EP2324287B1 - Continuous-flow steam generator - Google Patents

Continuous-flow steam generator Download PDF

Info

Publication number
EP2324287B1
EP2324287B1 EP09782619.2A EP09782619A EP2324287B1 EP 2324287 B1 EP2324287 B1 EP 2324287B1 EP 09782619 A EP09782619 A EP 09782619A EP 2324287 B1 EP2324287 B1 EP 2324287B1
Authority
EP
European Patent Office
Prior art keywords
tubes
steam generator
superheater
flow medium
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09782619.2A
Other languages
German (de)
French (fr)
Other versions
EP2324287A2 (en
Inventor
Martin Effert
Frank Thomas
Joachim Franke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP09782619.2A priority Critical patent/EP2324287B1/en
Publication of EP2324287A2 publication Critical patent/EP2324287A2/en
Application granted granted Critical
Publication of EP2324287B1 publication Critical patent/EP2324287B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • F22B21/341Vertical radiation boilers with combustion in the lower part
    • F22B21/343Vertical radiation boilers with combustion in the lower part the vertical radiation combustion chamber being connected at its upper part to a sidewards convection chamber
    • F22B21/345Vertical radiation boilers with combustion in the lower part the vertical radiation combustion chamber being connected at its upper part to a sidewards convection chamber with a tube bundle between an upper and a lower drum in the convection pass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes

Definitions

  • the invention relates to a continuous steam generator with a number of burners for fossil fuel whose Um Publishedswand is wholly or partially formed gas-tight welded together steam generator tubes, wherein the burners are arranged in a combustion chamber, the heating gas side via a horizontal gas a vertical gas train is connected downstream of a first part the steam generator tubes is designed as a system of evaporator tubes upstream of a water separation system on the flow medium side and a second part of the steam generator tubes is designed as a system of superheater tubes connected downstream of the water separation system on the flow medium side.
  • a fossil-fueled steam generator the energy of a fossil fuel is used to generate superheated steam, which can then be supplied to power a steam turbine, for example, in a power plant.
  • steam temperatures and pressures steam generators are usually designed as a water tube boiler, d. h., The supplied water flows in a number of tubes which receive the energy in the form of radiant heat of the burner flames and / or by convection of the resulting during combustion flue gas.
  • the steam generator tubes usually form the combustion chamber wall by being welded together in gas-tight fashion.
  • the combustion chamber downstream side of the combustion chamber arranged Dampfampfererrohe can be provided in the exhaust duct.
  • Fossil fueled steam generators can be categorized by a variety of criteria: based on the flow direction of the gas flow, steam generators, for example, can be divided into vertical and horizontal types. In fossil-fueled steam generators in vertical construction usually a draw-in and two-pass boiler are distinguished.
  • the flue gas produced by the combustion in the combustion chamber always flows vertically from bottom to top. All arranged in the flue gas heating surfaces are above the combustion chamber. Tower boilers offer a comparatively simple construction and easy control of the stresses caused by the thermal expansion of the tubes. Furthermore, all heating surfaces in the flue gas duct are arranged horizontally and therefore completely drainable, which may be desirable in frost-prone environments.
  • Steam generators can continue to be designed as a natural circulation, forced circulation or continuous steam generator.
  • a continuous steam generator the heating of a number of evaporator tubes leads to a complete evaporation of the flow medium in the evaporator tubes in one pass.
  • the flow medium - usually water - is supplied to the evaporator tubes downstream superheater tubes after its evaporation and overheated there.
  • this description is only valid for partial loads with subcritical pressure of water (P Kri ⁇ 221 bar) - where at no temperature water and steam can occur simultaneously and thus no phase separation is possible - valid in the evaporator.
  • P Kri ⁇ 221 bar subcritical pressure of water
  • the position of the evaporation end point, d. H. The place where the water content of the flow is completely evaporated, is variable and mode-dependent.
  • the evaporation end point is, for example, in an end region of the evaporator tubes, so that the overheating of the evaporated flow medium already begins in the evaporator tubes.
  • a continuous steam generator In contrast to a natural or forced circulation steam generator, a continuous steam generator is not subject to any pressure limitation, so that it can be designed for live steam pressures far above the critical pressure of water.
  • such a continuous-flow steam generator is usually operated with a minimum flow of flow medium in the evaporator tubes in order to ensure reliable cooling of the evaporator tubes.
  • the pure mass flow through the evaporator usually no longer suffices for cooling the evaporator tubes, so that an additional throughput of flow medium is superimposed on the passage of flow medium through the evaporator in circulation.
  • the operationally provided minimum flow of flow medium in the evaporator tubes is thus not completely evaporated during startup or during low load operation in the evaporator tubes, so that in such a mode at the end of the evaporator tubes still unvaporized flow medium, in particular a water-steam mixture is present.
  • continuous-flow steam generators are usually designed such that Even when starting and in low load operation, a water inlet into the superheater pipes is safely avoided.
  • the evaporator tubes are usually connected to the superheater tubes connected downstream via a Wasserabscheidesystem.
  • the water separator causes a separation of the emerging during the start or in low load operation of the evaporator tubes water-steam mixture in water and in steam.
  • the steam is supplied to the water separator downstream superheater tubes, whereas the separated water can be fed back to the evaporator tubes, for example via a circulating pump or discharged through a decompressor.
  • the above-mentioned concept causes high temperature differences between evaporator tubes and superheater tubes:
  • unevaporated flow medium flows at saturation temperature in the evaporator tubes, while steam at higher temperatures still exists in the superheater tubes.
  • the evaporator tubes are filled with cold feed water while the superheater tubes are still at operating temperature level. This can lead to overloading and damage to the materials due to the different thermal expansion.
  • the invention is therefore based on the object of specifying a continuous steam generator of the type mentioned above, which involves a comparatively lower repair costs and has a comparatively long service life.
  • the invention is based on the consideration that a reduction of the repair effort and an increase in the life of the continuous steam generator would be possible if damage could be minimized by different thermal expansion of welded together steam generator tubes.
  • the differential expansion is the result of high temperature differences between the steam generator tubes. These temperature differences are caused by different cooling of the steam generator tubes and by different temperatures flowing in them flow medium and therefore occur in particular at the separation between welded together evaporator and superheater tubes, as these through the intermediate Wasserabscheidesystem especially during cold and hot start a different flow have flow medium at different temperatures.
  • the combustion chamber wall of the continuous steam generator is formed from evaporator tubes and a side wall of the horizontal gas flue formed from superheater tubes, wherein the adjoining the combustion chamber superheater tubes are downstream of the Wasserabscheidesystem flow medium side.
  • the ceiling of the continuous steam generator is formed from superheater pipes which are connected downstream of the water separation system on the flow medium side.
  • the superheater tubes of the ceiling is connected in parallel with other superheater tubes adjacent to the evaporator tubes.
  • Such a circuit is advantageous by the parallel connection of the heating surfaces in terms of the expected pressure loss.
  • the advantages achieved by the invention are, in particular, that the temperature differences between these tubes are consistently minimized by the flow medium side immediate downstream of parallel to the evaporator tubes superheater tubes to the Wasserabscheidesystem. As a result, the different thermal expansion is minimized and damage and overloads prevented, which has a lower repair liability and longer life of the continuous steam generator result.
  • FIG. 1 shows a continuous steam generator in Zweizugbauweise in a schematic representation.
  • the continuous steam generator 1 according to the figure comprises a combustion chamber 2 designed as a vertical gas train, which is followed by a horizontal gas train 6 in an upper region 4. At the horizontal gas train 6, another vertical gas train 8 connects.
  • the combustion chamber wall 12 is formed from steam generator tubes which are welded together in a gas-tight manner and into which a flow medium, usually water, which is heated by the heat generated by the burners, is pumped in by a pump (not shown).
  • a flow medium usually water
  • the steam generator tubes can be aligned either spirally or vertically. In a spiral arrangement, a comparatively higher design effort is required, but the resulting differences in heating between pipes connected in parallel are comparatively lower than in the case of a vertically-combusted combustion chamber 2.
  • the continuous steam generator 1 shown further comprises, to improve the flue gas duct, a nose 14, which merges directly into the bottom 16 of the horizontal gas flue 6 and projects into the combustion chamber 2.
  • the steam generator tubes of the combustion chamber 2 are designed as evaporator tubes.
  • the flow medium is first evaporated in them and fed via outlet collector 20 to the water separation system 22.
  • Wasserabscheidesystem 22 not yet evaporated water is collected and removed. This is particularly necessary in start-up operation when a larger amount of flow medium has to be pumped in for safe cooling of the evaporator tubes than can be evaporated in an evaporator tube passage.
  • the generated steam is conducted into the inlet header 24 of the downstream superheater tubes, which form the ceiling 26 of the continuous steam generator 1 and the walls of the horizontal gas flue 6.
  • the transition from the side walls of the vertical gas flue to the side walls of the horizontal flue 6 represents the separation point 18 between evaporator tubes of the combustion chamber wall 12 and superheater tubes in the walls of the horizontal flue 6.
  • these superheater tubes are connected directly downstream via the Wasserabscheidesystem 22 via a connecting line 28.
  • these superheater pipes are only supplied with saturated steam and not with superheated steam of higher temperature, whereby the temperature is reduced.
  • the superheater tubes are connected in the walls of the horizontal gas flue 6 parallel to those of the ceiling 26 and are flowed through from top to bottom. In the event of an overfeeding of the water separation system 22, non-vaporized flow medium can thus be discharged into the outlet headers 30 of the superheater tubes and stagnation of the flow can not occur.
  • the temperature differences are minimized at the separation point 18 between the evaporator tubes of the combustion chamber wall 12 and the superheater tubes in the walls of the horizontal gas flue 6, whereby damage can be effectively prevented. This results in a comparatively lower repair susceptibility and longer life of the continuous steam generator 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Supply (AREA)

