EP2473782B1 - Forced-flow steam generator for using at steam temperatures of above 650°c - Google Patents

Forced-flow steam generator for using at steam temperatures of above 650°c Download PDF

Info

Publication number
EP2473782B1
EP2473782B1 EP10768369.0A EP10768369A EP2473782B1 EP 2473782 B1 EP2473782 B1 EP 2473782B1 EP 10768369 A EP10768369 A EP 10768369A EP 2473782 B1 EP2473782 B1 EP 2473782B1
Authority
EP
European Patent Office
Prior art keywords
steam generator
once
heating surface
steam
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10768369.0A
Other languages
German (de)
French (fr)
Other versions
EP2473782A2 (en
Inventor
Thoralf Berndt
Qiurong Chen
Georg-Nikolaus Stamatelopoulos
Gerhard Weissinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Priority to SI201031235A priority Critical patent/SI2473782T1/en
Publication of EP2473782A2 publication Critical patent/EP2473782A2/en
Application granted granted Critical
Publication of EP2473782B1 publication Critical patent/EP2473782B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/04Component parts or details of steam boilers applicable to more than one kind or type of steam boiler and characterised by material, e.g. use of special steel alloy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/14Supply mains, e.g. rising mains, down-comers, in connection with water tubes
    • F22B37/143Panel shaped heating surfaces built up from tubes

Definitions

  • the invention relates to a forced once-through steam generator for the use of steam temperatures of about 650 ° C, the forced flow steam generator having a combustion chamber and a subsequent end of the upper flue and this surrounding Um chargedsleton, wherein the Um chargedsbuild are formed from tube walls whose tubes the working fluid water / Steam lead, the combustion chamber has at least one burner and are arranged in the flue gas Nachschaltsammlungdon.
  • Continuous or forced circulation steam generators are from the publication " Kraftwerkstechnik”, Springer-Verlag, 2nd edition 1994, Chapter 4.4.2.4-Forced circulation (pages 171 to 174 ), Prof. Dr.-Ing. Karl Strauß known, which are used in power plants for the production of electrical energy by combustion of, for example, fossil fuels.
  • a continuous flow or continuous flow steam generator the heating of the combustion chamber or the gas flue forming tube walls or enclosing walls - in contrast to a natural circulation or forced circulation steam generator with only partial evaporation of circulating water-steam mixture - leads to an evaporation of the flow or working medium in the tubes of the pipe walls or enclosing walls in a single pass.
  • the highly stressed parts helical winding and vertical bore
  • the perimeter walls formed as tube walls are made of the special materials T23 (a material approved by ASME (American Society of Mechanical Engineers)), T24 (7CrMoVTiB10-10) or other materials of similar chemical composition, all of which are of the generic type of the modified, heat-resistant 2.25-2.5% chromium steels count.
  • the material T23 is listed, for example, in VdTÜV Material Data Sheet 511/2, issue 06.2001, and the material T24 is listed, for example, in the standard sheet DIN EN 10216-2, October 2007 issue.
  • These materials have the advantage that they are best suited for the aforementioned steam parameters and that they can be welded without post-heat treatment and thus the creation of the perimeter walls or pipe walls and their installation on the site are easy to carry out.
  • Possible materials for these increased boundary wall temperatures are martensitic 9-12% chromium steels such as T91 (X10CrMoVNb9-1), T92 (X10CrWMoVNb9-2) and VM12-SHC (factory designation of the company Vallourec-Mannesmann) or Ni-base alloys such as Alloy 617 ( NiCr23Co12Mo) or Alloy 617mod.
  • martensitic 9-12% chromium steels such as T91 (X10CrMoVNb9-1), T92 (X10CrWMoVNb9-2) and VM12-SHC (factory designation of the company Vallourec-Mannesmann) or Ni-base alloys such as Alloy 617 ( NiCr23Co12Mo) or Alloy 617mod.
  • marlensitic 9-12% chromium steal or Ni base alloys for the perimeter walls requires complicated manufacturing and assembly operations.
  • the martensitic 9-12% chromium steels must be heat treated after welding in the workshop and during assembly.
  • special tempering furnaces as well as on the construction site special annealing cassettes needed.
  • Ni-base alloys In the production or assembly of Ni-base alloys excessively large shrinkage processes must be mastered.
  • Ni base alloys their procurement costs are significantly higher than those of steels. For both of these solutions are therefore expected to higher costs, both in terms of the cost of materials and the manufacturing and assembly costs.
  • the heat absorption in the evaporator is not limited in a forced once-through steam generator, since the medium temperature at the evaporator outlet in forced continuous operation is already overheated and the amount of overheating can be set variably.
  • the associated temperature level of the steam or the associated calculation temperature in the enclosure walls is governed by a suitable choice of materials with respect to the enclosure walls.
  • the object of the invention is therefore to provide a forced once-through steam generator for the use of steam temperatures of over 650 ° C, in which the aforementioned disadvantages are avoided or in terms of Um chargedsplin or pipe walls of the once-through steam generator simple and not complicated and difficult to control manufacturing and assembly operations are to be carried out.
  • An advantageous embodiment provides that in the region of the combustion chamber, a part of the enclosing walls covering Schottenmosisation between the upper edge of the uppermost situated burner and lower edge of the lowermost Nachschaltflowerization is arranged.
  • a certain area of the combustion chamber is covered with a Schottenmosization on which otherwise a large part of the heat from the combustion chamber would reach the Um chargedsplin and their medium temperature in the enclosure wall and the wall temperature itself would increase so that higher quality materials would have to be used ,
  • At least part of the enclosing walls is formed from one of the materials T23, T24 or another material having a similar chemical composition.
  • at least the part of the surrounding walls is formed with the aforementioned materials, which is thermally highly loaded or higher than the remaining part of the surrounding walls.
  • the materials T23, T24 or another material with a similar chemical composition are high-quality materials which are commercially available and which meet the desired requirements or, after their welding, no heat post-treatment must be carried out on them.
  • An advantageous embodiment of the invention provides for the SchottenMap operation of martensitic materials with 9-12% chromium, austenitic materials or nickel-based alloys form or manufacture. This ensures that the requirements of the exposed in the combustion chamber Schottenflower Construction is satisfied in terms of temperatures.
  • the bulkhead heating surface is designed as a superheater or reheater heating surface.
  • An advantageous embodiment provides that the bulkhead heating surface is arranged parallel to the surrounding wall. This ensures that the Schottenmosization configuration as well as the surrounding wall is arranged vertically and provides a minimum possible attack surface for ash or slag from the combustion chamber.
  • An expedient embodiment provides that the bulkhead heating surface extends adjacent to the surrounding wall. This ensures that the enclosure wall is optimally covered by the bulkhead heating surface and that the lowest possible amount of heat reaches the enclosure wall.
  • FIG. 1 schematically shows a continuous flow or continuous flow steam generator 1 (both terms mean the same thing, namely the generation of steam within the steam generator in one run) in tower construction, ie the pipe walls 5 (as surrounding walls 4) and all Nachschaltsammlung vom 7 are on or in housed in a single vertical throttle cable.
  • the vertical throttle cable which is formed or bounded by gas-tight enclosure walls 4, includes in the lower region of the combustion chamber 2 and the subsequent flue 3.
  • the combustion chamber 2 usually closes down with a combustion chamber funnel and extends up to to the lowest Nachschaltflower Structure 7.
  • one or more burners 6 are arranged for burning a fossil fuel.
  • the burners 6 can be arranged either in the corners (corner burners) or in the walls (wall burners) of the combustion chamber 2.
  • the various Nachschaltsammlungvon 7 are arranged as Bermmungsflower lake. These are typically economizer heating surfaces, superheater and reheater heating surfaces.
  • the flue 3 closes up with a ceiling and he has at its upper end laterally a flue gas outlet 9.
  • the once-through steam generator 1 has at least one steam heating surface 8, which covers a part of the surrounding walls 4 in the region of the combustion chamber 2 and whose area-side size is determined such that the heat absorption of the surrounding walls 4 and consequently their temperature is reduced to a value which reduces the formation the perimeter wall 4 of modified, heat-resistant 2.25-2.5% chromium steels permits, which require no post-treatment after their welding technology processing.
  • the enclosing wall 4 in the region of the combustion chamber 2 with a predetermined surface-side size covering Schottenflower Design 8 takes from the combustion chamber 2 so much heat that the heat absorption of the perimeter wall 4 is reduced due to the cover such that the maximum medium temperature at the perimeter wall.
  • modified, heat-resistant 2.25-2.5% chromium steels permits, which require no heat aftertreatment after their welding technical processing.
  • These may be, for example, the materials T23 (a material approved by the American Society of Mechanical Engineers), T24 (7CrMoVTiB10-10) or another material of similar chemical composition covering steam temperatures up to about 500-510 ° C and listed, for example, in the booklet "The T23 / T24 Book, New Grades for Waterwalls and Superheaters by Vallourec & Mannesmann Tubes" (booklet on modified, heat-resistant 2.25-2.5% chromium steels).
  • the now used high-quality materials that do not require after-treatment heat treatment and no elaborate processing can either be used anywhere on the Um chargedswand 4 or according to a commercially advantageous variant, at least on the parts of the enclosing walls 4, their high thermal load this is required. These are, for example, the areas on the burners 6 and directly above the burners 6 within the combustion chamber 2. On the parts of the Um chargedsnova 4, the thermal load is lower, such as in the lower part of the combustion chamber 2 (below the burner 6 including combustor funnel) with Medium temperatures of about ⁇ 400-460 ° C in the tube walls, to reduce the investment costs compared to the aforementioned high quality materials lower valued materials, such. 8. 16Mo3 or 13CrMo45, used. These materials also need after their welding technology no postheat treatment or no further elaborate processing.
  • the enclosing walls 4, which are formed as tube walls 5, are usually made of a welded pipe-web-tube combination, wherein the tubes of the Pipe walls 5, the working medium water / steam and lead within the enclosure walls 4 either obliquely or vertically or can be formed from a combination of oblique and vertical.
  • the arranged in the Um drawnstentn 4 tubes are used in the lower and middle part of the combustion chamber 2 as evaporator tubes, ie, the fed and preheated water is evaporated in these evaporator tubes.
  • the pipes arranged in the surrounding wall 4 can already be connected as a superheater heating surface.
  • the Schottenflower Design 8 itself which now receives a portion of the heat from the combustion chamber 2 is formed according to the temperature requirements with suitable materials. Since very high temperatures are to be controlled, martensitic 9-12% chromium-containing steels, austenitic steels or nickel-based alloys have proven suitable for this purpose.
  • the Schottenmositic materials T91 (X10CrMoVNb9-1), T92 (X10CrWMoVNb9-2) or VM12-SHC, the austenitic steels SUPER 304H, HR3C, DMV304HCu, DMV3101N or Ni base alloys such as Alloy 617 (NiCr23Co12Mo) or Alloy 617mod ( NiCr23Co12Mo mod).
  • the Schottenterrorism composition 8 may consist of individual, closely spaced and parallel tubes or a pipe-web-tube construction. The tubes of the Schottenflowering Structure 8 usually run horizontally within the heating surface, but can also extend vertically.
  • the Schottenflower Design 8 is preferably arranged parallel to the Um chargedswand 4 and more preferably adjacent to the latter. By this arrangement it is ensured that the enclosure wall 4 is covered very efficiently by the Schottensammlung Structure 8 and thus the transfer of heat to the enclosure wall 4 is largely prevented.
  • FIG. 2 an advantageous variant of the Schottensammlung configuration invention 8 is shown.
  • the perimeter wall 4 or pipe wall 5, which generally include the front and rear walls and two side walls of the once-through steam generator, in the region of the combustion chamber 2 between the upper edge of the uppermost burner 6 and lower edge of the lowest Nachschaltflowering 7 ⁇ the area is in FIG. 2 marked with "S"), for Part covered by one or more Schottenflower Materials (s) 8, according to FIG.
  • a Schottenflower configuration 8 ie a total of four, are arranged on each individual tube wall.
  • the targeted arrangement of the Schottensammlung operation 8 especially in this area of the combustion chamber 2 can glossy targeted the usually hottest area of the perimeter wall 4 and tube wall 5 are covered within the combustion chamber 2.
  • the Schottensammlung Design 8 can be advantageously used as a superheater heating within the forced flow steam generator 1. However, it is also possible to use it as a reheater heating surface.

