EP2473783B1 - Forced-flow steam generator for burning dry brown coal - Google Patents

Forced-flow steam generator for burning dry brown coal Download PDF

Info

Publication number
EP2473783B1
EP2473783B1 EP10768370.8A EP10768370A EP2473783B1 EP 2473783 B1 EP2473783 B1 EP 2473783B1 EP 10768370 A EP10768370 A EP 10768370A EP 2473783 B1 EP2473783 B1 EP 2473783B1
Authority
EP
European Patent Office
Prior art keywords
steam generator
combustion chamber
heating surface
once
walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10768370.8A
Other languages
German (de)
French (fr)
Other versions
EP2473783A2 (en
Inventor
Thoralf Berndt
Qiurong Chen
Georg-Nikolaus Stamatelopoulos
Gerhard Weissinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Priority to SI201031236A priority Critical patent/SI2473783T1/en
Publication of EP2473783A2 publication Critical patent/EP2473783A2/en
Application granted granted Critical
Publication of EP2473783B1 publication Critical patent/EP2473783B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/04Component parts or details of steam boilers applicable to more than one kind or type of steam boiler and characterised by material, e.g. use of special steel alloy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/14Supply mains, e.g. rising mains, down-comers, in connection with water tubes
    • F22B37/143Panel shaped heating surfaces built up from tubes

Definitions

  • the invention relates to a forced once-through steam generator for the combustion of dry lignite without the aid of recirculated flue gas in the combustion chamber, the forced flow steam generator having a combustion chamber and a subsequent end of the upper flue and this surrounding Um chargedsleton, wherein the Um chargedsbuild are formed from tube walls whose tubes the working medium water / steam lead, the combustion chamber has at least one burner and are arranged in the flue gas Nachschaltsammlungdon.
  • Continuous or forced circulation steam generators are from the publication " Kraftwerkstechnik”, Springer-Verlag, 2nd edition 1994, Chapter 4.4.2.4-Forced circulation (pages 171 to 174 ), Prof. Dr.-Ing. Karl Strauß known, which are used in power plants for the production of electrical energy by combustion of, for example, fossil fuels.
  • a continuous flow or continuous flow steam generator the heating of the combustion chamber or the gas flue forming tube walls or enclosing walls - in contrast to a natural circulation or forced circulation steam generator with only partial evaporation of circulating water-steam mixture - leads to an evaporation of the flow or working medium in the tubes of the pipe walls or enclosing walls in a single pass.
  • a continuous flow steam generator fired with dry lignite (TBK) or a power plant designed therewith has a considerable efficiency increase potential compared to a forced flow steam generator conventionally fired with crude lignite (RBK) or a power plant formed therewith.
  • the TBK is generated in a process upstream of the combustion energetically favorable from RBK. Due to the reduced water content of the TBK compared to the RBK, the calorific value and the amount of heat to be transferred in the combustion chamber of the steam generator increases considerably.
  • the combustion chamber must be designed so that a final combustion chamber temperature in the range 950-1150 ° C is established with the heat absorption of the surrounding walls of the combustion chamber.
  • the material T23 is listed, for example, in VdTÜV Material Data Sheet 511/2, issue 06.2001, and the material T24 is listed, for example, in the standard sheet DIN EN 10216-2, October 2007 issue.
  • a flue gas recirculation system with a flue gas recirculation blower is necessary.
  • the convection heating surfaces used may be larger than if no flue gas recirculation is used.
  • the flue gas recirculation system and the additional heating surfaces represent high investment costs.
  • the flue gas recirculation system increases in a further disadvantageous way the electrical self-consumption of the power plant and increases the ongoing operating costs.
  • the heat absorption in the evaporator is not limited in a forced once-through steam generator, since the medium temperature at the evaporator outlet in forced continuous operation is already overheated and the amount of overheating can be set variably.
  • the associated temperature level of the steam or the associated calculation temperature in the enclosure walls is controlled by a suitable selection of materials and in the combustion of TBK by a suitable flue gas recirculation into the combustion chamber.
  • the object of the invention is therefore to provide a forced once-through steam generator for the burning of dry lignite, in which the aforementioned disadvantages are avoided or avoided in the burning of dry lignite the use of a flue gas recirculation and the medium temperature in the Um chargedsplinn or the pipe walls in comparison Forced lignite-fired forced-circulation steam generator is not increased.
  • An advantageous embodiment provides that in the region of the combustion chamber, a part of the enclosing walls covering Schottenmosisation between the upper edge of the uppermost situated burner and lower edge of the lowermost Nachschaltsammlung reaction is arranged.
  • a specific area of the combustion chamber is covered with a Schotten heating surface on which otherwise a large part of the heat from the combustion chamber would reach the Um chargedsplin and their medium temperature in the enclosure wall and the wall temperature itself would increase so that to reduce the wall temperature a flue gas recirculation system would have to be used.
  • At least part of the enclosing walls is formed from one of the materials T23, T24 or another material having a similar chemical composition.
  • at least the part of the surrounding walls is formed with the aforementioned materials, which is thermally highly loaded or higher than the remaining part of the surrounding walls.
  • the materials T23, T24 or another material with a similar chemical composition are high-quality materials which are commercially available and which meet the desired requirements or, after their welding, no heat post-treatment must be carried out on them.
  • An advantageous embodiment of the invention provides for the SchottenMap operation of martensitic materials with 9-12% chromium, austenitic materials or nickel-based alloys form or manufacture. This ensures that the requirements of the exposed in the combustion chamber Schottenflower Construction is satisfied in terms of temperatures.
  • the bulkhead heating surface is designed as a superheater or reheater heating surface.
  • the Schottenmos Design is efficient in integrated into the water / steam cycle of the forced flow steam generator or in the water / steam cycle of a power plant comprising such a forced flow steam generator.
  • An advantageous embodiment provides that the bulkhead heating surface is arranged parallel to the surrounding wall. This ensures that the Schottenmosization configuration as well as the surrounding wall is arranged vertically and provides a minimum possible attack surface for ash or slag from the combustion chamber.
  • An expedient embodiment provides that the bulkhead heating surface is arranged adjacent to the surrounding wall. This ensures that the enclosure wall is optimally covered by the bulkhead heating surface and that the lowest possible amount of heat reaches the enclosure wall.
  • FIG. 1 schematically shows a continuous flow or continuous flow steam generator 1 (both terms mean the same thing, namely the generation of steam within the steam generator in one run) in tower construction, ie the pipe walls 5 (as surrounding walls 4) and all Nachschaltsammlung vom 7 are on or in housed in a single vertical throttle cable.
  • the vertical throttle cable which is formed or bounded by gas-tight enclosure walls 4, includes in its lower region
  • the combustion chamber 2 usually closes down with a combustion chamber funnel and extends up to the lowest Nachschaltflower arranged.
  • the burners 6 can be arranged either in the corners (corner burners) or in the walls (wall burners) of the combustion chamber 2.
  • the various Nachschaltsammlung lake 7 are arranged as Bermmungsflower lake. These are typically economizer heating surfaces, superheater and reheater heating surfaces.
  • the flue 3 closes up with a ceiling and he has at its upper end laterally a flue gas outlet 9.
  • the once-through steam generator 1 has at least one steam heating surface 8, which covers a part of the surrounding walls 4 in the region of the combustion chamber 2 and whose area-side size is determined such that the heat absorption of the surrounding walls 4 and consequently their temperature is reduced to a value which reduces the formation the perimeter wall 4 of modified, heat-resistant 2.25-2.5% chromium steels permits, which require no post-treatment after their welding technology processing.
  • the enclosing wall 4 in the region of the combustion chamber 2 with a predetermined surface-side size covering Schottenflower Design 8 takes from the combustion chamber 2 so much heat that the heat absorption of the perimeter wall 4 is reduced due to the cover such that the maximum medium temperature at the perimeter wall.
  • modified, heat-resistant 2.25-2.5% chromium steels which do not require post heat treatment after their welding processing.
  • These may be, for example, the materials T23 (a material approved by the American Society of Mechanical Engineers), T24 (7CrMoVTiB10-10) or another material of similar chemical composition covering steam temperatures up to about 500-510 ° C and listed, for example, in the booklet "The T23 / T24 Book, New Grades for Waterwalls and Superheaters by Vallourec & Mannesmann Tubes" (booklet on modified, heat-resistant 2.25-2.5% chromium steels).
  • these aforementioned high-quality materials which do not require postheating after their welding processing, can be used either everywhere on the surrounding wall 4 or according to a commercially more advantageous variant, at least on the parts of the surrounding walls 4, the high thermal load makes this necessary. These are, for example, the areas on the burners 6 and directly above the burners 6 within the combustion chamber 2. On the parts of the Um chargedssell 4, the thermal load is lower, such as in the lower part of the combustion chamber 2 (below the burner 6 including combustor funnel) with Medium temperatures of about ⁇ 400-460 ° C in the pipe walls, to reduce the investment costs in comparison to the aforementioned high quality materials lower valued materials, such as 16Mo3 or 13CrMo45. These materials also do not require post heat treatment after their welding processing.
  • the surrounding walls 4, which are formed as tube walls 5, are usually made of a welded pipe-web-tube combination, wherein the tubes of the tube walls 5, the working medium water / steam and within the enclosure walls 4 either obliquely or vertically or out a combination of oblique and vertical may be formed.
  • the arranged in the Um drawnstentn 4 tubes are used in the lower and middle part of the combustion chamber 2 as evaporator tubes, i. the fed and preheated water is evaporated in these evaporator tubes.
  • the pipes arranged in the surrounding wall 4 can already be connected as a superheater heating surface.
  • the Schottenflower Design 8 itself which now receives a portion of the heat from the combustion chamber 2 is formed according to the temperature requirements with suitable materials. Since very high temperatures are to be controlled, have for this martensitic 9-12% chromium-containing steels, austenitic steels or nickel-based alloys have proven suitable.
  • the Schottenmositic materials T91 (X10CrMoVNb9-1), T92 (X10CrWMoVNb9-2) or VM12-SHC, the austenitic steels SUPER 304H, HR3C, DMV304HCu, DMV3101N or Ni-base alloys such as Alloy 617 (NiCr23Co12Mo) or Alloy 617mod (NiCr23Co12Mo mod).
  • the Schottenterrorism composition 8 may consist of individual, closely spaced and parallel tubes or pipe-web-tube construction. The tubes of the Schottenflowering Structure 8 usually run horizontally within the heating surface, but can also extend vertically.
  • the Schottenflower Design 8 is preferably arranged parallel to the Um chargedswand 4 and more preferably adjacent to the latter. By this arrangement it is ensured that the enclosure wall 4 is covered very efficiently by the Schottensammlung Structure 8 and thus the transfer of heat to the enclosure wall 4 is largely prevented.
  • FIG. 2 an advantageous variant of the Schottensammlung operation invention 8 is shown.
  • a Schottenflower configuration 8 ie a total of four, are arranged on each individual tube wall.
  • the targeted arrangement of the Schottenflower Design 8 especially in this area of the combustion chamber 2 can be specifically covered in the rule hottest area of the perimeter wall 4 and tube wall 5 within the combustion chamber 2.
  • the Schottenflower Design 8 can be advantageously used as a superheater heating within the forced flow steam generator 1. However, it is also possible to use it as a reheater heating surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Air Supply (AREA)