Description

Die Erfindung betrifft einen Durchlaufdampferzeuger mit einer Anzahl von Brennern für fossilen Brennstoff, dessen Umfassungswand ganz oder teilweise aus gasdicht miteinander verschweißten Dampferzeugerrohren gebildet ist, bei dem die Brenner in einer Brennkammer angeordnet sind, der heizgasseitig über einen Horizontalgaszug ein Vertikalgaszug nachgeschaltet ist wobei ein erster Teil der Dampferzeugerrohre als ein System von einem Wasserabscheidesystem strömungsmediumsseitig vorgeschalteten Verdampferrohren ausgebildet ist und ein zweiter Teil der Dampferzeugerrohre als ein System von dem Wasserabscheidesystem strömungsmediumsseitig nachgeschalteten Überhitzerrohren ausgebildet ist.The invention relates to a continuous steam generator with a number of burners for fossil fuel whose Umfassungswand is wholly or partially formed gas-tight welded together steam generator tubes, wherein the burners are arranged in a combustion chamber, the heating gas side via a horizontal gas a vertical gas train is connected downstream of a first part the steam generator tubes is designed as a system of evaporator tubes upstream of a water separation system on the flow medium side and a second part of the steam generator tubes is designed as a system of superheater tubes connected downstream of the water separation system on the flow medium side.

In einem fossil befeuerten Dampferzeuger wird die Energie eines fossilen Brennstoffs zur Erzeugung von überhitztem Dampf genutzt, der anschließend beispielsweise in einem Kraftwerk einer Dampfturbine zur Stromerzeugung zugeführt werden kann. Insbesondere bei den in einer Kraftwerksumgebung üblichen Dampftemperaturen und -drücken werden Dampferzeuger üblicherweise als Wasserrohrkessel ausgeführt, d. h., das zugeführte Wasser fließt in einer Anzahl von Rohren, welche die Energie in Form von Strahlungswärme der Brennerflammen und/oder durch Konvektion vom bei der Verbrennung entstehenden Rauchgas aufnehmen.In a fossil-fueled steam generator, the energy of a fossil fuel is used to generate superheated steam, which can then be supplied to power a steam turbine, for example, in a power plant. In particular, in the usual in a power plant environment steam temperatures and pressures steam generators are usually designed as a water tube boiler, d. h., The supplied water flows in a number of tubes which receive the energy in the form of radiant heat of the burner flames and / or by convection of the resulting during combustion flue gas.

Im Bereich der Brenner bilden die Dampferzeugerrohre dabei üblicherweise die Brennkammerwand, indem sie gasdicht miteinander verschweißt werden. In weiteren, der Brennkammer rauchgasseitig nachgeschalteten Bereichen können auch im Abgaskanal angeordnete Dampferzeugerrohe vorgesehen sein.In the field of burners, the steam generator tubes usually form the combustion chamber wall by being welded together in gas-tight fashion. In further, the combustion chamber downstream side of the combustion chamber arranged Dampfampfererrohe can be provided in the exhaust duct.

Fossil befeuerte Dampferzeuger sind anhand einer Vielzahl von Kriterien kategorisierbar: Basierend auf der Strömungsrichtung des Gasstroms können Dampferzeuger beispielsweise in vertikale und horizontale Bauarten eingeteilt werden. Bei fossil befeuerten Dampferzeugern in vertikaler Bauweise werden dabei üblicherweise Einzug- und Zweizugkessel unterschieden.Fossil fueled steam generators can be categorized by a variety of criteria: based on the flow direction of the gas flow, steam generators, for example, can be divided into vertical and horizontal types. In fossil-fueled steam generators in vertical construction usually a draw-in and two-pass boiler are distinguished.

