EP2363912B1 - Duplexeur pour une antenne à réflecteur - Google Patents

Duplexeur pour une antenne à réflecteur Download PDF

Info

Publication number
EP2363912B1
EP2363912B1 EP20110001735 EP11001735A EP2363912B1 EP 2363912 B1 EP2363912 B1 EP 2363912B1 EP 20110001735 EP20110001735 EP 20110001735 EP 11001735 A EP11001735 A EP 11001735A EP 2363912 B1 EP2363912 B1 EP 2363912B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
signal
diplexer
mode
common
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20110001735
Other languages
German (de)
English (en)
Other versions
EP2363912A1 (fr
Inventor
Ralf Gehring
Christian Hartwanger
Un Pyo Hong
Enrico Reiche
Michael Dr. Schneider
Ernst Sommer
Helmut Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus DS GmbH
Original Assignee
Airbus DS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus DS GmbH filed Critical Airbus DS GmbH
Publication of EP2363912A1 publication Critical patent/EP2363912A1/fr
Application granted granted Critical
Publication of EP2363912B1 publication Critical patent/EP2363912B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2133Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using coaxial filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/162Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion absorbing spurious or unwanted modes of propagation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2138Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using hollow waveguide filters

Definitions

  • the invention relates to a diplexer for a reflector antenna for transmitting microwave signals.
  • the invention further relates to a method for processing a received signal fed into a diplexer.
  • beacon signal emitted by the remote station is used.
  • a directional diagram with a zero point in the main beam direction is required.
  • an additional signal is received, which can be used to correct the direction deviation.
  • the transmission, separation and evaluation of the beacon signal is in addition to the transmission of the actual communication signal.
  • the beacon signal must not influence the communication signal.
  • a reflector antenna for transmitting microwave signals typically includes a diplexer having a common signal waveguide for transmitting a transmit signal and a receive signal.
  • the common signal waveguide includes first and second ends. Connected to the first end of the common signal waveguide is a horn, via which a decoupling of the transmission signal and an injection of the transmission signal into the common signal waveguide takes place.
  • the common signal waveguide is usually coupled to a plurality of waveguide gates for feeding the transmit signal into the diplexer and for coupling the received signal from the diplexer in a receiving network.
  • the waveguide gates are, for example, symmetrically distributed on the outside of the common signal waveguide and in each case communicatively connected to the common signal waveguide.
  • the purpose of the diplexer is to process a mode mixture of modes of the received signal in such a way that it is possible to distinguish between the actual communication signal and correction data for the communication signal.
  • the diplexer must correctly transmit a transmission signal fed into the plurality of signal waveguides for coupling out through the horn.
  • a coaxial diplexer for a reflector antenna for transmitting microwave signals comprises a first circular waveguide in which a first signal can propagate. It further comprises a second, circular waveguide, in which a second signal can propagate at a lower frequency than the first signal, wherein the second waveguide surrounds the first waveguide.
  • a portion of the second waveguide is formed as a groove waveguide having a number of itself along a circumferentially annularly extending grooves.
  • the US 2003/0222733 A1 discloses the separation of modes by reducing the diameter of the horn below the critical diameter by means of a virtual short circuit. A common decoupling of received signal (from the perspective of the satellite) and tracking signal with simultaneous separation of the transmission signal is not possible.
  • the disclosure relates to ground station applications where due to reverse assignment of transmit and receive bands the indicated feed system structure can be used. Filters are mandatory in the side arms.
  • US5399999 (Eisenhart) converts a TEM01 mode in the circular waveguide first by a suitable transition into a circular cylindrical coaxial TEM mode, which is then converted into a coaxial line with asymmetrically arranged rectangular outer conductor.
  • the invention provides a diplexer for a reflector antenna for transmitting microwave signals. It comprises a common, circular signal waveguide for transmitting a transmission signal and a reception signal comprising a first end and a second end, wherein at the first end a common gate is formed.
  • the diplexer further comprises a waveguide arrangement, which is arranged in the region of a second end of the signal waveguide coaxial with the signal waveguide. Further, a cylindrical coupling portion is provided, which is arranged between the first and the second end of the signal waveguide and connects the waveguide arrangement with the common signal waveguide.
  • the invention is characterized in that the waveguide arrangement for forming a first and second coaxial waveguide gate comprises a first, circular and a second circular waveguide.
