EP2352580A1 - Verfahren zur herstellung von effektstoff-haltigen mikropartikeln - Google Patents

Verfahren zur herstellung von effektstoff-haltigen mikropartikeln

Info

Publication number
EP2352580A1
EP2352580A1 EP09821620A EP09821620A EP2352580A1 EP 2352580 A1 EP2352580 A1 EP 2352580A1 EP 09821620 A EP09821620 A EP 09821620A EP 09821620 A EP09821620 A EP 09821620A EP 2352580 A1 EP2352580 A1 EP 2352580A1
Authority
EP
European Patent Office
Prior art keywords
microparticles
monomers
acid
polyisocyanates
ethylenically unsaturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09821620A
Other languages
English (en)
French (fr)
Inventor
Michael Schroers
Rainer Dyllick-Brenzinger
Michael Merk
Heiko Barg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP09821620A priority Critical patent/EP2352580A1/de
Publication of EP2352580A1 publication Critical patent/EP2352580A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking

Definitions

  • the present invention is a process for the preparation of effect-containing microparticles M comprising A) the formation of a crude suspension of microparticles A by enzymatic polyester synthesis in an inverse miniemulsion containing enzyme, effect material and polyester monomers; and B) the polymerization of wall monomers from the group of ethylenically unsaturated monomers, polyisocyanates and / or polyepoxides in the crude suspension of microparticles A.
  • the present invention further relates to microparticles M obtainable by the process according to the invention and an agrochemical formulation
  • the present invention relates to the use of microparticles M prepared according to the invention as a component in colorants, cosmetics, pharmaceuticals, biocide, crop protection agents, fertilizers, additives for food or animal feed, auxiliaries for polymers, paper, textile, leather or washing and cleaning - Means.
  • the invention also relates to a method for controlling undesired plant growth, a method for controlling unwanted insect or mite infestation on plants and / or for controlling phytopathogenic fungi, and seed treated with the agrochemical formulation.
  • Microparticles are known in various embodiments and are used depending on the tightness of the capsule wall for very different purposes. For example, they serve to protect core materials that are to be released only by targeted mechanical destruction of the capsule shell, for example, dye precursors for carbonless paper or encapsulated fragrances.
  • Capsule shell materials based on gelatin, polyurethane resin, melamine-formaldehyde resin and polyacrylate are known in such fields of application.
  • Other requirements are placed on wall materials for herbal or pharmaceutically active substances as core materials, which require a permeability of the capsule shell which enables a controlled release and the targeted transport of the active substances.
  • the capsules produced by chemical processes here also known are mechanical-physical production processes.
  • microparticles For the production of microparticles, chemical or physical methods are well known. In physical methods usually dissolved polymers are applied to the material to be encapsulated and transferred by physical methods, such as spray drying or solvent removal, in a solid capsule wall. In chemical methods, the solid capsule wall is formed by chemical reaction, for example by polymerization of monomers, on the material to be encapsulated. An additional physical step to form the solid microparticles is not necessary. Polyester-containing microparticles and their production methods are well known. Such microparticles can be prepared starting from polymeric starting materials for the capsule shell.
  • EP 1 421 990 discloses a process for producing microparticles wherein a polyester dispersed in a polyol is emulsified with an enzyme as an effect substance dispersed in a polyol.
  • US 4,637,905 discloses a process for the preparation of microparticles having 1 to 2000 microns, wherein a dispersion of polylactic acid with a protein prepared as effect material, evaporates a part of the solvent and finally the concentrated dispersion is added to a third solvent to encapsulate the effect substance.
  • WO 2002/069922 discloses microparticles having an oxidoreductase-containing aqueous core and a polyester-containing shell.
  • the preparation is carried out by emulsifying an aqueous enzyme solution with a polyester dissolved in an organic solvent, followed by introducing the primary emulsion into an aqueous solvent and then removing the organic solvents.
  • DE 102005007374 discloses nanoparticles of the core-shell type.
  • the shell defines a polymer that is hydrophobic and biocompatible.
  • the polymer is, for example, polyacrylate, polyepoxide, polyurethane or polyester.
  • the core defines an active which is enclosed by the polymer of the shell.
  • the preparation is carried out by free-radical polymerization, polyaddition, polycondensation or enzymatic or anionic polymerization. Details of the method or examples are not mentioned.
  • PCT / EP2008 / 054702 discloses a process for the preparation of microcapsules containing an active ingredient-containing capsule core and a polymer-containing capsule shell comprising the formation of the capsule shell by means of enzyme-catalyzed polymerization of monomers present in an inverse miniemulsion.
  • a disadvantage of the known processes is, for example, that the polymers which form the microparticles are prepared separately by polymerization, that the microparticles are not sufficiently stable, or that the release rate of the effect substance can not be controlled.
  • the object of the present invention was to provide an improved process for the production of microparticles containing active substances.
  • Another aspect of the task was to produce the aforementioned micro-particles under mild reaction conditions, so that even sensitive effect substances can be encapsulated.
  • Another aspect was that the later release of the effect substance could be controlled by the manufacturing process and the monomer composition.
  • the object was achieved by a process for the preparation of effect material-containing microparticles M comprising A) containing the formation of a crude suspension of microparticles A by enzymatic polyester synthesis in an inverse miniemulsion Enzyme, effect substance and polyester monomers; and B) the polymerization of wall monomers from the group of ethylenically unsaturated monomers, polyisocyanates and / or polyepoxides in the crude suspension of microparticles A.
  • microparticles M By means of the method according to the invention, an ensemble of microparticles M is generally produced.
  • the inventive method usually leads to the same or similar shaped microparticles.
  • Microparts prepared according to the invention can take on any shape. They are preferably substantially spherical, for example, ideally spherical, constructed.
  • Effect-containing microparticles M produced according to the invention usually have the structure of a capsule or a matrix particle, preferably a capsule.
  • Capsules are typically composed of a polymer-containing capsule shell and an effect-containing capsule core.
  • Matrix particles are usually composed of a polymer-containing particle core in which an effect substance is finely distributed.
  • a capsule is also to be obtained which comprises at least one capsule shell and at least one capsule core.
  • a capsule may have a capsule core and two capsule shells.
  • a capsule for example, a plurality of capsule cores, for example two side by side or two nested capsule cores, and a capsule shell, for example, two side by side or nested capsule shells have.
  • a capsule comprises a capsule shell and a capsule core.
  • the thickness of the capsule shell can vary within a wide range. It is generally from 0.1 to 90%, preferably from 0.5 to 20% of the capsule radius (determined by light / electron microscopy or light scattering).
  • the mean diameter of the microparticles M (determinable as Z-agent by light scattering of a 1% strength by weight aqueous dispersion of microparticles, obtainable by dilution of the microparticle suspension with water and optionally separating off an organic phase) can vary widely. It is generally more than 0.1 ⁇ m, preferably more than 0.6 ⁇ m, particularly preferably more than 0.8 ⁇ m.
  • the diameter is preferably in the range from 0.1 to 2000 .mu.m, preferably from 0.6 to 1000 .mu.m, in particular from 0.8 to 800 .mu.m.
  • a diameter which is in the lower range is preferred if a higher mechanical stability of the microparts is desired.
  • a diameter in the higher range is preferred in order to pack as much capsule content as possible in a small amount of wall material.
  • the microparticles M usually comprise at least one effect substance.
  • the effect substance is present in the particle core or in the capsule core usually in solid, dissolved, e-emulsified or dispersed form.
  • the capsule core comprises at least one effect substance and at least one inert substance, which is preferably a liquid.
  • all substances in the Compounds present in the process according to the invention are dispersants, polar and / or non-polar liquids, water or the catalytically active enzymes.
  • the capsule core comprises at least one effect substance and at least one polar solvent.
  • the particle core or capsule core may also contain incompletely polymerized monomer.
  • the capsule core comprises at least the polar liquid which forms the disperse phase of the inverse miniemulsion.
  • enzymes are used in the process for producing the microparticles M, which catalyze the polymerization of the polyester monomers.
  • Enzymes are described using the EC classes developed by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) and, of course, it is possible to use a single hydrolase or a mixture of different hydrolases. to use the hydrolases in free and / or immobilized form.
  • Suitable hydrolases [EC 3.xxx] are, for example, esterases [EC 3.1.xx], proteases [EC 3.4.XX], hydrolases which react with other CN bonds as peptide bonds [EC 3.5.xx] or hydrolases, the react with acid anhydrides [EC 3.6-xx].
  • Carboxylesterases [EC 3.1.1.1], lipases [EC 3.1.1.3] or cutinases [EC 3.1.1.47] are particularly advantageously used according to the invention.
  • lipomas from Achromobacter sp., Aspergillus sp., Candida sp., Candida antartica, Mucor sp., Penicilium sp., Geotricum sp., Rhizopus sp., Burkholderia sp., Pseudomonas sp., Pseudomonas cepacia, Thermomyces sp., porcine pancreas or wheat germ and carboxylesterases from Bacillus sp., Pseudomonas sp., Burkholderia sp., Mucor sp., Saccharomyces sp., Rhizopus sp., Thermoanaerobium sp., pig liver or horse liver.
  • lipase from Pseudomonas cepacia, Burkholderia platarii or Candida antarctica type B in free or immobilized form (for example Novozym® 435 from Novozymes A / S, Denmark).
  • the total amount of enzymes used is generally from 0.001 to 40% by weight, often from 0.1 to 15% by weight and often from 0.5 to 10% by weight, based in each case on the total amount of polyester resin. monomers. The amount depends on the purity of the enzyme used. Technical or immobilized enzymes are usually used in higher amounts than purified enzymes. The skilled person will also adjust the amount of catalyst according to how fast the reaction is to proceed.
  • Suitable polyester monomers are, for example, hydroxycarboxylic acid compounds, dialcohol compounds or diacid compounds, especially hydroxycarboxylic acid compounds.
  • a combination of the above monomers is also possible, with the combination of dialcohol compounds and diacid compounds being preferred.
  • the polyester monomers are combined with a starter monomer which is a hydrogen azide compound such as hydroxy or amino functional compounds or water.
  • a suitable starter monomer is a hydroxycarboxylic acid compound, dialcohol compound or diacid compound.
  • the starter monomer is preferably a dialcohol compound as described below, especially ethylene glycol, 1,4-butanediol, glycerol, sorbitol, monosaccharide, disaccharide, polysaccharide or hydroxy-functional, dendritic polyesters based on 2,2-dimethylolpropionic acid (Boltorn® types, commercial available from Perstorp).
  • a dialcohol compound as described below, especially ethylene glycol, 1,4-butanediol, glycerol, sorbitol, monosaccharide, disaccharide, polysaccharide or hydroxy-functional, dendritic polyesters based on 2,2-dimethylolpropionic acid (Boltorn® types, commercial available from Perstorp).
  • Hydroxycarboxylic acid compounds which can be used are the free hydroxycarboxylic acids having at least one free alcohol group and at least one free carboxylic acid group, their C 1 -C 5 -alkyl esters and / or their lactones.
  • Examples include glycolic acid, D-, L-, D, L-lactic acid, 6-hydroxyhexanoic acid (6-hydroxycaproic acid), 3-hydroxybutyric acid, 3-hydroxyvaleric acid, 3-hydroxycaproic acid, whose cyclic derivatives such as glycolide (1, 4- Dioxane-2,5-dione), D, L, D, L-dilactide (3,6-dimethyl-1,4-dioxane-2,5-dione), ⁇ -caprolactone, ⁇ -butyrolactone, ⁇ -butyrolactone, ⁇ -dodecanolide (oxacyclotridecan-2-one), ⁇ -undecanolide (oxacyclododecan-2-
  • lactones are bis- or tris-lactones which contain two or three lactone groups.
  • (2,2'-bis ( ⁇ -caprolactone-4-yl) propane can be used.
  • Bis-lactones can be synthesized, for example, according to Palmgren et al., Journal of Polymer Science A, 1997, 35, 1635-1649.
  • esters of carbonic acid especially linear and cyclic aliphatic carbonates, preferably C 1 to C 6 -alkyl esters of carbonic acid, in particular trimethylene carbonate Carbonates which do not react with the particular enzyme, for example propylene carbonate, are unsuitable as monomers
  • Hydroxycarboxylic acid compounds which may also be used are the thiocarboxylic acid analogues of the abovementioned hydroxycarboxylic acid and their esters and thiolactones.Of course, it is also possible to use mixtures of different hydroxycarboxylic acid compounds
  • Preferred hydroxycarboxylic acid compounds are lactones, in particular C 2 -C 6 -alkylene lactones, very particularly preferably ⁇ -caprolactone.
  • dicarboxylic acid compounds it is possible in principle to use all C 2 -C 4 aliphatic, C 3 -C 20 cycloaliphatic, aromatic or heteroaromatic compounds which have at least two carboxylic acid groups (carboxy groups, -COOH) or derivatives thereof.
  • Particularly suitable derivatives are C 1 -C 10 -alkyl, preferably methyl, ethyl, n-propyl or isopropyl mono- or diesters of the aforementioned dicarboxylic acids, and also the corresponding dicarboxylic acid anhydrides.
  • dicarboxylic acid compounds are ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), butanedioic acid (succinic acid), pentanedioic acid (glutaric acid), hexanedioic acid (Adipic acid), heptanedioic acid (pimelic acid), octanedioic acid (suberic acid), nonanedioic acid (azelaic acid), decanedioic acid (sebacic acid), undecanedioic acid, dodecanedioic acid, tridecanedioic acid (brassylic acid), C 32-dimer fatty acid, benzene-1,2-dicarboxylic acid (phthalic acid), Benzene-1,3-dicarboxylic acid (isophthalic acid) or benzene-1,4-dicarboxylic acid (terephthalic acid), the
  • Terephthal Acidimethylester and their anhydrides, for example, butanedicarboxylic acid, pentanedicarboxylic or Phthalklareandhydrid.
  • dicarboxylic acid compounds can be used.
  • ONcoesters and polyesters having at least two free carboxy groups, in particular carboxy-terminated oligo- and polyesters, can likewise be used as the dicarboxylic acid component.
  • esters of polycarboxylic acids such as citric acid and butanetetracarboxylic acid can be used.
  • the free dicarboxylic acids especially C 4 to C 36 aliphatic dicarboxylic acids, in particular butanedioic acid, hexanedioic acid, decanedioic acid, dodecanedioic acid or their corresponding dimethyl and diethyl esters.
  • diol compounds it is possible to use branched or linear alkanes having 2 to 18 carbon atoms, preferably 4 to 14 carbon atoms, cycloalkanes having 5 to 20 carbon atoms or aromatic compounds which contain at least two alcohol groups.
  • alkanediols examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1, 8-octanediol, 1, 9-nonanediol, 1, 10-decanediol, 1, 11-undecanediol, 1, 12-dodecanediol, 1, 13-tridecanediol, 2,4-dimethyl-2-ethyl-1, 3 hexanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2-ethyl-2-butyl-1,3-propanediol, 2-ethyl-2-isobutyl-1,3-propan
  • Particularly suitable are ethylene glycol, 1, 3-propanediol, 1, 4-butanediol and 2,2-dimethyl-1, 3-propanediol, 1, 6-hexanediol or 1, 12-dodecanediol.
  • cycloalkanediols are 1, 2-cyclopentanediol, 1, 3-cyclopentanediol, 1, 2-cyclohexanediol, 1, 3-cyclohexanediol, 1, 4-cyclohexanediol, 1, 2-cyclohexanedimethanol (1, 2-dimethylolcyclohexane) , 1, 3-cyclohexanedimethanol (1,3-dimethylolcyclohexane), 1,4-cyclohexanedimethanol (1,4-dimethylolcyclohexane) or 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
  • aromatic diols examples include 1, 4-dihydroxybenzene, 1, 3-dihydroxybenzene, 1, 2-dihydroxybenzene, bisphenol A (2,2-bis (4-hydroxyphenyl) -propane), 1, 3-dihydroxynaphthalene, 1, 5 Dihydroxynaphthalene or 1, 7-dihydroxynaphthalene.
  • polyether diols for example diethylene glycol, triethylene glycol, polyethylene glycol (with more than 4 ethylene oxide units), propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol (with more than 4 propylene oxide units) and polytetrahydrofuran (polyTHF), in particular diethylene glycol, triethylene glycol and polyethylene glycol (with more than 4 ethylene oxide units) are used.
  • poly-THF polyethylene glycol or polypropylene glycol find compounds whose number average molecular weight (Mn) is usually in the range of 200 to 10,000, preferably from 600 to 5000 g / mol.
  • oligoesters and polyesters having at least two free alcohol groups preferably dihydroxy-terminated oligo- and polyesters.
  • dendrimers which have at least two primary or secondary free alcohol groups.
  • polycarbonates which have at least two primary or secondary free alcohol groups.
  • suitable diol compounds having more than two alcohol groups are glycerol, sorbitol, trimethylolpropane, pentaerythritol, monosaccharides such as fructose, glucose or mannose, disaccharides such as sucrose, oligosaccharides and their substitution products, or cellulose derivatives such as acetates.
  • diol compounds it is also possible to use one of the abovementioned diol compounds analogous dithiol. Of course, it is also possible to use mixtures of the abovementioned diol compounds or dithiols.
  • Preferred diols are aliphatic alkanediols and polyether diols, more preferably linear and branched aliphatic alkanediols having 2 to 18 carbon atoms, in particular ethylene glycol, 1, 4-butanediol, 1, 6-hexanediol, sorbitol and neopentyl glycol.
  • linear, branched or crosslinked polyesters can be formed, depending on whether difunctional monomers or higher-functional monomers are used.
  • the polyester monomers are generally in the reaction mixture in step A) to 0.1 to 20 wt .-%, preferably from 0.5 to 10 wt .-%, in particular to 1 to 5 wt .-% based on the total batch contain.
  • at least one lactone is present at 0.1 to 20% by weight, preferably at 0.5 to 10% by weight, in particular at 1 to 5% by weight, based on the overall batch in step A).
  • dispersants can be used. These may in principle be protective colloids, emulsifiers or mixtures thereof. It goes without saying that the emulsifiers and / or protective colloids are selected so that they are compatible in particular with the enzymes used and do not deactivate them.
  • the polymerization can be carried out in the presence of protective colloids, if appropriate also in addition to emulsifiers. They generally have average molecular weights Mw of above 500, preferably of more than 1000 g / mol.
  • protective colloids are polyvinyl alcohols, cellulose derivatives such as carboxymethyl cellulose, polyvinyl pyrrolidone, polyethylene glycols, graft polymers of vinyl acetate and / or
  • emulsifiers are used as dispersants.
  • emulsifiers are used whose relative molecular weights, in contrast to the protective colloids, are usually below 1000 g / mol. They may be anionic, cationic or nonionic in nature.
  • anionic emulsifiers are compatible with each other and with nonionic emulsifiers. The same applies to cationic emulsifiers, while anionic and cationic emulsifiers are usually incompatible with each other.
  • the polymerization can also be carried out in the presence of finely divided, water-insoluble inorganic emulsifiers (so-called Pickering emulsifiers), for example barium sulfate.
  • Finely divided, water-insoluble inorganic emulsifiers for example barium sulfate.
  • Common nonionic emulsifiers are, for example, ethoxylated mono-, di- and tri-alkylphenols (degree of ethoxylation from 3 to 50, alkyl radical: C 4 to C 12) and ethoxylated fatty alcohols (degree of ethoxylation from 3 to 80, alkyl radical: Cs to C 36).
  • Lutensol® A grades C12 to Cu fatty alcohol ethoxylates, degree of ethoxylation from 3 to 8
  • Lutensol® AO grades C13 to Cis oxo alcohol ethoxylates, ethoxylation levels of 3 to 30
  • Lutensol® AT grades C16 to Cis fatty alcohol ethoxylates, degree of ethoxylation from 1 to 80
  • Lutensol® ON grades C10 oxo alcohol ethoxylates, degree of ethoxylation from 3 to 11
  • Lutensol® TO grades C13 oxo alcohol ethoxylates, degree of ethoxylation from 3 to 20 from BASF SE.
  • Typical anionic emulsifiers are, for example, alkali metal and ammonium salts of alkyl sulfates (alkyl radical: C8 to C12), of sulfuric monoesters of ethoxylated alkanols (degree of ethoxylation from 4 to 30, alkyl radical: C12 to de) and ethoxylated alkylphenols (degree of ethoxylation from 3 to 50, alkyl radical: C 4 to C 12), of alkylsulfonic acids (alkyl radical: C 12 to C 18) and of alkylarylsulfonic acids (alkyl radical: Cg to Cis).
  • Further anionic emulsifiers further compounds of the general formula (I)
  • R 1 and R 2 are H atoms or C 4 - to C 24 -alkyl and not simultaneously H-
  • M 1 and M 2 may be alkali metal ions and / or ammonium ions.
  • R 1 and R 2 are preferably linear or branched alkyl radicals having 6 to 18 C atoms, in particular having 6, 12 and 16 C atoms or hydrogen, wherein R 1 and R 2 are not both simultaneously H atoms.
  • M 1 and M 2 are preferably sodium, potassium or ammonium, with sodium being particularly preferred.
  • Particularly advantageous compounds (I) are those in which M 1 and M 2 are sodium, R 1 is a branched alkyl radical having 12 C atoms and R 2 is an H atom or R 1 .
  • technical mixtures are used which have a proportion of 50 to 90% by weight of the monoalkylated product, such as, for example, Dowfax® 2A1 (trademark of the Dow Chemical Company).
  • Suitable cationic emulsifiers are generally ce- to cis-alkyl-, alkylaryl- or heterocyclic radical-containing cationic salts, for example primary, secondary, tertiary or quaternary ammonium salts, alkanolammonium salts, pyridinium salts, imidazolinium salts, oxazolinium salts, morpholinium salts, thiazolinium salts and salts of amine oxides, quinolinium salts, isoquinolinium salts, tropylium salts, sulfonium salts and phosphonium salts.
  • Examples include dodecylammonium acetate or the corresponding sulfate, the sulfates or acetates of the various 2- (N, N, N-trimethylammonium) ethylparaffinklar, N-cetylpyridinium, N-Laurylpyridiniumsulfat and N-cetyl-N, N, N-trimethylammonium sulfate, N-dodecyl-N, N, N-trimethylammonium sulfate, N-octyl-N, N, N-trimethylammonium sulfate, N, N-distearyl-N, N-dimethylammonium sulfate and the gemini surfactant N, N '- ( Lauryldimethyl) ethylenediamine disulfate, ethoxylated tallow fatty alkyl N-methylammonium sulfate, and ethoxylated oleylamine (for
  • anionic counter groups are as low as possible nucleophilic, such as perchlorate, sulfate, phosphate, nitrate and carboxylates, such as acetate, trifluoroacetate, trichloroacetate, propionate, oxalate, citrate, benzoate, as well as conjugated anions of organosulfonic acids, such as methyl sulfonate, Trifluoromethylsulfonate and para-toluenesulfonate, furthermore tetrafluoroborate, tetraphenylborate, tetrakis (pentafluorophenyl) borate, tetrakis [bis (3,5-trifluoromethyl) phenyl] borate, hexafluorophosphate, hexafluoroarsenate or hexafluoroantimonate.
  • nucleophilic such as perchlorate, sulfate, phosphate, n
  • Preferred emulsifiers are nonionic emulsifiers, in particular ethoxylated alcohols and sorbitan esters, particularly preferably ethoxylated fatty alcohols and sorbitan fatty acid esters.
  • Very particularly preferred mixtures include ethoxylated alcohols and sorbitan esters.
  • the mixtures contain ethoxylated alcohols and sorbitan esters.
  • a polymer based on the ene reaction product of polyisobutylene and maleic anhydride (PIBSA) and di (alkyl) ethanolamine is suitable.
  • block copolymers are suitable, as described in Macromolecules 38 (16), 6882-6887, block copolymers based on isoprene and methyl methacrylate, as described in US Pat WO 2008/009424, or poly ((ethylene-co-butylene) -block-ethylene oxide).