Description

Die Erfindung bezieht sich auf einen Zwangdurchlaufdampferzeuger für den Einsatz von Dampftemperaturen von über 650°C, wobei der Zwangdurchlaufdampferzeuger eine Brennkammer und einen an deren oberen Ende anschließenden Rauchgaszug sowie diese umgebende Umfassungswände aufweist, wobei die Umfassungswände aus Rohrwänden gebildet sind, deren Rohre das Arbeitsmedium Wasser/Dampf führen, die Brennkammer wenigstens einen Brenner aufweist und im Rauchgaszug Nachschaltheizflächen angeordnet sind.The invention relates to a forced once-through steam generator for the use of steam temperatures of about 650 ° C, the forced flow steam generator having a combustion chamber and a subsequent end of the upper flue and this surrounding Umfassungswände, wherein the Umfassungswände are formed from tube walls whose tubes the working fluid water / Steam lead, the combustion chamber has at least one burner and are arranged in the flue gas Nachschaltheizflächen.

Durchlauf- bzw. Zwangdurchlaufdampferzeuger sind aus der Druckschrift " Kraftwerkstechnik", Springer-Verlag, 2. Auflage 1994, Kapitel 4.4.2.4-Zwangdurchlauf (Seite 171 bis 174 ), Prof. Dr.-Ing. Karl Strauß bekannt, die in Kraftwerken zur Erzeugung von elektrischer Energie durch Verfeuerung von beispielsweise fossilen Brennstoffen zum Einsatz kommen. Bei einem Durchlauf- bzw. Zwangdurchlaufdampferzeuger führt die Beheizung der die Brennkammer oder den Gaszug bildenden Rohrwände bzw. Umfassungswände - im Gegensatz zu einem Naturumlauf- oder Zwangsumlaufdampferzeuger mit nur teilweiser Verdampfung des im Umlauf geführten Wasser-Dampf-Gemisches - zu einer Verdampfung des Strömungs- bzw. Arbeitsmediums in den Rohren der Rohrwände bzw. Umfassungswände in einem einmaligen Durchlauf.Continuous or forced circulation steam generators are from the publication " Kraftwerkstechnik ", Springer-Verlag, 2nd edition 1994, Chapter 4.4.2.4-Forced circulation (pages 171 to 174 ), Prof. Dr.-Ing. Karl Strauß known, which are used in power plants for the production of electrical energy by combustion of, for example, fossil fuels. In a continuous flow or continuous flow steam generator, the heating of the combustion chamber or the gas flue forming tube walls or enclosing walls - in contrast to a natural circulation or forced circulation steam generator with only partial evaporation of circulating water-steam mixture - leads to an evaporation of the flow or working medium in the tubes of the pipe walls or enclosing walls in a single pass.