  • a first signal can propagate during operation of the diplexer, wherein an inner conductor is arranged in the interior of the first waveguide.
  • a received signal also referred to as receiving band hereinafter
  • a second signal may propagate at a lower frequency than the first signal, wherein the second waveguide surrounds the first waveguide.
  • the invention further provides a method for processing a signal fed into a diplexer according to the invention.
  • a TE11 mode is fed into the common port.
  • a TM11 mode is excited in the signal waveguide and superimposed with the TE11 mode such that the entire energy of the second signal (in the transmission band) by a constructive superposition of outer field components and a destructive superposition of inner field components in the second, outer waveguide flows and that the entire energy of the first signal (in the receiving band) flows through a constructive superposition of internal field components and a destructive superposition of external field components in the first, inner waveguide.
  • the first signal (in the receiving band) is transferred at feeding the TM01 mode at the common gate in the TEM mode of the first waveguide. From the TE11 mode and the TM01 mode of the first signal (in the receiving band), an information for aligning the reflector antenna is determined by processing the modes.
  • the invention thus proposes to separate the transmit and receive signal and at the same time to perform a transformation of the mode TM01 in the TEM mode in the receive band, so that a tracking signal for antenna alignment is available in the receive band in addition to the communication signal.
  • This is made possible by the use of an inner conductor, which is arranged in the interior of the first waveguide.
  • An advantage of this procedure is that the sum and difference signals required for the tracking are coupled out under the same conditions, in particular at the same temperature. As a result, phase errors are avoided by different temperatures in the RF paths.
  • Another advantage is that the tracking signal is decoupled only after the transmit and receive signals have been separated. As a result, disturbances of the transmission signal are avoided by a Trackingmodenkoppler.
  • the diplexer according to the invention is a coaxial diplexer. This is due to the coaxial arrangement of the first, circular waveguide, which is surrounded by the second circular waveguide.
  • the inner conductor is formed pin-shaped.
  • the first waveguide and the inner conductor end at the same or different height.
  • a further embodiment provides that the coupling portion is formed as a first groove waveguide, which has to the interior of the signal waveguide through a number of annularly extending grooves along an inner circumference.
  • the first groove waveguide adjoins the second end of the signal waveguide.
  • the second waveguide is at least partially formed as a second groove waveguide, the inside of the signal waveguide towards a number of along an inner circumference annularly extending grooves.
  • the second groove waveguide preferably adjoins the coupling section or the second end of the signal waveguide.
  • the grooves of the first and / or second groove waveguide are each arranged equidistant from each other. In a specific embodiment it can be provided that the distance between respective grooves of the first groove waveguide is different than the distance between respective grooves of the second groove waveguide.
  • the diplexer according to the invention is further distinguished by the fact that the second waveguide port (in the transmission band) is coupled with a turnstile branching and two 180 ° hybrid couplers or with two coaxial sidearm orthomode transformers to produce dual linearly polarized signals.
  • the second waveguide port (in the transmit band) is coupled to one polarizer, one turnstile branch and two 180 ° hybrid couplers, or to one turnstile branch, two 180 ° hybrid couplers, and one 90 ° hybrid coupler for dual circular polarization generation.
  • the first waveguide port (in the receive band) is for generating linear polarization with a turnstile branch and three 180 ° hybrid couplers coupled.
  • the first waveguide port (in the receive band) is coupled to a turnstile branch, three 180 ° hybrid couplers, and a 90 ° hybrid coupler to produce circular polarization.
  • the FIGS. 1 to 3 show a coaxial diplexer 1 according to the invention for a reflector antenna for transmitting microwave signals.
  • the diplexer 1 comprises a common, circular signal waveguide 2 for transmitting a transmission signal and a reception signal.
  • the signal waveguide 2 comprises a first end 3 and a second end 4.
  • a common gate 20 is formed at the first end 3.
  • a cylindrical coupling section 6 is arranged between the first and the second end 3, 4 of the signal waveguide 2, the cylindrical coupling section 6 adjoining the second end 4.
  • the cylindrical one Coupling section 6 is formed as a first groove waveguide 10. This has to the interior of the signal waveguide 2 towards a number of along an inner circumference annularly extending grooves 11.
  • the grooves 11 are arranged equidistant from each other.
  • a waveguide assembly 5 connects. This is arranged coaxially with the signal waveguide 2.
  • the waveguide assembly 5 comprises a first circular waveguide 7, in which a first signal in the receiving band can propagate during operation of the diplexer, wherein a pin-shaped inner conductor 8 is arranged in the interior of the first waveguide 7 is.