  • the emulsifiers preferably used as dispersants are advantageously in a total amount of 0.005 to 20 wt .-%, preferably 0.01 to 15 wt .-%, in particular 0.1 to 10 wt .-%, each based on the total batch in step A. ).
  • the total amount of the protective colloids used as dispersing agents in addition to or instead of the emulsifiers is often from 0.1 to 10% by weight and frequently from 0.2 to 7% by weight, based in each case on the overall batch in step A).
  • the inverse miniemulsion according to the invention in which the polyester monomers are mostly present, comprises a continuous nonpolar phase and a discontinuous polar phase.
  • the polar phase comprises a polar liquid and the non-polar phase a non-polar liquid.
  • the effect substance is present essentially in the discontinuous phase in solid, dissolved, emulsified or dispersed form.
  • the polyester monomers, dispersants or enzymes can be present both distributed in one of the two phases as well as in both phases, or at the interface of the two phases.
  • the polyester monomer is at least 70% by weight, preferably at least 80% by weight and in particular at least 90% by weight, based in each case on the total amount of the polyester monomer in step A), in the polar phase.
  • the polar liquid consists of at least one polyester monomer and at least one effect substance.
  • the mean size of the droplets of the discontinuous phase of the inverse miniemulsion according to the invention can preferably be determined according to the principle of quasi-elastic dynamic light scattering on a 1% by weight miniemulsion obtainable by diluting the inverse miniemulsion with the corresponding continuous phase and, if appropriate, separating an organic phase , determine (the so-called Z-median droplet diameter d z of the unimodal analysis of the autocorrelation function). Further determination methods are light or electron microscopy, as well as Feldflußfr sotechnik.
  • the values for d z thus determined for the inverse miniemulsions are normally below 10000 nm, often below 1000 nm, usually below 500 nm.
  • the d z range from 2000 nm to 1000 nm is favorable in accordance with the invention. In the normal case, d z is according to the invention Inverse miniemulsion to be used over 40 nm.
  • Suitable polar liquids are those whose solubility in the continuous nonpolar phase under reaction conditions is below 40% by weight, preferably below 10% by weight and in particular below 1% by weight (in each case based on the total amount of the continuous phase) that a separate discontinuous polar phase is present.
  • the polar liquid dissolves at 20 ° C. the polyester monomer at most 10% by weight, preferably at most up to 3% by weight and especially at most up to 0.5% by weight, in each case based on the total weight of the polyester monomer.
  • Suitable polar liquids are, for example, monools, such as Cs-C ⁇ -alkanols, in particular tert-butanol and tert. -Amyl alcohol, pyridine, poly-C 1 -C 4 -alkylene glycol di-C 1 -C 4 -alkyl ethers, in particular polyethylene glycol di-C 1 -C 4 -alkyl ethers, such as e.g.
  • Dimethoxymethane diethylene glycol dimethyl ether, polyethylene glycol dimethyl ether 500, C 2 -C 4 -alkylene carbonates, in particular propylene carbonate, C 3 -C 6 -alkyl acetic acid esters, in particular tert-butyl acetic acid esters, acetone, 1, 4-dioxane, 1, 3-dioxolane, tetrahydrofuran ran, dimethoxymethane, dimethoxyethane, aqueous buffer or water.
  • Suitable polar liquids are also the abovementioned polyester monomers or mixtures thereof.
  • the polar liquid may also comprise or may consist of the effect substance used.
  • Preferred polar liquid is propylene carbonate and propylene carbonate containing mixtures.
  • the polar liquid is the polyester monomer.
  • the polar liquid comprises less than 5% by weight, preferably less than 1% by weight and in particular less than 0.1% by weight of water.
  • the polar liquid contains water, it is advantageous if the aqueous reaction medium at room temperature (20 to 25 0 C) has a pH of 2 to 1 1, often from 3 to 9 and often from 6 to 8.
  • a pH is set in which the enzyme has a high catalytic activity and a long service life.
  • acid for example sulfuric acid
  • bases for example aqueous solutions of alkali metal hydroxides, in particular sodium or potassium hydroxide
  • buffer substances for example potassium dihydrogen phosphate / disodium hydrogen phosphate, acetic acid / sodium acetate, ammonium hydroxide / ammonium chloride Potassium dihydrogen phosphate / sodium hydro
  • hydrophilic agents are, for example, organic or inorganic salts or uncharged, very polar compounds.
  • inorganic salts are sodium nitrite, sodium chloride, potassium chloride, lithium chloride, rubidium chloride.
  • organic salts are trialkylammonium salts, ionic
  • Liquids such as ethyl-methylimidazolium salts, or oligomers with stoichiometric proportions of anionic and cationic groups in the main or side chain te. Preference is given to hydrophiles which do not reduce the catalytic activity of the enzymes.
  • Suitable non-polar liquids are those whose solubility in the discontinuous polar phase under reaction conditions below 10 wt .-%, preferably below 1 wt .-% and in particular below 0.1 wt .-% (in each case based on the total amount of the continuous phase ), so that there is a separate continuous polar phase.
  • Suitable non-polar liquids are, for example, liquid aliphatic or aromatic hydrocarbons having 5 to 30 C atoms, for example n-pentane and isomers, cyclopentane, n-hexane and isomers, cyclohexane, n-heptane and isomers, n-octane and isomers, n-nonane and isomers, n-decane and isomers, n-dodecane and isomers, n-tetradecane and isomers, n-hexadecane and isomers, n-octadecane and isomers, benzene, toluene, ethylbenzene, cumene, o-, m- or p-xylene, mesitylene.
  • hydrocarbon mixtures in the boiling range from 30 to 250 0 C come as partially hydrogenated petroleum distillates (eg Isopar® brands Fa. Exxon Mobil).
  • olefins for example polyisobutylenes or C6 to C30 alpha-olefins.
  • hydroxy compounds such as saturated and unsaturated fatty alcohols having 10 to 28 carbon atoms, for example n-dodecanol, n-tetradecanol, n-hexadecanol and their isomers or cetyl alcohol, esters, such as fatty acid esters having 10 to 28 carbon atoms in the acid part and 1 to 10 carbon atoms in the alcohol part or esters of carboxylic acids and fatty alcohols having 1 to 10 carbon atoms in the carboxylic acid part and 10 to 28 carbon atoms in the alcohol part.
  • esters such as fatty acid esters having 10 to 28 carbon atoms in the acid part and 1 to 10 carbon atoms in the alcohol part or esters of carboxylic acids and fatty alcohols having 1 to 10 carbon atoms in the carboxylic acid part and 10 to 28 carbon atoms in the alcohol part.
  • non-polar liquids are paraffin oil (linear hydrocarbon mixtures), silicone oil (polysiloxane), perfluorinated hydrocarbons, fluorosilicone oil, perfluorinated polyethers, fluorosilane or SiIo- xan, such as dimethylsiloxane.
  • Preferred non-polar liquids are liquid aliphatic and aromatic hydrocarbons having 5 to 30 carbon atoms, in particular partially hydrogenated mineral oil distillates.
  • nonpolar liquids are paraffin oil.
  • the total amount of polar and non-polar liquids is chosen such that the total batch in step A) reaches 100% by weight. It is generally from 10 to 90 wt .-%, preferably from 40 to 70 wt .-% based on the total batch.
  • the quantitative ratio of polar to nonpolar liquid is chosen so that a discontinuous phase is formed which essentially contains the polar liquid.
  • 20 to 80 preferably 40 to 70 wt .-% of nonpolar liquid used, each based on the total batch.
  • from 20 to 80% by weight, preferably from 30 to 60% by weight, of polar liquid is used, in each case based on the overall batch.
  • from 20 to 80 preferably from 35 to 55,% by weight of hydrocarbon mixtures and from 20 to 70% by weight, preferably from 30 to 60% by weight, of propylene carbonate are used, in each case based on the overall batch. Care must be taken to ensure that the miniemulsions do not undergo a phase reversal, ie that the hydrophobic continuous phase does not become the disperse phase.
  • effect substances are to be understood in the context of the invention substances which cause the user desired effects in the commercial application of the product according to the invention.
  • Effect substances are, for example, colorants, cosmetics, pharmaceuticals, biocides, crop protection agents, agrochemical adjuvants, fertilizers, additives for food or animal feed, auxiliaries for polymers, paper, textile, leather or detergents and cleaners.
  • the person skilled in the art can select the appropriate effect substance on the basis of his general specialist knowledge.
  • colorants are dyes, printing inks, pigments, UV absorbers, optical brighteners or IR dyes. While organic dyes have an absorption maximum in the wavelength range from 400 to 850 nm, optical brighteners have one or more absorption maxima in the range from 250 to 400 nm. Optical brighteners emit fluorescence radiation in the visible range when irradiated with UV light. Examples of optical brighteners are compounds from the classes of bisstyrylbenzenes, stilbenes, benzoxazoles, coumarins, pyrenes and naphthalenes. Also suitable are markers for liquids, for example mineral oil markers. UV absorbers are generally understood as UV-absorbing compounds which deactivate the absorbed radiation without radiation. Such compounds are used for example in sunscreens and for the stabilization of organic polymers.
  • Cosmetics are substances or preparations of substances which are exclusively or predominantly intended to be externally on the human body or in the oral cavity for the purpose of cleaning, care, protection, maintenance of good condition, perfuming, alteration of the appearance or to it to be applied, to influence the body odor.
  • anti-insect agents such as Icaridin® or N, N-diethyl-meta-toluamide (DEET®).
  • biocides heavy metal-containing biocides such as N- (cyclo-hexyldiazeniumdioxy) tributyltin, bis-N- (cyclohexyldiazeniumdioxy) copper (CuHDO);
  • Metallic soaps such as tin, copper, zinc naphthenate, octoate, 2-ethylhexanoate, oleate, phosphate, benzoate, metal salts such as copper hydroxycarbonate, sodium dichromate, potassium dichromate, potassium chromate, mat, copper sulfate, copper chloride, copper borate, zinc fluorosilicate, copper fluorosilicate, copper salt of 2-pyridinethiol-1-oxide; Oxides as well as tributyltin oxide, CU2O, CuO, ZnO; Ag, Zn or Cu-containing zeolites may be contained alone or enclosed in polymeric active substances.
  • Suitable biocides are preferably algicides such as diur
  • biocides are bis-N- (cyclohexyldiazeniumdioxy) copper, dithianone, bronopol, sodium chlorite (NaCIO 2 ), 2,4-dichlorobenzyl alcohol.
  • microcapsules according to the invention comprising biocides can be used everywhere, where it is possible to bacteria-free, algae and fungus-free, d. H. microbicidal surfaces or surfaces with non-stick properties arrives. They can be used in the field
  • Air conditioners air conditioners, ion exchangers, service water, solar systems, heat exchangers, bioreactors, membranes, cooling water treatment;
  • Suitable crop protection agents are acaricides, algicides, aphicides, bactericides, fungicides, herbicides, insecticides, molluscicides, nematicides, germination inhibitors, safeners or growth regulators.
  • Fungicides are compounds that kill fungi and their spores or inhibit their growth.
  • Insecticides are compounds that are especially effective against insects and their developmental forms.
  • Under Herbicides are compounds that are active against generally all wild and cultivated plants that are undesirable at their respective location (weeds).
  • fertilizers are mineral single or multi-nutrient fertilizers, organic and organic-mineral fertilizers or fertilizers with trace nutrients.
  • the effect substances are pesticides or mixtures of pesticides.
  • the crop protection agents are preferably herbicides, growth regulators, insecticides or fungicides. It is generally known against which unwanted plants, insects or fungi a crop protection agent can be advantageously used.
  • the following list of plant protection products indicates, but is not intended to be limited to, any active ingredients.
  • fungicide for example: A) strobilurins:
  • Azoxystrobin Dimoxystrobin, Enestroburin, Fluoxastrobin, Kresoxim-methyl, Metomino Strobin, Orysastrobin, Picoxystrobin, Pyraclostrobin, Pyribencarb, Trifloxystrobin, 2- (2- (6- (3-Chloro-2-methyl-phenoxy) -5-fluoro) pyrimidin-4-yloxy) -phenyl) -2-methoxy-imino-N-methyl-acetamide, 2- (ortho - ((2,5-dimethylphenyl-oxymethylene) -phenyl) -3-methoxy-acrylic acid methyl ester, 3-methoxy- Methyl 2- (2- (N- (4-methoxy-phenyl) -cyclopropanecarboximidoylsulfanylmethyl) -phenyl) acrylate, 2- (2- (3- (2,6-dichlorophenyl) -1-methyl-allylidene
  • Benzoic acid amides flumetover, fluopicolide, fluopyram, zoxamide, N- (3-ethyl-3,5,5-trimethylcyclohexyl) -3-formylamino-2-hydroxybenzamide;
  • carboxamides carpropamide, diclocymet, mandipropamide, oxytetracycline, silthiofam, N- (6-methoxypyridin-3-yl) cyclopropanecarboxamide;
  • Triazoles azaconazole, bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole, diniconazole-M, epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imibenconazole, ipconazole, metconazole, myclobutanil, oxpoconazole, paclobutrazole, penconazole, propiconazole , Prothioconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triticonazole, uniconazole, 1- (4-chloro-phenyl) -2 - ([1, 2,4] triazol-1-yl) -cycloheptanol;
  • - imidazoles cyazofamide, imazalil, imazalil sulfate, pefurazoate, prochloraz, triflumizole;
  • Benzimidazoles benomyl, carbendazim, fuberidazole, thiabendazole; - Other: ethaboxam, etridiazole, hymexazole, 2- (4-chloro-phenyl) -N- [4- (3,4-dimethoxyphenyl) -isoxazol-5-yl] -2-prop-2-ynyloxy-acetamide ;
  • Pyridines fluazinam, pyrifenox, 3- [5- (4-chloro-phenyl) -2,3-dimethyl-isoxazolidin-3-yl] -pyridine, 3- [5- (4-methyl-phenyl) -2, 3-dimethylisoxazolidin-3-yl] -pyridine, 2,3,5,6-tetrachloro-4-methanesulfonylpyridine, 3,4,5-trichloropyridine-2,6-dicarbonitrile, N- (1 (5-Bromo-3-chloro-pyridin-2-yl) -ethyl) -2,4-dichloronotinamide, N - ((5-bromo-3-chloro-pyridin-2-yl) -methyl) -2,4 -dichlornicotinamid;
  • Pyrimidines Bupirimat, Cyprodinil, Diflumetorim, Fenarimol, Ferimzone, Mepanipyrim, Nitrapyrin, Nuarimol, Pyrimethanil; - piperazines: triforins;
  • - morpholines aldimorph, dodemorph, dodemorph acetate, fenpropimorph, tridemorph; - piperidines: fenpropidine;
  • Dicarboximides fluorimide, iprodione, procymidone, vinclozolin;
  • non-aromatic 5-membered heterocycles famoxadone, fenamidone, flutianil, octhilinone, probenazole, 5-amino-2-isopropyl-3-oxo-4-ortho-tolyl-2,3-dihydropyrazole-1-thiocarboxylic acid allyl ester;
  • Thio and dithiocarbamates Ferbam, Mancozeb, Maneb, Metam, Methasulphocarb, Metiram, Propineb, Thiram, Zineb, Ziram; Carbamates: Diethofencarb, Benthiavalicarb, Iprovalicarb, Propamocarb, Propamocarb hydrochloride, Valiphenal, N- (1- (1- (4-cyanophenyl) ethanesulfonyl) -but-2-yl) carbamic acid- (4-fluorophenyl) ester;
  • Guanidines dodine, dodine free base, guazatine, guazatine acetate, iminoctadine, iminoctadine triacetate, iminoctadin tris (albesilat);
  • antibiotics kasugamycin, kasugamycin hydrochloride hydrate, polyoxines, streptomycin, validamycin A;
  • Sulfur-containing heterocyclyl compounds dithianone, isoprothiolanes
  • Organophosphorus compounds edifenphos, fosetyl, fosetyl-aluminum, Iprobenfos, phosphorous acid and its salts, pyrazophos, tolclofos-methyl;
  • Organochlorine compounds chlorothalonil, dichlofluanid, dichlorophene, flusulphamide, hexachlorobenzene, pencycuron, pentachlorophenol and its salts, phthalide, quintozene, thiophanate-methyl, tolylfluanid, N- (4-chloro-2-nitro-phenyl) -N-ethyl- 4-methyl-benzenesulfonamide;
  • Inorganic active ingredients phosphorous acid and its salts, Bordeaux broth, copper salts such as copper acetate, copper hydroxide, copper oxychloride, basic copper sulfate, sulfur; - Other: biphenyl, bronopol, cyflufenamid, cymoxanil, diphenylamine, metrafenone, mildiomycin, oxine-copper, prohexadione-calcium, spiroxamine, tolylfluanid, N- (cyclopropylmethoxyimino- (6-difluoromethoxy-2,3-difluorophenyl) - methyl) -2-phenylacetamide, N '- (4- (4-chloro-3-trifluoromethylphenoxy) -2,5-dimethylphenyl) -N-ethyl-N-methylformamide, N' - (4- (4-Fluoro-3-trifluoromethylphenoxy) -2,5
  • growth regulators which can be used are: abscisic acid, amidochlor, ancymidol, 6-benzylaminopurine, brassinolide, butraline, chlormequat chloride, choline chloride, cyclanilide, daminozide, dikegulac, dimethipine, 2,6-dimethylpuridine, ethephon, flumetralin, flurprimidol, fluthiacet, For- chlorfenuron, gibberellic acid, inabenfid, indole-3-acetic acid, maleic hydrazide, mefluidide, mepiquat (mepiquat chloride), metconazole, naphthalene acetic acid, N-6-benzyladenine, paclobutrazole, prohexadione (prohexadione-calcium), prohydrojasmon, thidiazorone, Tri-penthenol, tributyl phosphorot
  • acetamides acetochlor, alachlor, butachlor, dimethachlor, dimethenamid, flufenacet, mefenacet, metolachlor, metazachlor, napropamide, naproanilide, pethoxamide, pretilachlor, propachlor, thenylchloro;
  • Amino acid analogues bilanafos, glyphosate, glufosinate, sulfosate;
  • Aryloxyphenoxypropionates Clodinafop, Cyhalofop-butyl, Fenoxaprop, Fluazifop, Haloxyfop, Metamifop, Propaquizafop, Quizalofop, Quizalofop-P-tefuryl;
  • Bipyridyls diquat, paraquat;
  • Carbamates and thiocarbamates asulam, butylates, carbamides, desmedipham, dimepiperate, eptam (EPTC), esprocarb, molinates, orbencarb, phenmedipham, prosulphocarb, pyributicarb, thiobencarb, triallates; - cyclohexanediones: butroxydim, clethodim, cycloxydim, profoxydim, sethoxydim, tepraloxydim, tralkoxydim;
  • Diphenyl ether acifluorfen, aclonifen, bifenox, diclofop, ethoxyfen, fomesafen, lactofen, oxyfluorfen;
  • Hydroxybenzonitriles bromoxynil, dichlobenil, loxynil;
  • Imidazolinone imazamethabenz, imazamox, imazapic, imazapyr, imazaquin, imazethapyr;
  • Phenoxyacetic acids clomeprop, 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4-DB, dichlorprop, MCPA, MCPA-thioethyl, MCPB, mecoprop;
  • - Pyrazines Chloridazon, Flufenpyr-ethyl, Fluthiacet, Norflurazon, Pyridate;
  • - pyridines aminopyralid, clopyralid, diflufenican, dithiopyr, fluridone, fluroxypyr, pilinoram, picolinafen, thiazopyr;
  • Sulfonylureas amidosulfuron, azimsulfuron, bensulfuron, chlorimuron-ethyl, chlorosulfuron, cinosulfuron, cyclosulfamuron, ethoxysulfuron, flazasulfuron, flucosulfuron, flupyrsulfuron, foramsulfuron, halosulfuron, imazosulfuron, lodosulfuron, mesosulfuron, metsulfuron-methyl, nicosulfuron, oxasulfuron, primisulfuron, prosul furon, pyrazosulfuron, rimsulfuron, sulfometuron, sulfosulfuron, thifensulfuron, triasulfuron, tribenuron, trifloxysulfuron, triflusulfuron, tritosulfuron, 1 - ((2-chloro-6-prop
  • acetolactate synthase bispyribac sodium, cloransulam methyl, diclosulam, florasulam, flucarbazone, flumetsulam, metosulam, orthosulphamuron, penoxsulam, propoxycarbazone, pyribambenz-propyl, pyribenzoxime, pyriftalid, pyriminobac-methyl, pyrimisulphane, pyrithiobac, pyroxasulphone, pyroxsulam;
  • insecticide for example:
  • Organo (thio) phosphates acephate, azamethiphos, azinphos-methyl, chlorpyrifos, chlorpyrifos-methyl, chlorfenvinphos, diazinon, dichlorvos, dicrotophos, dimethoate, disulphoton, ethion, fenitrothion, fenthione, isoxathione, malathion, methamidophos, methidathion , Methyl parathion, mevinphos, monocrotophos, oxydemeton
  • Carbamates alanycarb, aldicarb, bendiocarb, benfuracarb, carbaryl, carbofuran, carbosulfan, fenoxycarb, furathiocarb, methiocarb, methomyl, oxamyl, pirimicarb,
  • - pyrethroids allethrin, bifenthrin, cyfluthrin, cyhalothrin, cyphenothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, zeta-cypermethrin, deltamethrin, esfenvalerate, etofenprox, fenpropathrin, fenvalerate, imiprothrin, lambda-cyhalo- thrin, permethrin, prallethrin , Pyrethrin I and II, resmethrin, silafluofen, tau-fluvalinate, tefluthrin, tetramethrin, tralomethrin, transfluthrin, profluthrin, dimefluthrin,
  • Insect growth inhibitors a) chitin synthesis inhibitors: benzoylureas: chlorofluorazuron, cyramazine, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, teflubenzuron, triflumuron; Buprofezin, diofenolan, hexythiazox, etoxazole, clofentazine; b) ecdysone antagonists: halofenozid, methoxyfenozide, tebufenozide, azadirachtin; c) Juvenoids: Pyriproxyfen, Methoprene, Fenoxycarb; d) lipid biosynthesis inhibitors: spirodiclofen, spiromesifen, spirotetramat; Nicotine receptor agonists / antagonists: clothianidin, dinotefuran,
  • GABA antagonists endosulfan, ethiprole, fipronil, vaniliprole, pyrafluprole, pyriprole, 5-amino-1- (2,6-dichloro-4-methylphenyl) -4-sulfinamoyl-1H-pyrazole-3-thiocarbon acid amide; Macrocyclic lactones: Abamectin, Emamectin, Milbemectin, Lepimectin, Spinosid, Spinetoram;
  • Inhibitors of oxidative phosphorylation cyhexatin, diafenthiuron, fenbutatin oxide, propargite; Inhibitors of the sloughing of insects: Cryomazine;
  • Inhibitors of mixed function oxidases piperonyl butoxide
  • the crop protection agents are preferably herbicides. In a further preferred embodiment, the crop protection agents are preferably insecticides. In a further preferred embodiment, the crop protection agents are preferably fungicides. In a further preferred embodiment, the fungicides are preferably azoles. In a further preferred embodiment, the azoles are preferably triticonazole, epoxiconazole, fluquinconazole or metconazole.
  • agrochemical adjuvants are compounds or mixtures of compounds which by themselves have no pesticidal activity but increase the efficacy of a pesticide.
  • penetration enhancers are examples. Suitable penetration promoters are all those substances which are usually used to improve the penetration of agrochemical active substances into plants. Penetration promoters are in this context defined by the fact that they can penetrate from the aqueous spray mixture and / or from the spray coating in the cuticle of the plant and thereby increase the material mobility (mobility) of active ingredients in the cuticle.
  • suitable effect substances are additives for food or animal feed, such as food colorants, amino acids, vitamins, preservatives, antioxidants, odorants or flavorings.
  • auxiliaries for polymers are flame retardants, viscosity improvers or polar liquids, as they can be used in the discontinuous phase.
