1998-12-03 Asea Brown Boveri Improvement in the degree of separation of steam contaminants in a steam-water separator
US6213059B1 (en) * 1999-01-13 2001-04-10 Abb Combustion Engineering Inc. Technique for cooling furnace walls in a multi-component working fluid power generation system
DE19907451A1 (en) * 1999-02-22 2000-08-24 Abb Alstom Power Ch Ag Method for starting a once-through waste heat boiler and device for carrying out the method
US6710006B2 (en) 2000-02-09 2004-03-23 Shell Oil Company Non-symmetrical ligands and catalyst systems thereof for ethylene oligomerization to linear alpha olefins
US6675747B1 (en) * 2002-08-22 2004-01-13 Foster Wheeler Energy Corporation System for and method of generating steam for use in oil recovery processes
AR049714A1 (en) 2004-07-13 2006-08-30 Shell Int Research ALFA OLEFINAS LINEAR PREPARATION PROCESS
EP2065641A3 (en) * 2007-11-28 2010-06-09 Siemens Aktiengesellschaft Method for operating a continuous flow steam generator and once-through steam generator
US20120012036A1 (en) * 2010-07-15 2012-01-19 Shaw John R Once Through Steam Generator
WO2012113662A2 (en) 2011-02-25 2012-08-30 Siemens Aktiengesellschaft Method for regulating a brief increase in power of a steam turbine
JP6419888B1 (en) * 2017-04-28 2018-11-07 三菱日立パワーシステムズ株式会社 Power plant and operation method thereof
EP3495730B1 (en) 2017-12-08 2024-01-24 General Electric Technology GmbH Once-through evaporator systems
EP3495731B1 (en) 2017-12-08 2022-02-16 General Electric Technology GmbH Once-through evaporator systems
EP3495732B1 (en) 2017-12-08 2024-02-14 General Electric Technology GmbH Once-through evaporator systems
EP3495729B1 (en) * 2017-12-08 2020-11-25 General Electric Technology GmbH Once-through evaporator systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB768201A (en) * 1955-03-24 1957-02-13 Babcox & Wilcox Ltd Improvements relating to forced flow once through tubulous vapour generating and superheating units and to the starting of turbines arranged to be supplied with vapour from such units
DE1146071B (en) * 1957-02-16 1963-03-28 Siemens Ag Installation on a once-through steam generator with auxiliary heating surface
FR2121184A5 (en) * 1970-12-31 1972-08-18 Sulzer Ag
DE2950622A1 (en) * 1979-12-15 1981-10-08 Evt Energie- Und Verfahrenstechnik Gmbh, 7000 Stuttgart Operating process for forced circulation boiler - involves measures to maximise water content on shut-down in boiler with radiant contact evaporators in parallel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3220193A (en) * 1961-01-06 1965-11-30 Gilbert Associates Devices for improving operating flexibility of steam-electric generating plants
DK118672B (en) * 1964-03-13 1970-09-21 Siemens Ag Control device for forced circulation boilers.
US3434460A (en) * 1966-11-30 1969-03-25 Combustion Eng Multicircuit recirculation system for vapor generating power plant
CH475509A (en) * 1967-05-23 1969-07-15 Sulzer Ag Forced once-through steam generator with recirculation of working medium
DE2818981C2 (en) * 1978-04-28 1982-12-23 Kraftwerk Union AG, 4330 Mülheim Continuous steam generator and method of operating the same
CH635184A5 (en) * 1978-12-22 1983-03-15 Sulzer Ag STEAM GENERATOR SYSTEM.
DE3236979A1 (en) * 1982-10-06 1984-04-12 Deutsche Babcock Werke AG, 4200 Oberhausen FORCED STEAM GENERATOR AND METHOD FOR ITS COMMISSIONING

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB768201A (en) * 1955-03-24 1957-02-13 Babcox & Wilcox Ltd Improvements relating to forced flow once through tubulous vapour generating and superheating units and to the starting of turbines arranged to be supplied with vapour from such units
DE1146071B (en) * 1957-02-16 1963-03-28 Siemens Ag Installation on a once-through steam generator with auxiliary heating surface
FR2121184A5 (en) * 1970-12-31 1972-08-18 Sulzer Ag
DE2950622A1 (en) * 1979-12-15 1981-10-08 Evt Energie- Und Verfahrenstechnik Gmbh, 7000 Stuttgart Operating process for forced circulation boiler - involves measures to maximise water content on shut-down in boiler with radiant contact evaporators in parallel