Bei einem Einzug- oder Turmkessel strömt das durch die Verbrennung in der Brennkammer erzeugte Rauchgas stets senkrecht von unten nach oben. Sämtliche im Rauchgaskanal angeordneten Heizflächen liegen oberhalb der Brennkammer. Turmkessel bieten eine vergleichsweise einfache Konstruktion und einfache Beherrschung der durch die thermische Ausdehnung der Rohre entstehenden Spannungen. Weiterhin sind sämtliche Heizflächen im Rauchgaskanal horizontal angeordnet und daher vollständig entwässerbar, was in frostgefährdeten Umgebungen erwünscht sein kann.In a feeder or tower boiler, the flue gas produced by the combustion in the combustion chamber always flows vertically from bottom to top. All arranged in the flue gas heating surfaces are above the combustion chamber. Tower boilers offer a comparatively simple construction and easy control of the stresses caused by the thermal expansion of the tubes. Furthermore, all heating surfaces in the flue gas duct are arranged horizontally and therefore completely drainable, which may be desirable in frost-prone environments.

Beim Zweizugkessel ist in einem oberen Bereich der Brennkammer rauchgasseitig ein Horizontalgaszug nachgeschaltet, welcher in einen Vertikalgaszug mündet. In diesem zweiten vertikalen Gaszug strömt das Gas üblicherweise senkrecht von oben nach unten. Es erfolgt beim Zweizugkessel also eine mehrfache Umlenkung des Rauchgases. Vorteile dieser Bauweise sind beispielsweise die niedrigere Bauhöhe und die daraus resultierenden geringeren Herstellkosten. Ein solcher Zweizugkessel ist z.B. in Dokument EP 0 308 728 A1 offenbart.When Zweizugkessel a horizontal gas train is downstream of flue gas side in an upper region of the combustion chamber, which opens into a vertical gas train. In this second vertical throttle cable, the gas usually flows vertically from top to bottom. It takes place at the two-pass boiler so a multiple deflection of the flue gas. Advantages of this design are, for example, the lower height and the resulting lower production costs. Such Zweugugkessel is eg in document EP 0 308 728 A1 disclosed.

Dampferzeuger können weiterhin als Naturumlauf-, Zwangumlauf- oder Durchlaufdampferzeuger ausgelegt sein. In einem Durchlaufdampferzeuger führt die Beheizung einer Anzahl von Verdampferrohren zu einer vollständigen Verdampfung des Strömungsmediums in den Verdampferrohren in einem Durchgang. Das Strömungsmedium - üblicherweise Wasser - wird nach seiner Verdampfung den Verdampferrohren nachgeschalteten Überhitzerrohren zugeführt und dort überhitzt. Diese Beschreibung ist genau genommen nur bei Teillasten mit unterkritischem Druck von Wasser (PKri ≈ 221 bar)- wo bei keiner Temperatur Wasser und Dampf gleichzeitig vorkommen können und damit auch keine Phasentrennung möglich ist - im Verdampfer gültig. Der Anschaulichkeit halber wird diese Darstellung jedoch in der folgenden Beschreibung durchgehend verwendet.Steam generators can continue to be designed as a natural circulation, forced circulation or continuous steam generator. In a continuous steam generator, the heating of a number of evaporator tubes leads to a complete evaporation of the flow medium in the evaporator tubes in one pass. The flow medium - usually water - is supplied to the evaporator tubes downstream superheater tubes after its evaporation and overheated there. Specifically, this description is only valid for partial loads with subcritical pressure of water (P Kri ≈ 221 bar) - where at no temperature water and steam can occur simultaneously and thus no phase separation is possible - valid in the evaporator. The vividness however, this illustration will be used throughout the following description.

Die Position des Verdampfungsendpunkts, d. h. der Ort, an dem der Wasseranteil der Strömung vollständig verdampft ist, ist dabei variabel und betriebsartabhängig. Beim Volllastbetrieb eines derartigen Durchlaufdampferzeugers liegt der Verdampfungsendpunkt beispielsweise in einem Endbereich der Verdampferrohre, so dass die Überhitzung des verdampften Strömungsmediums bereits in den Verdampferrohren beginnt.The position of the evaporation end point, d. H. The place where the water content of the flow is completely evaporated, is variable and mode-dependent. During full load operation of such a continuous steam generator, the evaporation end point is, for example, in an end region of the evaporator tubes, so that the overheating of the evaporated flow medium already begins in the evaporator tubes.

Ein Durchlaufdampferzeuger unterliegt im Gegensatz zu einem Natur- oder Zwangumlaufdampferzeuger keiner Druckbegrenzung, so dass er für Frischdampfdrücke weit über dem kritischen Druck von Wasser ausgelegt werden kann.In contrast to a natural or forced circulation steam generator, a continuous steam generator is not subject to any pressure limitation, so that it can be designed for live steam pressures far above the critical pressure of water.

Im Schwachlastbetrieb oder beim Anfahren wird ein derartiger Durchlaaufdampferzeuger üblicherweise mit einem Mindeststrom an Strömungsmedium in den Verdampferrohren betrieben, um eine sichere Kühlung der Verdampferrohre zu gewährleisten. Dazu reicht gerade bei niedrigen Lasten von beispielsweise weniger als 40 % der Auslegungslast der reine Durchlaufmassenstrom durch den Verdampfer üblicherweise nicht mehr zur Kühlung der Verdampferrohre aus, so dass dem Durchlauf an Strömungsmedium durch den Verdampfer im Umlauf ein zusätzlicher Durchsatz an Strömungsmedium überlagert wird. Der betriebsgemäß vorgesehene Mindeststrom an Strömungsmedium in den Verdampferrohren wird somit beim Anfahren oder im Schwachlastbetrieb in den Verdampferrohren nicht vollständig verdampft, so dass bei einer derartigen Betriebsart am Ende der Verdampferrohre noch unverdampftes Strömungsmedium, insbesondere ein Wasser-DampfGemisch, vorhanden ist.During low-load operation or during start-up, such a continuous-flow steam generator is usually operated with a minimum flow of flow medium in the evaporator tubes in order to ensure reliable cooling of the evaporator tubes. For this purpose, just at low loads of, for example, less than 40% of the design load, the pure mass flow through the evaporator usually no longer suffices for cooling the evaporator tubes, so that an additional throughput of flow medium is superimposed on the passage of flow medium through the evaporator in circulation. The operationally provided minimum flow of flow medium in the evaporator tubes is thus not completely evaporated during startup or during low load operation in the evaporator tubes, so that in such a mode at the end of the evaporator tubes still unvaporized flow medium, in particular a water-steam mixture is present.