Der Wunsch nach Zwangdurchlaufdampferzeugern mit höheren Wirkungsgraden, die unter anderem den spezifischen CO2-Ausstoß in die Atmosphäre verringern helfen, führt unter anderem zur Erhöhung der Dampfparameter des Zwangdurchlaufdampferzeugers. Die Erzielung bzw. Realisierung von höheren Dampfparametern, d.h. höheren Drücken und Temperaturen des Arbeitsmediums Dampfes am Austritt des Zwangdurchlaufdampferzeugers (Frischdampfaustritt), stellt hohe Anforderungen an das Materialkonzept des Zwangdurchlaufdampferzeuger. Zwangdurchlaufdampferzeuger mit Dampfparametern von ca. 280 bar / 600 °C (Frischdampfparameter) stellen den heutigen Stand der Technik dar. Dabei werden die hoch beanspruchten Teile (Schrägwicklung und Senkrechtberohrung) der Umfassungswände, die als Rohrwände ausgebildet sind, mit den speziellen Werkstoffen T23 (ein von der ASME (American Society of Mechanical Engineers) zugelassener Werkstoff), T24 (7CrMoVTiB10-10) oder anderen Werkstoffen mit ähnlicher chemischer Zusammensetzung ausgeführt, die alle zu der Gattung der modifizierten, warmfesten 2,25-2,5% Chromstähle zählen. Der Werkstoff T23 ist beispielsweise im VdTÜV-Werkstoffblatt 511/2, Ausgabe 06.2001 und der Werkstoff T24 ist beispielsweise im Normblatt DIN EN 10216-2, Ausgabe Oktober 2007 aufgeführt. Diese Werkstoffe haben den Vorteil, dass sie für die vorgenannten Dampfparameter bestens geeignet sind und dass sie ohne Wärmenachbehandlung schweißbar sind und somit die Erstellung der Umfassungswände bzw. Rohrwände sowie deren Montage auf der Baustelle einfach durchführbar sind.The desire for forced flow steam generators with higher efficiencies, which among other things help to reduce the specific CO 2 emissions into the atmosphere, leads, among other things, to an increase in the steam parameters of the once-through steam generator. Achieving or realizing higher steam parameters, ie higher pressures and temperatures of the working medium steam at the outlet of the once-through steam generator (fresh steam outlet), places high demands on the material concept of the forced-circulation steam generator. Forced-circulation steam generators with steam parameters of approx. 280 bar / 600 ° C (live steam parameters) represent the current state of the art. The highly stressed parts (helical winding and vertical bore) the perimeter walls formed as tube walls are made of the special materials T23 (a material approved by ASME (American Society of Mechanical Engineers)), T24 (7CrMoVTiB10-10) or other materials of similar chemical composition, all of which are of the generic type of the modified, heat-resistant 2.25-2.5% chromium steels count. The material T23 is listed, for example, in VdTÜV Material Data Sheet 511/2, issue 06.2001, and the material T24 is listed, for example, in the standard sheet DIN EN 10216-2, October 2007 issue. These materials have the advantage that they are best suited for the aforementioned steam parameters and that they can be welded without post-heat treatment and thus the creation of the perimeter walls or pipe walls and their installation on the site are easy to carry out.

Werden im Zuge einer weiteren Verbesserung des Wirkungsgrades Zwangdurchlaufdampferzeuger mit noch höheren Dampfparametern gewünscht, wie z.B. mit 350 bar / 700 °C (Frischdampfparameter), so steigt die Dampftemperatur und damit die zugehörige Berechnungstemperatur in den Umfassungswänden des Dampferzeugers weiter an. Bei diesen erhöhten Umfassungswandtemperaturen reichen aber die vorerwähnten Werkstoffe T23, T24 oder andere Werkstoffe mit ähnlicher chemischer Zusammensetzung hinsichtlich ihrer Festigkeitskennwerte nicht mehr aus. Mögliche Werkstoffe für diese erhöhten Umfassungswandtemperaturen sind martensitische 9-12% Chromstähle wie beispielsweise T91 (X10CrMoVNb9-1), T92 (X10CrWMoVNb9-2) und VM12-SHC (Werksbezeichnung der Fa. Vallourec-Mannesmann) oder Ni-Basislegierungen wie beispielsweise Alloy 617 (NiCr23Co12Mo) oder Alloy 617mod. (NiCr23Co12Mo mod) Die vorgenannten Werkstoffe sind größtenteils in Werkstoffblättern aufgeführt, beispielsweise der Werkstoff T91 im VdTÜV-Werkstoffblatt 511/2, Ausgabe 06.2009; der Werkstoff T92 im VdTÜV-Werkstoffblatt 552/2, Ausgabe 03.2008; der Werkstoff Alloy 617 im VdTÜV-Werkstoffblatt 485, Ausgabe 09/2001 und der Werkstoff VM12 im VdTÜV-Werkstoffblatt 560/2, Ausgabe 03/2009.If forced circulation steam generators with even higher steam parameters are desired in the course of a further improvement of the efficiency, e.g. with 350 bar / 700 ° C (live steam parameter), so the steam temperature and thus the associated calculation temperature in the enclosure walls of the steam generator continues to increase. At these elevated ambient wall temperatures, however, the above-mentioned materials T23, T24 or other materials with a similar chemical composition are no longer sufficient in terms of their strength characteristics. Possible materials for these increased boundary wall temperatures are martensitic 9-12% chromium steels such as T91 (X10CrMoVNb9-1), T92 (X10CrWMoVNb9-2) and VM12-SHC (factory designation of the company Vallourec-Mannesmann) or Ni-base alloys such as Alloy 617 ( NiCr23Co12Mo) or Alloy 617mod. (NiCr23Co12Mo mod) The aforementioned materials are mostly listed in material sheets, for example the material T91 in VdTÜV-Materialblatt 511/2, issue 06.2009; the material T92 in VdTÜV-Materialblatt 552/2, issue 03.2008; the material Alloy 617 in VdTÜV Material Data Sheet 485, Edition 09/2001 and the material VM12 in VdTÜV Material Data Sheet 560/2, Edition 03/2009.

Bei der Verwendung von marlensitischen 9-12% Chromstöhlen oder Ni-Basislegierungen für die Umfassungswände sind komplizierte Fertigungs- und Montagevorgänge notwendig. Die martensitischen 9-12% Chromstähle müssen nach dem Schweißen in der Werkstatt und bei der Montage wärmebehandelt werden. Dazu werden in der Werkstatt spezielle Anlassöfen sowie auf der Baustelle spezielle Glühkassetten benötigt. Bei der Fertigung bzw. Montage von Ni-Basislegierungen müssen übermäßig große Schrumpfungsprozesse beherrscht werden. Zusätzlich kommt bei den Ni-Basislegierungen dazu, dass ihre Beschaffungskosten erheblich höher sind, als die von Stählen. Für beide dieser Lösungen sind somit mit höheren Kosten zu rechnen, sowohl was die Kosten der Materialien als auch die Fertigungs- und Montagekosten betrifft.Using marlensitic 9-12% chromium steal or Ni base alloys for the perimeter walls requires complicated manufacturing and assembly operations. The martensitic 9-12% chromium steels must be heat treated after welding in the workshop and during assembly. In addition, in the workshop special tempering furnaces as well as on the construction site special annealing cassettes needed. In the production or assembly of Ni-base alloys excessively large shrinkage processes must be mastered. In addition, with Ni base alloys, their procurement costs are significantly higher than those of steels. For both of these solutions are therefore expected to higher costs, both in terms of the cost of materials and the manufacturing and assembly costs.