Description

Die Erfindung bezieht sich auf einen Zwangdurchlaufdampferzeuger für die Verfeuerung von Trockenbraunkohle ohne Zuhilfenahme von rückgeführtem Rauchgas in dessen Brennkammer, wobei der Zwangdurchlaufdampferzeuger eine Brennkammer und einen an deren oberen Ende anschließenden Rauchgaszug sowie diese umgebende Umfassungswände aufweist, wobei die Umfassungswände aus Rohrwänden gebildet sind, deren Rohre das Arbeitsmedium Wasser/Dampf führen, die Brennkammer wenigstens einen Brenner aufweist und im Rauchgaszug Nachschaltheizflächen angeordnet sind.The invention relates to a forced once-through steam generator for the combustion of dry lignite without the aid of recirculated flue gas in the combustion chamber, the forced flow steam generator having a combustion chamber and a subsequent end of the upper flue and this surrounding Umfassungswände, wherein the Umfassungswände are formed from tube walls whose tubes the working medium water / steam lead, the combustion chamber has at least one burner and are arranged in the flue gas Nachschaltheizflächen.

Durchlauf- bzw. Zwangdurchlaufdampferzeuger sind aus der Druckschrift " Kraftwerkstechnik", Springer-Verlag, 2. Auflage 1994, Kapitel 4.4.2.4-Zwangdurchlauf (Seite 171 bis 174 ), Prof. Dr.-Ing. Karl Strauß bekannt, die in Kraftwerken zur Erzeugung von elektrischer Energie durch Verfeuerung von beispielsweise fossilen Brennstoffen zum Einsatz kommen. Bei einem Durchlauf- bzw. Zwangdurchlaufdampferzeuger führt die Beheizung der die Brennkammer oder den Gaszug bildenden Rohrwände bzw. Umfassungswände - im Gegensatz zu einem Naturumlauf- oder Zwangsumlaufdampferzeuger mit nur teilweiser Verdampfung des im Umlauf geführten Wasser-Dampf-Gemisches - zu einer Verdampfung des Strömungs- bzw. Arbeitsmediums in den Rohren der Rohrwände bzw. Umfassungswände in einem einmaligen Durchlauf.Continuous or forced circulation steam generators are from the publication " Kraftwerkstechnik ", Springer-Verlag, 2nd edition 1994, Chapter 4.4.2.4-Forced circulation (pages 171 to 174 ), Prof. Dr.-Ing. Karl Strauß known, which are used in power plants for the production of electrical energy by combustion of, for example, fossil fuels. In a continuous flow or continuous flow steam generator, the heating of the combustion chamber or the gas flue forming tube walls or enclosing walls - in contrast to a natural circulation or forced circulation steam generator with only partial evaporation of circulating water-steam mixture - leads to an evaporation of the flow or working medium in the tubes of the pipe walls or enclosing walls in a single pass.