  • auxiliaries for paper are alkenylsuccinic anhydrides or dialkyldiketenes.
  • auxiliaries for detergents and cleaners are surfactants or emulsifiers, as can also be used as dispersants in the inverse miniemulsion.
  • enzymes such as hydrolases or amidases can be used as auxiliaries.
  • Preferred effect substances are biocides, pesticides and fertilizers. In one embodiment, the effect substances are pesticides. In another embodiment, the effect substances are biocides. In another embodiment, the effect substances are agrochemical adjuvants.
  • the effect materials can be used in pure form, technical grade, as an extract or in mixture with other effect substances.
  • the effect substances are dissolved or in solid form in the dispersed phase.
  • the total amount of effect substances is from 0.1 to 90% by weight, preferably from 5 to 50% by weight, based on the total batch in step A).
  • the effect substances can be released from the microparticles by diffusion from the microparticle or by degradation of the microparticle.
  • the release path can be selectively controlled by internal and external influences which influence the diffusion or degradation.
  • additives for example preservatives, thickeners, release agents or protective colloids and emulsifiers, which can also be used in the process according to the invention, are known to the person skilled in the art and are added in customary amounts, depending on the intended use, after preparation of the microparticles.
  • the wall monomers are selected from the group of ethylenically unsaturated monomers, polyisocyanates and / or polyepoxides.
  • the polyisocyanates are preferably used in combination with another wall monomer, such as ethylenically unsaturated monomers and polyisocyanates, polyisocyanates and polyols, polyisocyanates and polyamines.
  • Preferred wall monomers are ethylenically unsaturated monomers, ethylenically unsaturated monomers and polyisocyanates, monoethylenically and multiply ethylenically unsaturated monomers, polyisocyanates and polyols, polyisocyanates and polyamines, and polyepoxides and polyamines.
  • Particularly preferred wall monomers are ethylenically unsaturated monomers, and ethylenically unsaturated monomers and polyisocyanates.
  • Especially preferred wall monomers are ethylenically
  • Suitable ethylenically unsaturated monomers are radically polymerizable monomers having at least one, preferably one, CC double bond.
  • Preferred ethylenically unsaturated monomers are (meth) acrylic acid, (meth) acrylates, (meth) acrylamide or vinyllactams, in particular (meth) acrylic acid, (meth) acrylates, (meth) acrylamide.
  • acrylic acid and its esters methacrylic acid and its esters, maleic acid and its esters, styrene, butadiene, isoprene, vinyl acetate, vinyl propionate, vinylpyridine, vinyl chloride, vinylidene dichloride, acrylonitrile, methacrylamide, itaconic acid, maleic anhydride, N-vinylpyrrolidone, and acrylamido-2-methyl propanesulfonic acid, N-methylolacrylamide, N-methylolmethacrylamide, dimethylaminoethyl methacrylate and diethylaminoethyl methacrylate.
  • esters of acrylic acid or methacrylic acid are C 1 -C 24 -alkyl esters, especially hydroxy-functional alkyl esters, especially hydroxy-C 2 -C 6 -alkyl esters such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 4-hydroxybutyl acrylate, 4-hydroxybutyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate , 3-hydroxypropyl acrylate, 3-hydroxypropyl methacrylate.
  • water-soluble ethylenically unsaturated monomers having a solubility of at least 5% by weight in water are suitable.
  • examples are acrylamide, methacrylamide, acrylic acid, methacrylic acid, salts of acrylamido-2-methylpropanesulfonic acid, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 4-hydroxybutyl acrylate, 4-hydroxybutyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate or 3-hydroxypropyl methacrylate.
  • Very particularly preferred ethylenically unsaturated monomers are hydroxy-functional C 2 -C 6 -alkyl esters of acrylic acid or methacrylic acid, and vinylpyrrolidone, especially 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 4-hydroxybutyl acrylate, 4-hydroxybutyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate or 3-hydroxypropyl methacrylate.
  • Suitable polyisocyanates are aliphatic and aromatic isocyanates having at least two, preferably two to four, particularly preferably two to three isocyanate groups.
  • polyisocyanates are aromatic isocyanates such as 2,4-tolylene diisocyanate (2,4-TDI), 2,4'-diphenylmethane diisocyanate (2,4'-MDI) and so-called TDI mixtures (mixtures of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate).
  • aliphatic isocyanates are: 1,4-butylene diisocyanate, hexamethylene diisocyanate (HDI), 1,12-dodecamethylene diisocyanate, 1,10-decamethylene diisocyanate, 2-butyl-2-ethylpentamethylene diisocyanate, 2,4,4- or 2-butene , 2, 4-trimethyl hexamethylene diisocyanate, isophorone diisocyanate (IPDI), 2-isocyanatopropyl cyclohexyl isocyanate, 2,4'-methylenebis (cyclohexyl) diisocyanate and 4-methylcyclohexane-1, 3-diisocyanate (H-TDI).
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • oligo-cyanates are oligo-cyanates and mixtures thereof.
  • the number of isocyanate groups is usually determined via the NCO content and thus calculates the average number of isocyanate groups.
  • This average number of isocyanate groups is typically at least two, preferably two to four, more preferably two to three.
  • Preferred oligoisocyanates are based on the abovementioned aromatic and / or aliphatic polyisocyanates, especially on diphenylmethane diisocyanate and / or hexamethylene diisocyanate.
  • Such oligoisocyanates are commercially available, for example, as Lupranat® M20S from BASF SE.
  • Preferred polyisocyanates are tolylene diisocyanate (2,4-TDI), 2,4'-diphenylmethane diisocyanate (2,4'-MDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and oligoisocyanates. Particularly preferred are oligoisocyanates.
  • the polyisocyanates can be prepared in the absence or preferably in the presence of at least one polyurethane catalyst. Suitable polyurethane catalysts are, for example, all catalysts customarily used in polyurethane chemistry, such as organic amines, in particular tertiary aliphatic, cycloaliphatic or aromatic amines, and Lewis-acidic organic metal compounds.
  • Suitable Lewis acidic organic metal compounds are tin compounds, for example tin (II) salts of organic carboxylic acids, for example tin (II) acetate, tin (II) octoate, tin (II) ethyl hexoate and tin (II ) -Aurate and the dialkyltin (IV) derivatives of organic carboxylic acids, eg dimethyltin diacetate, dibutyltin diacetate, dibutyltin dibutyrate, dibutyltin bis (2-ethylhexanoate), dibutyltin dilaurate, dibutyltin maleate, dioctyltin dilaurate and dioctyltin diacetate.
  • Metal complexes such as acetylacetonates of iron, titanium, zinc, aluminum, zirconium, manganese, nickel and cobalt are also possible.
  • Suitable polyepoxides are compounds having at least two, preferably two to three epoxide groups. Examples of these are epoxides derived from bisphenol A, such as bisphenol A diglycidyl ether or epoxides of the epichlorohydrin-substituted bis- or polyphenols type (epoxides having a degree of polymerization of 1 to 2, sold under the name Epikote® E 828 by Shell ), or tetraglycidylmethylenedianiline (eg LY 1802 from Ciba).
  • bisphenol A such as bisphenol A diglycidyl ether or epoxides of the epichlorohydrin-substituted bis- or polyphenols type (epoxides having a degree of polymerization of 1 to 2, sold under the name Epikote® E 828 by Shell ), or tetraglycidylmethylenedianiline (eg LY 1802 from Ciba).
  • ethylenically unsaturated monomers and polyisocyanates are preferred. Suitable ethylenically unsaturated monomers and polyisocyanates are described above.
  • Preferred monoethylenically unsaturated monomers for combination with polyisocyanates are hydroxy-functional ethylenically unsaturated monomers, such as hydroxy-functional C 2 -C 6 -alkyl esters of acrylic acid or methacrylic acid, especially 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 4-hydroxybutyl acrylate, 4-hydroxybutyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate or 3-hydroxypropyl methacrylate.
  • ethylenically unsaturated monomers are understood as meaning monomers having exactly one free-radically polymerizable C-C double bond.
  • Multiply ethylenically unsaturated monomers are understood as meaning monomers having at least two, preferably two to three, in particular two, radically polymerizable C 1 -C 2 double bonds which are preferably not conjugated.
  • Suitable monoethylenically unsaturated monomers are listed above in the description of ethylenically unsaturated monomers.
  • Preferred simply ethyle- unsaturated monomers are hydroxy-functional C 2 -C 6 -alkyl esters of acrylic acid or methacrylic acid, and vinylpyrrolidone, especially 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 4-hydroxybutyl acrylate, 4-hydroxybutyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate or 3-hydroxypropyl methacrylate. hydroxypropyl methacrylate.
  • Suitable polyethylenically unsaturated monomers are the diesters of diols with acrylic acid or methacrylic acid, furthermore the diallyl and divinyl ethers of these diols. Examples are ethanediol diacrylate, ethylene glycol dimethacrylate, polalkylene glycol di (meth) acrylate, ethylene and / or propylene being mostly used as the alkylene,
  • divinylbenzene, trivinylbenzene and divinylcyclohexane and trivinylcyclohexane polyesters of polyols with acrylic acid and / or methacrylic acid, and also the polyallyl and polyvinyl ethers of these polyols.
  • Methacrylates trimethylolpropane triacrylate and methacrylate, pentaerythritol triallyl ether, pentaerythritol tetraallyl ether, pentaerythritol triacrylate and pentaerythritol tetraacrylate or the corresponding methacrylates and their technical mixtures.
  • Particular preference is given to propanediol, butanediol, pentanediol and hexanediol diacrylate and the corresponding methacrylates.
  • Preferred comunications comprising mono and multi-ethylenically unsaturated monomers are 2-hydroxyethyl (meth) acrylate and pentaerythritol triacrylate; 2-hydroxyethyl (meth) acrylate and butanediol di (meth) acrylate; and 2-hydroxyethyl (meth) acrylate and polalkylene glycol di (meth) acrylate.
  • Suitable polyisocyanates have been described above.
  • Suitable polyols are alcohols having at least two alcohol groups, such as ethanediol, diethylene glycol, 1, 2 or 1, 3-propanediol, dipropylene glycol, 1, 4-butanediol, 1, 5-pentanediol, 1, 6-hexanediol, 1 , 10-decanediol, glycerol and trimethylolpropane, and also Dialkoho- Ie containing aromatic or aliphatic ring systems, such as. B.
  • polyester polyols from lactones, eg. Caprolactone or hydroxycarboxylic acids, e.g. Hydroxycaproic.
  • Polymers having at least two alcohol groups may also be used, such as polyvinyl alcohol or partially hydrolyzed polyvinyl acetate. Mixtures of the aforementioned polyols are also possible.
  • Preferred polyhydric alcohols are diethylene glycol, 1, 4-butanediol, 1, 5-pentanediol and 1, 6-hexanediol.
  • Comonomers comprising polyisocyanates and polyamines are furthermore preferred as wall monomers.
  • Suitable polyisocyanates have been described above.
  • polyamines compounds having at least two, preferably two to four, in particular especially two to three amino groups are used.
  • Suitable polyamines are preferably aliphatic primary and secondary polyamines.
  • Examples which may be mentioned are: 1,2-ethylenediamine, diethylenetriamine, triethylenetetramine, bis (3-amino-propyl) amine, bis (2-methylaminoethyl) methylamine, 1,4-diamino-cyclohexane, 3-amino-methylaminopropane, N- Methyl bis (3-aminopropyl) amine, 1, 4-diamino-n-butane, 1, 6-diamino-n-hexane, polyvinylamine, amino-terminated polyethers.
  • Preferred polyamines are 1, 2-ethylenediamine, diethylenetriamine and triethylenetetramine.
  • Comonomers comprising polyepoxides and polyamines are furthermore preferred as wall monomers. Suitable polyepoxides and polyamines have been described above.
  • the wall monomers are generally employed in a weight ratio of wall monomer to polyester monomer of from 1: 5 to 10: 1, preferably from 1: 3 to 7: 1, more preferably from 1: 1 to 4: 1.
  • the process according to the invention for the production of effect-containing microparticles M comprises A) the formation of a crude suspension of microparticles A by means of enzymatic polyester synthesis in an inverse miniemulsion comprising enzyme, effect substance and polyester monomers; and B) the polymerization of wall monomers from the group of ethylenically unsaturated monomers, polyisocyanates and / or polyepoxides in the crude suspension of microparticles A. Steps A) and B) are usually carried out in the order mentioned.
  • a crude suspension of microparticles A is formed by enzymatic polyester synthesis in an inverse miniemulsion containing enzyme, effect substance and polyester monomers.
  • at least one dispersing agent, at least one nonpolar liquid, at least one polar liquid, at least one polyester monomer, at least one enzyme catalyzing the polymerization and at least one effect substance are combined in any order and an inverse miniemulsion is produced therefrom. It is also possible to prepare premixes of individual components.
  • at least one enzyme catalyzing the polymerization of the polyester monomer is introduced into a previously prepared inverse miniemulsion.
  • the process according to the invention preferably takes place in such a way that at least one dispersing agent is introduced into at least one subset of a liquid and a subset of the polyester monomers.
  • the effect substance and a partial amount of the polyester monomers are separately introduced into at least a subset of the liquid.
  • the two mixtures are combined and made an inverse miniemulsion.
  • subsets of the polyester monomers and the enzyme are introduced into the miniemulsion.
  • “Subset of polyester monomers” in this context means between 0 to 100% of the total polyester monomers contained in the reaction mixture.
  • a portion of the polyester monomers is incorporated into the miniemulsion, the subset being greater than 1%, preferably greater than 10% , such as preservatives, can be incorporated at any process step.
  • the process of the invention is generally carried out at a reaction temperature of 5 to 100 0 C, often from 20 to 80 0 C and often from 30 to 65 0 C. In general, the process is carried out at a pressure (absolute values) usually from 0, 8 to 10 bar, preferably from 0.9 to 2 bar and in particular at 1 bar (atmospheric pressure).
  • the person skilled in the art directs the reaction time according to the desired properties of the microparticles, for example the degree of polymerization. After the desired reaction time, the enzyme may be destroyed or reused, the microparticles isolated or the reaction mixture otherwise isolated or further processed.
  • the crude suspension of microparticles A is preferably used directly for step B).
  • a macroemulsion is prepared by introducing energy into the mixture of the phases by shaking, whipping, stirring, turbulent mixing; by injecting one fluid into another; by vibrations and cavitation in the mixture (eg ultrasound); by emulsifying centrifuges; through colloid mills and homogenizers; or by means of a jet nozzle, as described for example in WO 2006/053712.
  • the macroemulsion is converted by homogenization into a miniemulsion with droplet sizes below 1000 nm.
  • the homogenization is preferably carried out at 0 to 100 0 C by using ultrasound, high-pressure homogenizers or other high-energy homogenization, such as jet nozzles.
  • solid microparticles of the polyester monomers form during the reaction time in the inverse miniemulsion catalysed by the enzyme.
  • the formation of solid microparticles produces a crude suspension of microparticles A from the inversion miniemulsion A.
  • step B the polymerization of wall monomers from the group of ethylenically unsaturated monomers, polyisocyanates and / or polyepoxides in the crude suspension of microparticles A.
  • at least one wall monomer is introduced into a previously prepared crude suspension of microparticles A and then polymerized. More preferably, at least one wall monomer and at least one dispersant are added to the crude suspension.
  • the polymerization of the wall monomers can be carried out by conventional means, such as by polymerization. Catalysts or physical methods. If the wall monomers comprise ethylenically unsaturated monomers, radical initiators are usually added as polymerization catalysts and / or the reaction temperature is increased. If the wall monomer comprises polyisocyanates, then the aforementioned polyurethane catalysts are usually added as polymerization catalysts.
  • step B) takes place in such a way that the crude suspension from step A) is admixed with at least one dispersant and at least one wall monomer.
  • the crude suspension is preferably admixed with an emulsion comprising wall monomer and dispersant.
  • an emulsion of wall monomers in the crude suspension of microparticles A preferably forms.
  • at least one polymerization catalyst is added.
  • Wall monomer, dispersant and polymerization catalyst may be added in an amount, in multiple aliquots or continuously.
  • Wall monomer, dispersant and polymerization catalyst can be dissolved or dispersed in polar or non-polar solvent before being added to the crude suspension.
  • At least one wall monomer is already added in step A) and is polymerized only during step B). Preference is given to using wall monomers which do not carry any primary or secondary hydroxyl groups. In particular, ethylenically unsaturated monomers which do not carry primary or secondary hydroxy groups are suitable.
  • the process of the invention is generally carried out at a reaction temperature of 20 to 120 0 C, often from 40 to 90 0 C and often from 50 to 80 0 C.
  • the process is carried out at a pressure (absolute values) usually from 0, 8 to 10 bar, preferably from 0.9 to 2 bar and in particular at 1 bar (atmospheric pressure).
  • the person skilled in the art directs the reaction time according to the desired properties of the microparticles, for example the degree of polymerization.
  • the reaction mixture is usually mixed, for example by continuous stirring.
  • step B) the effect-containing microparticles M form from the microparticles A and the polymerized wall monomers.
  • small proportions, preferably less than 20% by weight, in particular less than 5% by weight, based on the total amount of all microparticles, of non-inventive microparticles can additionally be formed only from the polymerized wall monomers.
  • This secondary nucleation is a common side reaction that can be reduced by the skilled person by conventional means, for example by slow metering of the wall monomers, or low concentration of the wall monomers in the continuous phase.
  • microparticles M are possible without further workup. After the preparation of the microparticles according to the invention, they can be used as needed be isolated, that is to be freed from solvents. Suitable methods are, for example, evaporation, spray drying, freeze drying, centrifugation, filtration or vacuum drying. In a preferred embodiment, the microparticles are not isolated after preparation.
  • microparticles M can be converted into dispersions of the invention by dispersing the microparticles in water or aqueous solutions, for example by phase transfer methods, flush-analogous transfer methods, or preferably by drying the particles to a powder which is subsequently re-dispersed.
  • the dispersion prepared according to the invention containing microparticles M or the further processed product can be used as a component in colorants, cosmetics, pharmaceuticals, crop protection agents, fertilizers, additives for food or animal feed, auxiliaries for polymers, paper, textile, leather, paints or detergents and cleaners , It is advantageous that the effect material can be selectively released again, especially in the biosphere, where polyester-degrading enzymes are ubiquitous.
  • the present invention relates to an agrochemical formulation comprising microparticles M according to the invention or microparticles M prepared according to the invention.
  • formulation auxiliaries in the context of the invention are auxiliaries which are suitable for the formulation of agrochemical active substances, such as solvents, carriers, surfactants (ionic or nonionic surfactants, adjuvants, dispersants), Preservatives, defoamers and / or antifreeze agents
  • seed treatment auxiliaries may optionally also be dyes, binders, gelling agents and / or thickeners.
  • the agrochemical formulations may comprise 0 to 90% by weight, preferably 1 to 85% by weight, more preferably 5 to 80% by weight, and especially 5 to 65% by weight of formulation aid.
  • the present invention relates to methods for controlling undesired plant growth, wherein the unwanted plants, the soil on which the unwanted plants grow, or their seeds are treated with an agrochemical formulation according to the invention.
  • the present invention relates to methods for controlling undesirable insect or mite infestation on plants and / or for controlling phytopathogenic fungi, wherein the fungi / insects, their habitat or to be protected against fungal or insect infestation plants or soils or the plants, the soil on which the plants grow, or their seeds treated with an agrochemical formulation of the invention.
  • the present invention relates to methods for treating seed with an agrochemical formulation according to the invention and seed treated with an agrochemical formulation according to the invention.
  • the process according to the invention offers many advantages over conventional processes for producing microparticles: low reaction temperatures and largely neutral pH values allow the use of temperature- and pH-sensitive effect substances;
  • the polymers of the microparticle can be prepared directly in situ without consuming expensive storage.
  • the microparticles produced according to the invention have advantages: the microparticles are denser than in other preparation processes.
  • the microparticles are mechanically more stable than only enzymatically produced microparticles.
  • the microparticles may comprise temperature-labile or otherwise sensitive effect substances, they may also comprise dissolved in polar liquid effect substances.
  • the rate of release of the effect substance from the microparticles can be controlled by the type and / or amount of the wall monomers. The rate of release is advantageously slower due to the polymerization of the wall monomers compared to particles constructed solely of polyester.
  • Partially hydrogenated petroleum distillate partially hydrogenated mineral oil distillate having a boiling point 260-280 0 C, for example as Isopar ® V commercially available from Exxon Mobil Chemical..
  • Enzyme a Candida antarctica type B lipase immobilized on spherical polymer beads, for example commercially available as Novozym® 435 from Novozymes, Denmark.
  • Dispersant polyester-polyethylene oxide-polyester block copolymer with a
  • Caprolactone ⁇ -caprolactone with purity> 99%.
  • HEMA 2-hydroxyethyl methacrylate, commercially available from BASF SE.
  • AIBN azobisisobutyronitrile
  • DBTL dibutyltin dilaurate Isocyanate A: 4,4'-diphenylmethane diisocyanate oligomer having an NCO content of 31.8 g / 100 g (ASTM D 5155-96 A), acidity 150 mg / kg (as HCl, ASTM, D 1638-74) and viscosity of 210 mPaS (DIN 53018), for example commercially available as Lupranat® M20S from BASF SE.
  • the effect substance used was a fungicidal pesticide, for example triticonazole.
  • a colorant for example, Basacid ® Blue 756 (CI.
  • Basacid® Blue 9 triphenylmethane dye, for example, available from BASF SE
  • Basacid® Blue 756 is insoluble in Isopar ® V, while it dissolves in propylene carbonate and caprolactone.
  • propylene carbonate was used as effect substance.
  • the dye Sudan® Blue anthraquinone dye, Cl. Solvent Blue 79, available, for example, from BASF SE
  • Sudan® Blue anthraquinone dye, Cl. Solvent Blue 79, available, for example, from BASF SE. It dissolves only in very hydrophobic media, such as Isopar ® V and polycaprolactone. However, it is slightly soluble in water or propylene carbonate.
  • Example 2 Polymerization with 300% Hydroxyethyl Methacrylate (HEMA) First, the crude suspension of microparticles was prepared as described in Example 1. Then 3.6 g of dispersant were added and 15 min. touched. After complete dissolution of the dispersant in the oil phase, 18.0 g HEMA was added and stirred for a further 30 min. The polymerization reaction was then started by adding a mixture of 72 g of isopar V and 0.36 g of AIBN. To ensure complete conversion, the same amount of AIBN in 24 g of isopar V was added again after a reaction time of 6 h at 60 0 C and further polymerized until complete conversion.
  • HEMA Hydroxyethyl Methacrylate
  • Example 2 To prepare an SEM (scanning electron microscope) image, the product obtained was centrifuged as in Example 1, the solid thus obtained was washed with isobutanol and hexane and dried in air. The dried solid was then finely crushed in a mortar to a powder. The SEM image showed intact, spherical microparticles (FIG. 3). To further control the stability of the particles, the powder was redispersed in a 1% strength by weight aqueous SDS solution by means of ultrasound (1 min, with ice cooling, 100% with sonotrode H7). Photomicrographs (1000x magnification) showed intact spherical particles.
  • the experiments show the high mechanical stability, in particular in comparison to the particles from Example 1.
  • Example 3 Polymerization with 200% Hydroxyethyl Methacrylate
  • the crude suspension of microparticles was prepared as described in Example 1. Then 2.4 g of dispersant was added and 15 min. touched. After complete dissolution of the dispersant in the oil phase, 12.0 g of HEMA were added and the mixture was stirred for a further 30 min.
  • the polymerization reaction was then started by adding a mixture of 24 g of partially hydrogenated mineral oil distillate and 0.24 g of AIBN. In order to ensure a complete conversion, the same amount of AIBN in 24 g of partially hydrogenated mineral oil distillate was added again after a reaction time of 6 h at 60 0 C and further polymerized until complete conversion. To prepare for SEM uptake, the product obtained was as in
  • Example 2 prepared. The SEM image showed intact, spherical microparticles.