Da die den Verdampferrohren des Durchlaufdampferzeugers üblicherweise erst nach einer Durchströmung der Brennkammerwände nachgeschalteten Überhitzerrohre jedoch nicht für eine Durchströmung unverdampften Strömungsmediums ausgelegt sind, sind Durchlaufdampferzeuger üblicherweise derart ausgelegt, dass auch beim Anfahren und im Schwachlastbetrieb ein Wassereintritt in die Überhitzerrohre sicher vermieden wird. Dazu sind die Verdampferrohre üblicherweise mit den ihnen nachgeschalteten Überhitzerrohren über ein Wasserabscheidesystem verbunden. Der Wasserabscheider bewirkt dabei eine Trennung des beim Anfahren oder im Schwachlastbetrieb aus den Verdampferrohren austretenden Wasser-Dampf-Gemisches in Wasser und in Dampf. Der Dampf wird den dem Wasserabscheider nachgeschalteten Überhitzerrohren zugeführt, wohingegen das abgeschiedene Wasser beispielsweise über eine Umwälzpumpe wieder den Verdampferrohren zugeführt oder über einen Entspanner abgeführt werden kann.However, since the evaporator tubes of the continuous-flow steam generator are usually not designed to flow through an un-vaporized flow medium downstream of a flow through the combustion chamber walls, continuous-flow steam generators are usually designed such that Even when starting and in low load operation, a water inlet into the superheater pipes is safely avoided. For this purpose, the evaporator tubes are usually connected to the superheater tubes connected downstream via a Wasserabscheidesystem. The water separator causes a separation of the emerging during the start or in low load operation of the evaporator tubes water-steam mixture in water and in steam. The steam is supplied to the water separator downstream superheater tubes, whereas the separated water can be fed back to the evaporator tubes, for example via a circulating pump or discharged through a decompressor.

Insbesondere im Anfahrbetrieb verursacht das oben genannte Konzept jedoch hohe Temperaturunterschiede zwischen Verdampferrohren und Überhitzerrohren: Beim Kaltstart strömt in den Verdampferrohren noch unverdampftes Strömungsmedium bei Sättigungstemperatur, während sich in den Überhitzerrohren noch Dampf mit höherer Temperatur befindet. Beim Heißstart hingegen werden die Verdampferrohre mit kaltem Speisewasser gefüllt, während die Überhitzerrohre noch auf Betriebstemperaturniveau sind. Dies kann zu einer Überlastung und Schädigung der Materialien durch die unterschiedliche thermische Ausdehnung führen.However, in particular during start-up operation, the above-mentioned concept causes high temperature differences between evaporator tubes and superheater tubes: During cold start, unevaporated flow medium flows at saturation temperature in the evaporator tubes, while steam at higher temperatures still exists in the superheater tubes. On the other hand, during the hot start, the evaporator tubes are filled with cold feed water while the superheater tubes are still at operating temperature level. This can lead to overloading and damage to the materials due to the different thermal expansion.

Der Erfindung liegt daher die Aufgabe zugrunde, einen Durchlaufdampferzeuger der oben genannten Art anzugeben, der einen vergleichsweise geringeren Reparaturaufwand mit sich bringt und eine vergleichsweise hohe Lebensdauer aufweist.The invention is therefore based on the object of specifying a continuous steam generator of the type mentioned above, which involves a comparatively lower repair costs and has a comparatively long service life.

Diese Aufgabe wird erfindungsgemäß gelöst, indem an Verdampferrohre parallel angrenzende Überhitzerrohre dem Wasserabscheidesystem strömungsmediumsseitig unmittelbar nachgeschaltet sind.This object is achieved by the evaporator tubes parallel adjacent superheater tubes are connected downstream of the Wasserabscheidesystem flow medium side.

Die Erfindung geht dabei von der Überlegung aus, dass eine Reduzierung des Reparaturaufwands und eine Erhöhung der Lebensdauer des Durchlaufdampferzeugers möglich wäre, wenn Beschädigungen durch unterschiedliche thermische Ausdehnung miteinander verschweißter Dampferzeugerrohre minimiert werden könnten. Die unterschiedliche Ausdehnung ist die Folge von hohen Temperaturdifferenzen zwischen den Dampferzeugerrohren. Dabei werden diese Temperaturdifferenzen durch unterschiedliche Kühlung der Dampferzeugerrohre und durch unterschiedliche Temperaturen des in ihnen strömenden Strömungsmedium verursacht und treten daher insbesondere an der Trennstelle zwischen miteinander verschweißten Verdampfer- und Überhitzerrohren auf, da diese durch das zwischengeschaltete Wasserabscheidesystem insbesondere beim Kalt- und Heißstart einen unterschiedlichen Durchfluss an Strömungsmedium mit unterschiedlichen Temperaturen aufweisen.The invention is based on the consideration that a reduction of the repair effort and an increase in the life of the continuous steam generator would be possible if damage could be minimized by different thermal expansion of welded together steam generator tubes. The differential expansion is the result of high temperature differences between the steam generator tubes. These temperature differences are caused by different cooling of the steam generator tubes and by different temperatures flowing in them flow medium and therefore occur in particular at the separation between welded together evaporator and superheater tubes, as these through the intermediate Wasserabscheidesystem especially during cold and hot start a different flow have flow medium at different temperatures.

Insbesondere bei Durchlaufdampferzeugern in Zweizugbauweise ist dabei konstruktionsbedingt eine Trennstelle mit parallel verschweißten Verdampfer- und Überhitzerrohren typisch. Um die Temperaturunterschiede zwischen Verdampfer- und Überhitzerrohren möglichst gering zu halten, sollte die Dampftemperatur in den mit den Verdampferrohren parallel verschweißten Überhitzerrohren minimiert werden. Dies ist erreichbar, indem diese Überhitzerrohre dem Wasserabscheidesystem unmittelbar nachgeschaltet sind, so dass keine Erhöhung der Temperatur des in ihnen strömenden Strömungsmediums durch weitere zwischengeschaltete Überhitzerrohre erfolgt. Dadurch werden Temperaturunterschiede als Schadensursache an der Trennstelle konsequent minimiert.In particular, in continuous flow steam generators in Zweizugbauweise is structurally a separation point with parallel welded evaporator and superheater tubes typical. In order to keep the temperature differences between evaporator and superheater tubes as low as possible, the steam temperature should be minimized in the superheater tubes welded in parallel with the evaporator tubes. This can be achieved by these superheater tubes are connected downstream of the Wasserabscheidesystem, so that no increase in the temperature of the flowing medium flowing through them takes place by further intermediate superheater tubes. This consistently minimizes temperature differences as a cause of damage at the point of separation.

In vorteilhafter Ausgestaltung ist die Brennkammerwand des Durchlaufdampferzeugers aus Verdampferrohren gebildet und eine Seitenwand des Horizontalgaszuges aus Überhitzerrohren gebildet, wobei die an die Brennkammer angrenzenden Überhitzerrohre dem Wasserabscheidesystem strömungsmediumsseitig unmittelbar nachgeschaltet sind. Damit werden die Temperaturdifferenzen an der vertikalen Trennstelle zwischen Verdampferrohren der Brennkammer und Überhitzerrohren des Horizontalgaszuges beim Zweizugkessel wirkungsvoll minimiert.In an advantageous embodiment, the combustion chamber wall of the continuous steam generator is formed from evaporator tubes and a side wall of the horizontal gas flue formed from superheater tubes, wherein the adjoining the combustion chamber superheater tubes are downstream of the Wasserabscheidesystem flow medium side. Thus, the temperature differences at the vertical separation point between evaporator tubes of the combustion chamber and superheater tubes of the horizontal gas flue are effectively minimized in the two-pass boiler.