Wie oben schon erwähnt, sind neben den Zwangdurchlaufdampferzeugern auch Naturumlauf- und Zwangumlaufdampferzeuger bekannt. Bei diesen bekannten Umlauf- bzw. Umwälzdampferzeugern mit unterkritischen Dampfparametern kann vom Verdampfer des Dampferzeugers nur eine bestimmte Wärmemenge aufgenommen werden. Diese ist durch den Betriebsdruck der Anlage definiert. Bedingt durch die Eigenschaften des Brennstoffs (Aschezusammensetzung, Schmelzeigenschaften der Asche) kann die aus der Verbrennung im Feuerraum bzw. in der Brennkammer zu übertragende Wärmemenge höher sein als diejenige, die vom Verdampfer aufgenommen werden kann. Bei Umwälzdampferzeugern sind dann Schottenheizflächen eingesetzt worden, um die an den Verdampfer zu übertragende Wärmemenge zu begrenzen bzw. die überschüssige Wärmemenge an die Schottenheizfläche abzugeben. Im Gegensatz zu den Natur- und Zwangumlaufdampferzeugern ist bei einem Zwangdurchlaufdampferzeuger die Wärmeaufnahme in dessen Verdampfer nicht begrenzt, da die Mediumtemperatur am Verdampferaustritt im Zwangdurchlaufbetrieb bereits überhitzt ist und die Höhe der Überhitzung variabel festgelegt werden kann. Das damit verbundene Temperaturniveau des Dampfes bzw. die zugehörige Berechnungstemperatur in den Umfassungswänden wird durch eine geeignete Werkstoffauswahl hinsichtlich der Umfassungswände beherrscht.As mentioned above, natural circulation and forced circulation steam generators are known in addition to forced circulation steam generators. In these known circulation or circulating steam generators with subcritical steam parameters, only a certain amount of heat can be absorbed by the evaporator of the steam generator. This is defined by the operating pressure of the system. Due to the properties of the fuel (ash composition, melting characteristics of the ash), the amount of heat to be transferred from the combustion in the combustion chamber or in the combustion chamber can be higher than that which can be absorbed by the evaporator. When circulating steam generators Schottenheizflächen have been used to limit the amount of heat to be transferred to the evaporator and to deliver the excess amount of heat to the Schottenheizfläche. In contrast to the natural and forced circulation steam generators, the heat absorption in the evaporator is not limited in a forced once-through steam generator, since the medium temperature at the evaporator outlet in forced continuous operation is already overheated and the amount of overheating can be set variably. The associated temperature level of the steam or the associated calculation temperature in the enclosure walls is governed by a suitable choice of materials with respect to the enclosure walls.

Das Dokument US 5146878 offenbart einen Dampferzeuger nach dem Stand der Technik.The document US 5146878 discloses a steam generator according to the prior art.

Aufgabe der Erfindung ist es nun, einen Zwangdurchlaufdampferzeuger für den Einsatz von Dampftemperaturen von über 650°C zu schaffen, bei dem die vorgenannten Nachteile vermieden werden bzw. hinsichtlich der Umfassungswände bzw. Rohrwände des Zwangdurchlaufdampferzeugers einfache und nicht komplizierte und schwer beherrschbare Fertigungs- und Montagevorgänge durchzuführen sind.The object of the invention is therefore to provide a forced once-through steam generator for the use of steam temperatures of over 650 ° C, in which the aforementioned disadvantages are avoided or in terms of Umfassungswände or pipe walls of the once-through steam generator simple and not complicated and difficult to control manufacturing and assembly operations are to be carried out.

Die vorstehend genannte Aufgabe wird durch die Gesamtheit der Merkmale des Patentanspruches 1 gelöst.The above object is solved by the entirety of the features of claim 1.

Vorteilhafte Ausgestaltungen der Erfindung sind den Unteransprüchen zu entnehmen.Advantageous embodiments of the invention can be found in the dependent claims.

Durch die erfindungsgemöße Lösung wird ein Zwangdurchlaufdampferzeuger für den Einsatz von Dampftemperaturen von über 650°C geschaffen, der die nachfolgenden Vorteile aufweist:

  • Vermeidung eines kompliziertem Fertigungs- und Montagekonzeptes der Umfassungswände des Zwangdurchlaufdampferzeugers.
  • Reduzierung von Materialkosten sowie Fertigungs- und Montagekosten der Umfassungswände des Zwangdurchlaufdampferzeugers,
  • Einsparung der Verwendung von Glühöfen und -kassetten und deren Betriebskosten.
By the solution according to the invention a forced once-through steam generator for the use of steam temperatures of over 650 ° C is created, which has the following advantages:
  • Avoidance of a complicated manufacturing and assembly concept of the surrounding walls of the once-through steam generator.
  • Reduction of material costs as well as production and assembly costs of the surrounding walls of the once-through steam generator,
  • Saving on the use of annealing furnaces and cassettes and their operating costs.

Eine vorteilhafte Ausbildung sieht vor, dass die im Bereich der Brennkammer einen Teil der Umfassungswände abdeckende Schottenheizfläche zwischen Oberkante des zuoberst gelegenen Brenners und Unterkante der untersten Nachschaltheizfläche angeordnet ist. Durch diese Maßnahme wird ein bestimmter Bereich der Brennkammer mit einer Schottenheizfläche abgedeckt, an dem ansonsten ein großer Teil der Wärme aus der Brennkammer an die Umfassungswände gelangen würde und deren Mediumstemperatur in der Umfassungswand sowie der Wandtemperatur selbst so erhöhen würde, dass höherwertige Materialien eingesetzt werden müssten.An advantageous embodiment provides that in the region of the combustion chamber, a part of the enclosing walls covering Schottenheizfläche between the upper edge of the uppermost situated burner and lower edge of the lowermost Nachschaltheizfläche is arranged. By this measure, a certain area of the combustion chamber is covered with a Schottenheizfläche on which otherwise a large part of the heat from the combustion chamber would reach the Umfassungswände and their medium temperature in the enclosure wall and the wall temperature itself would increase so that higher quality materials would have to be used ,

In vorteilhafter Ausgestaltung der Erfindung ist zumindest ein Teil der Umfassungswände aus einem der Werkstoffe T23, T24 oder einem anderen Werkstoff mit ähnlicher chemischer Zusammensetzung gebildet. Dabei wird zumindest der Teil der Umfassungswände mit den vorgenannten Werkstoffen ausgebildet, der thermisch hoch bzw. höher belastet ist als der restliche Teil der Umfassungswände. Bei den Werkstoffen T23, T24 oder einem anderen Werkstoff mit ähnlicher chemischer Zusammensetzung handelt es sich um hochwertige Werkstoffe, die handelsüblich sind und die den gewünschten Anforderungen genügen bzw. nach deren Verschweißen keine Wärmenachbehandlung an diesen erfolgen muss.In an advantageous embodiment of the invention, at least part of the enclosing walls is formed from one of the materials T23, T24 or another material having a similar chemical composition. In this case, at least the part of the surrounding walls is formed with the aforementioned materials, which is thermally highly loaded or higher than the remaining part of the surrounding walls. The materials T23, T24 or another material with a similar chemical composition are high-quality materials which are commercially available and which meet the desired requirements or, after their welding, no heat post-treatment must be carried out on them.

Eine vorteilhafte Ausbildung der Erfindung sieht vor, die Schottenheizfläche aus martensitischen Werkstoffen mit 9-12% Chromanteil, austenitischen Werkstoffen oder Nickelbasislegierungen auszubilden bzw. herzustellen. Damit ist gewährleistet, dass hinsichtlich der Temperaturen den Anforderungen an die exponiert in der Brennkammer liegende Schottenheizfläche Genüge getan wird.An advantageous embodiment of the invention provides for the Schottenheizfläche of martensitic materials with 9-12% chromium, austenitic materials or nickel-based alloys form or manufacture. This ensures that the requirements of the exposed in the combustion chamber Schottenheizfläche is satisfied in terms of temperatures.