  • the first waveguide 7 and the inner conductor 8 terminate in the embodiment at an equal height, but this is not mandatory.
  • a second, circular waveguide 9, which adjoins the second end of the signal waveguide 2, surrounds the first waveguide 7.
  • a second signal may propagate in the transmission band at a lower frequency than the first signal in the reception band during operation of the diplexer ,
  • the second waveguide 9 is formed at least in sections as a second groove waveguide 12.
  • the second groove waveguide directly adjoins the second end of the signal waveguide 2 or the coupling section 6 or first groove waveguide 10.
  • the second groove waveguide 12 has a number of grooves 13 extending annularly along an inner circumference towards the interior of the signal waveguide.
  • the grooves of the second groove waveguide 12 are arranged only by way of example equidistant from each other.
  • the distance between the grooves 13 of the second groove waveguide 12 is greater than the distance between the grooves 11 of the first groove waveguide 10th
  • each four symmetrically arranged transmitting waveguide 15 and receive waveguide 14 are provided. These each have a rectangular cross-section and are arranged orthogonal with respect to a longitudinal or symmetry axis of the coaxial diplexer 1.
  • the TM11 mode is excited within the diplexer. It overlaps with the TE11 mode such that in the transmit band (i.e., a lower frequency band), all of the energy flows into the outer, coaxial waveguide (i.e., the second waveguide 9) through constructive superposition of the outer and destructive superposition of the inner field components.
  • the transmit band i.e., a lower frequency band
  • the inner field components overlap constructively and the outer field components destructively.
  • all the energy flows into the inner coaxial waveguide, i. the first waveguide 7, in the interior of which the inner conductor 8 is arranged.
  • the necessary information for aligning the antenna can be obtained by signal processing.
  • the diplexer With the diplexer according to the invention, it is possible, by means of a suitable network of hybrid couplers, a turnstile branch, to split the received mixture of modes into individual modes and, if necessary, to recombine them. In this way, the received communication signal can be separated from the tracking modes and a tracking signal can be generated which contains the information about the amount and direction of the registration deviation. This allows a direct correction of the antenna alignment.
  • the coaxial diplexer in the transmit band is supplemented by a turnstile branching and two 180 ° hybrid couplers or by two coaxial sidearm orthomode transducers (OMTs).
  • OMTs coaxial sidearm orthomode transducers
  • a polarizer In dual circular polarization, a polarizer, a turnstile branch and two 180 ° hybrid couplers or a turnstile branch, two 180 ° hybrid couplers, and a 90 ° hybrid coupler may be provided in the transmit band.
  • a turnstile branch and three 180 ° hybrid couplers are used in linear polarization. With circular polarization, an additional 90 ° hybrid coupler is added.
  • FIGS. 4 to 6 show various block diagrams for the application of the diplexer according to the invention.
  • the reference numeral 30 in each case denotes a horn which is coupled to the coaxial diplexer 1 according to the invention.
  • Tx is a transmission path
  • Rx a reception path is indicated.
  • a coaxial polarizer 41 is connected to the diplexer 1. Further, a coaxial orthomode transformer 42 is connected to the coaxial polarizer 41.
  • the co-orthomode transmitter receives payload data Tx LHCP and Tx RHCP to be transmitted.
  • a turnstile branch 43 is connected to the coaxial diplexer 1. This is coupled to two 180 ° hybrid couplers 44, 46.
  • a respective difference signal ⁇ is supplied to a 90 ° hybrid coupler 45 to which received payload data Rx LHCP and Rx RHCP are provided.
  • the sum signals ( ⁇ ) of the 180 ° hybrid coupler are fed to another 180 ° hybrid coupler 47, which forms a sum and a difference signal ( ⁇ , ⁇ ).
  • the sum signal ( ⁇ ) represents the tracking signal ( ⁇ TP) necessary for correcting the antenna alignment.
  • a coaxial orthomode transformer 42 is coupled to the diplexer 1.
  • the turnstile branch 43 is coupled to the diplexer 1.
  • the turnstile branch 43 is coupled to two 180 ° hybrid couplers 44, 46. These each form a sum and difference signal ( ⁇ , ⁇ ). From the difference signals ⁇ received user data Rx HP and Rx VP can be obtained.
  • the sum signals ( ⁇ ) are supplied to a further 180 ° hybrid coupler 47, the tracking information ( ⁇ TP) being obtained from a sum signal ( ⁇ ) formed by the same.
  • Fig. 6 In the embodiment of Fig. 6 is the reception path Rx according to the in Fig. 4 shown receiving path formed.
  • a coaxial turnstile branch 50 is likewise provided, which is connected to the diplexer 1.
  • Turnstile junction 50 is coupled to two 180 ° hybrid couplers 51, 52.
  • a 90 ° hybrid coupler 53 to which payload data Tx LHCP and Tx RHCP to be transmitted are supplied, is coupled to differential inputs ( ⁇ ) of the 180 ° hybrid couplers 51, 52.
  • the receiving network of the illustrated embodiments simultaneously serves to decouple the TEM mode with the tracking information.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Claims (13)