Ein mit Trockenbraunkohle (TBK) befeuerter Zwangdurchlaufdampferzeuger bzw. ein damit ausgebildetes Kraftwerk besitzt gegenüber einem herkömmlich mit Rohbraunkohle (RBK) befeuerten Zwangdurchlaufdampferzeuger bzw. einem damit ausgebildeten Kraftwerk ein erhebliches Wirkungsgraderhöhungs-Potential. Die TBK wird dabei in einem der Verbrennung vorgeschalteten Prozess energetisch günstig aus RBK erzeugt. Bedingt durch den reduzierten Wassergehalt der TBK gegenüber der RBK steigt der Heizwert und die damit in der Brennkammer des Dampferzeugers zu übertragende Wärmemenge erheblich an. Entsprechend der Ascheeigenschaften der RBK bzw. der TBK muss die Brennkammer so ausgelegt werden, dass sich mit der Wärmeaufnahme der Umfassungswände der Brennkammer eine Brennkammerendtemperatur im Bereich 950 - 1150°C einstellt. Die sich aufgrund der Wärmeaufnahme der Umfassungswände ergebende mediumseitige Dampftemperatur ist ausschlaggebend für die Materialauswahl der als Umfassungswände eingesetzten Rohrwände, die aus einer Rohr-Steg-Rohr-Verbindung hergestellt sind. Bei Zwangdurchlaufdampferzeugern mit hohen, überkritischen Dampfparametern muss bei der Verfeuerung von TBK zur Reduzierung der Wärmeaufnahme der Umfassungswände in der Brennkammer ein bestimmter Teil von Rauchgasen in die Brennkammer rückgeführt (Rauchgasrezirkulation) werden, damit die hoch beanspruchten Teile (Schrägwicklung und Senkrechtberohrung) der Umfassungswände, die als Rohrwände ausgebildet sind, aus den speziellen Werkstoffen T23 (ein von der ASME (American Society of Mechanical Engineers) zugelassener Werkstoff), T24 (7CrMoVTiB10-10) oder anderen Werkstoffen mit ähnlicher chemischer Zusammensetzung ausgeführt werden können, die alle zu der Gattung der modifizierten, warmfesten 2,25-2,5% Chromstähle zählen. Diese Werkstoffe haben den Vorteil, dass sie für hohe Dampfparameter bestens geeignet sind und dass sie ohne Wärmenachbehandlung schweißbar sind und somit die Erstellung der Umfassungswände bzw. Rohrwände sowie deren Montage auf der Baustelle einfach durchführbar sind. Der Werkstoff T23 ist beispielsweise im VdTÜV-Werkstoffblatt 511/2, Ausgabe 06.2001 und der Werkstoff T24 ist beispielsweise im Normblatt DIN EN 10216-2, Ausgabe Oktober 2007 aufgeführt.A continuous flow steam generator fired with dry lignite (TBK) or a power plant designed therewith has a considerable efficiency increase potential compared to a forced flow steam generator conventionally fired with crude lignite (RBK) or a power plant formed therewith. The TBK is generated in a process upstream of the combustion energetically favorable from RBK. Due to the reduced water content of the TBK compared to the RBK, the calorific value and the amount of heat to be transferred in the combustion chamber of the steam generator increases considerably. According to the ash properties of the RBK or the TBK, the combustion chamber must be designed so that a final combustion chamber temperature in the range 950-1150 ° C is established with the heat absorption of the surrounding walls of the combustion chamber. The Due to the heat absorption of the surrounding walls resulting medium-side steam temperature is crucial for the choice of materials used as Umfassungswände tube walls, which are made of a pipe-land-pipe connection. In continuous flow steam generators with high, supercritical steam parameters, when TBK is burnt to reduce the heat absorption of the perimeter walls in the combustion chamber, a certain amount of flue gases must be returned to the combustion chamber (flue gas recirculation) so that the highly stressed parts (helical and vertical bore) of the perimeter walls, are made of tube materials made of the special materials T23 (a material approved by ASME (American Society of Mechanical Engineers)), T24 (7CrMoVTiB10-10) or other materials of similar chemical composition, all of which are of the modified type , heat-resistant 2.25-2.5% chromium steels count. These materials have the advantage that they are ideally suited for high steam parameters and that they can be welded without post-heat treatment and thus the creation of the perimeter walls or pipe walls and their installation on the construction site are easy to carry out. The material T23 is listed, for example, in VdTÜV Material Data Sheet 511/2, issue 06.2001, and the material T24 is listed, for example, in the standard sheet DIN EN 10216-2, October 2007 issue.

Bei der Anwendung einer Rauchgasrezirkulation ist ein Rauchgasrezirkulationssystem mit einem Rauchgasrezirkulationsgebläse notwendig. Die eingesetzten Konvektionsheizflächen sind unter Umständen größer als wenn keine Rauchgasrezirkulation verwendet wird. Das Rauchgasrezirkulationssystem und die zusätzlichen Heizflächen stellen hohe Investitionskosten dar. Das Rauchgasrezirkulationssystem erhöht in weiterer nachteiliger Weise den elektrischen Eigenverbrauch des Kraftwerks und erhöht die laufenden Betriebskosten.When using a flue gas recirculation a flue gas recirculation system with a flue gas recirculation blower is necessary. The convection heating surfaces used may be larger than if no flue gas recirculation is used. The flue gas recirculation system and the additional heating surfaces represent high investment costs. The flue gas recirculation system increases in a further disadvantageous way the electrical self-consumption of the power plant and increases the ongoing operating costs.