Vorteilhaft ist es, dass die Schottenheizfläche als Überhitzer- oder Zwischenüberhitzerheizfläche ausgebildet ist. Damit wird die Schottenheizfläche effizient in den Wasser/Dampf-Kreislauf des Zwangdurchlaufdampferzeugers bzw. in den Wasser/Dampf-Kreislauf eines Kraftwerkes eingebunden, das einen derartigen Zwangdurchlaufdampferzeuger umfasst.It is advantageous that the bulkhead heating surface is designed as a superheater or reheater heating surface. Thus, the Schottenheizfläche is efficiently integrated into the water / steam cycle of the forced flow steam generator or in the water / steam cycle of a power plant, which includes such a forced flow steam generator.

Eine vorteilhafte Ausbildung sieht vor, dass die Schottenheizfläche parallel zur Umfassungswand angeordnet ist. Damit wird erreicht, dass die Schottenheizfläche ebenso wie die Umfassungswand vertikal angeordnet ist und eine geringst mögliche Angriffsfläche für Asche bzw. Schlacke aus der Brennkammer bietet.An advantageous embodiment provides that the bulkhead heating surface is arranged parallel to the surrounding wall. This ensures that the Schottenheizfläche as well as the surrounding wall is arranged vertically and provides a minimum possible attack surface for ash or slag from the combustion chamber.

Eine zweckmäßige Ausbildung sieht vor, dass die Schottenheizfläche anliegend an der Umfassungswand verläuft. Damit ist gewährleistet, dass die Umfassungswand von der Schottenheizfläche bestmöglich abgedeckt ist und die geringst mögliche Wärmemenge an die Umfassungswand gelangt.An expedient embodiment provides that the bulkhead heating surface extends adjacent to the surrounding wall. This ensures that the enclosure wall is optimally covered by the bulkhead heating surface and that the lowest possible amount of heat reaches the enclosure wall.

Nachstehend sind Ausführungsbeispiele der Erfindung an Hand der Zeichnung und der Beschreibung näher erläutert.Embodiments of the invention with reference to the drawings and the description are explained in more detail below.

Es zeigt:It shows:

Fig.FIG.
1 schematisch dargestellt einen Längsschnitt durch einen erfindungsgemäßen Zwangdurchlaufdampferzeuger,1 schematically shows a longitudinal section through a forced-circulation steam generator according to the invention,
Fig. 2Fig. 2
wie Figur 1, jedoch alternative Ausführung.as FIG. 1 , but alternative design.

Figur 1 zeigt schematisch dargestellt einen Durchlauf- bzw. Zwangdurchlaufdampferzeuger 1 (beide Bezeichnungen meinen dasselbe, nämlich die Erzeugung des Dampfes innerhalb des Dampferzeugers in einem Durchlauf) in Turmbauweise auf, d.h. die Rohrwände 5 (als Umfassungswände 4) sowie sämtliche Nachschaltheizflächen 7 sind an bzw. in einem einzigen vertikalen Gaszug untergebracht. Der vertikale Gaszug, der durch gasdichte Umfassungswände 4 gebildet bzw. umgrenzt wird, beinhaltet in dessen unterem Bereich die Brennkammer 2 und den darüber anschließenden Rauchgaszug 3. Die Brennkammer 2 schließt in der Regel nach unten hin mit einem Brennkammertrichter ab und reicht nach oben hin bis zu der untersten Nachschaltheizfläche 7. Im unteren Bereich der Brennkammer 2 sind ein oder mehrere Brenner 6 zur Verfeuerung eines fossilen Brennstoffes angeordnet. Die Brenner 6 können entweder in den Ecken (Eckenbrenner) oder in den Wänden (Wandbrenner) der Brennkammer 2 angeordnet sein. Im Rauchgaszug 3 sind die verschiedenen Nachschaltheizflächen 7 als Berührungsheizflächen angeordnet. Diese sind in der Regel Economiser-Heizflächen, Überhitzer- und Zwischenüberhitzer-Heizflächen. Der Rauchgaszug 3 schließt nach oben mit einer Decke ab und er weist an seinem oberen Ende seitlich einen Rauchgasaustritt 9 auf. FIG. 1 schematically shows a continuous flow or continuous flow steam generator 1 (both terms mean the same thing, namely the generation of steam within the steam generator in one run) in tower construction, ie the pipe walls 5 (as surrounding walls 4) and all Nachschaltheizflächen 7 are on or in housed in a single vertical throttle cable. The vertical throttle cable, which is formed or bounded by gas-tight enclosure walls 4, includes in the lower region of the combustion chamber 2 and the subsequent flue 3. The combustion chamber 2 usually closes down with a combustion chamber funnel and extends up to to the lowest Nachschaltheizfläche 7. In the lower part of the combustion chamber 2, one or more burners 6 are arranged for burning a fossil fuel. The burners 6 can be arranged either in the corners (corner burners) or in the walls (wall burners) of the combustion chamber 2. In the flue 3, the various Nachschaltheizflächen 7 are arranged as Berührungsheizflächen. These are typically economizer heating surfaces, superheater and reheater heating surfaces. The flue 3 closes up with a ceiling and he has at its upper end laterally a flue gas outlet 9.

Der Zwangdurchlaufdampferzeuger 1 weist erfindungsgemäß wenigstens eine Schottenheizfläche 8 auf, die einen Teil der Umfassungswände 4 im Bereich der Brennkammer 2 abdeckt und deren flächenseitige Größe so bestimmt ist, dass die Wärmeaufnahme der Umfassungswände 4 und infolgedessen deren Temperatur auf einen Wert reduziert wird, der die Ausbildung der Umfassungswand 4 aus modifizierten, warmfesten 2,25-2,5% Chromstählen zulässt, die nach deren schweißtechnischer Verarbeitung keine Wärmenachbehandlung benötigen. Mit anderen Worten, die die Umfassungswand 4 im Bereich der Brennkammer 2 mit vorbestimmter flächenseitiger Größe abdeckende Schottenheizfläche 8 nimmt aus der Brennkammer 2 soviel Wärme auf, dass die Wärmeaufnahme der Umfassungswand 4 infolge der Abdeckung derart reduziert wird, dass die maximale Mediumstemperatur an der Umfassungswand 4 unterhalb eines Wertes bleibt, der den Einsatz von modifizierten, warmfesten 2,25-2,5% Chromstählen zulässt, die nach deren schweißtechnischer Verarbeitung keine Wärmenachbehandlung benötigen. Diese können beispielsweise die Werkstoffe T23 (ein von der ASME (American Society of Mechanical Engineers) zugelassener Werkstoff), T24 (7CrMoVTiB10-10) oder ein anderer Werkstoff mit ähnlicher chemischer Zusammensetzung sein, die Dampftemperaturen bis zu ca. 500-510 °C abdecken können und die beispielsweise in der Broschüre "The T23/T24 Book, New Grades for Waterwalls and Superheaters von Vallourec & Mannesmann Tubes" aufgeführt sind (Broschüre über modifizierte, warmfeste 2,25-2,5% Chromstähle). Durch die Verringerung der Mediumstemperatur in der Umfassungswand 4 mittels der erfindungsgemäß angeordneten Schottenheizfläche 8 kann auf den Einsatz von höchsttemperaturbeständigen Werkstoffen wie martensitische, 9-12% chromhaltige Stähle oder Nickelbasislegierungen für die Umfassungswand 4 verzichtet werden, die nach deren schweißtechnischer Verarbeitung aufwendig wärmenachbehandelt (martensitische, 9-12% chromhaltige Stähle) oder wegen der hohen Schrumpfungseigenschaften aufwendig verarbeitet (Nickelbasislegierungen) werden müssten.According to the invention, the once-through steam generator 1 has at least one steam heating surface 8, which covers a part of the surrounding walls 4 in the region of the combustion chamber 2 and whose area-side size is determined such that the heat absorption of the surrounding walls 4 and consequently their temperature is reduced to a value which reduces the formation the perimeter wall 4 of modified, heat-resistant 2.25-2.5% chromium steels permits, which require no post-treatment after their welding technology processing. In other words, the enclosing wall 4 in the region of the combustion chamber 2 with a predetermined surface-side size covering Schottenheizfläche 8 takes from the combustion chamber 2 so much heat that the heat absorption of the perimeter wall 4 is reduced due to the cover such that the maximum medium temperature at the perimeter wall. 4 remains below a value indicating the use of modified, heat-resistant 2.25-2.5% chromium steels permits, which require no heat aftertreatment after their welding technical processing. These may be, for example, the materials T23 (a material approved by the American Society of Mechanical Engineers), T24 (7CrMoVTiB10-10) or another material of similar chemical composition covering steam temperatures up to about 500-510 ° C and listed, for example, in the booklet "The T23 / T24 Book, New Grades for Waterwalls and Superheaters by Vallourec & Mannesmann Tubes" (booklet on modified, heat-resistant 2.25-2.5% chromium steels). By reducing the temperature of the medium in the enclosure wall 4 by means of the Schottenheizfläche 8 arranged according to the invention can be dispensed with the use of ultra-high temperature materials such as martensitic, chromium-containing steels or nickel-base alloys for the perimeter wall 4, which costly after treatment by heat treatment aftertreated (martensitic, 9-12% chromium-containing steels) or because of the high shrinkage properties consuming processes (nickel-base alloys) would have to.