  • the crude suspension of microparticles was prepared as described in Example 1. Then, 1, 2 g of dispersant were added and 15 min. touched. After complete dissolution of the dispersant in the oil phase 6.0 g HEMA was added and stirred for a further 30 min. The polymerization reaction was then started by adding a mixture of 24 g of partially hydrogenated mineral oil distillate and 0.12 g of AIBN. After a reaction time of 6 h at 60 ° C., the addition of 6.0 g of HEMA was carried out and, after a further 20 h, the addition of a further 6.0 g of HEMA, in each case in conjunction with an addition of 1.2 g of dispersant and 0.12 g AIBN in 24 g IsoparV. After the last HEMA addition was at 60 0 C until complete conversion 12 h further polymerized. To prepare for SEM uptake, the product obtained was prepared as in Example 2. The SEM image showed intact, spherical microparticles.
  • Example 5 Particles Without Propylene Carbonate, Polymerization With 300% HEMA The following quantities were used to prepare the inverse miniemulsion: 114.0 g portion hydrogenated mineral oil distillate 30.0 g ⁇ -caprolactone 96 mg D-sorbitol 0.82 g triticonazole 6.0 g Dispersant 3.0 g Novozym 435
  • the dispersant was placed in a sample vessel and dissolved with stirring in partially hydrogenated mineral oil distillate.
  • triticonazole was dissolved in a mixture of caprolactone and sorbitol.
  • the homogeneous solutions were then mixed together and pre-emulsified by stirring with the magnetic stirrer (60 min at room temperature).
  • ultrasound ultrasound processor UP 400S from Hielscher
  • an inverse miniemulsion was prepared therefrom while cooling with an ice bath (5 min, 100% with sonotrode H7) and polymerized at 60 ° C. for 48 h after addition of the enzyme.
  • Example 2 To prepare for SEM uptake, the product obtained was prepared as in Example 2. The SEM image showed intact, spherical microparticles.
  • Example 7 Polymerization with HEMA and Isocyanate A - NCO / OH Ratio
  • OH groups of HEMA are crosslinked with isocyanate A at different ratios of OH to NCO.
  • 30.0 g of the end product obtained in Example 2) were admixed with isocyanate A and heated to 60 ° C. with stirring with a magnetic stirrer. After addition of 0.01 g of DBTL as catalyst, the reaction mixture was stirred overnight to complete NCO conversion.
  • the product obtained was prepared in each case as in Example 2.
  • the SEM image showed intact, spherical microparticles.

Abstract

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Effektstoff-haltigen Mikropartikeln M umfassend A) die Bildung einer Rohsuspension von Mikropartikeln A mittels enzymatischer Polyestersynthese in einer inversen Miniemulsion enthaltend Enzym, Effektstoff und Polyester-Monomere; und B) die Polymerisation von Wand-Monomeren aus der Gruppe ethylenisch ungesättigter Monomere, Polyisocyanate und/oder Polyepoxide in der Rohsuspension von Mikropartikeln A. Des weiteren betrifft die vorliegende Erfindung Mikropartikel M erhältlich mittels des erfindungsgemäßen Verfahrens sowie eine agrochemische Formulierung umfassend Mikropartikel M. Außerdem betrifft die vorliegende Erfindung die Verwendung von erfindungsgemäß hergestellten Mikropartikeln M als Komponente in Farbmitteln, Kosmetika, Pharmaka, Biozid, Pflanzenschutzmittel, Düngemittel, Zusatzstoffen für Lebensmittel oder Tierfutter, Hilfsmitteln für Polymere, Papier, Textil, Leder oder Wasch- und Reinigungsmittel. Schließlich betrifft die Erfindung auch ein Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, ein Verfahren zur Bekämpfung von unerwünschtem Insekten- oder Milbenbefall auf Pflanzen und/oder zur Bekämpfung von phytopathogenen Pilzen, und Saatgut behandelt mit der agrochemischen Formulierung.

Description

Verfahren zur Herstellung von Effektstoff-haltigen Mikropartikeln
Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Effektstoff-haltigen Mikropartikeln M umfassend A) die Bildung einer Rohsuspension von Mikropartikeln A mittels enzymatischer Polyestersynthese in einer inversen Miniemulsion enthaltend Enzym, Effektstoff und Polyester-Monomere; und B) die Polymerisation von Wand-Monomeren aus der Gruppe ethylenisch ungesättigter Monomere, Polyiso- cyanate und/oder Polyepoxide in der Rohsuspension von Mikropartikeln A. Des weiteren betrifft die vorliegende Erfindung Mikropartikel M erhältlich mittels des erfindungs- gemäßen Verfahrens sowie eine agrochemische Formulierung umfassend Mikropartikel M. Außerdem betrifft die vorliegende Erfindung die Verwendung von erfindungsgemäß hergestellten Mikropartikel M als Komponente in Farbmitteln, Kosmetika, Pharmaka, Biozid, Pflanzenschutzmittel, Düngemittel, Zusatzstoffen für Lebensmittel oder Tierfutter, Hilfsmitteln für Polymere, Papier, Textil, Leder oder Wasch- und Reini- gungsmittel. Schließlich betrifft die Erfindung auch ein Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, ein Verfahren zur Bekämpfung von unerwünschtem Insekten- oder Milbenbefall auf Pflanzen und/oder zur Bekämpfung von phytopathoge- nen Pilzen, und Saatgut behandelt mit der agrochemischen Formulierung.
Kombinationen bevorzugter Merkmale mit anderen bevorzugten Merkmalen werden von der vorliegenden Erfindung umfasst.
Mikropartikel sind in den verschiedensten Ausführungsformen bekannt und werden je nach Dichtigkeit der Kapselwand zu sehr unterschiedlichen Zwecken verwendet. Bei- spielsweise dienen sie dem Schutz von Kernmaterialien, die erst durch gezielte mechanische Zerstörung der Kapselhülle freigesetzt werden sollen, beispielsweise von Farbstoffvorstufen für Durchschreibepapiere oder von verkapselten Duftstoffen. In solchen Anwendungsbereichen kennt man Kapselhüllmaterialien auf Gelatine-, Polyurethan-Harz-, Melamin-Formaldehyd-Harz- sowie Polyacrylatbasis. Andere Anfor- derungen werden an Wandmaterialien für pflanzliche oder pharmazeutische Wirkstoffe als Kernmaterialien gestellt, bei denen es auf eine Durchlässigkeit der Kapselhülle ankommt, die eine kontrollierte Freisetzung und den zielgerichteten Transport der Wirkstoffe ermöglicht. Hier kennt man neben den durch chemische Verfahren hergestellten Kapseln auch mechanisch-physikalische Herstellverfahren.
Zur Herstellung von Mikropartikeln sind chemische oder physikalische Methoden allgemein bekannt. Bei physikalischen Methoden werden üblicherweise gelöste Polymere auf das zu verkapselnde Material aufgebracht und durch physikalische Methoden, wie Sprühtrocknung oder Lösungsmittelentzug, in eine feste Kapselwand überführt. Bei chemischen Methoden bildet sich die feste Kapselwand durch chemische Reaktion, beispielsweise durch Polymerisation von Monomeren, auf dem zu verkapselnden Material. Ein zusätzlicher physikalischer Schritt zur Bildung der festen Mikropartikel ist nicht notwendig. Polyester-haltige Mikropartikeln sowie deren Herstellverfahren, sind allgemein bekannt. Derartige Mikropartikeln lassen sich ausgehend von polymeren Einsatzstoffen für die Kapselhülle herstellen. So offenbart EP 1 421 990 ein Verfahren zur Herstellung von Mikropartikeln, wobei ein Polyester, der dispergiert in einem Polyol ist, mit einem Enzym als Effektstoff, das dispergiert in einem Polyol ist, emulgiert wird. US 4,637,905 offenbart ein Verfahren zur Herstellung von Mikropartikeln mit 1 bis 2000 μm, wobei eine Dispersion von Polymilchsäure mit einem Protein als Effektstoff hergestellt, ein Teil des Lösungsmittels abgedampft und schließlich die eingeengte Dispersion in ein drittes Lösemittel gegeben wird zur Verkapselung des Effektstoffes. WO 2002/069922 offenbart Mikropartikeln mit einem Oxidoreduktase-haltigen wässrigen Kern und einer polyesterhaltigen Hülle. Die Herstellung erfolgt durch emulgieren einer wässerigen En- zymlösung mit einer in einem organischen Lösemittel gelösten Polyester, gefolgt vom Einbringen der Primäremulsion in ein wässeriges Lösemittel und anschließend der Ent- fernung der organischen Lösemittel. DE 102005007374 offenbart Nanopartikel vom Kern-Schale Typ. Als Schale wird ein Polymer definiert, das hydrophob und biokompatibel ist. Das Polymer ist beispielsweise Polyacrylat, Polyepoxid, Polyurethan oder Polyester. Als Kern wird ein Aktivstoff definiert, welcher vom Polymer der Schale eingeschlossen ist. Die Herstellung erfolgt durch radikalische Polymerisation, Polyaddi- tion, Polykondensation oder enzymatische oder anionische Polymerisation. Einzelheiten des Verfahrens oder Beispiele werden nicht genannt. Die PCT/EP2008/054702 offenbart ein Verfahren zur Herstellung von Mikrokapseln, enthaltend einen effektstoff- haltigen Kapselkern und eine polymerhaltige Kapselhülle, umfassend die Bildung der Kapselhülle mittels enzymkatalysierter Polymerisation von Monomeren, welche in einer inversen Miniemulsion vorliegen. Nachteilig an den bekannten Verfahren ist beispielsweise, dass die Polymere, welche die Mikropartikel bilden, getrennt durch Polymerisation hergestellt werden, dass die Mikropartikel nicht ausreichend stabil sind, oder dass die Freisetzungsrate des Effektstoffes nicht kontrolliert werden kann.
Aufgabe der vorliegenden Erfindung war es, ein verbessertes Verfahren zur Herstellung von effektstoffhaltigen Mikropartikeln zur Verfügung zu stellen. Insbesondere war es Aufgabe der vorliegenden Erfindung, ein Verfahren zur Verfügung zu stellen, bei dem Polyester-haltige Mikropartikel mit verbesserter Stabilität der Kapselstruktur bereit gestellt werden können. Ein weiterer Aspekt der Aufgabe war, die vorgenannte Mikro- Partikeln unter milden Reaktionsbedingungen herzustellen, so dass auch empfindliche Effektstoffe verkapselt werden können. Ein weiterer Aspekt war, dass die spätere Freisetzung der Effektstoffes gesteuert werden konnte durch das Herstellverfahren und die Monomerenzusammensetzung.
Die Aufgabe wurde gelöst durch ein Verfahren zur Herstellung von Effektstoff-haltigen Mikropartikeln M umfassend A) die Bildung einer Rohsuspension von Mikropartikeln A mittels enzymatischer Polyestersynthese in einer inversen Miniemulsion enthaltend Enzym, Effektstoff und Polyester-Monomere; und B) die Polymerisation von Wand- Monomeren aus der Gruppe ethylenisch ungesättigter Monomere, Polyisocyanate und/oder Polyepoxide in der Rohsuspension von Mikropartikeln A.
Mittels des erfindungsgemäßen Verfahrens wird im Allgemeinen ein Ensemble von Mikropartikeln M hergestellt. Das erfindungsgemäße Verfahren führt in der Regel zu gleich oder ähnlich geformten Mikropartikeln. Erfindungsgemäß hergestellte Mikropar- tikel können eine beliebige Form annehmen. Sie sind bevorzugt im Wesentlichen kugelförmig, zum Beispiel ideal kugelförmig, aufgebaut.
Erfindungsgemäß hergestellte effektstoffhaltige Mikropartikel M haben üblicherweise die Strukture einer Kapsel oder eines Matrixpartikels, bevorzugt einer Kapsel. Kapseln sind typischerweise aufgebaut aus einer Polymer-haltigen Kapselhülle und einem Effektstoff-haltigen Kapselkern. Matrixpartikel sind meist aufgebaut aus einem polymer- haltigen Partikelkern, in dem ein Effektstoff fein verteilt vorliegt.
Erfindungsgemäß soll auch eine Kapsel erhalten werden, die mindestens eine Kapselhülle und mindestens einen Kapselkern umfasst. So kann eine Kapsel zum Beispiel einen Kapselkern und zwei Kapselhüllen aufweisen. Ebenso kann eine Kapsel zum Beispiel mehrere Kapselkerne, zum Beispiel zwei nebeneinander oder zwei ineinander liegende Kapselkerne, und eine Kapselhülle, zum Beispiel zwei nebeneinander oder ineinander liegende Kapselhüllen aufweisen. Bevorzugt umfasst eine Kapsel eine Kapselhülle und einen Kapselkern. Die Dicke der Kapselhülle kann im weiten Bereich variieren. Sie beträgt im Allgemeinen von 0,1 bis 90 %, bevorzugt von 0,5 bis 20 % des Kapselradius (bestimmbar über Licht-/Elektronenmikroskopie oder Lichtstreuung).
Der mittlere Durchmesser der Mikropartikel M (bestimmbar als Z-Mittel durch Lichtstreuung einer 1 Gew.-%-igen wässerigen Dispersion von Mikropartikeln, erhältlich durch Verdünnen der Mikropartikel Suspension mit Wasser und gegebenenfalls Ab- trennen einer organischen Phase) kann in weitem Bereich variieren. Er beträgt im Allgemeinen mehr als 0,1 μm, bevorzugt mehr als 0,6 μm, besonders bevorzugt mehr als 0,8 μm. Der Durchmesser liegt bevorzugt im Bereich von 0,1 bis 2000 μm, bevorzugt von 0,6 bis 1000 μm, insbesondere von 0,8 bis 800 μm. Ein Durchmesser, der im unteren Bereich liegt, ist bevorzugt wenn eine höhere mechanische Stabilität der Mikropar- tikeln gewünscht ist. Ein Durchmesser im höheren Bereich wird bevorzugt, um möglichst viel Kapselinhalt in wenig Wandmaterial zu verpacken.
Die Mikropartikel M umfassen üblicherweise mindestens einen Effektstoff. Der Effektstoff liegt dabei im Partikelkern oder im Kapselkern in der Regel in fester, gelöster, e- mulgierter oder dispergierter Form vor. In einer bevorzugten Ausführungsform umfasst der Kapselkern mindestens einen Effektstoff und mindestens einen inerten Stoff, der bevorzugt eine Flüssigkeit ist. Als inerter Stoff kommen beispielsweise alle im erfin- dungsgemäßen Verfahren anwesenden Verbindungen in Betracht: Dispergiermittel, polare und/oder unpolare Flüssigkeiten, Wasser oder die katalytisch wirkenden Enzyme. Insbesondere umfasst der Kapselkern mindestens einen Effektstoff und mindestens ein polares Lösemittel. Der Partikelkern oder der Kapselkern kann auch nicht vollständig polymerisiertes Monomer enthalten. Nach einer bevorzugten Ausführungsform umfasst der Kapselkern mindestens die polare Flüssigkeit, welche die disperse Phase der inversen Miniemulsion bildet.
Erfindungsgemäß werden in dem Verfahren zur Herstellung der Mikropartikel M Enzy- me eingesetzt, die die Polymerisation der Polyester-Monomere katalysieren. Zur Beschreibung von Enzymen werden die vom „Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB)" entwickelten EC Klassen verwendet. Selbstverständlich ist es möglich, eine einzelne Hydrolase oder ein Gemisch verschiedener Hydrolasen einzusetzen. Auch ist es möglich, die Hydrola- sen in freier und/oder immobilisierter Form einzusetzen.
Als Hydrolasen [EC 3.x.x.x] geeignet sind beispielsweise Esterasen [EC 3.1.x.x], Proteasen [EC 3.4.X.X], Hydrolasen, welche mit anderen C-N-Bindungen als Peptid- Bindungen reagieren [EC 3.5.x.x] oder Hydrolasen, die mit Säureanhydriden reagieren [EC 3.6-x.x]. Erfindungsgemäß vorteilhaft werden insbesondere Carboxylesterasen [EC 3.1.1.1], Lipasen [EC 3.1.1.3] oder Cutinasen [EC 3.1.1.47] eingesetzt. Beispiele hierfür sind Lipasen aus Achromobacter sp., Aspergillus sp., Candida sp., Candida antarc- tica, Mucor sp., Penicilium sp., Geotricum sp., Rhizopus sp., Burkholderia sp., Pseudomonas sp., Pseudomonas cepacia, Thermomyces sp., Schweinepankreas oder Weizenkeimen sowie Carboxylesterasen aus Bacillus sp., Pseudomonas sp., Burkholderia sp., Mucor sp., Saccharomyces sp., Rhizopus sp., Thermoanaerobium sp., Schweineleber oder Pferdeleber. Bevorzugt wird Lipase aus Pseudomonas cepacia, Burkholderia platarii oder Candida antarctica Typ B in freier oder immobilisierter Form (beispielsweise Novozym® 435 der Fa. Novozymes A/S, Dänemark) eingesetzt.
Die Gesamtmenge der eingesetzten Enzyme beträgt in der Regel von 0,001 bis 40 Gew.-%, häufig von 0,1 bis 15 Gew.-% und oft von 0,5 bis 10 Gew.-%, jeweils bezogen auf die Gesamtmenge an Polyester-Monomeren. Die Menge hängt ab von der Reinheit des eingesetzten Enzyms. Technische oder immobilisierte Enzyme werden in der Re- gel in höheren Mengen eingesetzt als gereinigte Enzyme. Der Fachmann wird die Menge Katalysator auch danach ausrichten, wie schnell die Reaktion ablaufen soll.
Geeignete Polyester-Monomere sind beispielsweise Hydroxycarbonsäureverbindun- gen, Dialkoholverbindungen oder Disäureverbindungen, besonders Hydroxycarbonsäu- reverbindungen. Eine Kombination vorstehender Monomere ist ebenfalls möglich, wobei die Kombination von Dialkoholverbindungen und Disäureverbindungen bevorzugt ist. In einer bevorzugten Ausführungsform werden die Polyester-Monomere mit einem Startermonomer kombiniert, das eine Wasserstoffacide Verbindung ist, wie Hydroxy- oder Amino-funktionelle Verbindungen oder Wasser. Ein geeignete Startermonomer ist eine Hydroxycarbonsäureverbindung, Dialkoholverbindung oder eine Disäureverbin- dung ist. Bevorzugt ist das Startermonomer eine Dialkoholverbindung wie unten stehend beschrieben, besonders Ethylenglykol, 1 ,4-Butandiol, Glycerin, Sorbit, Monosaccharid, Disaccharid, Polysaccharid oder hydroxy-funktionelle, dendritische Polyester auf Basis 2,2-Dimethylolpropionsäure (Boltorn®-Typen, kommerziell erhält- lieh von Perstorp).
Als Hydroxycarbonsäureverbindungen kann man die freien Hydroxycarbonsäuren mit mindestens einer freien Alkoholgruppe und mindestens einer freien Carbonsäuregruppe, deren d-Cs-Alkylester und/oder deren Lactone verwenden. Beispielhaft genannt seien Glykolsäure, D-, L-, D,L-Milchsäure, 6-Hydroxyhexansäure (6-Hydroxycapron- säure), 3-Hydroxybuttersäure, 3-Hydroxyvaleriansäure, 3-Hydroxycapronsäure, deren cyclische Derivate wie Glycolid (1 ,4-Dioxan-2,5-dion), D-, L-, D,L-Dilactid (3,6-Di- methyl-1 ,4-dioxan-2,5-dion), ε-Caprolacton, ß-Butyrolacton, γ-Butyrolacton, ω-Dode- canolid (Oxacyclotridecan-2-on), ω-Undecanolid (Oxacyclododecan-2-on) oder ω-Pen- tadecanolid (Oxacyclohexadecan-2-on). Als Lactone sind auch Bis- oder Tris-Lactone geeignet, welche zwei bzw. drei Lactongruppen enthalten. Beispielsweise kann (2,2'- Bis-(ε-caprolactone-4-yl)propan verwendet werden. Bis-Lactone können beispielsweise synthetisiert werden gemäß Palmgren et al., Journal of Polymer Science A, 1997, 35, 1635-1649. Ebenso geeignet sind die Ester der Kohlensäure (Carbonate), besonders lineare und cyclische aliphatische Carbonate, bevorzugt Ci bis Cs-Alkylester der Kohlensäure, insbesondere Trimethylencarbonat. Carbonate, die mit dem jeweiligen Enzym nicht reagieren, beispielsweise Propylencarbonat, sind als Monomer nicht geeignet. Als Hydroxycarbonsäureverbindungen können auch die der oben genannten Hydroxycarbonsäure Verbindungen analogen Thiocarbonsäure und ihre Ester und Thi- olactone verwendet werden. Selbstverständlich können auch Mischungen unterschiedlicher Hydroxycarbonsäureverbindungen verwendet werden. Bevorzugte Hydroxycarbonsäureverbindungen sind Lactone, insbesondere C2 bis Cis-Alkylenlactone, ganz besonders bevorzugt ε-Caprolacton.
Als Dicarbonsäureverbindungen können prinzipiell alle C2-C4o-aliphatischen, C3-C20- cycloaliphatischen, aromatischen oder heteroaromatischen Verbindungen eingesetzt werden, welche mindestens zwei Carbonsäuregruppen (Carboxygruppen; -COOH) oder Derivate davon aufweisen. Als Derivate finden insbesondere Ci-Cio-Alkyl-, bevorzugt Methyl, Ethyl-, n-Propyl oder Isopropyl-Mono- oder Diester vorgenannter Dicar- bonsäuren, sowie die entsprechenden Dicarbonsäureanhydride Verwendung. Beispiele für Dicarbonsäureverbindungen sind Ethandisäure (Oxalsäure), Propandisäure (Ma- lonsäure), Butandisäure (Bernsteinsäure), Pentandisäure (Glutarsäure), Hexandisäure (Adipinsäure), Heptandisäure (Pimelinsäure), Octandisäure (Korksäure), Nonandisäure (Azelainsäure), Decandisäure (Sebacinsäure), Undecandisäure, Dodecandisäure, Tri- decandisäure (Brassylsäure), C32-Dimerfettsäure, Benzol-1 ,2-dicarbonsäure (Phthalsäure), Benzol-1 ,3-dicarbonsäure (Isophthalsäure) oder Benzol-1 ,4-dicarbonsäure (Terephthalsäure), deren Methylester, beispielsweise Ethandisäuredimethylester, Pro- pandisäuredimethylester, Butandisäuredimethylester, Pentandisäuredimethylester, Hexandisäuredimethylester, Heptandisäuredimethylester, Octandisäuredimethylester, Nonandisäuredimethylester, Decandisäuredimethylester, Undecandisäuredimethy- lester, Dodecandisäuredimethylester, Tridecandisäuredimethylester, C32-Dimerfett- säuredimethylester, Phthalsäuredimethylester, Isophthalsäuredimethylester oder
Terephthalsäuredimethylester, sowie deren Anhydride, beispielsweise Butandicarbon- säure-, Pentandicarbonsäure- oder Phthalsäureandhydrid. Selbstverständlich können auch Gemische vorgenannter Dicarbonsäureverbindungen eingesetzt werden. ON- goester und Polyester mit mindestens zwei freien Carboxygruppen, insbesondere car- boxyterminierte Oligo- und Polyester können ebenfalls als Dicarbonsäurekomponente eingesetzt werden. Ebenso können auch die Ester von Polycarbonsäuren wie beispielsweise Citronensäure und Butantetracarbonsäure verwendet werden. Bevorzugt werden die freien Dicarbonsäuren, besonders C4 bis C36 aliphatische Dicarbonsäuren, insbesondere Butandisäure, Hexandisäure, Decandisäure, Dodecandisäure bzw. deren entsprechenden Dimethyl- und Diethylester eingesetzt.