Vorteilhafterweise ist die Decke des Durchlaufdampferzeugers aus Überhitzerrohren gebildet, die dem Wasserabscheidesystem strömungsmediumsseitig unmittelbar nachgeschaltet sind. Dies bedeutet, dass die Überhitzerrohre der Decke parallel zu weiteren an die Verdampferrohre angrenzenden Überhitzerrohren geschaltet ist. Eine derartige Schaltung ist durch die Parallelschaltung der Heizflächen vorteilhaft hinsichtlich des zu erwartenden Druckverlusts.Advantageously, the ceiling of the continuous steam generator is formed from superheater pipes which are connected downstream of the water separation system on the flow medium side. This means that the superheater tubes of the ceiling is connected in parallel with other superheater tubes adjacent to the evaporator tubes. Such a circuit is advantageous by the parallel connection of the heating surfaces in terms of the expected pressure loss.

Bei einem Durchlaufdampferzeuger, bei dem an Verdampferrohre parallel angrenzende Überhitzerrohre senkrecht angeordnet sind, sind diese vorteilhafterweise derart ausgelegt, dass das Strömungsmedium die Überhitzerrohre von oben nach unten durchströmt. Dadurch kann im Falle einer Überspeisung des Wasserabscheidesystems, die eine Beaufschlagung der Überhitzerrohre mit unverdampftem Strömungsmedium zur Folge hat, dieses am Austrittssammler der Überhitzerrohre abgeführt werden. Damit kann eine eventuelle Stagnation der Strömung wirkungsvoll verhindert werden.In a continuous-flow steam generator in which superheater pipes adjoining evaporator pipes are arranged vertically, they are advantageously designed such that the flow medium flows through the superheater pipes from top to bottom. As a result, in the case of an overfeed of the water separation system, which results in the superheater tubes being exposed to unvaporized flow medium, this is removed at the outlet header of the superheater tubes. Thus, a possible stagnation of the flow can be effectively prevented.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die strömungsmediumsseitige unmittelbare Nachschaltung von an Verdampferrohre parallel angrenzenden Überhitzerrohren an das Wasserabscheidesystem die Temperaturunterschiede zwischen diesen Rohren konsequent minimiert werden. Dadurch wird die unterschiedliche thermische Ausdehnung minimiert und Beschädigungen und Überlastungen verhindert, was eine geringere Reparaturanfälligkeit und höhere Lebensdauer des Durchlaufdampferzeugers zur Folge hat.The advantages achieved by the invention are, in particular, that the temperature differences between these tubes are consistently minimized by the flow medium side immediate downstream of parallel to the evaporator tubes superheater tubes to the Wasserabscheidesystem. As a result, the different thermal expansion is minimized and damage and overloads prevented, which has a lower repair liability and longer life of the continuous steam generator result.

Insbesondere bei Durchlaufdampferzeugern ohne Umwälzpumpe ist eine derartige Schaltung von Vorteil. Die fehlende Umwälzung führt zu niedrigeren Eintrittstemperaturen in den Verdampfer, zu kleineren Dampfmassenströmen und zu einem Anstieg der erforderlichen Feuerungsleistung beim Anfahren. Simulationen haben gezeigt, dass insbesondere für diese Anlagen an der Trennstelle zwischen Verdampfer- und Überhitzerrohren unzulässige Temperaturdifferenzen auftreten können, wenn - wie bisher üblich - die Überhitzerrohre an der Trennstelle weiteren Überhitzerrohren wie z. B. der Decke nachgeschaltet sind. Die direkte Nachschaltung dieser Überhitzerrohre an das Wasserabscheidesystem vermeidet diese hohen Temperaturdifferenzen wirkungsvoll.Especially in continuous steam generators without circulation pump such a circuit is advantageous. The lack of circulation leads to lower inlet temperatures in the evaporator, to smaller steam mass flows and to an increase in the required firing capacity at startup. Simulations have shown that especially for these systems at the point of separation between evaporator and superheater tubes impermissible temperature differences can occur if - how hitherto usual - the superheater tubes at the separation point further superheater tubes such. B. the ceiling are connected downstream. The direct connection of these superheater pipes to the water separation system effectively avoids these high temperature differences.

Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigt die Figur einen Durchlaufdampferzeuger in Zweizugbauweise in schematischer Darstellung.An embodiment of the invention will be explained in more detail with reference to a drawing. Therein, the figure shows a continuous steam generator in Zweizugbauweise in a schematic representation.

Der Durchlaufdampferzeuger 1 gemäß der Figur umfasst eine als Vertikalgaszug ausgebildete Brennkammer 2, der in einem oberen Bereich 4 ein Horizontalgaszug 6 nachgeschaltet ist. An den Horizontalgaszug 6 schließt sich ein weiterer Vertikalgaszug 8 an.The continuous steam generator 1 according to the figure comprises a combustion chamber 2 designed as a vertical gas train, which is followed by a horizontal gas train 6 in an upper region 4. At the horizontal gas train 6, another vertical gas train 8 connects.

Im unteren Bereich 10 der Brennkammer 2 ist eine Anzahl nicht näher gezeigter Brenner vorgesehen, die einen flüssigen oder festen Brennstoff in der Brennkammer verbrennen. Die Brennkammerwand 12 ist aus miteinander gasdicht verschweißten Dampferzeugerrohren gebildet, in die durch eine nicht näher gezeigte Pumpe ein Strömungsmedium - üblicherweise Wasser - eingepumpt wird, welches durch die von den Brennern erzeugte Wärme geheizt wird. Im unteren Bereich 10 der Brennkammer 2 können die Dampferzeugerrohre entweder spiralförmig oder senkrecht ausgerichtet sein. Bei einer spiralförmigen Anordnung ist ein vergleichsweise höherer Konstruktionsaufwand erforderlich, dafür sind die entstehenden Beheizungsunterschiede zwischen parallel geschalteten Rohren vergleichsweise geringer als bei senkrecht berohrter Brennkammer 2.In the lower region 10 of the combustion chamber 2, a number not shown burner is provided which burn a liquid or solid fuel in the combustion chamber. The combustion chamber wall 12 is formed from steam generator tubes which are welded together in a gas-tight manner and into which a flow medium, usually water, which is heated by the heat generated by the burners, is pumped in by a pump (not shown). In the lower region 10 of the combustion chamber 2, the steam generator tubes can be aligned either spirally or vertically. In a spiral arrangement, a comparatively higher design effort is required, but the resulting differences in heating between pipes connected in parallel are comparatively lower than in the case of a vertically-combusted combustion chamber 2.

Der gezeigte Durchlaufdampferzeuger 1 umfasst weiterhin zur Verbesserung der Rauchgasführung eine Nase 14, welche direkt in den Boden 16 des Horizontalgaszuges 6 übergeht und in die Brennkammer 2 hineinragt.The continuous steam generator 1 shown further comprises, to improve the flue gas duct, a nose 14, which merges directly into the bottom 16 of the horizontal gas flue 6 and projects into the combustion chamber 2.