  1. Diplexeur pour une antenne à réflecteur servant à la transmission de signaux en hyperfréquence, comprenant :
    - un guide d'ondes de signal (2) commun de forme circulaire servant à la transmission d'un signal d'émission et d'un signal de réception, lequel inclut une première extrémité (3) et une deuxième extrémité (4), une porte commune étant formée à la première extrémité (3) ;
    - un arrangement guide d'ondes (5), lequel est disposé de manière contiguë contre la deuxième extrémité (4) du guide d'ondes de signal (2) de manière coaxiale par rapport au guide d'ondes de signal (2) ;
    - une portion de couplage (6) de forme cylindrique munie d'une pluralité de rainures (11), laquelle est disposée entre la première et la deuxième extrémité du guide d'ondes de signal (2), est contiguë à la deuxième extrémité (4) et relie l'arrangement guide d'ondes avec le guide d'ondes de signal (2) commun ;
    caractérisé en ce que l'arrangement guide d'ondes (5), en vue de former une première et une deuxième porte de guide d'ondes coaxiale (21, 22), comprend :
    - un premier guide d'ondes (7) de forme circulaire, dans lequel le signal de réception peut se propager pendant le fonctionnement du diplexeur (1) ;
    - un deuxième guide d'ondes (9) de forme circulaire dans lequel le signal d'émission peut se propager pendant le fonctionnement du diplexeur (1) avec une fréquence inférieure à celle du signal de réception, le deuxième guide d'ondes (9) entourant le premier guide d'ondes (7) ;
    - à l'intérieur du premier guide d'ondes étant disposé un conducteur interne (8), lequel est configuré en forme de broche avec un contour extérieur cylindrique et par le biais duquel, dans la bande de réception, lors de l'injection du mode TM01 au niveau du guide d'ondes de signal (2) commun, l'énergie peut être transformée dans le mode TEM du premier guide d'ondes (7), et
    - à l'extrémité du deuxième guide d'ondes (9) à l'opposé du guide d'ondes de signal (2) commun se trouvant quatre guides d'ondes d'émission (15) disposés de manière mutuellement symétrique et quatre guides d'ondes de réception (14) disposés de manière mutuellement symétrique, lesquels présentent respectivement une section transversale rectangulaire et sont disposés de manière orthogonale par rapport à un axe longitudinal du diplexeur (1).
  2. Diplexeur selon la revendication 1, caractérisé en ce que le premier guide d'ondes (7) et le conducteur interne (8) se terminent sur une même hauteur ou sur des hauteurs différentes.
  3. Diplexeur selon l'une des revendications précédentes, caractérisé en ce que la portion de couplage (6) est réalisée sous la forme d'un premier guide d'ondes à rainures (10), lequel présente vers l'intérieur du guide d'ondes de signal (2) une pluralité de rainures (11) qui s'étendent en forme d'anneau le long d'un pourtour intérieur.
  4. Diplexeur selon la revendication 3, caractérisé en ce que le premier guide d'ondes à rainures (10) est contigu à la deuxième extrémité du guide d'ondes de signal (2).
  5. Diplexeur selon l'une des revendications précédentes, caractérisé en ce que le deuxième guide d'ondes (9) est configuré au moins par portions sous la forme d'un deuxième guide d'ondes à rainures (12), lequel présente vers l'intérieur du guide d'ondes de signal (2) une pluralité de rainures (13) qui s'étendent en forme d'anneau le long d'un pourtour intérieur.