Wie oben schon erwähnt, sind neben den Zwangdurchlaufdampferzeugern auch Naturumlauf- und Zwangumlaufdampferzeuger bekannt. Bei diesen bekannten Umlauf- bzw. Umwälzdampferzeugern mit unterkritischen Dampfparametern kann vom Verdampfer des Dampferzeugers nur eine bestimmte Wärmemenge aufgenommen werden. Diese ist durch den Betriebsdruck der Anlage definiert. Bedingt durch die Eigenschaften des Brennstoffs (Aschezusammensetzung, Schmelzeigenschaften der Asche) kann die aus der Verbrennung im Feuerraum bzw. in der Brennkammer zu übertragende Wärmemenge höher sein als diejenige, die vom Verdampfer aufgenommen werden kann. Bei Umwälzdampferzeugern sind dann Schottenheizflächen eingesetzt worden, um die an den Verdampfer zu übertragende Wärmemenge zu begrenzen bzw. die überschüssige Wärmemenge an die Schottenheizfläche abzugeben. Im Gegensatz zu den Natur- und Zwangumlaufdampferzeugern ist bei einem Zwangdurchlaufdampferzeuger die Wärmeaufnahme in dessen Verdampfer nicht begrenzt, da die Mediumtemperatur am Verdampferaustritt im Zwangdurchlaufbetrieb bereits überhitzt ist und die Höhe der Überhitzung variabel festgelegt werden kann. Das damit verbundene Temperaturniveau des Dampfes bzw. die zugehörige Berechnungstemperatur in den Umfassungswänden wird durch eine geeignete Werkstoffauswahl und bei der Verbrennung von TBK durch eine geeignete Rauchgasrückführung in die Brennkammer beherrscht.As mentioned above, natural circulation and forced circulation steam generators are known in addition to forced circulation steam generators. In these known circulation or circulating steam generators with subcritical steam parameters, only a certain amount of heat can be absorbed by the evaporator of the steam generator. This is defined by the operating pressure of the system. Due to the properties of the Fuel (ash composition, ash melting properties), the amount of heat to be transmitted from the combustion in the combustion chamber or in the combustion chamber to be higher than that which can be absorbed by the evaporator. When circulating steam generators Schottenheizflächen have been used to limit the amount of heat to be transferred to the evaporator and to deliver the excess amount of heat to the Schottenheizfläche. In contrast to the natural and forced circulation steam generators, the heat absorption in the evaporator is not limited in a forced once-through steam generator, since the medium temperature at the evaporator outlet in forced continuous operation is already overheated and the amount of overheating can be set variably. The associated temperature level of the steam or the associated calculation temperature in the enclosure walls is controlled by a suitable selection of materials and in the combustion of TBK by a suitable flue gas recirculation into the combustion chamber.

Das Dokument US 5 146 878 offenbart einen Dampferzeuger nach dem Stand der Technik.The document US 5,146,878 discloses a steam generator according to the prior art.

Aufgabe der Erfindung ist es nun, einen Zwangdurchlaufdampferzeuger für die Verfeuerung von Trockenbraunkohle zu schaffen, bei dem die vorgenannten Nachteile vermieden werden bzw. bei dem bei der Verfeuerung von Trockenbraunkohle der Einsatz einer Rauchgasrezirkulation vermieden und die Mediumstemperatur in den Umfassungswänden bzw. den Rohrwänden im Vergleich zum Rohbraunkohle befeuerten Zwangdurchlaufdampferzeuger nicht erhöht wird.The object of the invention is therefore to provide a forced once-through steam generator for the burning of dry lignite, in which the aforementioned disadvantages are avoided or avoided in the burning of dry lignite the use of a flue gas recirculation and the medium temperature in the Umfassungswänden or the pipe walls in comparison Forced lignite-fired forced-circulation steam generator is not increased.

Die vorstehend genannte Aufgabe wird durch die Gesamtheit der Merkmale des Patentanspruches 1 gelöst.The above object is solved by the entirety of the features of claim 1.

Vorteilhafte Ausgestaltungen der Erfindung sind den Unteransprüchen zu entnehmen.Advantageous embodiments of the invention can be found in the dependent claims.

Durch die erfindungsgemäße Lösung wird ein Zwangdurchlaufdampferzeuger für die Verfeuerung von Trockenbraunkohle geschaffen, der die nachfolgenden Vorteile aufweist:

  • Vermeidung von Rauchgasrezirkulation und damit verbunden eine Verbesserung des Dampferzeugerwirkungsgrades durch Absenken der Rauchgastemperatur nach Rauchgasluft-Vorwärmer.
  • Reduzierung von Investitionskosten und Betriebskosten für das Rauchgasrezirkulationssystem.
  • Reduzierung der Konvektionsheizflächengröße gegenüber einer Ausführung mit Rauchgasrezirkulation
The inventive solution provides a once-through steam generator for the burning of dry lignite, which has the following advantages:
  • Prevention of flue gas recirculation and associated improvement of the steam generator efficiency by lowering the flue gas temperature after flue gas air preheater.
  • Reduction of investment costs and operating costs for the flue gas recirculation system.
  • Reduction of the convection heating surface size compared to a version with flue gas recirculation

Eine vorteilhafte Ausbildung sieht vor, dass die im Bereich der Brennkammer einen Teil der Umfassungswände abdeckende Schottenheizfläche zwischen Oberkante des zuoberst gelegenen Brenners und Unterkante der untersten Nachschaltheizfläche angeordnet ist. Durch diese Maßnahme wird ein bestimmter Bereich der Brennkammer mit einer Schotten heizfläche abgedeckt, an dem ansonsten ein großer Teil der Wärme aus der Brennkammer an die Umfassungswände gelangen würde und deren Mediumstemperatur in der Umfassungswand sowie deren Wandtemperatur selbst so erhöhen würde, dass zur Reduzierung der Wandtemperatur ein Rauchgasrezirkulationssystem eingesetzt werden müsste.An advantageous embodiment provides that in the region of the combustion chamber, a part of the enclosing walls covering Schottenheizfläche between the upper edge of the uppermost situated burner and lower edge of the lowermost Nachschaltheizfläche is arranged. By this measure, a specific area of the combustion chamber is covered with a Schotten heating surface on which otherwise a large part of the heat from the combustion chamber would reach the Umfassungswände and their medium temperature in the enclosure wall and the wall temperature itself would increase so that to reduce the wall temperature a flue gas recirculation system would have to be used.

In vorteilhafter Ausgestaltung der Erfindung ist zumindest ein Teil der Umfassungswände aus einem der Werkstoffe T23, T24 oder einem anderen Werkstoff mit ähnlicher chemischer Zusammensetzung gebildet. Dabei wird zumindest der Teil der Umfassungswände mit den vorgenannten Werkstoffen ausgebildet, der thermisch hoch bzw. höher belastet ist als der restliche Teil der Umfassungswände. Bei den Werkstoffen T23, T24 oder einem anderen Werkstoff mit ähnlicher chemischer Zusammensetzung handelt es sich um hochwertige Werkstoffe, die handelsüblich sind und die den gewünschten Anforderungen genügen bzw. nach deren Verschweißen keine Wärmenachbehandlung an diesen erfolgen muss.In an advantageous embodiment of the invention, at least part of the enclosing walls is formed from one of the materials T23, T24 or another material having a similar chemical composition. In this case, at least the part of the surrounding walls is formed with the aforementioned materials, which is thermally highly loaded or higher than the remaining part of the surrounding walls. The materials T23, T24 or another material with a similar chemical composition are high-quality materials which are commercially available and which meet the desired requirements or, after their welding, no heat post-treatment must be carried out on them.

Eine vorteilhafte Ausbildung der Erfindung sieht vor, die Schottenheizfläche aus martensitischen Werkstoffen mit 9-12% Chromanteil, austenitischen Werkstoffen oder Nickelbasislegierungen auszubilden bzw. herzustellen. Damit ist gewährleistet, dass hinsichtlich der Temperaturen den Anforderungen an die exponiert in der Brennkammer liegende Schottenheizfläche Genüge getan wird.An advantageous embodiment of the invention provides for the Schottenheizfläche of martensitic materials with 9-12% chromium, austenitic materials or nickel-based alloys form or manufacture. This ensures that the requirements of the exposed in the combustion chamber Schottenheizfläche is satisfied in terms of temperatures.