Als Diolverbindungen können verzweigte oder lineare Alkane mit 2 bis 18 Kohlenstoffatomen, bevorzugt 4 bis 14 Kohlenstoffatomen, Cycloalkane mit 5 bis 20 Kohlenstoffatomen oder aromatische Verbindungen verwendet werden, die mindestens zwei Alkoholgruppen enthalten. Beispiele geeigneter Alkandiole sind Ethylenglykol, 1 ,2- Propandiol, 1 ,3-Propandiol, 1 ,2-Butandiol, 1 ,4-Butandiol, 1 ,5-Pentandiol, 1 ,6-Hexan- diol, 1 ,7-Heptandiol, 1 ,8-Octandiol, 1 ,9-Nonandiol, 1 ,10-Decandiol, 1 ,11-Undecandiol, 1 ,12-Dodecandiol, 1 ,13-Tridecandiol, 2,4-Dimethyl-2-ethyl-1 ,3-hexandiol, 2,2-Dimethyl- 1 ,3-propandiol (Neopentylglykol), 2-Ethyl-2-butyl-1 ,3-propandiol, 2-Ethyl-2-isobutyl-1 ,3- propandiol oder 2,2,4-Trimethyl-1 ,6-hexandiol. Insbesondere geeignet sind Ethylenglykol, 1 ,3-Propandiol, 1 ,4-Butandiol und 2,2-Dimethyl-1 ,3-propandiol, 1 ,6-Hexandiol oder 1 ,12-Dodecandiol. Beispiele für Cycloalkandiole sind 1 ,2-Cyclopentandiol, 1 ,3-Cyclo- pentandiol, 1 ,2-Cyclohexandiol, 1 ,3-Cyclohexandiol, 1 ,4-Cyclohexandiol, 1 ,2-Cyclo- hexandimethanol (1 ,2-Dimethylolcyclohexan), 1 ,3-Cyclohexandimethanol (1 ,3- Dimethylolcyclohexan), 1 ,4-Cyclohexandimethanol (1 ,4-Dimethylolcyclohexan) oder 2,2,4,4-Tetramethyl-1 ,3-cyclobutandiol. Beispiele geeigneter aromatischer Diole sind 1 ,4-Dihydroxybenzol, 1 ,3-Dihydroxybenzol, 1 ,2-Dihydroxybenzol, Bisphenol A (2,2- Bis(4-hydroxyphenyl)-propan), 1 ,3-Dihydroxynaphthalin, 1 ,5-Dihydroxynaphthalin oder 1 ,7-Dihydroxynaphthalin. Als Diolverbindungen können jedoch auch Polyetherdiole, beispielsweise Diethylenglykol, Triethylenglykol, Polyethylenglykol (mit mehr als 4 E- thylenoxideinheiten), Propylenglykol, Dipropylenglykol, Tripropylenglykol, Polypropy- lenglykol (mit mehr als 4 Propylenoxideinheiten) und Polytetrahydrofuran (PoIy-THF), insbesondere Diethylenglykol, Triethylenglykol und Polyethylenglykol (mit mehr als 4 Ethylenoxideinheiten), eingesetzt werden. Als PoIy-THF, Polyethylenglykol oder Po- lypropylenglykol finden Verbindungen Verwendung, deren zahlenmittleres Molekulargewicht (Mn) in der Regel im Bereich von 200 bis 10000, bevorzugt von 600 bis 5000 g/mol liegt. Ebenfalls geeignet sind Oligoester und Polyester mit mindestens zwei freien Alkoholgruppen, bevorzugt dihydroxyterminierte Oligo- und Polyester. Weiterhin geeignet sind Dendrimere, die mindestens zwei primäre oder sekundäre freie Alkoholgruppen aufweisen. Weiterhin geeignet sind Polycarbonate, die mindestens zwei primäre oder sekundäre freie Alkoholgruppen aufweisen. Weitere Beispiele geeigneter Diolverbindungen mit mehr als zwei Alkoholgruppen sind Glycerin, Sorbit, Trimethy- lolpropan, Pentaerythrit, Monosacharide wie Fructose, Glucose oder Mannose, Disa- charide wie Sucrose, Oligosacharide sowie deren Substitutionsprodukte, oder Cellulosederivate wie Acetate. Als Diolverbindungen können auch ein der oben genannten Diolverbindungen analoges Dithiol verwendet werden. Selbstverständlich kön- nen auch Mischungen vorgenannter Diolverbindungen oder Dithiole verwendet werden. Bevorzugte Diole sind aliphatische Alkandiole und Polyetherdiole, besonders bevorzugt lineare und verzweigte aliphatische Alkandiole mit 2 bis 18 Kohlenstoffatomen, insbesondere Ethylenglykol, 1 ,4-Butandiol, 1 ,6-Hexandiol, Sorbit und Neopentylglykol.
Aus den oben beschriebenen Monomeren können lineare, verzweigte oder vernetzte Polyester entstehen, je nachdem ob difunktionelle Monomere oder höherfunktionelle Monomere eingesetzt werden.
Die Polyester-Monomere sind in der Regel in der Reaktionsmischung in Schritt A) zu 0,1 bis 20 Gew.-% bevorzugt zu 0,5 bis 10 Gew.-%, insbesondere zu 1 bis 5 Gew.-% bezogen auf den Gesamtansatz enthalten. In einer bevorzugten Ausführungsform ist mindestens ein Lacton zu 0,1 bis 20 Gew.-%, bevorzugt zu 0,5 bis 10 Gew.-%, insbesondere zu 1 bis 5 Gew.-% bezogen auf den Gesamtansatz in Schritt A) enthalten.
Nach dem erfindungsgemäßen Verfahren können Dispergiermittel eingesetzt werden. Diese können prinzipiell Schutzkolloide, Emulgatoren oder deren Gemische sein. Dabei ist es selbstverständlich, dass die Emulgatoren und/oder Schutzkolloide so ausgewählt werden, dass sie insbesondere mit den eingesetzten Enzymen verträglich sind und diese nicht deaktivieren.
Man kann die Polymerisation in Gegenwart von Schutzkolloiden durchführen, gegebenenfalls auch zusätzlich zu Emulgatoren. Sie haben in der Regel mittlere Molmassen Mw von oberhalb 500, vorzugsweise von mehr als 1000 g/mol. Beispiele für Schutzkolloide sind Polyvinylalkohole, Cellulosederivate wie Carboxymethylcellulose, Polyvinyl- pyrrolidon, Polyethylenglykole, Pfropfpolymerisate von Vinylacetat und/oder
Vinylpropionat auf Polyethylenglykolen, ein- oder beidseitig mit Alkyl-, Carboxyl- oder Aminogruppen endgruppenverschlossene Polyethylenglykole, Polydiallyldimethyl- ammoniumchloride und/oder Polysaccharide wie insbesondere wasserlösliche Stärken oder Stärkederivate.
Häufig werden als Dispergiermittel ausschließlich Emulgatoren eingesetzt. Im allge- meinen werden Emulgatoren verwendet, deren relative Molekulargewichte im Unterschied zu den Schutzkolloiden üblicherweise unter 1000 g/mol liegen. Sie können sowohl anionischer, kationischer oder nichtionischer Natur sein. Selbstverständlich müssen im Falle der Verwendung von Gemischen grenzflächenaktiver Substanzen die Einzelkomponenten miteinander verträglich sein, was im Zweifelsfall an Hand weniger Vorversuche überprüft werden kann. Im allgemeinen sind anionische Emulgatoren untereinander und mit nichtionischen Emulgatoren verträglich. Desgleichen gilt auch für kationische Emulgatoren, während anionische und kationische Emulgatoren meistens nicht miteinander verträglich sind.
Man kann die Polymerisation gegebenenfalls auch in Gegenwart von feinverteilten, wasserunlöslichen anorganischen Emulgatoren (sog. Pickering-Emulgatoren), beispielsweise Bariumsulfat, durchführen.
Gebräuchliche nichtionische Emulgatoren sind z.B. ethoxylierte Mono-, Di- und Tri- Alkylphenole (Ethoxilierungsgrad von 3 bis 50, Alkylrest: C4 bis C12) sowie ethoxylierte Fettalkohole (Ethoxilierungsgrad von 3 bis 80; Alkylrest: Cs bis C36). Beispiele hierfür sind die Lutensol® A-Marken (C12 bis Cu-Fettalkoholethoxylate, Ethoxilierungsgrad von 3 bis 8), Lutensol® AO-Marken (C13 bis Cis-Oxoalkoholethoxylate, Ethoxilierungsgrad von 3 bis 30), Lutensol® AT-Marken (C16 bis Cis-Fettalkoholethoxylate, Ethoxilie- rungsgrad von 1 1 bis 80), Lutensol® ON-Marken (C10-Oxoalkoholethoxylate, Ethoxilierungsgrad von 3 bis 11 ) und die Lutensol® TO-Marken (C13-Oxoalkoholethoxylate, Ethoxilierungsgrad von 3 bis 20) der BASF SE.
Übliche anionische Emulgatoren sind z.B. Alkalimetall- und Ammoniumsalze von Alkyl- sulfaten (Alkylrest: C8 bis C12), von Schwefelsäurehalbestern ethoxylierter Alkanole (Ethoxilierungsgrad von 4 bis 30, Alkylrest: C12 bis de) und ethoxylierter Alkylphenole (Ethoxilierungsgrad von 3 bis 50, Alkylrest: C4 bis C12), von Alkylsulfonsäuren (Alkylrest: C12 bis Ciβ) und von Alkylarylsulfonsäuren (Alkylrest: Cg bis Cis). Als weitere anionische Emulgatoren haben sich ferner Verbindungen der allgemeinen Formel (I)
worin R1 und R2 H-Atome oder C4- bis C24-Alkyl bedeuten und nicht gleichzeitig H-
Atome sind, und M1 und M2 Alkalimetallionen und/oder Ammoniumionen sein können, erwiesen. In der allgemeinen Formel (I) bedeuten R1 und R2 bevorzugt lineare oder verzweigte Alkylreste mit 6 bis 18 C-Atomen, insbesondere mit 6, 12 und 16 C-Atomen oder Wasserstoff, wobei R1 und R2 nicht beide gleichzeitig H-Atome sind. M1 und M2 sind bevorzugt Natrium, Kalium oder Ammonium, wobei Natrium besonders bevorzugt ist. Besonders vorteilhaft sind Verbindungen (I), in denen M1 und M2 Natrium, R1 ein verzweigter Alkylrest mit 12 C-Atomen und R2 ein H-Atom oder R1 ist. Häufig werden technische Gemische verwendet, die einen Anteil von 50 bis 90 Gew.-% des monoal- kylierten Produktes aufweisen, wie beispielsweise Dowfax® 2A1 (Marke der Dow Chemical Company).
Geeignete kationische Emulgatoren sind in der Regel einen Ce- bis Cis-Alkyl-, - Alkylaryl- oder heterocyclischen Rest aufweisende kationische Salze, zum Beispiel primäre, sekundäre, tertiäre oder quartäre Ammoniumsalze, Alkanolammoniumsalze, Pyridiniumsalze, Imidazoliniumsalze, Oxazoliniumsalze, Morpholiniumsalze, Thiazolini- umsalze sowie Salze von Aminoxiden, Chinoliniumsalze, Isochinoliniumsalze, Tropyli- umsalze, Sulfoniumsalze und Phosphoniumsalze. Beispielhaft genannt seien Dodecylammoniumacetat oder das entsprechende Sulfat, die Sulfate oder Acetate der verschiedenen 2-(N,N,N-Trimethylammonium)ethylparaffinsäureester, N-Cetyl- pyridiniumsulfat, N-Laurylpyridiniumsulfat sowie N-Cetyl-N,N,N-trimethylammonium- sulfat, N-Dodecyl-N,N,N-trimethylammoniumsulfat, N-Octyl-N,N,N-trimethyl- ammoniumsulfat, N,N-Distearyl-N,N-dimethylammoniumsulfat sowie das Gemini- Tensid N,N'-(Lauryldimethyl)ethylendiamindisulfat, ethoxyliertes Talgfettalkyl-N- methylammoniumsulfat und ethoxyliertes Oleylamin (beispielsweise Uniperol® AC der BASF Aktiengesellschaft, ca. 12 Ethylenoxideinheiten). Wesentlich ist, dass die anionischen Gegengruppen möglichst gering nucleophil sind, wie beispielsweise Perchlorat, Sulfat, Phosphat, Nitrat und Carboxylate, wie Acetat, Trifluoracetat, Trichloracetat, Propionat, Oxalat, Citrat, Benzoat, sowie konjugierte Anionen von Organosulfonsäuren, wie zum Beispiel Methylsulfonat, Trifluormethylsulfonat und para-Toluolsulfonat, weiterhin Tetrafluoroborat, Tetraphenylborat, Tetrakis(pentafluorophenyl)borat, Tetra- kis[bis(3,5-trifluormethyl)phenyl]borat, Hexafluorophosphat, Hexafluoroarsenat oder Hexafluoroantimonat.
Bevorzugte Emulgatoren sind nichtionische Emulgatoren, insbesondere ethoxylierte Alkohole und Sorbitanester, besonders bevorzugt ethoxylierte Fettalkohole und Sorbi- tanfettsäureester. Ganz besonders bevorzugte Mischungen umfassen ethoxylierte Alkohole und Sorbitanester. In einer bevorzugten Ausführungsform enthalten die Mischungen ethoxylierte Alkohole und Sorbitanester.
In einer weiteren bevorzugten Ausführungsform ist ein Polymer auf Basis des En- Reaktionsproduktes von Polyisobutylen und Maleinsäureanydrid (PIBSA) und Di(alkyl)ethanolamin geeignet. In einer weiteren bevorzugten Ausführungsform sind Block-Copolymere geeignet, wie sie in Macromolecules 38 (16), 6882-6887 beschrieben werden, Block-Copolymere auf Basis Isopren und Methylmethacrylat wie sie in WO 2008/009424 beschrieben werden, oder Poly((ethylen-co-butylen)-block- ethylenoxid).
Die als Dispergiermittel bevorzugt eingesetzten Emulgatoren werden vorteilhaft in einer Gesamtmenge von 0,005 bis 20 Gew.-%, vorzugsweise 0,01 bis 15 Gew.-%, insbesondere 0,1 bis 10 Gew.-%, jeweils bezogen auf den Gesamtansatz in Schritt A), eingesetzt. Die Gesamtmenge der als Dispergiermittel zusätzlich oder statt der Emulgatoren eingesetzten Schutzkolloide beträgt oft 0,1 bis 10 Gew.-% und häufig 0,2 bis 7 Gew.-%, jeweils bezogen auf den Gesamtansatz in Schritt A).
Die erfindungsgemäße inverse Miniemulsion, in welcher die Polyester-Monomere meist vorliegen, umfasst eine kontinuierliche unpolare Phase und eine diskontinuierliche polare Phase. Die polare Phase umfasst eine polare Flüssigkeit und die unpolare Phase eine unpolare Flüssigkeit. Der Effektstoff liegt im Wesentlichen in der diskontinuierli- chen Phase in fester, gelöster, emulgierter oder dispergierter Form vor. Die Polyester- Monomere, Dispergiermittel oder Enzyme können sowohl nur in einer der beiden Phasen als auch in beiden Phasen verteilt vorliegen, oder an der Grenzfläche der beiden Phasen. In einer bevorzugten Ausführungsform liegt das Polyester-Monomer zu mindestens 70 Gew.%, bevorzugt mindestens 80 Gew.% und insbesondere mindestens 90 Gew.%, jeweils bezogen auf die Gesamtmenge desPolyester-Monomeren in Schritt A), in der polaren Phase vor. In einer weiteren bevorzugten Ausführungsform besteht die polare Flüssigkeit aus mindestens einem Polyester-Monomer und mindestens einem Effektstoff.
Die mittlere Größe der Tröpfchen der diskontinuierlichen Phase der erfindungsgemäßen inversen Miniemulsion lässt sich bevorzugt nach dem Prinzip der quasielastischen dynamischen Lichtstreuung an einer 1 Gew.-%-igen Miniemulsion, erhältlich durch Verdünnen der inversen Miniemulsion mit der entsprechenden kontinuierlichen Phase und gegebenenfalls Abtrennen einer organischen Phase, bestimmen (der sogenannte Z-Mittlere Tröpfchendurchmesser dz der unimodalen Analyse der Autokorrelationsfunktion). Weitere Bestimmungsmethoden sind die Licht- oder Elektronenmikroskopie, sowie die Feldflußfraktionierung. Erfindungsgemäß sind die solchermaßen für die inverse Miniemulsionen ermittelten Werte für dz normalerweise unter 10000 nm, häufig unter 1000 nm, meist unter 500 nm. Günstig ist erfindungsgemäß der dz-Bereich von 2000 nm bis 1000 nm. Im Normalfall beträgt dz der erfindungsgemäß einzusetzenden inversen Miniemulsion über 40 nm.
Geeignete polare Flüssigkeiten sind solche, deren Löslichkeit in der kontinuierlichen unpolaren Phase bei Reaktionsbedingungen unter 40 Gew.-%, bevorzugt unter 10 Gew.-% und insbesondere unter 1 Gew.-% (jeweils bezogen auf die Gesamtmenge der kontinuierlichen Phase) liegt, so dass eine separate diskontinuierliche polare Phase vorliegt. In einer bevorzugten Ausführungsform löst die polare Flüssigkeit bei 20 0C das Polyester-Monomer höchstens zu 10 Gew.%, bevorzugt höchstens zu 3 Gew.% und besonders höchstens zu 0,5 Gew.% auf, jeweils bezogen Gesamtmasse des Polyester-Monomers.
Geeignete polare Flüssigkeiten sind beispielsweise Monoole, wie Cs-Cβ-Alkanole, insbesondere tert.-Butanol und tert. -Amylalkohol, Pyridin, Poly-Ci-C4-alkylenglykoldi-Ci- C4-alkylethern, insbesondere Polyethylenglycoldi-Ci-C4-alkylether, wie z.B. Dimethoxy- ethan, Diethylenglycoldimethylether, Polyethylenglycoldimethylether 500, C2-C4- Alkylencarbonaten, insbesondere Propylencarbonat, Cs-Cβ-Alkylessigsäureestern, ins- besondere tert.-Butyl-essigsäureester, Aceton, 1 ,4-Dioxan, 1 ,3-Dioxolan, Tetrahydrofu- ran, Dimethoxymethan, Dimethoxyethan, wässerige Puffer oder Wasser. Selbstverständlich ist es auch möglich, Gemische vorgenannter Lösemittel einzusetzen. Geeignete polare Flüssigkeiten sind auch die vorstehend genannten Polyester- Monomere oder deren Mischungen.
Die polare Flüssigkeit kann beispielsweise auch den eingesetzten Effektstoff umfassen oder sie kann aus ihm bestehen. Bevorzugte polare Flüssigkeit ist Propylencarbonat und propylencarbonathaltige Mischungen. In einer weiteren bevorzugten Ausführungsform ist die polare Flüssigkeit das Polyester-Monomer.
Wenn als Polyester-Monomer ein Lacton eingesetzt wird, umfasst die polare Flüssigkeit unter 5 Gew.-%, bevorzugt unter 1 Gew.-% und insbesondere unter 0,1 Gew.-% Wasser. Wenn die polare Flüssigkeit Wasser enthält, ist es von Vorteil, wenn das wässrige Reaktionsmedium bei Raumtemperatur (20 bis 25 0C) einen pH-Wert von 2 bis 1 1 , häufig von 3 bis 9 und oft von 6 bis 8 aufweist. Insbesondere wird im wässrigen Reaktionsmedium ein solcher pH-Wert eingestellt, bei welchem das Enzym eine hohe katalytische Aktivität und hohe Standzeit aufweist. Die entsprechenden Maßnahmen zur pH-Werteinstellung, d.h. Zugabe von entsprechenden Mengen an Säure, beispielsweise Schwefelsäure, Basen, beispielsweise wässrige Lösungen von Alkali- hydroxiden, insbesondere Natrium- oder Kaliumhydroxid, oder Puffersubstanzen, beispielsweise Kaliumdihydrogenphosphat / Dinatriumhydrogenphosphat, Essigsäure / Natriumacetat, Ammoniumhydroxid / Ammoniumchlorid, Kaliumdihydrogenphosphat / Natriumhydroxid, Borax / Salzsäure, Borax / Natriumhydroxid oder Tris(hydroxy- methyl)aminomethan / Salzsäure sind dem Fachmann geläufig.
Um die Polarität der polaren Phase weiter zu steigern, kann sie sogenannte Hydrophile zusätzlich enthalten. Geeignete Hydrophile sind beispielsweise organische oder anorganische Salze oder ungeladene, sehr polare Verbindungen. Beispiele für anorganische Salze sind Natriumnitrit, Natriumchlorid, Kaliumchlorid, Lithiumchlorid, Rubidium- chlorid. Beispiele für organische Salze sind Trialkylammoniumsalze, ionische
Flüssigkeiten, wie Ethyl-Methylimidazoliumsalze, oder Oligomere mit stöchiometri- schen Anteilen an anionischen und kationischen Gruppen in der Haupt- oder Seitenket- te. Bevorzugt werden Hydrophile, welche die katalytische Aktivität der Enzyme nicht reduzieren.
Geeignete unpolare Flüssigkeiten sind solche, deren Löslichkeit in der diskontinuierli- chen polaren Phase bei Reaktionsbedingungen unter 10 Gew.-%, bevorzugt unter 1 Gew.-% und insbesondere unter 0,1 Gew.-% (jeweils bezogen auf die Gesamtmenge der kontinuierlichen Phase) liegt, so dass eine separate kontinuierliche polare Phase vorliegt.
Geeignete unpolare Flüssigkeiten sind beispielsweise flüssige aliphatische oder aromatische Kohlenwasserstoffe mit 5 bis 30 C-Atomen, beispielsweise n-Pentan und Isomere, Cyclopentan, n-Hexan und Isomere, Cyclohexan, n-Heptan und Isomere, n- Octan und Isomere, n-Nonan und Isomere, n-Decan und Isomere, n-Dodecan und I- somere, n-Tetradecan und Isomere, n-Hexadecan und Isomere, n-Octadecan und I- somere, Benzol, Toluol, Ethylbenzol, Cumol, o-, m- oder p-Xylol, Mesitylen.
In Betracht kommen auch Kohlenwasserstoffgemische im Siedebereich von 30 bis 250 0C wie teilhydrierte Mineralöldestillate (z.B. Isopar® Marken, Fa. Exxon Mobil). Geeignet sind auch Olefine, beispielsweise Polyisobutylene oder C6 bis C30 alpha-Olefine. Ebenfalls einsetzbar sind Hydroxyverbindungen, wie gesättigte und ungesättigte Fett- alkohole mit 10 bis 28 C-Atomen, beispielsweise n-Dodecanol, n-Tetradecanol, n- Hexadecanol und deren Isomeren oder Cetylalkohol, Ester, wie beispielsweise Fettsäureester mit 10 bis 28 C-Atomen im Säureteil und 1 bis 10 C-Atomen im Alkoholteil oder Ester aus Carbonsäuren und Fettalkoholen mit 1 bis 10 C-Atomen im Carbonsäureteil und 10 bis 28 C-Atomen im Alkoholteil. Weitere geeignete unpolare Flüssigkeiten sind Paraffinöl (lineare Kohlenwasserstoffgemische), Siliconöl (Polysiloxan), perfluorierte Kohlenwasserstoffe, Fluorsiliconöl, perfluorierte Polyether, Fluorsilan oder SiIo- xan, wie Dimethylsiloxan. Bevorzugte unpolare Flüssigkeiten sind flüssige aliphatische und aromatische Kohlenwasserstoffe mit 5 bis 30 C-Atomen, insbesondere teilhydrierte Mineralöldestillate. In einer weiteren Ausführungsform sind unpolare Flüssigkeiten Pa- raffinöl. Selbstverständlich ist es auch möglich, Gemische vorgenannter Lösemittel einzusetzen.
Die Gesamtmenge an polaren und unpolaren Flüssigkeiten wird so gewählt, dass der Gesamtansatz in Schritt A) 100 Gew.-% erreicht. Sie beträgt im Allgemeinen von 10 bis 90 Gew.-%, bevorzugt von 40 bis 70 Gew.-% bezogen auf den Gesamtansatz.