Die Dampfererzeugerrohre der Brennkammer 2 sind als Verdampferrohre ausgelegt. Das Strömungsmedium wird in ihnen zunächst verdampft und über Austrittssammler 20 dem Wasserabscheidesystem 22 zugeführt. Im Wasserabscheidesystem 22 wird noch nicht verdampftes Wasser gesammelt und abgeführt. Dies ist insbesondere im Anfahrbetrieb notwendig, wenn zur sicheren Kühlung der Verdampferrohre eine größere Menge an Strömungsmedium eingepumpt werden muss, als in einem Verdampferrohrdurchlauf verdampft werden kann. Der erzeugte Dampf wird in die Eintrittssammler 24 der nachgeschalteten Überhitzerrohre geleitet, welche die Decke 26 des Durchlaufdampferzeugers 1 und die Wände des Horizontalgaszuges 6 bilden. Der Übergang von den Seitenwänden des Vertikalgaszuges zu den Seitenwänden des Horizontalgaszuges 6 stellt die Trennstelle 18 zwischen Verdampferrohren der Brennkammerwand 12 und Überhitzerrohren in den Wänden des Horizontalgaszuges 6 dar.The steam generator tubes of the combustion chamber 2 are designed as evaporator tubes. The flow medium is first evaporated in them and fed via outlet collector 20 to the water separation system 22. In Wasserabscheidesystem 22 not yet evaporated water is collected and removed. This is particularly necessary in start-up operation when a larger amount of flow medium has to be pumped in for safe cooling of the evaporator tubes than can be evaporated in an evaporator tube passage. The generated steam is conducted into the inlet header 24 of the downstream superheater tubes, which form the ceiling 26 of the continuous steam generator 1 and the walls of the horizontal gas flue 6. The transition from the side walls of the vertical gas flue to the side walls of the horizontal flue 6 represents the separation point 18 between evaporator tubes of the combustion chamber wall 12 and superheater tubes in the walls of the horizontal flue 6.

Neben dem in der Figur gezeigten Zweizugkessel sind selbstverständlich auch noch weitere Konfigurationen für fossil befeuerte Kessel möglich.In addition to the two-pass boiler shown in the figure, of course, even further configurations for fossil-fired boiler are possible.

Um Beschädigungen durch unterschiedliche thermische Ausdehnung aufgrund von Temperaturdifferenzen an der Trennstelle 18 zwischen den Verdampferrohren der Brennkammerwand 12 und den Überhitzerrohren in den Wänden des Horizontalgaszuges 6 zu vermeiden, sind diese Überhitzerrohre über dem Wasserabscheidesystem 22 über eine Verbindungsleitung 28 direkt nachgeschaltet. Dadurch werden diese Überhitzerrohre lediglich mit Sattdampf beaufschlagt und nicht mit überhitztem Dampf höherer Temperatur, wodurch die Temperatur reduziert wird.In order to avoid damage due to different thermal expansion due to temperature differences at the separation point 18 between the evaporator tubes of the combustion chamber wall 12 and the superheater tubes in the walls of the horizontal gas flue 6, these superheater tubes are connected directly downstream via the Wasserabscheidesystem 22 via a connecting line 28. As a result, these superheater pipes are only supplied with saturated steam and not with superheated steam of higher temperature, whereby the temperature is reduced.

Dabei sind die Überhitzerrohre in den Wänden des Horizontalgaszuges 6 parallel zu denen der Decke 26 geschaltet und werden von oben nach unten durchströmt. Im Falle einer Überspeisung des Wasserabscheidesystems 22 kann so nicht verdampftes Strömungsmedium in den Austrittssammlern 30 der Überhitzerrohre abgeführt werden und es kann nicht zu einer Stagnation der Strömung kommen.The superheater tubes are connected in the walls of the horizontal gas flue 6 parallel to those of the ceiling 26 and are flowed through from top to bottom. In the event of an overfeeding of the water separation system 22, non-vaporized flow medium can thus be discharged into the outlet headers 30 of the superheater tubes and stagnation of the flow can not occur.

Durch die beschriebene Schaltung werden die Temperaturdifferenzen an der Trennstelle 18 zwischen den Verdampferrohren der Brennkammerwand 12 und den Überhitzerrohren in den Wänden des Horizontalgaszuges 6 minimiert, wodurch Beschädigungen wirksam verhindert werden können. Dies hat eine vergleichsweise geringere Reparaturanfälligkeit und längere Lebensdauer des Durchlaufdampferzeugers 1 zur Folge.By the described circuit, the temperature differences are minimized at the separation point 18 between the evaporator tubes of the combustion chamber wall 12 and the superheater tubes in the walls of the horizontal gas flue 6, whereby damage can be effectively prevented. This results in a comparatively lower repair susceptibility and longer life of the continuous steam generator 1.

Claims (4)

  1. Once-through steam generator (1) comprising a number of burners for fossil fuel, the surrounding wall thereof being completely or partially formed from steam generator tubes welded together in a gas-tight manner, said burners being disposed in a combustion chamber downstream of which a vertical gas duct (8) is mounted above a horizontal gas duct (6) on the hot gas side, wherein a first part of the steam generator tubes welded together in a gas-tight manner are implemented as a system of evaporator tubes mounted upstream of a moisture separation system (22) on the flow medium side, and a second part of the steam generator tubes welded together in a gas-tight manner are implemented as a system of superheater tubes mounted downstream of the moisture separation system (22) on the flow medium side, wherein superheater tubes in parallel contiguity with evaporator tubes are mounted immediately downstream of the moisture separation system (22) on the flow medium side.
  2. Once-through steam generator (1) according to claim 1, wherein the combustion chamber wall (12) is formed from evaporator tubes and a sidewall of the horizontal gas duct (6) is formed from superheater tubes, wherein the superheater tubes adjacent to the combustion chamber (2) are mounted immediately downstream of the moisture separation system (22) on the flow medium side.
  3. Once-through steam generator (1) according to claim 1 or 2, wherein the top (26) of the once-through steam generator (1) is formed from superheater tubes which are mounted immediately downstream of the moisture separation system (22) on the flow medium side.
  4. Once-through steam generator (1) according to one of claims 1 to 3, wherein vertically disposed superheater tubes in parallel contiguity with evaporator tubes are designed such that the flow medium flows through the superheater tubes from top to bottom.
EP09782619.2A 2008-09-09 2009-09-04 Continuous-flow steam generator Active EP2324287B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09782619.2A EP2324287B1 (en) 2008-09-09 2009-09-04 Continuous-flow steam generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08015871A EP2182278A1 (en) 2008-09-09 2008-09-09 Continuous-flow steam generator
EP09782619.2A EP2324287B1 (en) 2008-09-09 2009-09-04 Continuous-flow steam generator
PCT/EP2009/061468 WO2010029022A2 (en) 2008-09-09 2009-09-04 Continuous steam generator

Publications (2)

Publication Number Publication Date
EP2324287A2 EP2324287A2 (en) 2011-05-25
EP2324287B1 true EP2324287B1 (en) 2016-11-02