Vorteilhaft ist es, dass die Schottenheizfläche als Überhitzer- oder Zwischenüberhitzerheizfläche ausgebildet ist. Damit wird die Schottenheizfläche effizient in den Wasser/Dampf-Kreislauf des Zwangdurchlaufdampferzeugers bzw. in den Wasser/Dampf-Kreislauf eines Kraftwerkes eingebunden, das einen derartigen Zwangdurchlaufdampferzeuger umfasst.It is advantageous that the bulkhead heating surface is designed as a superheater or reheater heating surface. Thus, the Schottenheizfläche is efficient in integrated into the water / steam cycle of the forced flow steam generator or in the water / steam cycle of a power plant comprising such a forced flow steam generator.

Eine vorteilhafte Ausbildung sieht vor, dass die Schottenheizfläche parallel zur Umfassungswand angeordnet ist. Damit wird erreicht, dass die Schottenheizfläche ebenso wie die Umfassungswand vertikal angeordnet ist und eine geringst mögliche Angriffsfläche für Asche bzw. Schlacke aus der Brennkammer bietet.An advantageous embodiment provides that the bulkhead heating surface is arranged parallel to the surrounding wall. This ensures that the Schottenheizfläche as well as the surrounding wall is arranged vertically and provides a minimum possible attack surface for ash or slag from the combustion chamber.

Eine zweckmäßige Ausbildung sieht vor, dass die Schottenheizfläche anliegend an der Umfassungswand angeordnet ist. Damit ist gewährleistet, dass die Umfassungswand von der Schottenheizfläche bestmöglich abgedeckt ist und die geringst mögliche Wärmemenge an die Umfassungswand gelangt.An expedient embodiment provides that the bulkhead heating surface is arranged adjacent to the surrounding wall. This ensures that the enclosure wall is optimally covered by the bulkhead heating surface and that the lowest possible amount of heat reaches the enclosure wall.

Nachstehend sind Ausführungsbeispiele der Erfindung an Hand der Zeichnung und der Beschreibung näher erläutert.Embodiments of the invention with reference to the drawings and the description are explained in more detail below.

Es zeigt:

Fig. 1
schematisch dargestellt einen Längsschnitt durch einen erfindungsgemäßen Zwangdurchlaufdampferzeuger,
Fig. 2
wie Figur 1, jedoch alternative Ausführung.
It shows:
Fig. 1
schematically shows a longitudinal section through a forced-circulation steam generator according to the invention,
Fig. 2
as FIG. 1 , but alternative design.

Figur 1 zeigt schematisch dargestellt einen Durchlauf- bzw. Zwangdurchlaufdampferzeuger 1 (beide Bezeichnungen meinen dasselbe, nämlich die Erzeugung des Dampfes innerhalb des Dampferzeugers in einem Durchlauf) in Turmbauweise auf, d.h. die Rohrwände 5 (als Umfassungswände 4) sowie sämtliche Nachschaltheizflächen 7 sind an bzw. in einem einzigen vertikalen Gaszug untergebracht. Der vertikale Gaszug, der durch gasdichte Umfassungswände 4 gebildet bzw. umgrenzt wird, beinhaltet in dessen unterem Bereich die Brennkammer 2 und den darüber anschließenden Rauchgaszug 3. Die Brennkammer 2 schließt in der Regel nach unten hin mit einem Brennkammertrichter ab und reicht nach oben hin bis zu der untersten Nachschaltheizfläche 7. Im unteren Bereich der Brennkammer 2 sind ein oder mehrere Brenner 6 zur Verfeuerung von Trockenbraunkohle angeordnet. Die Brenner 6 können entweder in den Ecken (Eckenbrenner) oder in den Wänden (Wandbrenner) der Brennkammer 2 angeordnet sein. Im Rauchgaszug 3 sind die verschiedenen Nachschaltheizflächen 7 als Berührungsheizflächen angeordnet. Diese sind in der Regel Economiser-Heizflächen, Überhitzer- und Zwischenüberhitzer-Heizflächen. Der Rauchgaszug 3 schließt nach oben mit einer Decke ab und er weist an seinem oberen Ende seitlich einen Rauchgasaustritt 9 auf. FIG. 1 schematically shows a continuous flow or continuous flow steam generator 1 (both terms mean the same thing, namely the generation of steam within the steam generator in one run) in tower construction, ie the pipe walls 5 (as surrounding walls 4) and all Nachschaltheizflächen 7 are on or in housed in a single vertical throttle cable. The vertical throttle cable, which is formed or bounded by gas-tight enclosure walls 4, includes in its lower region The combustion chamber 2 usually closes down with a combustion chamber funnel and extends up to the lowest Nachschaltheizfläche 7. In the lower part of the combustion chamber 2, one or more burners 6 for burning of Dry lignite arranged. The burners 6 can be arranged either in the corners (corner burners) or in the walls (wall burners) of the combustion chamber 2. In the flue 3, the various Nachschaltheizflächen 7 are arranged as Berührungsheizflächen. These are typically economizer heating surfaces, superheater and reheater heating surfaces. The flue 3 closes up with a ceiling and he has at its upper end laterally a flue gas outlet 9.