Die nunmehr zum Einsatz kommenden hochwertigen Werkstoffe, die nach deren schweißtechnischer Verarbeitung keine Wärmenachbehandlung bzw. keine aufwendige Verarbeitung benötigen, können entweder überall an der Umfassungswand 4 eingesetzt werden oder entsprechend einer kommerziell vorteilhafteren Variante, zumindest an den Teilen der Umfassungswände 4, deren hohe thermische Belastung dies erforderlich macht. Dies sind beispielsweise die Bereiche an den Brennern 6 und direkt oberhalb der Brenner 6 innerhalb der Brennkammer 2. An den Teilen der Umfassungswände 4, deren thermische Belastung niedriger ist, wie beispielsweise im unteren Teil der Brennkammer 2 (unterhalb der Brenner 6 einschließlich Brennkammertrichter) mit Mediumtemperaturen von ca. ≤ 400-460 °C in den Rohrwänden, werden zur Reduzierung der Investitionskosten im Vergleich zu den vorgenannten hochwertigen Werkstoffen niederwertigere Werkstoffe, wie z. 8. 16Mo3 oder 13CrMo45, eingesetzt. Diese Werkstoffe benötigen ebenfalls nach deren schweißtechnischer Verarbeitung keine Wärmenachbehandlung bzw. keine weitere aufwendige Verarbeitung.The now used high-quality materials that do not require after-treatment heat treatment and no elaborate processing can either be used anywhere on the Umfassungswand 4 or according to a commercially advantageous variant, at least on the parts of the enclosing walls 4, their high thermal load this is required. These are, for example, the areas on the burners 6 and directly above the burners 6 within the combustion chamber 2. On the parts of the Umfassungswände 4, the thermal load is lower, such as in the lower part of the combustion chamber 2 (below the burner 6 including combustor funnel) with Medium temperatures of about ≤ 400-460 ° C in the tube walls, to reduce the investment costs compared to the aforementioned high quality materials lower valued materials, such. 8. 16Mo3 or 13CrMo45, used. These materials also need after their welding technology no postheat treatment or no further elaborate processing.

Die Umfassungswände 4, die als Rohrwände 5 ausgebildet sind, werden in der Regel aus einer verschweißten Rohr-Steg-Rohr-Kombination hergestellt, wobei die Rohre der Rohrwände 5 das Arbeitsmedium Wasser/Dampf führen und innerhalb der Umfassungswände 4 entweder schräg oder vertikal oder aus einer Kombination aus schräg und vertikal ausgebildet sein können. Die in den Umfassungswänden 4 angeordneten Rohre sind im unteren und mittleren Teil der Brennkammer 2 als Verdampferrohre eingesetzt, d.h. das eingespeiste und vorgewärmte Wasser wird in diesen Verdampferrohren verdampft. Im oberen Teil der Brennkammer 2, der in der Regel senkrecht berohrt ist, können die in der Umfassungswand 4 angeordneten Rohre bereits als Überhitzerheizfläche geschalten sein.The enclosing walls 4, which are formed as tube walls 5, are usually made of a welded pipe-web-tube combination, wherein the tubes of the Pipe walls 5, the working medium water / steam and lead within the enclosure walls 4 either obliquely or vertically or can be formed from a combination of oblique and vertical. The arranged in the Umfassungswänden 4 tubes are used in the lower and middle part of the combustion chamber 2 as evaporator tubes, ie, the fed and preheated water is evaporated in these evaporator tubes. In the upper part of the combustion chamber 2, which is usually bored vertically, the pipes arranged in the surrounding wall 4 can already be connected as a superheater heating surface.

Die Schottenheizfläche 8 selbst, die nunmehr einen Teil der Wärme aus der Brennkammer 2 aufnimmt, wird entsprechend den Temperaturanforderungen mit geeigneten Werkstoffen ausgebildet. Da sehr hohe Temperaturen zu beherrschen sind, haben sich hierfür martensitische 9-12%-chromhaltige Stähle, austenitische Stähle oder Nickelbasislegierungen als geeignet erwiesen. Diese können beispielsweise die martensitischen Werkstoffe T91 (X10CrMoVNb9-1), T92 (X10CrWMoVNb9-2) oder VM12-SHC, die austenitischen Stähle SUPER 304H, HR3C, DMV304HCu, DMV3101N oder Ni-Basislegierungen wie beispielsweise Alloy 617 (NiCr23Co12Mo) oder Alloy 617mod (NiCr23Co12Mo mod) sein. Die Schottenheizfläche 8 kann aus einzelnen, dicht aneinander und parallel angeordneten Rohren oder aus einer Rohr-Steg-Rohr-Konstruktion bestehen. Die Rohre der Schottenheizfläche 8 verlaufen in der Regel horizontal innerhalb der Heizfläche, können aber auch vertikal verlaufen.The Schottenheizfläche 8 itself, which now receives a portion of the heat from the combustion chamber 2 is formed according to the temperature requirements with suitable materials. Since very high temperatures are to be controlled, martensitic 9-12% chromium-containing steels, austenitic steels or nickel-based alloys have proven suitable for this purpose. These may be, for example, the martensitic materials T91 (X10CrMoVNb9-1), T92 (X10CrWMoVNb9-2) or VM12-SHC, the austenitic steels SUPER 304H, HR3C, DMV304HCu, DMV3101N or Ni base alloys such as Alloy 617 (NiCr23Co12Mo) or Alloy 617mod ( NiCr23Co12Mo mod). The Schottenheizfläche 8 may consist of individual, closely spaced and parallel tubes or a pipe-web-tube construction. The tubes of the Schottenheizfläche 8 usually run horizontally within the heating surface, but can also extend vertically.