Das Mengenverhältnis von polarer zu unpolarer Flüssigkeit wird dabei so gewählt, dass eine diskontinuierliche Phase entsteht, die im Wesentlichen die polare Flüssigkeit enthält. In einer bevorzugten Ausführungsform werden 20 bis 80, bevorzugt 40 bis 70 Gew.-% unpolare Flüssigkeit verwendet, jeweils bezogen auf den Gesamtansatz. In einer weiteren bevorzugten Ausführungsform werden 20 bis 80 Gew.-%, bevorzugt 30 bis 60 Gew.-% polare Flüssigkeit verwendet, jeweils bezogen auf den Gesamtansatz. In einer weiteren bevorzugten Ausführungsform werden 20 bis 80, bevorzugt 35 bis 55 Gew.-% Kohlenwasserstoffgemische und 20 bis 70 Gew.-%, bevorzugt 30 bis 60 Gew.- % Propylencarbonat verwendet, jeweils bezogen auf den Gesamtansatz. Dabei ist darauf zu achten, dass die Miniemulsionen nicht eine Phasenumkehr erleiden, d.h. dass die hydrophobe kontinuierliche Phase nicht zur dispersen Phase wird.
Unter Effektstoffen sollen im Rahmen der Erfindung Stoffe verstanden werden, die in der gewerblichen Anwendung des erfindungsgemäßen Produktes vom Anwender gewünschte Effekte hervorrufen. Effektstoffe sind beispielsweise Farbmittel, Kosmetika, Pharmaka, Biozide, Pflanzenschutzmittel, agrochemische Adjuvantien, Düngemittel, Zusatzstoffe für Lebensmittel oder Tierfutter, Hilfsmittel für Polymere, Papier, Textil, Leder oder Wasch- und Reinigungsmittel. Der Fachmann kann je nach gewünschtem Anwendungsgebiet den passenden Effektstoff auf Basis seines allgemeinen Fachwissens auswählen.
Beispiele für Farbmittel sind Farbstoffe, Drucktinten, Pigmente, UV Absorber, optische Aufheller oder IR-Farbstoffe. Während organische Farbstoffe ein Absorptionsmaximum im Wellenlängenbereich von 400 bis 850 nm besitzen, haben optische Aufheller ein oder mehrere Absorptionsmaxima im Bereich von 250 bis 400 nm. Optische Aufheller emittieren bekanntlich beim Bestrahlen mit UV-Licht eine Fluoreszenzstrahlung im sichtbaren Bereich. Beispiele für optische Aufheller sind Verbindungen aus den Klassen der Bisstyrylbenzole, Stilbene, Benzoxazole, Cumarine, Pyrene und Naphthaline. Geeignet sind auch Markierungsstoffe für Flüssigkeiten, beispielsweise Mineralölmar- ker. Unter UV-Absorbern werden im Allgemeinen UV-Strahlen absorbierende Verbin- düngen verstanden, die die absorbierte Strahlung strahlungslos deaktivieren. Solche Verbindungen werden beispielsweise in Sonnenschutzmitteln und zur Stabilisierung von organischen Polymeren eingesetzt.
Weitere geeignete Effektstoffe sind Kosmetika. Kosmetika sind Stoffe oder Zubereitun- gen aus Stoffen, die ausschließlich oder überwiegend dazu bestimmt sind, äußerlich am Körper des Menschen oder in seiner Mundhöhle zur Reinigung, Pflege, zum Schutz, zur Erhaltung eines guten Zustandes, zur Parfümierung, zur Veränderung des Aussehens oder dazu angewendet zu werden, den Körpergeruch zu beeinflussen. Geeignet sind beispielsweise auch Antiinsektenmittel, wie Icaridin® oder N,N-Diethyl- meta-toluamid (DEET®).
Als Effektstoffe können außerdem alle Pharmaka eingesetzt werden.
Als Biozide können schwermetallhaltige Biozide wie N-(Cyclo-hexyldiazeniumdioxy)- tributylzinn, Bis-N-(cyclohexyldiazeniumdioxy)-kupfer (CuHDO); Metallseifen wie Zinn-, Kupfer-, Zinknaphtenat, -octoat, 2-ethylhexanoat, -oleat, -phosphat, -benzoat, Metallsalze wie Kupferhydroxycarbonat, Natriumdichromat, Kaliumdichromat, Kaliumchro- mat, Kupfersulfat, Kupferchlorid, Kupferborat, Zinkfluorosilikat, Kupferfluorosilikat, Kupfersalz von 2-Pyridinthiol- 1-oxid; Oxide sowie Tributylzinnoxid, CU2O, CuO, ZnO; Ag, Zn oder Cu-haltige Zeolithe allein oder eingeschlossen in polymere Wirkstoffe enthalten sein. Als Biozide eignen sich vorzugsweise Algizide wie Diuron, Dichlorophen, En- dothal, Fentinacetat, Quinoclamine, Molluscicide wie Fentinacetat, Metaldehyd,
Methiocarb, Niclosamid, Thiodicarb und Trimethacarb, Fungizide wie Dithianon, Bro- nopol, Dichlofluanid, Tolylfluanid, lodpropargylbutylcarbamat, Fluorfolpet und Azole wie Tebuconazole oder herkömmliche Antifoulingwirkstoffe wie 2-(N,N-Dimethylthiocarba- moylthio)-5-nitrothiazyl, Tetrabutyldistannoxan, 2-tert.-Butylamino-4-cyclopropylamino- 6-methylthio-1 ,3,5-triazin, 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-on, 2,4,5,6-Tetra- chloroisophthalodinitril, Tetramethylthiuramdisulfid, 2,4,6-Trichlorphenylmaleinimid, 2,3,5,6-Tetrachlor-4-(methylsulfonyl)-pyridin, Diiodmethylparatrylsulfon, Thiabendazol, Tetraphenylboronpyridinsalz, Natriumsalz von 2-Pyridinthiol-1 -oxid. Ein weiteres Beispiel ist Natriumchlorit (NaClθ2) oder 2,4-Dichlorobenzylalkohol (DCBA). Bevorzugte Biozide sind Bis-N-(cyclohexyldiazeniumdioxy)-kupfer, Dithianon, Bronopol, Natriumchlorit (NaCIO2), 2,4-Dichlorobenzylalkohol.
Die erfindungsgemäßen Mikrokapseln umfassend Biozide können überall verwendet werden, wo es auf möglichst bakterienfreie, algen- und pilzfreie, d. h. mikrobizide Ober- flächen oder Oberflächen mit Antihafteigenschaften ankommt. Sie können verwendet werden im Bereich
- Marine: Schiffsrümpfe, Hafenanlagen, Bojen, Bohrplattformen, Ballastwassertanks;
- Haus: Bedachungen, Keller, Wände, Fassaden, Gewächshäuser, Sonnenschutz, Gartenzäune, Holzschutz; - Sanitär: Öffentliche Toiletten, Badezimmer, Duschvorhänge, Toilettenartikel, Schwimmbad, Sauna, Fugen, Dichtmassen;
- Lebensmittel: Maschinen, Küche, Küchenartikel, Schwämme, Spielwaren, Lebensmittelverpackungen, Milchverarbeitung, Trinkwassersysteme, Kosmetik;
- Maschinenteile: Klimaanlagen, lonentauscher, Brauchwasser, Solaranlagen, Wär- metauscher, Bioreaktoren, Membranen, Kühlwasseraufbereitung;
- Medizintechnik: Kontaktlinsen, Windeln, Membranen, Implantate;
- Gebrauchsgegenstände: Autositze, Kleidung (Strümpfe, Sportbekleidung), Krankenhauseinrichtungen, Türgriffe, Telefonhörer, Öffentliche Verkehrsmittel, Tierkäfige, Registrierkassen, Teppichboden, Tapeten.
Als Effektstoffe können auch Pflanzenschutzmittel und Düngemittel verwendet werden. Geeignete Pflanzenschutzmittel sind Akarizide, Algizide, Aphizide, Bakterizide, Fungizide, Herbizide, Insektizide, Molluskizide, Nematizide, Keimungshemmstoffe, Safener oder Wachstumsregulatoren. Fungizide sind Verbindungen, die Pilze und deren Spo- ren abtöten oder ihr Wachstum hemmen. Insektizide sind Verbindungen, die sich in ihrer Wirkung besonders gegen Insekten und deren Entwicklungsformen richten. Unter Herbiziden versteht man Verbindungen, die aktiv sind gegen allgemein alle Wild- und Kulturpflanzen, die an ihrem jeweiligen Standort unerwünscht sind (Schadpflanzen). Beispiele für Düngemittel sind mineralische Ein- oder Mehrnährstoffdünger, organische und organisch-mineralische Dünger oder Dünger mit Spurennährstoffen.
In einer bevorzugten Ausführungsform sind die Effektstoffe Pflanzenschutzmittel oder Mischungen von Pflanzenschutzmitteln. In einer weiteren bevorzugten Ausführungsform sind die Pflanzenschutzmittel bevorzugt Herbizide, Wachstumsregler, Insektizide oder Fungizide. Es ist allgemein bekannt, gegen welche unerwünschten Pflanzen, In- sekten oder Pilze ein Pflanzenschutzmittel vorteilhafterweise eingesetzt werden kann. Die folgende Liste von Pflanzenschutzmittel zeigt mögliche Wirkstoffe auf, soll aber nicht auf diese beschränkt sein.
Als Fungizid kann beispielsweise eingesetzt werden: A) Strobilurine:
Azoxystrobin, Dimoxystrobin, Enestroburin, Fluoxastrobin, Kresoxim-methyl, Meto- minostrobin, Orysastrobin, Picoxystrobin, Pyraclostrobin, Pyribencarb, Trifloxystrobin, 2-(2-(6-(3-Chlor-2-methyl-phenoxy)-5-fluor-pyrimidin-4-yloxy)-phenyl)-2-methoxy- imino-N-methyl-acetamid, 2-(ortho-((2,5-Dimethylphenyl-oxymethylen)phenyl)- 3-methoxy-acrylsäuremethylester, 3-Methoxy-2-(2-(N-(4-methoxy-phenyl)-cyclopro- panecarboximidoylsulfanylmethyl)-phenyl)-acrylsäuresäuremethylester, 2-(2-(3-(2,6-dichlorphenyl)-1-methyl-allylideneaminooxymethyl)-phenyl)-2-methoxy- imino-N-methyl-acetamide; B) Carbonsäureamide: - Carbonsäureanilide: Benalaxyl, Benalaxyl-M, Benodanil, Bixafen, Boscalid, Carbo- xin, Fenfuram, Fenhexamid, Flutolanil, Furametpyr, Isopyrazam, Isotianil, Kiralaxyl, Mepronil, Metalaxyl, Metalaxyl-M (Mefenoxam), Ofurace, Oxadixyl, Oxycarboxin, Penthiopyrad, Tecloftalam, Thifluzamide, Tiadinil, 2-Amino-4-methyl-thiazol-5- carboxanilid, 2-Chlor-N-(1 ,1 ,3-trimethyl-indan-4-yl)nicotinamid, N-(2',4'-Difluorbiphenyl-2-yl)-3-difluormethyl-1 -methyl-1 H-pyrazol-4-carboxamid,
N-(2',4'-Dichlorbiphenyl-2-yl)-3-difluormethyl-1-methyl-1 H-pyrazol-4-carboxamid, N-(2',5'-Difluorbiphenyl-2-yl)-3-difluormethyl-1 -methyl-1 H-pyrazol-4-carboxamid, N-(2',5'-Dichlorbiphenyl-2-yl)-3-difluormethyl-1 -methyl-1 H-pyrazole-4-carboxamid, N-(3',5'-Difluorbiphenyl-2-yl)-3-difluormethyl-1 -methyl-1 H-pyrazol-4-carboxamid, N-(3',5'-Dichlorbiphenyl-2-yl)-3-difluormethyl-1 -methyl-1 H-pyrazol-4-carboxamid,
N-(3'-Fluorbiphenyl-2-yl)-3-difluormethyl-1 -methyl-1 H-pyrazol-4-carboxamid, N-(3'-Chlorbiphenyl-2-yl)-3-difluormethyl-1 -methyl-1 H-pyrazol-4-carboxamid, N-(2'-Fluorbiphenyl-2-yl)-3-difluormethyl-1 -methyl-1 H-pyrazol-4-carboxamid, N-(2'-Chlorbiphenyl-2-yl)-3-difluormethyl-1 -methyl-1 H-pyrazol-4-carboxamid, N-(3',4',5'-Trifluorbiphenyl-2-yl)-3-difluormethyl-1 -methyl-1 H-pyrazol-4-carboxamid,
N-(2', 4', 5'-T rifluorbiphenyl-2-yl)-3-difluormethyl-1 -methyl-1 H-pyrazol-4-carboxamid, N-[2-(1 , 1 ,2, 3, 3, 3-Hexafluorpropoxy)-phenyl]-3-difluormethyl-1 -methyl-1 H-pyrazol- 4-carboxamid, N-[2-(1 ,1 ,2,2-Tetrafluoroethoxy)-phenyl]-3-difluormethyl-1-methyl- 1 H-pyrazol-4-carboxamid, N-(4'-Trifluormethylthiobiphenyl-2-yl)-3-difluormethyl- 1 -methyl-1 H-pyrazol-4-carboxamid, N-(2-(1 ,3-Dimethyl-butyl)-phenyl)-1 ,3-dimethyl- 5-fluor-1 H-pyrazol-4-carboxamid, N-(2-(1 ,3,3-Trimethyl-butyl)-phenyl)-1 ,3-dimethyl- 5-fluor-1 H-pyrazol-4-carboxamid, N-(4'-Chlor-3',5'-difluorbiphenyl-2-yl)-3-difluor- methyl-1 -methyl-1 H-pyrazol-4-carboxamid, N-(4'-Chlor-3',5'-difluorbiphenyl-2-yl)- 3-trifluormethyl-1 -methyl-1 H-pyrazol-4-carboxamid, N-(3',4'-Dichlor-5'-fluorbiphenyl- 2-yl)-3-trifluormethyl-1 -methyl-1 H-pyrazol-4-carboxamid, N-(3',5'-Difluor-4'-methyl- biphenyl-2-yl)-3-difluormethyl-1 -methyl-1 H-pyrazol-4-carboxamid, N-(3',5'-Difluor- 4'-methyl-biphenyl-2-yl)-3-trifluormethyl-1 -methyl-1 H-pyrazol-4-carboxamid, N-(2-Bi- cyclopropyl-2-yl-phenyl)-3-difluormethyl-1 -methyl-1 H-pyrazol-4-carboxamid, N-(cis- 2-Bicyclopropyl-2-yl-phenyl)-3-difluormethyl-1 -methyl-1 H-pyrazol-4-carboxamid, N-(trans-2-Bicyclopropyl-2-yl-phenyl)-3-difluormethyl-1 -methyl-1 H-pyrazol-4-carbox- amid, N-[1 ,2,3,4-Tetrahydro-9-(1-methylethyl)-1 ,4-methanonaphthalen-5-yl]-3-(di- fluormethyl)-1 -methyl-1 H-pyrazol-4-carboxamid;
- Carbonsäuremorpholide: Dimethomorph, Flumorph;
- Benzoesäureamide: Flumetover, Fluopicolide, Fluopyram, Zoxamid, N-(3-Ethyl- 3,5,5-trimethylcyclohexyl)-3-formylamino-2-hydroxy-benzamid;
- Sonstige Carbonsäureamide: Carpropamid, Diclocymet, Mandipropamid, Oxytetra- cyclin, Silthiofam, N-(6-methoxy-pyridin-3-yl)cyclopropancarbonsäureamid;
C) Azole:
- Triazole: Azaconazol, Bitertanol, Bromuconazol, Cyproconazol, Difenoconazol, Dini- conazol, Diniconazol-M, Epoxiconazol, Fenbuconazol, Fluquinconazol, Flusilazol, Flutriafol, Hexaconazol, Imibenconazol, Ipconazol, Metconazol, Myclobutanil, Oxpo- conazol, Paclobutrazol, Penconazol, Propiconazol, Prothioconazol, Simeconazol, Tebuconazol, Tetraconazol, Triadimefon, Triadimenol, Triticonazol, Uniconazol, 1 -(4-Chlor-phenyl)-2-([1 ,2,4]triazol-1 -yl)-cycloheptanol;
- Imidazole: Cyazofamid, Imazalil, Imazalilsulfat, Pefurazoat, Prochloraz, Triflumizol;
- Benzimidazole: Benomyl, Carbendazim, Fuberidazole, Thiabendazol; - Sonstige: Ethaboxam, Etridiazol, Hymexazol, 2-(4-Chlor-phenyl)-N-[4-(3,4- dimethoxy-phenyl)-isoxazol-5-yl]-2-prop-2-inyloxy-acetamid;
D) Stickstoffhaltige Heterocyclylverbindungen
- Pyridine: Fluazinam, Pyrifenox, 3-[5-(4-Chlor-phenyl)-2,3-dimethyl-isoxazolidin-3-yl]- pyridin, 3-[5-(4-Methyl-phenyl)-2,3-dimethyl-isoxazolidin-3-yl]-pyridin, 2,3,5,6-Tetra- chlor-4-methansulfonylpyridin, 3,4,5-Trichlor-pyridin-2,6-dicarbonitril, N-(1-(5-Brom- 3-chlor-pyridin-2-yl)-ethyl)-2,4-dichlornicotinamid, N-((5-Brom-3-chlor-pyridin-2-yl)- methyl)-2,4-dichlornicotinamid;
- Pyrimidine: Bupirimat, Cyprodinil, Diflumetorim, Fenarimol, Ferimzone, Mepanipyrim, Nitrapyrin, Nuarimol, Pyrimethanil; - Piperazine: Triforine;
- Pyrrole: Fludioxonil, Fenpiclonil;
- Morpholine: Aldimorph, Dodemorph, Dodemorphacetat, Fenpropimorph, Tridemorph; - Piperidine: Fenpropidin;
- Dicarboximide: Fluorimid, Iprodione, Procymidone, Vinclozolin;
- nichtaromatische 5-Ring-Heterocyclen: Famoxadon, Fenamidon, Flutianil, Octhilinon, Probenazol, 5-Amino-2-isopropyl-3-oxo-4-ortho-tolyl-2,3-dihydropyrazol-1- thiocarbonsäureS-allylester;
- sonstige: Acibenzolar-S-methyl, Amisulbrom, Anilazin, Blasticidin-S, Captafol, Cap- tan, Chinomethionat, Dazomet, Debacarb, Diclomezine, Difenzoquat, Difenzoquat- methylsulfat, Fenoxanil, Folpet, Oxolinsäure, Piperalin, Proquinazid, Pyroquilon, Qui- noxyfen, Triazoxid, Tricyclazol, 2-Butoxy-6-jod-3-propyl-chromen-4-on, 5-Chlor- 1 -(4,6-dimethoxy-pyrimidin-2-yl)-2-methyl-1 H-benzoimidazol, 5-Chlor-7-(4-methyl- piperidin-1 -yl)-6-(2,4,6-trifluor-phenyl)-[1 ,2,4]triazolo[1 ,5-a]pyτimidin, 6-(3,4-Dichlor- phenyl)-5-methyl-[1 ,2,4]triazolo[1 ,5-a]pyrimidin-7-ylamin, 6-(4-tert-Butylphenyl)- 5-methyl-[1 ,2,4]triazolo[1 ,5-a]pyrimidin-7-ylamin, 5-Methyl-6-(3,5,5-trimethyl-hexyl)- [1 ,2,4]triazolo[1 ,5-a]pyrimidin-7-ylamin, 5-Methyl-6-octyl-[1 ,2,4]triazolo[1 ,5-a]pyri- midin-7-ylamin, 6-Methyl-5-octyl-[1 ,2,4]triazolo[1 ,5-a]pyrimidin-7-ylamin, 6-Ethyl- 5-octyl-[1 ,2,4]triazolo[1 ,5-a]pyrimidin-7-ylamin, 5-Ethyl-6-octyl-[1 ,2,4]triazolo- [1 ,5-a]pyτimidin-7-ylamin, 5-Ethyl-6-(3,5,5-trimethyl-hexyl)-[1 ,2,4]triazolo[1 ,5-a]pyrimi- din-7-ylamin, 6-Octyl-5-propyl-[1 ,2,4]triazolo[1 ,5-a]pyrimidin-7-ylamin, 5-Methoxy- methyl-6-octyl-[1 ,2,4]triazolo[1 ,5-a]pyrimidin-7-ylamin, 6-Octyl-5-trifluormethyl- [1 ,2,4]triazolo[1 ,5-a]pyτimidin-7-ylamin und 5-Trifluormethyl-6-(3,5,5-trimethyl-hexyl)- [1 ,2,4]triazolo[1 ,5-a]pyτimidin-7-ylamin;
E) Carbamate und Dithiocarbamate
- Thio- und Dithiocarbamate: Ferbam, Mancozeb, Maneb, Metam, Methasulphocarb, Metiram, Propineb, Thiram, Zineb, Ziram; - Carbamate: Diethofencarb, Benthiavalicarb, Iprovalicarb, Propamocarb, Propamo- carb-hydrochlorid, Valiphenal, N-(1-(1-(4-Cyanophenyl)ethansulfonyl)-but-2-yl)carb- aminsäure-(4-fluorphenyl)ester;
F) Sonstige Fungizide
- Guanidine: Dodine, Dodine freie Base, Guazatin, Guazatinacetat, Iminoctadin, Imi- noctadin-triacetat, Iminoctadin-tris(albesilat);
- Antibiotika: Kasugamycin, Kasugamycinhydrochlorid-Hydrat, Polyoxine, Streptom- ycin, Validamycin A;
- Nitrophenylderivate:
Binapacryl, Dicloran, Dinobuton, Dinocap, Nitrothal-isopropyl, Tecnazen; - Organometallverbindungen: Fentin-Salze wie beispielsweise Fentin-acetat, Fentin- chlorid, Fentin-hydroxid;
- Schwefelhaltige Heterocyclylverbindungen: Dithianon, Isoprothiolane;
- Organophosphorverbindungen: Edifenphos, Fosetyl, Fosetyl-Aluminium, Iprobenfos, Phosphorige Säure und ihre Salze, Pyrazophos, Tolclofos-methyl; - Organochlorverbindungen: Chlorthalonil, Dichlofluanid, Dichlorphen, Flusulfamide, Hexachlorbenzol, Pencycuron, Pentachlorphenol und dessen Salze, Phthalid, Quintozen, Thiophanat-Methyl, Tolylfluanid, N-(4-Chlor-2-nitro-phenyl)-N-ethyl- 4-methyl-benzolsulfonamid;
- Anorganische Wirkstoffe: Phosphorige Säure und ihre Salze, Bordeaux Brühe, Kupfersalze wie beispielsweise Kupferacetat, Kupferhydroxid, Kupferoxychlorid, basisches Kupfersulfat, Schwefel; - Sonstige: Biphenyl, Bronopol, Cyflufenamid, Cymoxanil, Diphenylamin, Metrafenon, Mildiomycin, Oxin-Kupfer, Prohexadion-Calcium, Spiroxamin, Tolylfluanid, N-(Cyclo- propylmethoxyimino-(6-difluormethoxy-2,3-difluor-phenyl)-methyl)-2-phenylacetamid, N'-(4-(4-Chlor-3-trifluormethyl-phenoxy)-2,5-dimethyl-phenyl)-N-ethyl-N-methylforma- midin, N'-(4-(4-Fluor-3-trifluormethyl-phenoxy)-2,5-dimethyl-phenyl)-N-ethyl-N-meth- ylformamidin, N'-(2-Methyl-5-trifluormethyl-4-(3-trimethylsilanyl-propoxy)-phenyl)- N-ethyl-N-methylformamidin, N'-(5-Difluormethyl-2-methyl-4-(3-trimethylsilanyl- propoxy)-phenyl)-N-ethyl-N-methylformamidin, 2-{1-[2-(5-Methyl-3-trifluormethyl- pyrazol-1-yl)-acetyl]-piperidin-4-yl}-thiazol-4-carboxylsäure-methyl-(1 ,2,3,4-tetra- hydronaphthalen-1-yl)-amid, 2-{1-[2-(5-Methyl-3-trifluormethyl-pyrazol-1-yl)-acetyl]- piperidin-4-yl}-thiazol-4-carboxylsäure-methyl-(R)-1 ,2,3,4-tetrahydronaphthalen-1 -yl- amid, Essigsäure-6-tert.-butyl-8-fluor-2,3-dimethyl-quinolin-4-yl-ester, Methoxy- essigsäure-6-tert.-butyl-8-fluor-2,3-dimethyl-quinolin-4-yl-ester;
Als Wachstumsregler kann beispielsweise eingesetzt werden: Abscisinsäure, Amidochlor, Ancymidol , 6-Benzylaminopurin, Brassinolid, Butralin, Chlormequat (Chlormequatchlorid), Cholinchlorid, Cyclanilid, Daminozid, Dikegulac, Dimethipin, 2,6-Dimethylpuridin, Ethephon, Flumetralin, Flurprimidol , Fluthiacet, For- chlorfenuron, Gibberellinsäure, Inabenfid, lndol-3-essigsäure, Maleinsäurehydrazid, Mefluidid, Mepiquat (Mepiquatchlorid), Metconazol, Naphthalenessigsäure, N-6-Ben- zyladenin, Paclobutrazol, Prohexadion (Prohexadion-Calcium), Prohydrojasmon, Thidi- azuron, Triapenthenol, Tributylphosphorotrithioat, 2,3,5-tri-Jodbenzoesäure, Trinexapac-ethyl und Uniconazol.