Der Zwangdurchlaufdampferzeuger 1 weist erfindungsgemäß wenigstens eine Schottenheizfläche 8 auf, die einen Teil der Umfassungswände 4 im Bereich der Brennkammer 2 abdeckt und deren flächenseitige Größe so bestimmt ist, dass die Wärmeaufnahme der Umfassungswände 4 und infolgedessen deren Temperatur auf einen Wert reduziert wird, der die Ausbildung der Umfassungswand 4 aus modifizierten, warmfesten 2,25-2,5% Chromstählen zulässt, die nach deren schweißtechnischer Verarbeitung keine Wärmenachbehandlung benötigen. Mit anderen Worten, die die Umfassungswand 4 im Bereich der Brennkammer 2 mit vorbestimmter flächenseitiger Größe abdeckende Schottenheizfläche 8 nimmt aus der Brennkammer 2 soviel Wärme auf, dass die Wärmeaufnahme der Umfassungswand 4 infolge der Abdeckung derart reduziert wird, dass die maximale Mediumstemperatur an der Umfassungswand 4 unterhalb eines Wertes bleibt, der den Einsatz von modifizierten, warmfesten 2,25-2,5% Chromstählen zulässt, die nach deren schweißtechnischer Verarbeitung keine Wärmenachbehandlung benötigen. Diese können beispielsweise die Werkstoffe T23 (ein von der ASME (American Society of Mechanical Engineers) zugelassener Werkstoff), T24 (7CrMoVTiB10-10) oder ein anderer Werkstoff mit ähnlicher chemischer Zusammensetzung sein, die Dampftemperaturen bis zu ca. 500-510°C abdecken können und die beispielsweise in der Broschüre "The T23/T24 Book, New Grades for Waterwalls and Superheaters von Vallourec & Mannesmann Tubes" aufgeführt sind (Broschüre über modifizierte, warmfeste 2,25-2,5% Chromstähle). Durch die Verringerung der Mediumstemperatur in der Umfassungswand 4 mittels der erfindungsgemäß angeordneten Schottenheizfläche 8 kann auf den Einsatz von Rauchgasrezirkulationssystemen verzichtet werden, die ansonsten kühleres Rauchgas in die Brennkammer 2 führen und damit die Temperaturen innerhalb der Brennkammer 2 und infolgedessen auch die Mediumstemperatur in der Umfassungswand 4 absenken.According to the invention, the once-through steam generator 1 has at least one steam heating surface 8, which covers a part of the surrounding walls 4 in the region of the combustion chamber 2 and whose area-side size is determined such that the heat absorption of the surrounding walls 4 and consequently their temperature is reduced to a value which reduces the formation the perimeter wall 4 of modified, heat-resistant 2.25-2.5% chromium steels permits, which require no post-treatment after their welding technology processing. In other words, the enclosing wall 4 in the region of the combustion chamber 2 with a predetermined surface-side size covering Schottenheizfläche 8 takes from the combustion chamber 2 so much heat that the heat absorption of the perimeter wall 4 is reduced due to the cover such that the maximum medium temperature at the perimeter wall. 4 remains below a value that allows the use of modified, heat-resistant 2.25-2.5% chromium steels, which do not require post heat treatment after their welding processing. These may be, for example, the materials T23 (a material approved by the American Society of Mechanical Engineers), T24 (7CrMoVTiB10-10) or another material of similar chemical composition covering steam temperatures up to about 500-510 ° C and listed, for example, in the booklet "The T23 / T24 Book, New Grades for Waterwalls and Superheaters by Vallourec & Mannesmann Tubes" (booklet on modified, heat-resistant 2.25-2.5% chromium steels). By reducing the temperature of the medium in the enclosure wall 4 by means of the present invention arranged Schottenheizfläche 8 can on the use of Flue gas recirculation systems are dispensed with, the otherwise cooler flue gas lead into the combustion chamber 2 and thus lower the temperatures within the combustion chamber 2 and consequently the medium temperature in the enclosure wall 4.

Diese vorgenannten hochwertigen Werkstoffe, die nach deren schweißtechnischer Verarbeitung keine Wärmenachbehandlung benötigen, können entweder überall an der Umfassungswand 4 eingesetzt werden oder entsprechend einer kommerziell vorteilhafteren Variante, zumindest an den Teilen der Umfassungswände 4, deren hohe thermische Belastung dies erforderlich macht. Dies sind beispielsweise die Bereiche an den Brennern 6 und direkt oberhalb der Brenner 6 innerhalb der Brennkammer 2. An den Teilen der Umfassungswände 4, deren thermische Belastung niedriger ist, wie beispielsweise im unteren Teil der Brennkammer 2 (unterhalb der Brenner 6 einschließlich Brennkammertrichter) mit Mediumtemperaturen von ca. ≤ 400-460 °C in den Rohrwänden, werden zur Reduzierung der Investitionskosten im Vergleich zu den vorgenannten hochwertigen Werkstoffen niederwertigere Werkstoffe, wie z.B. 16Mo3 oder 13CrMo45, eingesetzt. Diese Werkstoffe benötigen ebenfalls nach deren schweißtechnischer Verarbeitung keine Wärmenachbehandlung.These aforementioned high-quality materials, which do not require postheating after their welding processing, can be used either everywhere on the surrounding wall 4 or according to a commercially more advantageous variant, at least on the parts of the surrounding walls 4, the high thermal load makes this necessary. These are, for example, the areas on the burners 6 and directly above the burners 6 within the combustion chamber 2. On the parts of the Umfassungswände 4, the thermal load is lower, such as in the lower part of the combustion chamber 2 (below the burner 6 including combustor funnel) with Medium temperatures of about ≤ 400-460 ° C in the pipe walls, to reduce the investment costs in comparison to the aforementioned high quality materials lower valued materials, such as 16Mo3 or 13CrMo45. These materials also do not require post heat treatment after their welding processing.

Die Umfassungswände 4, die als Rohrwände 5 ausgebildet sind, werden in der Regel aus einer verschweißten Rohr-Steg-Rohr-Kombination hergestellt, wobei die Rohre der Rohrwände 5 das Arbeitsmedium Wasser/Dampf führen und innerhalb der Umfassungswände 4 entweder schräg oder vertikal oder aus einer Kombination aus schräg und vertikal ausgebildet sein können. Die in den Umfassungswänden 4 angeordneten Rohre sind im unteren und mittleren Teil der Brennkammer 2 als Verdampferrohre eingesetzt, d.h. das eingespeiste und vorgewärmte Wasser wird in diesen Verdampferrohren verdampft. Im oberen Teil der Brennkammer 2, der in der Regel senkrecht berohrt ist, können die in der Umfassungswand 4 angeordneten Rohre bereits als Überhitzerheizfläche geschalten sein.The surrounding walls 4, which are formed as tube walls 5, are usually made of a welded pipe-web-tube combination, wherein the tubes of the tube walls 5, the working medium water / steam and within the enclosure walls 4 either obliquely or vertically or out a combination of oblique and vertical may be formed. The arranged in the Umfassungswänden 4 tubes are used in the lower and middle part of the combustion chamber 2 as evaporator tubes, i. the fed and preheated water is evaporated in these evaporator tubes. In the upper part of the combustion chamber 2, which is usually bored vertically, the pipes arranged in the surrounding wall 4 can already be connected as a superheater heating surface.

Die Schottenheizfläche 8 selbst, die nunmehr einen Teil der Wärme aus der Brennkammer 2 aufnimmt, wird entsprechend den Temperaturanforderungen mit geeigneten Werkstoffen ausgebildet. Da sehr hohe Temperaturen zu beherrschen sind, haben sich hierfür martensitische 9-12%-chromhaltige Stähle, austenitische Stähle oder Nickelbasislegierungen als geeignet erwiesen. Diese können beispielsweise die martensitischen Werkstoffe T91 (X10CrMoVNb9-1), T92 (X10CrWMoVNb9-2) oder VM12-SHC, die austenitische Stähle SUPER 304H, HR3C, DMV304HCu, DMV3101 N oder Ni-Basislegierungen wie beispielsweise Alloy 617 (NiCr23Co12Mo) oder Alloy 617mod (NiCr23Co12Mo mod) sein. Die Schottenheizfläche 8 kann aus einzelnen, dicht aneinander und parallel angeordneten Rohren oder aus einer Rohr-Steg-Rohr-Konstruktion bestehen. Die Rohre der Schottenheizfläche 8 verlaufen in der Regel horizontal innerhalb der Heizfläche, können aber auch vertikal verlaufen.The Schottenheizfläche 8 itself, which now receives a portion of the heat from the combustion chamber 2 is formed according to the temperature requirements with suitable materials. Since very high temperatures are to be controlled, have for this martensitic 9-12% chromium-containing steels, austenitic steels or nickel-based alloys have proven suitable. These can be, for example, the martensitic materials T91 (X10CrMoVNb9-1), T92 (X10CrWMoVNb9-2) or VM12-SHC, the austenitic steels SUPER 304H, HR3C, DMV304HCu, DMV3101N or Ni-base alloys such as Alloy 617 (NiCr23Co12Mo) or Alloy 617mod (NiCr23Co12Mo mod). The Schottenheizfläche 8 may consist of individual, closely spaced and parallel tubes or pipe-web-tube construction. The tubes of the Schottenheizfläche 8 usually run horizontally within the heating surface, but can also extend vertically.