Die Schottenheizfläche 8 ist vorzugsweise parallel zu der Umfassungswand 4 und weiter vorzugsweise an letztere anliegend angeordnet. Durch diese Anordnung wird gewährleistet, dass die Umfassungswand 4 sehr effizient von der Schottenheizfläche 8 abgedeckt wird und somit die Übertragung von Wärme auf die Umfassungswand 4 weitestgehend unterbunden wird. Durch Figur 2 wird eine vorteilhafte Variante der erfindungsgemäßen Schottenheizfläche 8 aufgezeigt. Dabei wird die Umfassungswand 4 bzw. Rohrwand 5, die in der Regel die Stirn- und Rückwand sowie zwei Seitenwände des Zwangdurchlaufdampferzeugers beinhalten, im Bereich der Brennkammer 2 und zwar zwischen Oberkante des obersten Brenners 6 und Unterkante der untersten Nachschaltheizfläche 7 {der Bereich ist in Figur 2 mit "S" bezeichnet bzw. markiert), zum Teil durch eine oder mehrere Schottenheizfläche(n) 8 abgedeckt, wobei gemäß Figur 2 beispielhaft an jeder einzelnen Rohrwand eine Schottenheizfläche 8, also insgesamt vier, angeordnet sind. Durch die gezielte Anordnung der Schottenheizfläche 8 speziell in diesem Bereich der Brennkammer 2 kann glanz gezielt der in der Regel heißeste Bereich der Umfassungswand 4 bzw. Rohrwand 5 innerhalb der Brennkammer 2 abgedeckt werden. Die Schottenheizfläche 8 kann innerhalb des Zwangdurchlaufdampferzeugers 1 vorteilhaft als Überhitzerheizfläche eingesetzt werden. Möglich ist jedoch auch der Einsatz als Zwischenüberhitzerheizfläche.The Schottenheizfläche 8 is preferably arranged parallel to the Umfassungswand 4 and more preferably adjacent to the latter. By this arrangement it is ensured that the enclosure wall 4 is covered very efficiently by the Schottenheizfläche 8 and thus the transfer of heat to the enclosure wall 4 is largely prevented. By FIG. 2 an advantageous variant of the Schottenheizfläche invention 8 is shown. In this case, the perimeter wall 4 or pipe wall 5, which generally include the front and rear walls and two side walls of the once-through steam generator, in the region of the combustion chamber 2 between the upper edge of the uppermost burner 6 and lower edge of the lowest Nachschaltheizfläche 7 {the area is in FIG. 2 marked with "S"), for Part covered by one or more Schottenheizfläche (s) 8, according to FIG. 2 By way of example, a Schottenheizfläche 8, ie a total of four, are arranged on each individual tube wall. The targeted arrangement of the Schottenheizfläche 8 especially in this area of the combustion chamber 2 can glossy targeted the usually hottest area of the perimeter wall 4 and tube wall 5 are covered within the combustion chamber 2. The Schottenheizfläche 8 can be advantageously used as a superheater heating within the forced flow steam generator 1. However, it is also possible to use it as a reheater heating surface.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

11
ZwangdurchlaufdampferzeugerOnce-through steam generator
22
Brennkammercombustion chamber
33
Rauchgaszugflue
44
Umfassungswandcontainment
55
Rohrwandpipe wall
66
Brennerburner
77
Nachschaltheizflächeheat recovery area
88th
SchottenheizflächeSchottenheizfläche
99
RauchgasaustrittFlue gas outlet

Claims (8)

  1. Once-through steam generator for the use of steam temperatures of above 650°C, the once-through steam generator (1) having a combustion chamber (2), a flue gas pass (3) which adjoins the upper end of said combustion chamber (2), and enclosure walls (4) which enclose them, the enclosure walls (4) being formed from tube walls (5), the tubes of which conduct the working medium water/steam, the combustion chamber (2) having at least one burner (6), and downstream heating surfaces (7) being arranged in the flue gas pass (3), part of the enclosure walls (4) being covered in the region of the combustion chamber (2) by at least one platen heating surface (8), characterized in that the enclosure walls (4) consist of modified, heat-resistant 2.25-2.5% chromium steels which do not require any thermal post-treatment after they have been processed using welding technology.
  2. Once-through steam generator according to Claim 1, characterized in that the platen heating surface (8) which covers part of the enclosure walls (4) in the region of the combustion chamber (2) is arranged between the upper edge of the uppermost burner (6) and the lower edge of the lowermost heating surface (7).
  3. Once-through steam generator according to Claim 1, characterized in that at least part of the enclosure walls (4) is formed from one of the materials T23, T24 or another material with a similar chemical composition.
  4. Once-through steam generator according to at least one of the preceding claims, characterized in that the platen heating surface (8) is formed from martensitic steels with a 9-12% chromium proportion, austenitic steels or nickel-based alloys.
  5. Once-through steam generator according to at least one of the preceding claims, characterized in that the platen heating surface (8) is configured as a superheater heating surface.
  6. Once-through steam generator according to at least one of the preceding claims, characterized in that the platen heating surface (8) is configured as a reheater heating surface.
  7. Once-through steam generator according to at least one of the preceding claims, characterized in that the platen heating surface (8) is arranged parallel to the enclosure wall (4).
  8. Once-through steam generator according to at least one of the preceding claims, characterized in that the platen heating surface (8) extends such that it bears against the enclosure wall (4).
EP10768369.0A 2009-09-04 2010-08-20 Forced-flow steam generator for using at steam temperatures of above 650°c Active EP2473782B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201031235A SI2473782T1 (en) 2009-09-04 2010-08-20 Forced-flow steam generator for using at steam temperatures of above 650 c

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009040250.0A DE102009040250B4 (en) 2009-09-04 2009-09-04 Forced-circulation steam generator for the use of steam temperatures of more than 650 degrees C
PCT/DE2010/000981 WO2011026461A2 (en) 2009-09-04 2010-08-20 Forced-flow steam generator for using at steam temperatures of above 650°c

Publications (2)

Publication Number Publication Date
EP2473782A2 EP2473782A2 (en) 2012-07-11
EP2473782B1 true EP2473782B1 (en) 2016-04-20

Family

ID=43649690

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10768369.0A Active EP2473782B1 (en) 2009-09-04 2010-08-20 Forced-flow steam generator for using at steam temperatures of above 650°c

Country Status (11)

Country Link
US (1) US20120291720A1 (en)
EP (1) EP2473782B1 (en)
CN (1) CN102713433B (en)
DE (1) DE102009040250B4 (en)
HU (1) HUE028255T2 (en)
IN (1) IN2012DN02836A (en)
PL (1) PL2473782T3 (en)
RU (1) RU2546888C2 (en)
SI (1) SI2473782T1 (en)
WO (1) WO2011026461A2 (en)
ZA (1) ZA201201884B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011054718B4 (en) * 2011-10-21 2014-02-13 Hitachi Power Europe Gmbh Method for generating a voltage reduction in erected tube walls of a steam generator