Family

ID=41820262

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08015871A Withdrawn EP2182278A1 (en) 2008-09-09 2008-09-09 Continuous-flow steam generator
EP09782619.2A Active EP2324287B1 (en) 2008-09-09 2009-09-04 Continuous-flow steam generator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08015871A Withdrawn EP2182278A1 (en) 2008-09-09 2008-09-09 Continuous-flow steam generator

Country Status (7)

Country Link
US (1) US20110162592A1 (en)
EP (2) EP2182278A1 (en)
JP (1) JP5345217B2 (en)
CN (1) CN102149970B (en)
AU (1) AU2009290944B2 (en)
DK (1) DK2324287T3 (en)
WO (1) WO2010029022A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2180250A1 (en) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Continuous-flow steam generator
DE102009024587A1 (en) * 2009-06-10 2010-12-16 Siemens Aktiengesellschaft Flow evaporator
DE102013215457A1 (en) 2013-08-06 2015-02-12 Siemens Aktiengesellschaft Continuous steam generator in two-pass boiler design
US9920924B2 (en) * 2016-04-05 2018-03-20 The Babcock & Wilcox Company High temperature sub-critical boiler with steam cooled upper furnace and start-up methods
CN114576607B (en) * 2022-03-09 2023-05-23 东方电气集团东方锅炉股份有限公司 System and method for realizing steam-water flow of supercritical boiler ceiling wall-covering

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2032368A (en) * 1930-04-22 1936-03-03 Babcock & Wilcox Co High pressure boiler
US2201618A (en) * 1933-11-13 1940-05-21 W D La Mont Inc Steam generator
US2201620A (en) * 1933-11-13 1940-05-21 W D La Mont Inc High speed steam producing apparatus
US2170345A (en) * 1935-12-18 1939-08-22 Babcock & Wilcox Co Vapor generator
US2170343A (en) * 1935-12-18 1939-08-22 Babcock & Wilcox Co Vapor generator
US2048393A (en) * 1936-03-16 1936-07-21 Kroger Rudolf Triple service water heater and boiler
US2617394A (en) * 1949-12-30 1952-11-11 Comb Eng Superheater Inc Boiler
US2834324A (en) * 1953-02-12 1958-05-13 Babcock & Wilcox Co Vapor generator with high temperature pendent superheater platens
NL111514C (en) * 1953-09-26
US2960972A (en) * 1954-05-24 1960-11-22 Babcock & Wilcox Co Apparatus for vapor generating and superheating with recirculated gas flow control of reheat
US2921565A (en) * 1955-12-16 1960-01-19 Babcock & Wilcox Co Steam generating and superheating unit with downshot burners and gas recirculation temperature control
US2982267A (en) * 1956-07-11 1961-05-02 Sulzer Ag High pressure steam plant
BE564616A (en) * 1957-02-07
US2947288A (en) * 1957-08-20 1960-08-02 Kohlenscheidungs Gmbh Radiant tubular heat exchanger
US2952975A (en) * 1957-11-15 1960-09-20 Babcock & Wilcox Co Vapor generating and superheating unit
US2980081A (en) * 1958-02-11 1961-04-18 Atomic Energy Authority Uk Apparatus for the exchange of heat between fluids
US2946187A (en) * 1958-05-28 1960-07-26 Foster Wheeler Corp Gas and steam cycle power plant having twin supercharged vapor generators
US3072109A (en) * 1958-05-28 1963-01-08 Foster Wheeler Corp Supercharged vapor generator
NL6411217A (en) * 1963-09-26 1965-03-29
US3267908A (en) * 1965-08-03 1966-08-23 Sulzer Ag Steam generator with flue gas return
US3338219A (en) * 1965-09-09 1967-08-29 Frederick W Riehl Steam generating boiler or steam power plant
NL132447C (en) * 1965-12-01
US3312198A (en) * 1965-12-23 1967-04-04 Combustion Eng Steam generator having improved steam heating sections arranged for parallel flow
CH477651A (en) * 1967-07-13 1969-08-31 Sulzer Ag High-pressure once-through steam generator system with a combustion chamber consisting of gas-tight welded tubes and a method for operating the system
CH532749A (en) * 1970-12-31 1973-01-15 Sulzer Ag Steam generator
US3841270A (en) * 1972-11-01 1974-10-15 Westinghouse Electric Corp Flow restrictor for an evaporator
US3974644A (en) * 1974-08-08 1976-08-17 Westinghouse Electric Corporation Combined cycle electric power plant and heat recovery steam generator having improved multi-loop temperature control of the steam generated
US3965675A (en) * 1974-08-08 1976-06-29 Westinghouse Electric Corporation Combined cycle electric power plant and a heat recovery steam generator having improved boiler feed pump flow control
US4031404A (en) * 1974-08-08 1977-06-21 Westinghouse Electric Corporation Combined cycle electric power plant and a heat recovery steam generator having improved temperature control of the steam generated
US3955358A (en) * 1974-08-08 1976-05-11 Westinghouse Electric Corporation Combined cycle electric power plant and a heat recovery steam generator with improved fluid level control therefor
US3946566A (en) * 1974-12-16 1976-03-30 Combustion Engineering, Inc. Turbine start-up system
CH585876A5 (en) * 1975-05-07 1977-03-15 Ofag Ofenbau Feuerungstech Ag
CH632331A5 (en) * 1978-10-03 1982-09-30 Sulzer Ag METHOD FOR STARTING A FORCED STEAM GENERATOR.
CH635184A5 (en) * 1978-12-22 1983-03-15 Sulzer Ag STEAM GENERATOR SYSTEM.
DE3113417A1 (en) * 1980-10-29 1982-09-02 Ruhrgas Ag, 4300 Essen HEATING SYSTEM WITH AN ABSORPTION HEAT PUMP AND METHOD FOR OPERATING IT
DE3166099D1 (en) * 1980-12-23 1984-10-25 Sulzer Ag Forced-circulation steam boiler
CH652190A5 (en) * 1981-04-23 1985-10-31 Sulzer Ag STEAM GENERATOR WITH FLUIDIZED BURN FIRING.
US4377134A (en) * 1981-08-03 1983-03-22 Combustion Engineering, Inc. Steam temperature control with overfire air firing
DE3133298A1 (en) * 1981-08-22 1983-03-03 Deutsche Babcock Ag, 4200 Oberhausen STEAM GENERATOR WITH A MAIN BOILER AND A FLUID BURN FIRING
DE3173990D1 (en) * 1981-09-15 1986-04-10 Sulzer Ag Steam generator with a superheater tubular wall
DE3346618A1 (en) * 1983-12-23 1985-07-11 Carl Still Gmbh & Co Kg, 4350 Recklinghausen METHOD FOR PRODUCING A OVERHEATED HIGH-PRESSURE VAPOR IN COOKING DRY COOLING AND SUITABLE DEVICES FOR THIS
US4552099A (en) * 1984-10-25 1985-11-12 Westinghouse Electric Corp. Anticipatory boiler feedpump suction head controller system
JPS6256905U (en) * 1985-09-24 1987-04-08
EP0308728B1 (en) * 1987-09-21 1991-06-05 Siemens Aktiengesellschaft Method of operating a once-through steam generator
JPH0631286Y2 (en) * 1988-07-14 1994-08-22 石川島播磨重工業株式会社 Boiler furnace wall
JPH05644Y2 (en) * 1988-07-28 1993-01-11
DE59300573D1 (en) * 1992-03-16 1995-10-19 Siemens Ag Method for operating a steam generation plant and steam generator plant.
JP2563099B2 (en) * 1992-05-04 1996-12-11 シーメンス アクチエンゲゼルシヤフト Forced once-through steam generator
DE4431185A1 (en) * 1994-09-01 1996-03-07 Siemens Ag Continuous steam generator
JPH08110005A (en) * 1994-10-06 1996-04-30 Ishikawajima Harima Heavy Ind Co Ltd Seal structure for ceiling enclosure of boiler
DE19504308C1 (en) * 1995-02-09 1996-08-08 Siemens Ag Method and device for starting a once-through steam generator
DE19528438C2 (en) * 1995-08-02 1998-01-22 Siemens Ag Method and system for starting a once-through steam generator
FI103903B1 (en) * 1995-03-06 1999-10-15 Ahlstrom Machinery Oy Preheater for feed water
TW336268B (en) * 1996-12-17 1998-07-11 Babcock Hitachi Kk Boiler
DE19702133A1 (en) * 1997-01-22 1997-12-11 Siemens Ag Flow-type steam generator e.g for Benson-boiler
DE19717158C2 (en) * 1997-04-23 1999-11-11 Siemens Ag Continuous steam generator and method for starting up a continuous steam generator
US5762031A (en) * 1997-04-28 1998-06-09 Gurevich; Arkadiy M. Vertical drum-type boiler with enhanced circulation
US20050120715A1 (en) * 1997-12-23 2005-06-09 Christion School Of Technology Charitable Foundation Trust Heat energy recapture and recycle and its new applications
JP4242564B2 (en) * 1998-06-10 2009-03-25 シーメンス アクチエンゲゼルシヤフト Boiler for fossil fuel
US6019070A (en) * 1998-12-03 2000-02-01 Duffy; Thomas E. Circuit assembly for once-through steam generators
DE19858780C2 (en) * 1998-12-18 2001-07-05 Siemens Ag Fossil-heated continuous steam generator
US6105369A (en) * 1999-01-13 2000-08-22 Abb Alstom Power Inc. Hybrid dual cycle vapor generation
DE19901621A1 (en) * 1999-01-18 2000-07-27 Siemens Ag Fossil-heated steam generator
DE19901430C2 (en) * 1999-01-18 2002-10-10 Siemens Ag Fossil-heated steam generator
DE19914760C1 (en) * 1999-03-31 2000-04-13 Siemens Ag Fossil-fuel through-flow steam generator for power plant
DE19914761C1 (en) * 1999-03-31 2000-09-28 Siemens Ag Fossil fuel through-flow steam generator for electrical power plant has vertical evaporator pipes defined by walls of combustion chamber formed in loop at interface between combustion chamber and horizontal gas flue
DE19929088C1 (en) * 1999-06-24 2000-08-24 Siemens Ag Fossil fuel heated steam generator e.g. for power station equipment
DE19942767A1 (en) * 1999-09-08 2001-03-15 Bbp Energy Gmbh Steam generator
JP4489756B2 (en) * 2003-01-22 2010-06-23 ヴァスト・パワー・システムズ・インコーポレーテッド Energy conversion system, energy transfer system, and method of controlling heat transfer
EP1701090A1 (en) * 2005-02-16 2006-09-13 Siemens Aktiengesellschaft Horizontally assembled steam generator
EP1701091A1 (en) * 2005-02-16 2006-09-13 Siemens Aktiengesellschaft Once-through steam generator
EP1710498A1 (en) * 2005-04-05 2006-10-11 Siemens Aktiengesellschaft Steam generator
US7587996B2 (en) * 2006-06-07 2009-09-15 Babcock & Wilcox Power Generation Group, Inc. Circulation system for sliding pressure steam generator
EP2119880A1 (en) * 2008-02-15 2009-11-18 Siemens Aktiengesellschaft Method for starting a steam producer
EP2180251A1 (en) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Continuous-flow steam generator
EP2180250A1 (en) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Continuous-flow steam generator
JP5050071B2 (en) * 2010-03-29 2012-10-17 株式会社日立製作所 Boiler equipment
DE102010041903B4 (en) * 2010-10-04 2017-03-09 Siemens Aktiengesellschaft Continuous steam generator with integrated reheater
US20140123914A1 (en) * 2012-11-08 2014-05-08 Vogt Power International Inc. Once-through steam generator