Die Schottenheizfläche 8 ist vorzugsweise parallel zu der Umfassungswand 4 und weiter vorzugsweise an letztere anliegend angeordnet. Durch diese Anordnung wird gewährleistet, dass die Umfassungswand 4 sehr effizient von der Schottenheizfläche 8 abgedeckt wird und somit die Übertragung von Wärme auf die Umfassungswand 4 weitestgehend unterbunden wird. Durch Figur 2 wird eine vorteilhafte Variante der erfindungsgemäßen Schottenheizfläche 8 aufgezeigt. Dabei wird die Umfassungswand 4 bzw. Rohrwand 5, die in der Regel die Stirn- und Rückwand sowie zwei Seitenwände des Zwangdurchlaufdampferzeugers beinhalten, im Bereich der Brennkammer 2 und zwar zwischen Oberkante des obersten Brenners 6 und Unterkante der untersten Nachschaltheizfläche 7 (der Bereich ist in Figur 2 mit "S" bezeichnet bzw. markiert), zum Teil durch eine oder mehrere Schottenheizfläche(n) 8 abgedeckt, wobei gemäß Figur 2 beispielhaft an jeder einzelnen Rohrwand eine Schottenheizfläche 8, also insgesamt vier, angeordnet sind. Durch die gezielte Anordnung der Schottenheizfläche 8 speziell in diesem Bereich der Brennkammer 2 kann ganz gezielt der in der Regel heißeste Bereich der Umfassungswand 4 bzw. Rohrwand 5 innerhalb der Brennkammer 2 abgedeckt werden. Die Schottenheizfläche 8 kann innerhalb des Zwangdurchlaufdampferzeugers 1 vorteilhaft als Überhitzerheizfläche eingesetzt werden. Möglich ist jedoch auch der Einsatz als Zwischenüberhitzerheizfläche.The Schottenheizfläche 8 is preferably arranged parallel to the Umfassungswand 4 and more preferably adjacent to the latter. By this arrangement it is ensured that the enclosure wall 4 is covered very efficiently by the Schottenheizfläche 8 and thus the transfer of heat to the enclosure wall 4 is largely prevented. By FIG. 2 an advantageous variant of the Schottenheizfläche invention 8 is shown. In this case, the enclosing wall 4 or pipe wall 5, which usually include the front and rear walls and two side walls of the forced once-through steam generator, in the combustion chamber 2 between the upper edge of the uppermost burner 6 and lower edge of the lowest Nachschaltheizfläche 7 (the range is in FIG. 2 denoted by "S"), partially covered by one or more bulk heating surfaces 8, according to FIG. 2 By way of example, a Schottenheizfläche 8, ie a total of four, are arranged on each individual tube wall. The targeted arrangement of the Schottenheizfläche 8 especially in this area of the combustion chamber 2 can be specifically covered in the rule hottest area of the perimeter wall 4 and tube wall 5 within the combustion chamber 2. The Schottenheizfläche 8 can be advantageously used as a superheater heating within the forced flow steam generator 1. However, it is also possible to use it as a reheater heating surface.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

11
ZwangdurchlaufdampferzeugerOnce-through steam generator
22
Brennkammercombustion chamber
33
Rauchgaszugflue
44
Umfassungswandcontainment
55
Rohrwandpipe wall
66
Brennerburner
77
Nachschaltheizflächeheat recovery area
88th
SchottenheizflächeSchottenheizfläche
99
RauchgasaustrittFlue gas outlet

Claims (8)

  1. Once-through steam generator for burning dry brown coal without the aid of recycled flue gas in its combustion chamber, the once-through steam generator (1) having a combustion chamber (2), a flue gas pass (3) which adjoins the upper end of said combustion chamber (2), and enclosure walls (4) which enclose them, the enclosure walls (4) being formed from tube walls (5), the tubes of which conduct the working medium water/steam, the combustion chamber (2) having at least one burner (6), and heating surfaces (7) being arranged in the flue gas pass (3), part of the enclosure walls (4) being covered in the region of the combustion chamber (2) by at least one platen heating surface (8), characterized in that the enclosure walls (4) consist of modified, heat-resistant 2.25-2.5% chromium steels which do not require any thermal posttreatment after they have been processed using welding technology.
  2. Once-through steam generator according to Claim 1, characterized in that the platen heating surface (8) which covers part of the enclosure walls (4) in the region of the combustion chamber (2) is arranged between the upper edge of the uppermost burner (6) and the lower edge of the lowermost heating surface (7).
  3. Once-through steam generator according to Claim 1, characterized in that at least part of the enclosure walls (4) is formed from one of the materials T23, T24 or another material with a similar chemical composition.
  4. Once-through steam generator according to at least one of the preceding claims, characterized in that the platen heating surface (8) is formed from martensitic steels with a 9-12% chromium proportion, austenitic steels or nickel-based alloys.
  5. Once-through steam generator according to at least one of the preceding claims, characterized in that the platen heating surface (8) is configured as a superheater heating surface.
  6. Once-through steam generator according to at least one of the preceding claims, characterized in that the platen heating surface (8) is configured as a reheater heating surface.
  7. Once-through steam generator according to at least one of the preceding claims, characterized in that the platen heating surface (8) is arranged parallel to the enclosure wall (4).
  8. Once-through steam generator according to at least one of the preceding claims, characterized in that the platen heating surface (8) extends such that it bears against the enclosure wall (4).
EP10768370.8A 2009-09-04 2010-08-20 Forced-flow steam generator for burning dry brown coal Active EP2473783B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201031236A SI2473783T1 (en) 2009-09-04 2010-08-20 Forced-flow steam generator for burning dry brown coal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009040249A DE102009040249B4 (en) 2009-09-04 2009-09-04 Forced-circulation steam generator for the burning of dry brown coal
PCT/DE2010/000982 WO2011026462A2 (en) 2009-09-04 2010-08-20 Forced-flow steam generator for burning dry brown coal

Publications (2)

Publication Number Publication Date
EP2473783A2 EP2473783A2 (en) 2012-07-11
EP2473783B1 true EP2473783B1 (en) 2016-04-20

Family

ID=43649691

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10768370.8A Active EP2473783B1 (en) 2009-09-04 2010-08-20 Forced-flow steam generator for burning dry brown coal