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125995A (en) * 1964-03-24 forced flow vapor generating unit
SU24822A1 (en) * 1930-07-09 1931-12-31 Бредтшнейдер В. A wall enclosing the combustion chamber in the furnaces of industrial furnaces and steam boilers
AT177198B (en) * 1950-01-05 1954-01-11 Herpen Co Kg La Mont Kessel Method for mixing strands of gas in combustion chambers of steam generators
US2770030A (en) * 1950-06-15 1956-11-13 Babcock & Wilcox Co Welded joint between dissimilar metals
DE897706C (en) * 1950-11-04 1953-11-23 Babcock & Wilcox Dampfkessel W Steam generator for high steam temperature and high air preheating
DE1027684B (en) * 1955-12-24 1958-04-10 Kohlenscheidungs Ges Mit Besch Radiant tube heat exchanger
CH344082A (en) * 1956-07-11 1960-01-31 Sulzer Ag High pressure steam power plant
CH477651A (en) * 1967-07-13 1969-08-31 Sulzer Ag High-pressure once-through steam generator system with a combustion chamber consisting of gas-tight welded tubes and a method for operating the system
CH492928A (en) * 1968-06-26 1970-06-30 Sulzer Ag Forced once-through steam generator with wall tubing formed from vertical welded tubes and a method for operating the steam generator
US3768448A (en) * 1972-01-20 1973-10-30 Foster Wheeler Corp Support for reheater and superheater elements
US4294200A (en) * 1979-12-06 1981-10-13 Foster Wheeler Energy Corporation Variable pressure vapor generator utilizing crossover circuitry for the furnace boundary wall fluid flow tubes
US4430094A (en) * 1981-12-21 1984-02-07 Foster Wheeler Energy Corporation Vapor generating system having a plurality of integrally formed gasifiers extending to one side of an upright wall of the generator
RU2023212C1 (en) * 1990-09-21 1994-11-15 Варанкин Геннадий Юрьевич Boiler unit
FI87012C (en) * 1990-12-21 1992-11-10 Ahlstroem Oy PANNA OCH DAERI ANORDNAD STOEDD VAERMEOEVERFOERINGSPANEL
DE4227457A1 (en) * 1992-08-19 1994-02-24 Siemens Ag Steam generator
DE4333404A1 (en) * 1993-09-30 1995-04-06 Siemens Ag Continuous steam generator with vertically arranged evaporator tubes
RU2038542C1 (en) * 1994-02-22 1995-06-27 Акционерное общество открытого типа "Комплексные дорожные машины" Hot-water boiler
US5560322A (en) * 1994-08-11 1996-10-01 Foster Wheeler Energy Corporation Continuous vertical-to-angular tube transitions
DE19521321A1 (en) * 1995-06-12 1996-12-19 Abb Management Ag Method and device for reducing the dust content of the exhaust gases of a steam generator
DE19645390C2 (en) * 1996-11-04 2000-01-13 Metallgesellschaft Ag Medium or high pressure heat exchanger with a heat-insulating cladding
DE19717158C2 (en) * 1997-04-23 1999-11-11 Siemens Ag Continuous steam generator and method for starting up a continuous steam generator
PT981015E (en) * 1998-08-20 2004-09-30 Martin Umwelt & Energietech OVERHEAT STEAM GENERATOR FOR INCINERATION INSTALLATIONS WITH CORROSIVE COMBUSTION GASES
AU2496100A (en) * 1999-01-13 2000-08-01 Abb Alstom Power Inc. Startup technique using multimode operation in a kalina cycle power generation system
JP4703857B2 (en) * 1999-05-14 2011-06-15 シーメンス アクチエンゲゼルシヤフト Steam turbine structural member and method of forming a protective coating on the structural member
FR2823226B1 (en) * 2001-04-04 2004-02-20 V & M France STEEL AND STEEL TUBE FOR HIGH TEMPERATURE USE
DE10354136B4 (en) * 2002-11-22 2014-04-03 Alstom Technology Ltd. Circulating fluidized bed reactor
EP1701091A1 (en) * 2005-02-16 2006-09-13 Siemens Aktiengesellschaft Once-through steam generator
EP1820560A1 (en) * 2006-02-16 2007-08-22 Siemens Aktiengesellschaft Steam Generator with catalytic coating of heat exchanger surfaces for exhaust gas purification
US8096268B2 (en) * 2007-10-01 2012-01-17 Riley Power Inc. Municipal solid waste fuel steam generator with waterwall furnace platens
EP2119880A1 (en) * 2008-02-15 2009-11-18 Siemens Aktiengesellschaft Method for starting a steam producer
DE102008037085B3 (en) * 2008-08-08 2009-08-06 Alstom Technology Ltd. Pipe wall production process for steam generator comprises producing pipe wall register, heat-treating weld seams, connecting up register and joining planes

Also Published As

Publication number Publication date
SI2473782T1 (en) 2016-08-31
ZA201201884B (en) 2013-05-29
CN102713433B (en) 2015-09-23
IN2012DN02836A (en) 2015-07-24
RU2012112947A (en) 2013-10-10
PL2473782T3 (en) 2016-12-30
DE102009040250A1 (en) 2011-04-07
CN102713433A (en) 2012-10-03
EP2473782A2 (en) 2012-07-11
WO2011026461A2 (en) 2011-03-10
RU2546888C2 (en) 2015-04-10
WO2011026461A3 (en) 2012-07-26
US20120291720A1 (en) 2012-11-22
DE102009040250B4 (en) 2015-05-21
WO2011026461A8 (en) 2012-04-05
HUE028255T2 (en) 2016-12-28

Similar Documents

Publication Publication Date Title
DE1170423B (en) Method and arrangement for regulating the steam temperatures in a once-through steam generator with two intermediate superheaters arranged in the flue gas duct
EP2584053B1 (en) Method for reducing tension in erected tube walls of a steam generator
EP0981015B1 (en) Superheated steam generator for combustion plants with corrosive gases
DE102012102368A1 (en) Combined cycle power plant
EP1794495B1 (en) Fossil-energy heated continuous steam generator
DE102010061186B4 (en) Forced circulation steam generator with wall heating surface and method for its operation
EP2324287B1 (en) Continuous-flow steam generator
EP2473782B1 (en) Forced-flow steam generator for using at steam temperatures of above 650°c
WO1997027426A2 (en) Continuous steam generator
EP2676072B1 (en) Method for operating a once-through steam generator
EP2473783B1 (en) Forced-flow steam generator for burning dry brown coal
DE102010038883B4 (en) Once-through steam generator
EP2564117B1 (en) Steam generator
EP3193082B1 (en) Method and device for producing superheated steam using the heat generated in the boiler of a combustion plant
EP3717752B1 (en) System for producing energy in conventional waste incineration and method
DE3001174C2 (en) Fluidized bed combustion chamber
DE102015213862B3 (en) Combustion power plant with improved efficiency due to corrosion-resistant heat exchangers
DE2041183C (en) Gas steam turbine plant
EP4273447A1 (en) Steam generator
DE10252955B4 (en) Steam generator for the recovery of waste heat from upstream exhaust gas generators
DE1210432B (en) Steam power plant
DE102018010145A1 (en) Heat exchangers for high pressures and temperatures
CH317255A (en) Steam power plant with reheater
DE202011110090U1 (en) steam generator
DE2002993A1 (en) Flame tube boiler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120301

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

R17D Deferred search report published (corrected)

Effective date: 20120726

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160112

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 792877

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010011522

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010011522

Country of ref document: DE

Representative=s name: RUEGER | ABEL PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010011522

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010011522

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010011522

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010011522

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH; CH

Effective date: 20160905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160822

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E028255

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010011522

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20160401705

Country of ref document: GR

Effective date: 20170130

26N No opposition filed

Effective date: 20170123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160820

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160820

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160820

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 792877

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160820

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20170809

Year of fee payment: 8

Ref country code: IT

Payment date: 20170823

Year of fee payment: 8

Ref country code: GR

Payment date: 20170830

Year of fee payment: 8

Ref country code: RO

Payment date: 20170803

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20170801

Year of fee payment: 8

Ref country code: HU

Payment date: 20170809

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180821

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180820

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180821

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190307

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180820

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220726

Year of fee payment: 13

Ref country code: DE

Payment date: 20220720

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20220721

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010011522

Country of ref document: DE