Also Published As

Publication number Publication date
EP2324287A2 (en) 2011-05-25
WO2010029022A2 (en) 2010-03-18
WO2010029022A3 (en) 2010-05-27
AU2009290944A1 (en) 2010-03-18
JP5345217B2 (en) 2013-11-20
EP2182278A1 (en) 2010-05-05
CN102149970A (en) 2011-08-10
JP2012502250A (en) 2012-01-26
CN102149970B (en) 2016-08-03
DK2324287T3 (en) 2017-02-06
US20110162592A1 (en) 2011-07-07
AU2009290944B2 (en) 2014-04-17

Similar Documents

Publication Publication Date Title
EP2321578B1 (en) Continuous steam generator
EP2324287B1 (en) Continuous-flow steam generator
DE19717158C2 (en) Continuous steam generator and method for starting up a continuous steam generator
EP1848926A2 (en) Continuous steam generator
EP2324286B1 (en) Continuous-flow steam generator
EP1086339A1 (en) Fossil fuel fired steam generator
WO2010142495A2 (en) Continuous evaporator
DE19914761C1 (en) Fossil fuel through-flow steam generator for electrical power plant has vertical evaporator pipes defined by walls of combustion chamber formed in loop at interface between combustion chamber and horizontal gas flue
DE102010038883C5 (en) Forced once-through steam generator
EP3014177B1 (en) Continuous flow steam generator with a two-pass boiler design
EP1166015A1 (en) Fossil-fuel fired continuous-flow steam generator
WO2000037851A1 (en) Fossil fuel fired continuos-flow steam generator
DE102010038885B4 (en) Once-through steam generator
EP2364414B1 (en) Continuous steam generator
DE4321619C2 (en) Procedure for starting up power plants after a total failure of steam generation
WO2010102869A2 (en) Continuous evaporator
EP2564117B1 (en) Steam generator
EP1533565A1 (en) Once-through steam generator
EP2473783B1 (en) Forced-flow steam generator for burning dry brown coal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110222

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160518

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 842222

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013319

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161102

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170202

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170203

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170302

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170302

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013319

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170202

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

26N No opposition filed

Effective date: 20170803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170904

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 842222

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009013319

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220818 AND 20220824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20220922

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230920

Year of fee payment: 15

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20230930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240926

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240924

Year of fee payment: 16