Als Herbizid kann beispielsweise eingesetzt werden: - Acetamide: Acetochlor, Alachlor, Butachlor, Dimethachlor, Dimethenamid, Flufena- cet, Mefenacet, Metolachlor, Metazachlor, Napropamid, Naproanilid, Pethoxamid, Pretilachlor, Propachlor, Thenylchlor;
- Aminosäureanaloga: Bilanafos, Glyphosat, Glufosinat, Sulfosat;
- Aryloxyphenoxypropionate: Clodinafop, Cyhalofop-butyl, Fenoxaprop, Fluazifop, Ha- loxyfop, Metamifop, Propaquizafop, Quizalofop, Quizalofop-P-tefuryl;
- Bipyridyle: Diquat, Paraquat;
- Carbamate und Thiocarbamate: Asulam, Butylate, Carbetamide, Desmedipham, Di- mepiperat, Eptam (EPTC), Esprocarb, Molinate, Orbencarb, Phenmedipham, Prosul- focarb, Pyributicarb, Thiobencarb, Triallate; - Cyclohexanedione: Butroxydim, Clethodim, Cycloxydim, Profoxydim, Sethoxydim, Tepraloxydim, Tralkoxydim;
- Dinitroaniline: Benfluralin, Ethalfluralin, Oryzalin, Pendimethalin, Prodiamine, Triflura- Nn;
- Diphenylether: Acifluorfen, Aclonifen, Bifenox, Diclofop, Ethoxyfen, Fomesafen, Lac- tofen, Oxyfluorfen;
- Hydroxybenzonitrile: Bromoxynil, Dichlobenil, loxynil; - Imidazolinone: Imazamethabenz, Imazamox, Imazapic, Imazapyr, Imazaquin, Imaze- thapyr;
- Phenoxyessigsäuren: Clomeprop, 2,4-Dichlorphenoxyessigsäure (2,4-D), 2,4-DB, Dichlorprop, MCPA, MCPA-thioethyl, MCPB, Mecoprop;
- Pyrazine: Chloridazon, Flufenpyr-ethyl, Fluthiacet, Norflurazon, Pyridat; - Pyridine: Aminopyralid, Clopyralid, Diflufenican, Dithiopyr, Fluridone, Fluroxypyr, Pi- cloram, Picolinafen, Thiazopyr;
- Sulfonylharnstoffe: Amidosulfuron, Azimsulfuron, Bensulfuron, Chlorimuron-Ethyl, Chlorsulfuron, Cinosulfuron, Cyclosulfamuron, Ethoxysulfuron, Flazasulfuron, Fluce- tosulfuron, Flupyrsulfuron, Foramsulfuron, Halosulfuron, Imazosulfuron, lodosulfuron, Mesosulfuron, Metsulfuron-methyl, Nicosulfuron, Oxasulfuron, Primisulfuron, Prosul- furon, Pyrazosulfuron, Rimsulfuron, Sulfometuron, Sulfosulfuron, Thifensulfuron, Triasulfuron, Tribenuron, Trifloxysulfuron, Triflusulfuron, Tritosulfuron, 1-((2-Chlor- 6-propyl-imidazo[1 ,2-b]pyridazin-3-yl)sulfonyl)-3-(4,6-dimethoxy-pyrimidin-2-yl)harn- stoff; - Triazine: Ametryn, Atrazin, Cyanazin, Dimethametryn, Ethiozin, Hexazinon, Meta- mitron, Metribuzin, Prometryn, Simazin, Terbuthylazin, Terbutryn, Triaziflam;
- Harnstoffe: Chlorotoluron, Daimuron, Diuron, Fluometuron, Isoproturon, Linuron, Me- thabenzthiazuron,Tebuthiuron;
- andere Hemmstoffe der Acetolactatsynthase: Bispyribac-Natrium, Cloransulam- Methyl, Diclosulam, Florasulam, Flucarbazone, Flumetsulam, Metosulam, Ortho- sulfamuron, Penoxsulam, Propoxycarbazone, Pyribambenz-Propyl, Pyribenzoxim, Pyriftalid, Pyriminobac-methyl, Pyrimisulfan, Pyrithiobac, Pyroxasulfon, Pyroxsulam;
- Sonstige: Amicarbazon, Aminotriazol, Anilofos, Beflubutamid, Benazolin, Bencarba- zon, Benfluresat, Benzofenap, Bentazon, Benzobicyclon, Bromacil, Bromobutid, Bu- tafenacil, Butamifos, Cafenstrole, Carfentrazone, Cinidon-Ethlyl, Chlorthal,
Cinmethylin, Clomazone, Cumyluron, Cyprosulfamid, Dicamba, Difenzoquat, Diflu- fenzopyr, Drechslera monoceras, Endothal, Ethofumesat, Etobenzanid, Fentrazami- de, Flumiclorac-Pentyl, Flumioxazin, Flupoxam, Fluorochloridon, Flurtamon, Indanofan, Isoxaben, Isoxaflutol, Lenacil, Propanil, Propyzamid, Quinclorac, Quinme- rac, Mesotrion, Methylarsensäure, Naptalam, Oxadiargyl, Oxadiazon, Oxazi- clomefon, Pentoxazon, Pinoxaden, Pyraclonil, Pyraflufen-Ethyl, Pyrasulfotol, Pyr- azoxyfen, Pyrazolynat, Quinoclamin, Saflufenacil, Sulcotrion, Sulfentrazon, Terbacil, Tefuryltrion, Tembotrion, Thiencarbazon, Topramezon, 4-Hydroxy-3-[2-(2-methoxy- ethoxymethyl)-6-trifluormethyl-pyridin-3-carbonyl]-bicyclo[3.2.1]oct-3-en-2-on, (3-[2-Chlor-4-fluor-5-(3-methyl-2,6-dioxo-4-trifluormethyl-3,6-dihydro-2H-pyrimidin- 1-yl)-phenoxy]-pyridin-2-yloxy)-essigsäureethylester, θ-Amino-δ-chlor^-cyclopropyl- pyrimidin-4-carboxylsäuremethylester, 6-Chlor-3-(2-cyclopropyl-6-methyl-phenoxy)- pyτidazin-4-ol, 4-Amino-3-chlor-6-(4-chlor-phenyl)-5-fluor-pyridin-2-carboxylsäure, 4-Amino-3-chlor-6-(4-chlor-2-fluor-3-methoxy-phenyl)-pyridin-2-carboxyl säuremethyl- ester und 4-Amino-3-chlor-6-(4-chloro-3-dimethylamino-2-fluor-phenyl)-pyridin-2- carboxylsäuremethylester.
Als Insektizid kann beispielsweise eingesetzt werden:
- Organo(thio)phosphate: Acephat, Azamethiphos, Azinphos-methyl, Chlorpyrifos, Chlorpyrifos-Methyl, Chlorfenvinphos, Diazinon, Dichlorvos, Dicrotophos, Dimetho- at, Disulfoton, Ethion, Fenitrothion, Fenthion, Isoxathion, Malathion, Methami- dophos, Methidathion, Methyl-Parathion, Mevinphos, Monocrotophos, Oxydemeton-
Methyl, Paraoxon, Parathion, Phenthoate, Phosalone, Phosmet, Phosphamidon, Phorate, Phoxim, Pirimiphos-Methyl, Profenofos, Prothiofos, Sulprophos, Tetrach- lorvinphos, Terbufos, Triazophos, Trichlorfon;
- Carbamate: Alanycarb, Aldicarb, Bendiocarb, Benfuracarb, Carbaryl, Carbofuran, Carbosulfan, Fenoxycarb, Furathiocarb, Methiocarb, Methomyl, Oxamyl, Pirimicarb,
Propoxur, Thiodicarb, Triazamate;
- Pyrethroide: Allethrin, Bifenthrin, Cyfluthrin, Cyhalothrin, Cyphenothrin, Cyper- methrin, alpha-Cypermethrin, beta-Cypermethrin, zeta-Cypermethrin, Deltamethrin, Esfenvalerat, Etofenprox, Fenpropathrin, Fenvalerate, Imiprothrin, Lambda-Cyhalo- thrin, Permethrin, Prallethrin, Pyrethrin I und II, Resmethrin, Silafluofen, tau-Fluva- linat, Tefluthrin, Tetramethrin, Tralomethrin, Transfluthrin, Profluthrin, Dimefluthrin,
- Hemmstoffe des Insektenwachstums: a) Chitinsynthese-Hemmstoffe: Benzoylharn- stoffe: Chlorfluazuron, Cyramazin, Diflubenzuron, Flucycloxuron, Flufenoxuron, He- xaflumuron, Lufenuron, Novaluron, Teflubenzuron, Triflumuron; Buprofezin, Diofenolan, Hexythiazox, Etoxazol, Clofentazin; b) Ecdyson-Antagonisten: Halofen- ozid, Methoxyfenozid, Tebufenozid, Azadirachtin; c) Juvenoide: Pyriproxyfen, Methoprene, Fenoxycarb; d) Lipidbiosynthese-Hemmstoffe: Spirodiclofen, Spiro- mesifen, Spirotetramat; Nikotinreceptor-Agonisten/Antagonisten: Clothianidin, Dinotefuran, Imidacloprid, Thiamethoxam, Nitenpyram, Acetamiprid, Thiacloprid, 1-(2-chloro-thiazol-5-yl- methyl)-2-nitrimino-3,5-dimethyl-[1 ,3,5]triazinan;
- GABA-Antagonisten: Endosulfan, Ethiprol, Fipronil, Vaniliprol, Pyrafluprol, Pyriprol, 5-Amino-1-(2,6-dichlor-4-methyl-phenyl)-4-sulfinamoyl-1 H-pyrazol-3-thiocarbon- säureamid; - Macrocyclische Lactone: Abamectin, Emamectin, Milbemectin, Lepimectin, Spino- sad, Spinetoram;
- Mitochondriale Elektronentransportketten-Inhibitor (METI) I Akarizide: Fenazaquin, Pyridaben, Tebufenpyrad, Tolfenpyrad, Flufenerim;
- METI Il und III Substanzen: Acequinocyl, Fluacyprim, Hydramethylnon; - Entkoppler: Chlorfenapyr;
Hemmstoffe der oxidativen Phosphorylierung: Cyhexatin, Diafenthiuron, Fenbutatin- oxid, Propargit; - Hemmstoffe der Häutung der Insekten: Cryomazin;
- Hemmstoffe von ,mixed function oxidases': Piperonylbutoxid;
- Natrumkanalblocker: Indoxacarb, Metaflumizon;
- Sonstige: Benclothiaz, Bifenazate, Cartap, Flonicamid, Pyridalyl, Pymetrozin, Schwefel, Thiocyclam, Flubendiamid, Chlorantraniliprol, Cyazypyr (HGW86); Cye- nopyrafen, Flupyrazofos, Cyflumetofen, Amidoflumet, Imicyafos, Bistrifluron und Py- rifluquinazon.
In einer bevorzugten Ausführungsform sind die Pflanzenschutzmittel bevorzugt Herbi- zide. In einer weiteren bevorzugten Ausführungsform sind die Pflanzenschutzmittel bevorzugt Insektizide. In einer weiteren bevorzugten Ausführungsform sind die Pflanzenschutzmittel bevorzugt Fungizide. In einer weiteren bevorzugten Ausführungsform sind die Fungizide bevorzugt Azole. In einer weiteren bevorzugten Ausführungsform sind die Azole bevorzugt Triticonazol, Epoxiconazol, Fluquinconazol oder Metconazol.
Weitere geeignete Effektstoffe sind agrochemische Adjuvantien. Adjuvantien sind Verbindungen oder Mischungen von Verbindungen, die für sich alleine keine Pestizide Wirkung haben, sondern die Wirksamkeit eines Pestizides erhöhen. Beispiele sind Penetrationsförderer. Als Penetrationsförderer kommen alle diejenigen Substanzen in Betracht, die üblicherweise eingesetzt werden, um das Eindringen von agrochemischen Wirkstoffen in Pflanzen zu verbessern. Penetrationsförderer werden in diesem Zusammenhang dadurch definiert, dass sie aus der wässerigen Spritzbrühe und/oder aus dem Spritzbelag in die Kutikula der Pflanze eindringen und dadurch die Stoffbeweglichkeit (Mobilität) von Wirkstoffen in der Kutikula erhöhen können. Die in der Lite- ratur (Baur et al., 1997, Pesticide Science 51 , 131-152) beschriebene Methode der „unilateral desorption" kann zur Bestimmung dieser Eigenschaft eingesetzt werden. Eine weitere geeignete Methode besteht darin, dass ein einzelner Tropfen der zu untersuchenden Mischung auf ein Blatt gegeben, und der Rückstand auf dem Blatt nach mehreren Tagen bestimmt wird.
Weitere geeignete Effektstoffe sind Zusatzstoffe für Lebensmittel oder Tierfutter, wie Lebensmittelfarbstoffe, Aminosäuren, Vitamine, Konservierungsmittel, Antioxidantien, Geruchs- oder Geschmackstoffe.
Beispiele für Hilfsmittel für Polymere sind Flammschutzmittel, Viskositätsverbesserer oder polare Flüssigkeiten, wie sie in der diskontinuierlichen Phase eingesetzt werden können. Beispiele für Hilfsmittel für Papier sind Alkenylbernsteinsäureanhydride oder Dialkyldiketene. Beispiele für Hilfsmittel für Wasch- und Reinigungsmittel sind Tenside oder Emulgatoren, wie sie auch als Dispergiermittel in der inversen Miniemulsion ein- gesetzt werden können. Ebenso können als Hilfsmittel Enzyme, wie Hydrolasen oder Amidasen eingesetzt werden. Bevorzugte Effektstoffe sind Biozide, Pflanzenschutzmittel und Düngemittel. In einer Ausführungsform sind die Effektstoffe Pflanzenschutzmittel. In einer weiteren Ausführungsform sind die Effektstoffe Biozide. In einer weiteren Ausführungsform sind die Effektstoffe agrochemische Adjuvantien.
Die Effektstoffe können in Reinform, technischer Qualität, als Extrakt oder in Mischung mit anderen Effektstoffen eingesetzt werden. Die Effektstoffe liegen gelöst oder in fester Form in der dispergierten Phase vor. Die Gesamtmenge der Effektstoffe beträgt 0,1 bis 90 Gew.-%, bevorzugt 5 bis 50 Gew.-% bezogen auf den Gesamtansatz in Schritt A).
Die Effektstoffe können aus den Mikropartikeln freigesetzt werden mittels Diffusion aus dem Mikropartikel oder durch Abbau des Mikropartikels. Die Freisetzungsrae kann gezielt gesteuert werden durch innere und äußere Einflüsse, welche die Diffusion oder den Abbau beeinflussen.
Weitere Zusatzstoffe, beispielsweise Konservierungsmittel, Verdicker, Trennmittel o- der Schutzkolloide und Emulgatoren, wie sie auch im erfindungsgemäßen Verfahren eingesetzt werden können, sind dem Fachmann bekannt und werden je nach ge- wünschtem Verwendungszweck nach der Herstellung der Mikropartikeln in üblicher Menge zugesetzt.
Die Wand-Monomere sind ausgewählt aus der Gruppe ethylenisch ungesättigter Monomere, Polyisocyanate und/oder Polyepoxide. Die Polyisocyanate werden bevorzugt in Kombination zusammen mit einem weiteren Wandmonomer eingesetzt, wie ethylenisch ungesättige Monomonere und Polyisocyanate, Polyisocyanate und Polyole, Polyisocyanate und Polyamine. Bevorzugt sind als Wand-Monomere ethylenisch ungesättige Monomonere, ethylenisch ungesättige Monomonere und Polyisocyanate, einfach und mehrfach ethylenisch ungesättige Monomonere, Polyisocyanate und PoIy- ole, Polyisocyanate und Polyamine, und Polyepoxide und Polyamine. Besonders bevorzugte Wand-Monomere sind ethylenisch ungesättige Monomonere, und ethylenisch ungesättige Monomonere und Polyisocyanate. Speziell bevorzugte Wand-Monomere sind ethylenisch ungesättige Monomonere.
Geeignete ethylenisch ungesättigte Monomere sind radikalisch polymerisierbare Monomere mit mindestens einer, bevorzugt einer, C-C Doppelbindung. Bevorzugte ethylenisch ungesättige Monomonere sind (Meth)Acrylsäure, (Meth)Acrylate, (Meth)acrylamid oder Vinyllactame, insbesondere (Meth)Acrylsäure, (Meth)Acrylate, (Meth)acrylamid. Als Beispiele seien genannt: Acrylsäure und ihre Ester, Methacrylsäu- re und ihre Ester, Maleinsäure und ihre Ester, Styrol, Butadien, Isopren, Vinylacetat, Vinylpropionat, Vinylpyridin, Vinylchlorid, Vinylidendichlorid, Acrylnitril, Methacrylamid, Itaconsäure, Maleinsäureanhydrid, N-Vinylpyrrolidon, und Acrylamido-2-methyl- propansulfonsäure, N-Methylolacrylamid, N-Methylolmethacrylamid, Dimethylami- noethylmethacrylat und Diethylaminoethylmethacrylat. Bevorzugte Ester der Acrylsäure oder Methacrylsäure sind Ci-C24-Alkylester, insbesondere hydroxyfunktionelle Alky- lester, speziell hydroxyfunktionelle C2-C6-Alkylester wie 2-Hydroxyethylacrylat, 2-Hydroxyethylmethacrylat, 4-Hydroxybutylacrylat, 4-Hydroxybutylmethacrylat, 2-Hydroxypropylacrylat, 2-Hydroxypropylmethacrylat, 3-Hydroxypropylacrylat, 3-Hydroxypropylmethacrylat.
In einer bevorzugten Ausführungsform sind wasserlösliche ethylenisch ungesättigte Monomere mit einer Löslichkeit von mindestens 5 Gew.% in Wasser geeignet. Beispiele sind Acrylamid, Methyacrylamid, Acrylsäure, Methacrylsäure, Salze von Acrylamido- 2-methylpropansulfonsäure, 2-Hydroxyethylacrylat, 2-Hydroxyethylmethacrylat, 4-Hydroxybutylacrylat, 4-Hydroxybuylmethacrylat, 2-Hydroxypropylacrylat, 2-Hydroxypropylmethacrylat, 3-Hydroxypropylacrylat oder 3-Hydroxypropylmethacrylat. Ganz besonders bevorzugte ethylenisch ungesättigte Monomere sind hydroxyfunktionelle C2-C6-Alkylester der Acrylsäure oder Methacrylsäure, und Vinylpyrrolidon, ganz speziell 2-Hydroxyethylacrylat, 2-Hydroxyethylmethacrylat, 4-Hydroxybutylacrylat, 4-Hydroxybutylmethacrylat, 2-Hydroxypropylacrylat, 2-Hydroxypropylmethacrylat, 3-Hydroxypropylacrylat oder 3-Hydroxypropylmethacrylat.
Geeignete Polyisocyanate sind aliphatische und aromatische Isocyanate mit mindestens zwei, bevorzugt zwei bis vier, besonders bevorzugt zwei bis drei Isocyanatgrup- pen. Beispiele für Polyisocyanate sind aromatische Isocyanate wie 2,4-Toluylen- diisocyanat (2,4-TDI), 2,4'-Diphenylmethandiisocyanat (2,4'-MDI) und sogenannte TDI- Gemische (Gemische von 2,4-Toluylendiisocyanat und 2,6- Toluylendiisocyanat). Als aliphatische Isocyanate seien beispielhaft genannt: 1 ,4-Butylendiisocyanat, Hexa- methylendiisocyanat (HDI), 1 ,12- Dodecamethylendiisocyanat, 1 ,10-Decamethylen- diisocyanat, 2-Butyl-2- ethylpentamethylendiisocyanat, 2,4,4- oder 2,2, 4-Trimethyl- hexamethylendiisocyanat, Isophorondiisocyanat (IPDI), 2-lsocyanatopropyl- cyclohexylisocyanat, 2,4'-Methylenbis(cyclohexyl)- diisocyanat und 4-Methyl- cyclohexan-1 ,3-diisocyanat (H-TDI). Weiterhing geeignete Polyisocyanate sind Oligoi- socyanate und deren Mischungen. Bei Oligoisocyanaten bestimmt man die Zahl der Isocyanatgruppen üblicherweise über den NCO-Gehalt und berechnet damit die mittlere Zahl der Isocyanatgruppen. Diese mittlere Zahl der Isocyanatgruppen beträgt typi- scherweise mindestens zwei, bevorzugt zwei bis vier, besonders bevorzugt zwei bis drei. Bevorzugte Oligoisocyanate basieren auf den vorgenannten aromatischen und/oder aliphatischen Polyisocyanaten, speziell auf Diphenylmethandiisocyanat und/oder Hexamethylendiisocyanat. Solche Oligoisocyanate sind beispielsweise kommerziell erhältlich als Lupranat® M20S von BASF SE. Bevorzugte Polyisocyanate sind Toluylendiisocyanat (2,4-TDI), 2,4'-Diphenylmethandiisocyanat (2,4'-MDI), Hexamethylendiisocyanat (HDI), Isophorondiisocyanat (IPDI), und Oligoisocyanate. Besonders bevorzugt sind Oligoisocyanate. Man kann die Polyisocyanate in Abwesenheit oder vorzugsweise in Anwesenheit mindestens eines Polyurethan-Katalysators herstellen. Als Polyurethan-Katalysatoren kommen beispielsweise alle in der Polyurethanchemie üblicherweise verwendeten Ka- talysatoren in Betracht, wie organische Amine, insbesondere tertiäre aliphatische, cyc- loaliphatische oder aromatische Amine, und Lewis-saure organische Metallverbindungen. Als Lewis-saure organische Metallverbindungen kommen z.B. Zinnverbindungen in Frage, wie beispielsweise Zinn-(ll)-salze von organischen Carbonsäuren, z.B. Zinn(ll)- acetat, Zinn(ll)-octoat, Zinn(ll)-ethylhexoat und Zinn(ll)-Iaurat und die Dial- kylzinn(IV)- derivate von organischen Carbonsäuren, z.B.Dimethylzinn-diacetat, Dibu- tylzinndiacetat, Dibutylzinn-dibutyrat, Dibutylzinn-bis(2-ethylhexanoat), Dibutylzinn- dilaurat, Dibutylzinn-maleat, Dioctylzinn-dilaurat und Dioctylzinn-diacetat. Auch Metallkomplexe wie Acetylacetonate des Eisens, Titans, Zinks, Aluminiums, Zirkons, Mangans, Nickels und Cobalts sind möglich.