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4303613A1 (en) * 1993-02-09 1994-08-18 Steinmueller Gmbh L & C Process for generating steam in a once-through steam generator
DE4303613C2 (en) * 1993-02-09 1998-12-17 Steinmueller Gmbh L & C Process for generating steam in a once-through steam generator
WO1998048217A1 (en) 1997-04-23 1998-10-29 Siemens Aktiengesellschaft Continuous-flow steam generator and method for starting same
DE19717158A1 (en) * 1997-04-23 1998-11-05 Siemens Ag Continuous steam generator and method for starting up a continuous steam generator
DE19717158C2 (en) * 1997-04-23 1999-11-11 Siemens Ag Continuous steam generator and method for starting up a continuous steam generator
US6192837B1 (en) 1997-04-23 2001-02-27 Siemens Aktiengesellschaft Once-through steam generator and method for starting up a once-through steam generator
US7238764B2 (en) 2000-10-03 2007-07-03 Shell Oil Company Process for the co-oligomerisation of ethylene and alpha olefins
US7304159B2 (en) 2001-08-01 2007-12-04 Shell Oil Company Ligands and catalyst systems thereof for ethylene oligomerisation to linear alpha olefins
US7053020B2 (en) 2002-09-25 2006-05-30 Shell Oil Company Catalyst systems for ethylene oligomerisation to linear alpha olefins
US7547783B2 (en) 2004-03-24 2009-06-16 Shell Oil Company Transition metal complexes
WO2010028978A2 (en) * 2008-09-09 2010-03-18 Siemens Aktiengesellschaft Continuous steam generator
WO2010029022A2 (en) * 2008-09-09 2010-03-18 Siemens Aktiengesellschaft Continuous steam generator
EP2180251A1 (en) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Continuous-flow steam generator
EP2182278A1 (en) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Continuous-flow steam generator
WO2010029022A3 (en) * 2008-09-09 2010-05-27 Siemens Aktiengesellschaft Continuous steam generator
WO2010028978A3 (en) * 2008-09-09 2010-06-17 Siemens Aktiengesellschaft Continuous steam generator
AU2009290944B2 (en) * 2008-09-09 2014-04-17 Siemens Aktiengesellschaft Continuous steam generator
DE102010028720A1 (en) * 2010-05-07 2011-11-10 Siemens Aktiengesellschaft Method for operating a steam generator
DE102013215457A1 (en) * 2013-08-06 2015-02-12 Siemens Aktiengesellschaft Continuous steam generator in two-pass boiler design
US9671105B2 (en) 2013-08-06 2017-06-06 Siemens Aktiengesellschaft Continuous flow steam generator with a two-pass boiler design

Also Published As

Publication number Publication date
DE3863153D1 (en) 1991-07-11
EP0308728B1 (en) 1991-06-05
JPH01107003A (en) 1989-04-24
US4869210A (en) 1989-09-26

Similar Documents

Publication Publication Date Title
EP0308728B1 (en) Method of operating a once-through steam generator
EP0425717B1 (en) Once-through steam generator
EP0591163B2 (en) Combined gas and steam turbine plant
DE102009036064B4 (en) in order to operate a forced-circulation steam generator operating at a steam temperature of more than 650 ° C, as well as forced circulation steam generators
DE3804605A1 (en) METHOD AND SYSTEM FOR THE PRODUCTION OF HEAT-STEAM
DE1170423B (en) Method and arrangement for regulating the steam temperatures in a once-through steam generator with two intermediate superheaters arranged in the flue gas duct
DE4142376A1 (en) FOSSIL FIRED CONTINUOUS STEAM GENERATOR
EP1188021B1 (en) Fossil-fuel heated steam generator, comprising denitrification device for heating gas
DE1426697B2 (en) Forced once-through steam generator with an arrangement for start-up and partial load operation
EP0515911A1 (en) Method of operating a gas and steam turbine plant and corresponding plant
CH645433A5 (en) COMBINED GAS TURBINE STEAM POWER PLANT.
DE3132659A1 (en) "STEAM POWER PLANT AND STEAM GENERATOR ESPECIALLY FOR SUCH A STEAM POWER PLANT"
EP0931978B1 (en) Process for preventing steaming in a forced circulation steam generator
DE3616095C2 (en) Steam generator with catalytic flue gas treatment and method for operating the steam generator
EP0110101B1 (en) Saturated steam turbine plant
DE3808006C2 (en)
DE1256652B (en) Forced once-through steam generator
EP0643816B1 (en) Process and device for regulating the flue gas temperature at the outlet of a steam generator
DE2758278C2 (en) Method for improving the permissible load change rate of a once-through steam generator and device for carrying out this method
EP0812407B1 (en) Process and system for starting a continuous steam generator
DE1141731B (en) Process for generating superheated steam with the help of a steam-cooled reactor and atomic nuclear reactor system for carrying out this process
EP0549522B1 (en) Method of operating a forced circulation steam generator and forced circulation steam generator therefor
EP2564117B1 (en) Steam generator
DE975112C (en) Steam temperature control in a radiant steam generator
DE381001C (en) Water tube boiler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19890425

17Q First examination report despatched

Effective date: 19900806

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3863153

Country of ref document: DE

Date of ref document: 19910711

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920907

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931119

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950601