  6. Diplexeur selon la revendication 5, caractérisé en ce que le deuxième guide d'ondes à rainures (12) est contigu à la portion de couplage (6) ou à la deuxième extrémité du guide d'ondes de signal (2).
  7. Diplexeur selon la revendication 5 ou 6, caractérisé en ce que les rainures du premier et/ou du deuxième guide d'ondes à rainures (10, 12) sont respectivement disposées de manière équidistante les unes par rapport aux autres.
  8. Diplexeur selon l'une des revendications 1 à 7, caractérisé en ce que la deuxième porte de guide d'ondes (22) (dans la bande d'émission), en vue de générer des signaux à double polarisation linéaire, peut être couplée
    - à un embranchement en tourniquet et deux coupleurs hybrides de 180°, ou
    - à deux transmetteurs orthomodes à bras latéral coaxiaux.
  9. Diplexeur selon l'une des revendications 1 à 7, caractérisé en ce que la deuxième porte de guide d'ondes (22) (dans la bande d'émission), en vue de générer une double polarisation circulaire, peut être couplée
    - à un polariseur, un embranchement en tourniquet et deux coupleurs hybrides de 180°, ou
    - à un embranchement en tourniquet, deux coupleurs hybrides de 180° et un coupleur hybride de 90°.
  10. Diplexeur selon l'une des revendications 1 à 9, caractérisé en ce que la première porte de guide d'ondes (21) (dans la bande de réception), en vue de générer une polarisation linéaire, peut être couplée à un embranchement en tourniquet et trois coupleurs hybrides de 180°.
  11. Diplexeur selon l'une des revendications 1 à 9, caractérisé en ce que la première porte de guide d'ondes (21) (bande de réception), en vue de générer une polarisation circulaire, peut être couplée à un embranchement en tourniquet, trois coupleurs hybrides de 180° et un coupleur hybride de 90°.
  12. Diplexeur selon l'une des revendications précédentes, caractérisé en ce qu'il s'agit d'un diplexeur coaxial.
  13. Procédé de traitement d'un signal injecté dans un diplexeur (1) réalisé selon l'une des revendications précédentes, avec lequel
    - un mode TE11 est injecté dans la porte commune,
    - un mode TM11 est excité dans le guide d'ondes de signal (2) par la pluralité de rainures (11) de la portion de couplage (6) de forme cylindrique et se superpose avec le mode TE11 de telle sorte que l'énergie totale du signal d'émission s'écoule dans le deuxième guide d'ondes à travers une superposition constructive de composantes de champ externes et une superposition destructive de composantes de champ internes, et que l'énergie totale du signal de réception s'écoule dans le premier guide d'ondes coaxial interne à travers une superposition constructive de composantes de champ internes et une superposition destructive de composantes de champ externes,
    - le signal de réception, lors de l'injection du mode TM01 au niveau de la porte commune, est transformé dans le mode TEM avec les informations de suivi du premier guide d'ondes,
    - à partir d'un réseau de coupleurs hybrides, un mélange de modes composé du mode TE11 et du mode TM01 est décomposé en modes individuels afin de séparer un signal de communication des modes de suivi et de générer un signal de suivi qui contient une information sur le montant et la direction d'un écart d'orientation.
EP20110001735 2010-03-04 2011-03-02 Duplexeur pour une antenne à réflecteur Not-in-force EP2363912B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201010010299 DE102010010299B4 (de) 2010-03-04 2010-03-04 Diplexer für eine Reflektorantenne