Country Status (10)

Country Link
US (1) US20120272929A1 (en)
EP (1) EP2473783B1 (en)
CN (1) CN102782405B (en)
AU (1) AU2010291653B2 (en)
DE (1) DE102009040249B4 (en)
HU (1) HUE029835T2 (en)
IN (1) IN2012DN02835A (en)
PL (1) PL2473783T3 (en)
SI (1) SI2473783T1 (en)
WO (1) WO2011026462A2 (en)

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125995A (en) * 1964-03-24 forced flow vapor generating unit
US2770030A (en) * 1950-06-15 1956-11-13 Babcock & Wilcox Co Welded joint between dissimilar metals
DE897706C (en) * 1950-11-04 1953-11-23 Babcock & Wilcox Dampfkessel W Steam generator for high steam temperature and high air preheating
DE950670C (en) * 1951-05-17 1956-10-11 Babcock & Wilcox Dampfkessel W Fire gas heated recuperative air heater made of cast iron pipes
US2960390A (en) * 1954-07-30 1960-11-15 Combustion Eng Superheater for chemical recovery unit
NL281273A (en) * 1961-07-27
US3274977A (en) * 1964-11-12 1966-09-27 Combustion Eng Arrangement of a buckstay system for wide furnace steam generators
US3267908A (en) * 1965-08-03 1966-08-23 Sulzer Ag Steam generator with flue gas return
DE1576887A1 (en) * 1967-11-11 1970-05-27 Steinmueller Gmbh L & C Forced operation steam generator
US3534713A (en) * 1968-07-01 1970-10-20 Foster Wheeler Corp Flow circuit for division wall
US4442796A (en) * 1982-12-08 1984-04-17 Electrodyne Research Corporation Migrating fluidized bed combustion system for a steam generator
FI87012C (en) * 1990-12-21 1992-11-10 Ahlstroem Oy PANNA OCH DAERI ANORDNAD STOEDD VAERMEOEVERFOERINGSPANEL
US5308698A (en) * 1992-05-21 1994-05-03 Inco Alloys International, Inc. Flux for coated welding electrode
US5946901A (en) * 1997-12-17 1999-09-07 Combustion Engineering, Inc. Method and apparatus for improving gas flow in heat recovery steam generators
AU2496100A (en) * 1999-01-13 2000-08-01 Abb Alstom Power Inc. Startup technique using multimode operation in a kalina cycle power generation system
DE10039317A1 (en) * 2000-08-11 2002-04-11 Alstom Power Boiler Gmbh Steam generating plant
US6675747B1 (en) * 2002-08-22 2004-01-13 Foster Wheeler Energy Corporation System for and method of generating steam for use in oil recovery processes
DE10254780B4 (en) * 2002-11-22 2005-08-18 Alstom Power Boiler Gmbh Continuous steam generator with circulating atmospheric fluidized bed combustion
DE10257305A1 (en) * 2002-12-07 2004-06-17 Kümmel, Joachim, Dipl.-Ing. Process to super heat aggressive steam arising from incineration of domestic refuse, trade wastes, biomass and sewage sludge
US7028882B2 (en) * 2004-02-02 2006-04-18 General Electric Company Process and apparatus for boiler tube panel welding and straightening
US6957630B1 (en) * 2005-03-31 2005-10-25 Alstom Technology Ltd Flexible assembly of once-through evaporation for horizontal heat recovery steam generator
DE102008037085B3 (en) * 2008-08-08 2009-08-06 Alstom Technology Ltd. Pipe wall production process for steam generator comprises producing pipe wall register, heat-treating weld seams, connecting up register and joining planes

Also Published As

Publication number Publication date
EP2473783A2 (en) 2012-07-11
AU2010291653B2 (en) 2016-03-17
SI2473783T1 (en) 2016-08-31
DE102009040249A1 (en) 2011-09-08
IN2012DN02835A (en) 2015-07-24
US20120272929A1 (en) 2012-11-01
HUE029835T2 (en) 2017-04-28
CN102782405A (en) 2012-11-14
WO2011026462A8 (en) 2012-04-05
CN102782405B (en) 2016-01-13
PL2473783T3 (en) 2016-12-30
WO2011026462A3 (en) 2012-08-16
AU2010291653A1 (en) 2012-04-12
WO2011026462A2 (en) 2011-03-10
DE102009040249B4 (en) 2011-12-08

Similar Documents

Publication Publication Date Title
EP0981015B1 (en) Superheated steam generator for combustion plants with corrosive gases
DE4227457A1 (en) Steam generator
EP2321578B1 (en) Continuous steam generator
EP1794495B1 (en) Fossil-energy heated continuous steam generator
EP2324287B1 (en) Continuous-flow steam generator
EP2324286B1 (en) Continuous-flow steam generator
EP2440847A2 (en) Continuous evaporator
WO1997027426A2 (en) Continuous steam generator
DE10254780B4 (en) Continuous steam generator with circulating atmospheric fluidized bed combustion
EP2473783B1 (en) Forced-flow steam generator for burning dry brown coal
EP2473782B1 (en) Forced-flow steam generator for using at steam temperatures of above 650°c
EP2601441B1 (en) Forced-flow steam generator
EP2409078B1 (en) Method for designing a continuous evaporator
EP2564117B1 (en) Steam generator
DE10354136B4 (en) Circulating fluidized bed reactor
EP3193082B1 (en) Method and device for producing superheated steam using the heat generated in the boiler of a combustion plant
DE684018C (en) Method and device for regulating the overheating temperature in a water tube boiler with two combustion chambers equipped with their own firing system and an overheater located between the combustion chambers
AT210441B (en) System for the generation of highly superheated steam in steam boilers with a furnace for solid, liquid or gaseous fuels and for sulphite waste liquor
AT13296U1 (en) Biomass boiler with heat exchanger
DE102018010145A1 (en) Heat exchangers for high pressures and temperatures
CH317255A (en) Steam power plant with reheater
CH152683A (en) High-pressure steam generator with a fire chamber, the walls of which are shielded from heat radiation by pipes.
DE2003926A1 (en) Ship propulsion system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120301

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

R17D Deferred search report published (corrected)

Effective date: 20120816

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151215

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 792878

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010011523

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010011523

Country of ref document: DE

Representative=s name: RUEGER | ABEL PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010011523

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010011523

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010011523

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010011523

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH; CH

Effective date: 20160905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160822

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010011523

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20160401704

Country of ref document: GR

Effective date: 20170130

26N No opposition filed

Effective date: 20170123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E029835

Country of ref document: HU

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160820

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160820

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 792878

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160820

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20170809

Year of fee payment: 8

Ref country code: IT

Payment date: 20170823

Year of fee payment: 8

Ref country code: RO

Payment date: 20170803

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20170801

Year of fee payment: 8

Ref country code: HU

Payment date: 20170809

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180821

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180820

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180821

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180820

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20190724

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200724

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20200722

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210720

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010011523

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301