Publications (2)

Publication Number Publication Date
EP2363912A1 EP2363912A1 (fr) 2011-09-07
EP2363912B1 true EP2363912B1 (fr) 2015-05-06

Family

ID=44070516

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110001735 Not-in-force EP2363912B1 (fr) 2010-03-04 2011-03-02 Duplexeur pour une antenne à réflecteur

Country Status (5)

Country Link
US (1) US8878629B2 (fr)
EP (1) EP2363912B1 (fr)
CA (1) CA2732485C (fr)
DE (1) DE102010010299B4 (fr)
ES (1) ES2544459T3 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9059682B2 (en) * 2008-07-14 2015-06-16 Macdonald, Dettwilwe And Associates Corporation Orthomode junction assembly with associated filters for use in an antenna feed system
DE202012100980U1 (de) 2012-03-19 2012-05-23 Dr. Schneider Kunststoffwerke Gmbh Einknopfbedienung für einen Luftausströmer
DE102013011651A1 (de) * 2013-07-11 2015-01-15 ESA-microwave service GmbH Antennen-Speisesystem im Mikrowellenbereich für Reflektorantennen
US9252470B2 (en) 2013-09-17 2016-02-02 National Instruments Corporation Ultra-broadband diplexer using waveguide and planar transmission lines
US9300042B2 (en) * 2014-01-24 2016-03-29 Honeywell International Inc. Matching and pattern control for dual band concentric antenna feed
US11329391B2 (en) * 2015-02-27 2022-05-10 Viasat, Inc. Enhanced directivity feed and feed array
DE102015218877B4 (de) * 2015-09-30 2017-08-31 Airbus Ds Gmbh Koaxialer Diplexer und Signalkopplungseinrichtung
CN107275727B (zh) * 2017-06-28 2019-10-22 北京理工大学 一种340GHz基于薄膜型器件准光型宽带双工器
CN107302123B (zh) * 2017-06-28 2019-10-22 北京理工大学 一种340GHz基于薄膜型器件宽带双工器
US10826179B2 (en) 2018-03-19 2020-11-03 Laurice J. West Short dual-driven groundless antennas
US11101880B1 (en) * 2020-03-16 2021-08-24 Amazon Technologies, Inc. Wide/multiband waveguide adapter for communications systems
CN114188689B (zh) * 2021-11-30 2022-09-16 中国电子科技集团公司第五十四研究所 一种宽带收发共用型同轴波导双工器
CN115863987B (zh) * 2022-11-25 2024-09-10 中国航天科工集团八五一一研究所 一种收发共用的高增益毫米波天线

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1369955A2 (fr) * 2002-05-30 2003-12-10 Harris Corporation Antenne cornet multibande

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281843A (en) * 1963-12-09 1966-10-25 Electronic Specialty Co Electronically scanned antenna
GB1269950A (en) * 1968-11-15 1972-04-06 Plessey Co Ltd Improvements in or relating to antenna feed systems
US3500258A (en) * 1968-12-18 1970-03-10 Bell Telephone Labor Inc Wave mode converter
US3665481A (en) * 1970-05-12 1972-05-23 Nasa Multi-purpose antenna employing dish reflector with plural coaxial horn feeds
US3922621A (en) 1974-06-03 1975-11-25 Communications Satellite Corp 6-Port directional orthogonal mode transducer having corrugated waveguide coupling for transmit/receive isolation
US4725795A (en) * 1985-08-19 1988-02-16 Hughes Aircraft Co. Corrugated ridge waveguide phase shifting structure
US5109232A (en) * 1990-02-20 1992-04-28 Andrew Corporation Dual frequency antenna feed with apertured channel
JP3134950B2 (ja) * 1991-09-24 2001-02-13 株式会社富士通ゼネラル 円形導波管−同軸線路変換器
US5399999A (en) * 1993-02-08 1995-03-21 Hughes Aircraft Company Wideband TM01 -to-TE11 circular waveguide mode convertor
US6329957B1 (en) * 1998-10-30 2001-12-11 Austin Information Systems, Inc. Method and apparatus for transmitting and receiving multiple frequency bands simultaneously
US6937202B2 (en) 2003-05-20 2005-08-30 Northrop Grumman Corporation Broadband waveguide horn antenna and method of feeding an antenna structure
US7821356B2 (en) * 2008-04-04 2010-10-26 Optim Microwave, Inc. Ortho-mode transducer for coaxial waveguide
DE102008044895B4 (de) 2008-08-29 2018-02-22 Astrium Gmbh Signal-Verzweigung zur Verwendung in einem Kommunikationssystem

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1369955A2 (fr) * 2002-05-30 2003-12-10 Harris Corporation Antenne cornet multibande

Also Published As

Publication number Publication date
CA2732485C (fr) 2014-11-04
DE102010010299A1 (de) 2011-09-08
DE102010010299B4 (de) 2014-07-24
EP2363912A1 (fr) 2011-09-07
US20110254640A1 (en) 2011-10-20
CA2732485A1 (fr) 2011-09-04
ES2544459T3 (es) 2015-08-31
US8878629B2 (en) 2014-11-04

Similar Documents

Publication Publication Date Title
EP2363912B1 (fr) Duplexeur pour une antenne à réflecteur
EP0059927A1 (fr) Dispositif de réception à micro-ondes
DE102011106590B4 (de) Orthomodenkoppler für ein Antennensystem
DE3246317A1 (de) Wellenleiter fuer zweifach polarisierte zwei-frequenz-signale und verfahren zur wellenleitung solcher signale
EP2897213B1 (fr) Séparateur de signaux à larges bandes avec absorption du signal de la somme
DE3852650T2 (de) Mikrowellenmultiplexer mit mehrmodenfilter.
DE19605569A1 (de) Richtkoppler für den Hochfrequenzbereich
DE1942678C3 (de) Speiseanordnung für eine mit mehreren Wellentypen arbeitende Antenne
EP0041077B1 (fr) Dispositif d'alimentation d'antenne pour une antenne de poursuite
DE1491921B2 (de) Empfangsantenne zur automatischen zielverfolgung einer bewegten strahlungsquelle
DE69121632T2 (de) Polarisationsweiche zwischen einem zirkularen Wellenleiter und einem Koaxialkabel
DE102015108154B4 (de) Zweikanalige Polarisationskorrektur
EP2159870B1 (fr) Ramification de signal pour l'utilisation dans un système de communication
DE68916122T2 (de) Winkel-Diversitysignaltrenner mittels Modenumwandlung.
DE69613412T2 (de) Modenwandler für Hohlleiter und Mikrostreifenleiter und damit ausgeführter Empfangsumsetzer
DE3421313C2 (fr)
DE69018313T2 (de) Sende-Empfangs-Diplexer für zirkulare Polarisation.
EP0422431B1 (fr) Dispositif à diversité angulaire
DE102010014864B4 (de) Hohlleiterverbindung für ein Antennensystem und Antennensystem
DE102022100853A1 (de) Dualband-orthomoden-wandler
DE69316173T2 (de) Fernrückschleifsystem für Funkübertragungs-Sendeempfänger
DE2737125A1 (de) Uebertragungsleitungssystem
DE102017002230A1 (de) Federbelastete Wellenleiter-Kupplung
WO2019206890A1 (fr) Polariseur pour un guide d'ondes et système de transmission de signaux électromagnétiques à haute fréquence
DE6924060U (de) Wellentypwandler fuer sehr kurze elektromagnetische wellen.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GEHRING, RALF

Inventor name: HONG, UN PYO

Inventor name: SCHNEIDER, MICHAEL, DR.

Inventor name: HARTWANGER, CHRISTIAN

Inventor name: REICHE, ENRICO

Inventor name: WOLF, HELMUT

Inventor name: SOMMER, ERNST

17P Request for examination filed

Effective date: 20120308

17Q First examination report despatched

Effective date: 20130409

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141008

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20150206

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DS GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HARTWANGER, CHRISTIAN

Inventor name: SOMMER, ERNST

Inventor name: WOLF, HELMUT

Inventor name: SCHNEIDER, MICHAEL, DR.

Inventor name: GEHRING, RALF

Inventor name: HONG, UN PYO

Inventor name: REICHE, ENRICO

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 726253

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011006757

Country of ref document: DE

Effective date: 20150618

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2544459

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150831

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150506

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150806

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150906

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150807

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011006757

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

26N No opposition filed

Effective date: 20160209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160302

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160302

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160302

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20170321

Year of fee payment: 7

Ref country code: CH

Payment date: 20170322

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170322

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011006757

Country of ref document: DE

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: AIRBUS DS GMBH, 82024 TAUFKIRCHEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: AIRBUS DS GMBH, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180322

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180328

Year of fee payment: 8

REG Reference to a national code

Ref legal event code: PC2A

Owner name: AIRBUS DEFENCE AND SPACE GMBH

Effective date: 20180528

Ref country code: ES

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180430

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180327

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 726253

Country of ref document: AT

Kind code of ref document: T

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Effective date: 20180814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180303

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 726253

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011006757

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190302

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190303