Geeignete Polyepoxide sind Verbindungen mit mindestens zwei, bevorzugt zwei bis drei Epoxidgruppen. Beispiele dafür sind von Bisphenol A abgeleitete Epoxide wie Bisphenol-A-diglycidylether oder um Epoxide vom Typ Epichlorhydrin-substituierter Bis-oder Polyphenole (Epoxide mit einem Polymerisationsgrad von1 bis 2, unter der Bezeichnung Epikote® E 828 von der Fa. Shell im Handel erhältlich), oder Tetraglyci- dylmethylendianilin (z. B. LY 1802 der Firma Ciba).
Als Wand-Monomere sind weiterhin Komibationen umfassend ethylenisch ungesättige Monomonere und Polyisocyanate bevorzugt. Geeignete ethylenisch ungesättige Mo- nomonere und Polyisocyanate sind vorstehend beschrieben. Bevorzugte einfach ethylenisch ungesättigte Monomere zur Kombination mit Polyisocyanaten sind hydroxy- funktionelle ethylenisch ungesättige Monomonere, wie hydroxyfunktionelle C2-C6- Alkylester der Acrylsäure oder Methacrylsäure, speziell 2-Hydroxyethylacrylat, 2-Hydroxyethylmethacrylat, 4-Hydroxybutylacrylat, 4-Hydroxybutylmethacrylat, 2-Hydroxypropylacrylat, 2-Hydroxypropylmethacrylat, 3-Hydroxypropylacrylat oder 3-Hydroxypropylmethacrylat.
Als Wand-Monomere sind weiterhin Komibationen umfassend einfach und mehrfach ethylenisch ungesättige Monomonere bevorzugt. Unter einfach ethylenisch ungesättige Monomonere werden Monomere mit genau einer radikalisch polymerisierbaren C-C- Doppelbindung verstanden. Unter mehrfach ethylenisch ungesättigen Monomoneren werden Monomere mit mindestens zwei, bevorzugt zwei bis drei, insbesondere zwei radikalisch polymerisierbaren C-C Doppelbindung verstanden, die bevorzugt nicht konjugiert stehen.
Geeignete einfach ethylenisch ungesättige Monomere sind vorstehend bei der Beschreibung ethylenisch ungesättige Monomere aufgelistet. Bevorzugte einfach ethyle- nisch ungesättigte Monomere sind hydroxyfunktionelle C2-C6-Alkylester der Acrylsäure oder Methacrylsäure, und Vinylpyrrolidon, ganz speziell 2-Hydroxyethylacrylat, 2- Hydroxyethylmethacrylat, 4-Hydroxybutylacrylat, 4-Hydroxybutylmethacrylat, 2- Hydroxypropylacrylat, 2-Hydroxypropylmethacrylat, 3-Hydroxypropylacrylat oder 3- Hydroxypropylmethacrylat.
Geeignete mehrfach ethylenisch ungesättige Monomere sind die Diester von Diolen mit Acrylsäure oder Methacrylsäure, ferner die Diallyl- und Divinylether dieser Diole. Beispielhaft seien Ethandioldiacrylat, Ethylenglykoldimethacrylat, Polalkenglykol- di(meth)acrylat, wobei als Alkylen meist Ethylen und/oder Propylen verwendet wird,
1 ,3-Butylenglykoldimethacrylat, Methallylmethacrylamid, Allylacrylat und Allylmethacry- lat genannt. Weiterhin geignet sind Divinylbenzol, Trivinylbenzol und Divinylcyclohexan und Trivinylcyclohexan, Polyester von Polyolen mit Acrylsäure und/oder Methacrylsäure, ferner die Polyallyl- und Polyvinylether dieser Polyole. Bevorzugt werden Propandi- ol-, Butandiol-, Pentandiol- und Hexandioldiacrylat und die entsprechenden
Methacrylate , Trimethylolpropantriacrylat und -methacrylat, Pentaerythrittriallylether, Pentaerythrittetraallylether, Pentaerythrittriacrylat und Pentaerythrittetraacrylat bzw. die entsprechenden Methacrylate sowie ihre technischen Mischungen. Besonders bevorzugt sind Propandiol-, Butandiol-, Pentandiol- und Hexandioldiacrylat und die entspre- chenden Methacrylate.
Bevorzugte Komibationen umfassend einfach und mehrfach ethylenisch ungesättige Monomonere sind 2-Hydroxyethyl(meth)acrylat und Pentaerythrittriacrylat; 2- Hydroxyethyl(meth)acrylat und Butandioldi(meth)acrylat; sowie 2- Hydroxyethyl(meth)acrylat und Polalkenglykoldi(meth)acrylat.
Als Wand-Monomere sind weiterhin Komibationen umfassend Polyisocyanate und Polyole bevorzugt. Geeignete Polyisocyanate wurden vorstehend beschreiben. Als Polyole sind Alkohole mit mindestens zwei Alkoholgruppen geeignet, wie Ethandiol, Diethy- lenglykol, 1 , 2- bzw. 1 ,3-Propandiol, Dipropylenglykol, 1 , 4-Butandiol, 1 , 5-Pentandiol, 1 , 6-Hexandiol,1 , 10-Decandiol, Glycerin und Trimethylolpropan, ferner auch Dialkoho- Ie, die aromatische oder aliphatische Ringsysteme enthalten, wie z. B. 1 , 4-Bisdi- hydroxymethylbenzol oder 1 ,4-Bisdihydroxyethylbenzol. Eingesetzt werden können ferner Polyesterpolyole aus Lactonen, z. B. Caprolacton oder Hydroxycarbonsäuren, z.B. Hydroxycapronsäure. Polymere mit mindestens zwei Alkoholgruppen können e- benfalls verwendet werde, wie Polyvinylalkohol oder teilhydrolisiertes Polyvinylacetat. Mischungen vorgenannter Polyole sind ebenfalls möglich. Bevorzugte Polyalkohole sind Diethylenglykol,1 , 4-Butandiol, 1 ,5-Pentandiol und 1 ,6-Hexandiol.
Als Wand-Monomere sind weiterhin Komibationen umfassend Polyisocyanate und Po- lyamine bevorzugt. Geeignete Polyisocyanate wurden vorstehend beschreiben. Als Polyamine können Verbindungen mit mindestens zwei, bevorzugt zwei bis vier, insbe- sondere zwei bis drei Aminogruppen eingesetzt werden. In Frage kommende Polyami- ne sind vorzugsweise aliphatische primäre und sekundäre Polyamine. Als Beispiele genannt seien : 1 ,2-Ethylendiamin, Diethylentriamin, Triethylentetramin, Bis-(3-amino- propyl)amin, Bis(2-methylaminoethyl)methylamin, 1 ,4-Diamino-cyclohexan, 3-Amino- methylaminopropan, N-Methyl-bis-(3-aminopropyl)-amin, 1 ,4-Diamino-n-butan, 1 ,6-Di- amino-n-hexan, Polyvinylamin, Amino-terminierte Polyether. Bevorzugte Polyamine sind 1 ,2-Ethylendiamin, Diethylentriamin und Triethylentetramin.
Als Wand-Monomere sind weiterhin Komibationen umfassend Polyepoxide und Polya- mine bevorzugt. Geeignete Polyepoxide und Polyamine wurden vorstehend beschreiben.
Die Wand-Monomere werden in der Regel in einem Gewichtsverhältnis Wand-Monomer zu Polyester-Monomer von 1 :5 bis 10:1 , bevorzugt 1 :3 bis 7:1 , besonders bevor- zugt 1 :1 bis 4:1 eingesetzt.
Das erfindungsgemäße Verfahren zur Herstellung von Effektstoff-haltigen Mikroparti- keln M umfasst A) die Bildung einer Rohsuspension von Mikropartikeln A mittels enzy- matischer Polyestersynthese in einer inversen Miniemulsion enthaltend Enzym, Effektstoff und Polyester-Monomere; und B) die Polymerisation von Wand-Monomeren aus der Gruppe ethylenisch ungesättigter Monomere, Polyisocyanate und/oder Polyepoxide in der Rohsuspension von Mikropartikeln A. Schritte A) und B) werden üblicherweise in der genannten Reihenfolge durchgeführt.
In Schritt A) erfolgt die Bildung einer Rohsuspension von Mikropartikeln A mittels en- zymatischer Polyestersynthese in einer inversen Miniemulsion enthaltend Enzym, Effektstoff und Polyester-Monomere. Meist wird dabei mindestens ein Dispergiermittel, mindestens eine unpolare Flüssigkeit, mindestens eine polare Flüssigkeit, mindestens ein Polyester-Monomer, mindestens ein die Polymerisation katalysierendes Enzym und mindestens ein Effektstoff in beliebiger Reihenfolge zusammengeführt und daraus eine inverse Miniemulsion hergestellt. Ebenso ist es möglich Vormischungen einzelner Komponenten herzustellen. Bevorzugt wird mindestens ein die Polymerisation des Polyester-Monomers katalysierendes Enzym in eine zuvor hergestellte inverse Miniemulsion eingebracht.
Das erfindungsgemäße Verfahren erfolgt bevorzugt dergestalt, dass mindestens ein Dispergiermittel in wenigstens eine Teilmenge einer Flüssigkeit und eine Teilmenge der Polyester-Monomere eingebracht wird. Der Effektstoff und eine Teilmengen der Polyester-Monomere wird separat davon in mindestens einer Teilmenge der Flüssigkeit eingebracht. Die beiden Mischungen werden zusammengeführt und eine inverse Miniemulsion hergestellt. Anschließend werden Teilmengen der Polyester-Monomere sowie das Enzym in die Miniemulsion eingebracht. „Teilmenge der Polyester-Monomere" bedeutet in diesem Zusammenhang zwischen von 0 bis 100 % der gesamten im Reaktionsansatz enthaltenen Polyester-Monomere. „Wenigstens eine Teilmenge" bedeutet mehr als 0 % der im Gesamtansatz enthaltenen Menge. In einer bevorzugten Ausführungsform wird eine Teilmenge der Polyester-Monomere in die Miniemulsion einge- bracht, wobei die Teilmenge über 1 %, bevorzugt über 10 %, beträgt. Weitere Zusatzstoffe, wie Konservierungsmittel, können an einem beliebigen Verfahrensschritt eingebracht werden.
Das erfindungsgemäße Verfahren erfolgt in der Regel bei einer Reaktionstemperatur von 5 bis 100 0C, oft von 20 bis 80 0C und häufig von 30 bis 65 0C. Im Allgemeinen erfolgt das Verfahren bei einem Druck (Absolutwerte) in der Regel von 0,8 bis 10 bar, bevorzugt von 0,9 bis 2 bar und insbesondere bei 1 bar (Atmosphärendruck). Der Fachmann richtet die Reaktionszeit nach den gewünschten Eigenschaften der Mikro- partikel, beispielsweise dem Polymerisationsgrad. Nach der gewünschten Reaktions- zeit kann das Enzym zerstört oder wiederverwendet, die Mikropartikeln isoliert oder die Reaktionsmischung anderweitig isoliert oder weiterverarbeitet werden. Bevorzugt wird die Rohsuspension von Mikropartikeln A direkt für Schritt B) eingesetzt.
Die Herstellung der inversen Miniemulsion, die erfindungsgemäß vorliegen muß, kann nach dem Stand der Technik erfolgen. Dazu wird eine Makroemulsion hergestellt durch Einbringen von Energie in die Mischung der Phasen durch Schütteln, Schlagen, Rühren, turbulentes Mischen; durch Einspritzen einer Flüssigkeit in eine andere; durch Schwingungen und Kavitation in der Mischung (z.B. Ultraschall); durch Emulgierzentri- fugen; durch Kolloidmühlen und Homogenisatoren; oder mittels einer Strahldüse, wie beispielsweise in WO 2006/053712 beschrieben. Die Makroemulsion wird durch Homogenisieren in eine Miniemulsion mit Tropfengrößen von unter 1000 nm überführt. Die Homogenisierung erfolgt bevorzugt bei 0 bis 100 0C durch Anwendung von Ultraschall, Hochdruckhomogenisatoren oder anderen hochenergetischen Homogenisierungsapparaturen, wie Strahldüsen.
Im Allgemeinen bilden sich feste Mikropartikeln aus den Polyester-Monomeren während der Reaktionszeit in der inversen Miniemulsion unter Katalyse des Enzyms. Durch die Bildung fester Mikropartikel entsteht aus der inversionen Miniemulsion eine Rohsuspension von Mikropartikeln A.
In Schritt B) erfolgt die Polymerisation von Wand-Monomeren aus der Gruppe ethyle- nisch ungesättigter Monomere, Polyisocyanate und/oder Polyepoxide in der Rohsuspension von Mikropartikeln A. Bevorzugt wird mindestens ein Wand-Monomer in eine zuvor hergestellte Rohsuspension von Mikropartikeln A eingebracht und anschließend polymerisiert. Besonders bevorzugt wird mindestens ein Wand-Monomer und ein mindestens ein Dispergiermittel zur Rohsuspension gegeben. Die Polymerisation der Wand-Monomeren kann durch übliche Weise erfolgen, wie durch Polymerisations- Katalysatoren oder physikalische Methoden. Umfassen die Wand-Monomere ethyle- nisch ungesättige Monomere, dann werden meist Radikalstarter als Polymerisations- Katalysatoren zugesetzt und/oder die Reaktionstemperatur wird erhöht. Umfassen die Wand-Monomer Polyisocyanate, dann werden meist vorgenannte Polyurethan- Katalysatoren als Polymerisations-Katalysatoren zugesetzt.
Bevorzugt erfolgt Schritt B) dergestallt, dass die Rohsuspension aus Schritt A) mit mindestens einem Dispergiermittel und mindestens einem Wand-Monomer versetzt wird. Bevorzugt wird die Rohsuspension mit einer Emulsion umfassend Wand-Monomer und Dispergiermittel versetzt. Bevorzugt bildet sich dabei eine Emulsion von Wand- Monomeren in der Rohsuspension von Mikropartikeln A. Anschließend gibt man mindestens einen Polymerisations-Katalysator zu. Wand-Monomer, Dispergiermittel und Polymerisations-Katalysator können in einer Menge, in mehreren Teilmengen oder kontinuierlich zugegeben werden. Wand-Monomer, Dispergiermittel und Polymerisati- ons-Katalysator können in polarem oder unpolarem Lösungsmittel gelöst oder disper- giert werden bevor sie der Rohsuspension zugesetzt werden.
In einer weiteren bevorzugten Ausführungsform wird mindestens ein Wand-Monomer, bereits in Schritt A) zugegeben und erst während Schritt B) polymerisiert. Bevorzugt werden hierfür Wand-Monomere verwendet, die keine primären oder sekundären Hydroxygruppen tragen. Insbesondere sind ethylenisch ungesättigte Monomere, die keine primären oder sekundären Hydroygruppen tragen, geeignet.
Das erfindungsgemäße Verfahren erfolgt in der Regel bei einer Reaktionstemperatur von 20 bis 120 0C, oft von 40 bis 90 0C und häufig von 50 bis 80 0C. Im Allgemeinen erfolgt das Verfahren bei einem Druck (Absolutwerte) in der Regel von 0,8 bis 10 bar, bevorzugt von 0,9 bis 2 bar und insbesondere bei 1 bar (Atmosphärendruck). Der Fachmann richtet die Reaktionszeit nach den gewünschten Eigenschaften der Mikro- partikel, beispielsweise dem Polymerisationsgrad. Der Reaktionsansatz wird üblicher- weise vermischt, beispielsweise durch kontinuierliches Rühren.
Im Allgemeinen bilden sich in Schritt B) die effektstoff-haltigen Mikropartikel M aus den Mikropartikeln A und den polymerisierten Wand-Monomeren. In Schritt B) können zusätzlich geringe Anteile, bevorzugt unter 20 Gew.%, insbesondere unter 5 Gew.% be- zogen auf die Gesamtmenge aller Mikropartikel, nicht-erfindungsgemäße Mikropartikel nur aus den polymerisierten Wand-Monomeren entstehen. Diese Sekundärnukleierung ist eine verbreitete Nebenreaktion, die der Fachmann durch übliche Maßnahmen reduzieren kann, beispielsweise durch langsame Dosierung der Wand-Monomere, oder geringe Konzentration der Wand-Monomere in der kontinuierlichen Phase.
Die weitere Verwendung der Mikropartikel M ist ohne weitere Aufarbeitung möglich. Nach der erfindungsgemäßen Herstellung der Mikropartikeln können sie bei Bedarf isoliert werden, das heißt von Lösungsmitteln befreit werden. Geeignete Methoden sind beispielsweise Eindampfen, Sprühtrocknung, Gefriertrocknung, Zentrifugation, Filtration oder Vakuumtrockung. In einer bevorzugten Ausführungsform werden die Mikropar- tikeln nach der Herstellung nicht isoliert.
Desweiteren können die Mikropartikel M in erfindungsgemäße Dispersionen überführt werden, indem die Mikropartikel in Wasser oder wässerigen Lösungen dispergiert werden, beispielsweise durch Phasentransferverfahren, Flush-analoge Transferverfahren, oder bevorzugt durch Trocknen der Partikel zu einem Pulver, das anschließend re- dispergiert wird.
Die erfindungsgemäß hergestellte Dispersion enthaltend Mikropartikel M oder das weiter aufgearbeitete Produkt können als Komponente in Farbmitteln, Kosmetika, Pharmaka, Pflanzenschutzmittel, Düngemittel, Zusatzstoffe für Lebensmittel oder Tierfutter, Hilfsmitteln für Polymere, Papier, Textil, Leder, Anstrichmittel oder Wasch- und Reinigungsmittel eingesetzt werden. Vorteilhaft ist, dass der Effektstoff gezielt wieder freigesetzt werden kann, insbesondere in der Biosphäre, wo Polyester abbauende Enzyme ubiquitär vorkommen.
In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung eine agrochemische Formulierung umfassend erfindungsgemäße Mikropartikel M oder erfindungsgemäß hergestellte Mikropartikel M.
Die agrochemischen Formulierungen können weitere Formulierungshilfsmittel enthal- ten. Der Ausdruck „Formulierungshilfsmittel" im Sinne der Erfindung sind Hilfsstoffe, die zur Formulierung von agrochemischen Wirkstoffen geeignet sind, wie Lösungsmittel, Träger, Tenside (ionische oder nicht-ionische Tenside, Adjuvantien, Dispergiermittel), Konservierungsmittel, Entschäumer und/oder Gefrierschutzmittel. Hilfsstoffe für Saatgutbehandlung können optional auch Farbstoffe, Bindemittel, Geliermittel und/oder Verdicker sein.
Im Allgemeinen können die agrochemischen Formulierungen 0 bis 90 Gew.%, bevorzugt 1 bis 85 Gew.%, besonders bevorzugt 5 bis 80 Gew.% und insbesondere 5 bis 65 Gew.% Formulierungshilfsmittel umfassen.
Des weiteren betrifft die vorliegende Erfindung Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, wobei man die unerwünschten Pflanzen, den Boden auf denen die unerwünschten Pflanzen wachsen, oder deren Saatgüter mit einer erfindungsgemäßen agrochemischen Formulierung behandelt.
Außerdem betrifft die vorliegende Erfindung Verfahren zur Bekämpfung von unerwünschtem Insekten- oder Milbenbefall auf Pflanzen und/oder zur Bekämpfung von phytopathogenen Pilzen, wobei man die Pilze / Insekten, deren Lebensraum oder die vor Pilz- oder Insektenbefall zu schützenden Pflanzen oder Böden bzw. die Pflanzen, den Boden auf denen die Pflanzen wachsen, oder deren Saatgüter mit einer erfindungsgemäßen agrochemischen Formulierung behandelt.
Daneben betrifft die vorliegende Erfindung Verfahren zur Behandlung von Saatgut mit einer erfindungsgemäßen agrochemischen Formulierung sowie Saatgut behandelt mit einer erfindungsgemäßen agrochemischen Formulierung.
Insgesamt bietet das erfindungsgemäße Verfahren viele Vorteile gegenüber herkömmlichen Verfahren zur Herstellung von Mikropartikeln: niedere Reaktionstemperaturen und weitgehend neutrale pH-Werte erlauben den Einsatz Temperatur- und pH- empfindlicher Effektstoffe; die Polymere des Mikropartikels können direkt in situ hergestellt werden ohne aufwendige Lagerhaltung zu betreiben.
Ebenso bieten die erfindungsgemäß hergestellten Mikropartikel Vorteile: die Mikropar- tikel sind dichter als bei anderen Herstellverfahren. Insbesondere sind die Mikropartikel mechanisch stabiler als nur enzymatisch hergestellte Mikropartikel. Die Mikropartikel können temperaturlabile oder anderweitig sensitive Effektstoffe umfassen, sie können auch in polarer Flüssigkeit gelöste Effektstoffe umfassen. Des weiteren kann die Freisetzungsrate des Effektstoffs aus den Mikropartikeln gesteuert werden über die Art und / oder Menge der Wandmonomere. Die Freisetzungsrate ist vorteilhafterweise langsamer durch die Polymerisation der Wandmonomere im Vergleich zu Partikeln, die nur aus Polyester aufgebaut sind.
Nachfolgende Beispiele erläutern die Erfindung ohne sie einzuschränken.
Beispiele
Teil hydriertes Mineralöldestillat: Teilhydriertes Mineralöldestillat mit Siedepunkt von 260 bis 280 0C, zum Beispiel als Isopar® V kommerziell erhältlich von der Fa. Exxon Mobil Chemical.
Enzym: eine auf sphärischen Polymerkügelchen immobilisierte Lipase aus Candida antarctica Typ B, beispielsweise kommerziell erhältlich als Novozym® 435 von Novozymes, Dänemark. Dispergiermittel: Polyester-Polyethylenoxid-Polyester-Block-copolymerisat mit einer
Molmasse >1000 g/mol, durch Umsetzung von kondensierter 12-Hydroxystearin- säure mit Polyethylenoxid gemäß der Lehre der EP 424 B1 hergestellt (kommerziell erhältlich als Hypermer® B-246, Fa. Croda).
Caprolacton: ε-Caprolacton mit Reinheit >99%. HEMA: 2-Hydroxyethylmethacrylat, kommerziell erhätlich von BASF SE.
AIBN: Azobisisobutyronitril
DBTL: Dibutylzinndilaurat lsocyanat A: oligomeres 4,4'-Diphenylmethandiisocyanat mit NCO-Gehalt von 31 ,8 g / 100 g (ASTM D 5155-96 A), Acidität 150 mg/kg (als HCl, ASTM, D 1638-74) und Viskosiät von 210 mPaS (DIN 53018), beispielsweise kommerziell erhältlich als Lupranat® M20S von BASF SE. Als Effektstoff wurde ein fungizides Pflanzenschutzmittel verwendet, beispielsweise Triticonazol. Alternativ wurde ein Farbmittel, beispielsweise Basacid® Blau 756 (Cl. Acid Blue 9, Triphenylmethan-Farbstoff, beispielsweise erhältlich von BASF SE) als Effektstoff verwendet. Basacid Blau 756 ist unlöslich in Isopar® V, während es sich in Propylencarbonat und in Caprolacton löst. Als weitere Alternative wurde Propylencar- bonat als Effektstoff eingesetzt.
Zum Anfärben für die Lichtmikroskopie wurde der Farbstoff Sudan® Blau (Anthrachi- non-Farbstoff, Cl. Solvent Blue 79, erhältlich beispielsweise von BASF SE) verwendet. Er löst sich nur in sehr hydrophoben Medien, wie in Isopar® V und Polycaprolacton. Er ist in Wasser oder Propylencarbonat jedoch gering löslich.
Beispiel 1 (nicht erfindungsgemäß)
Folgende Mengen wurden eingesetzt zur Herstellung der inversen Miniemulsion:
120 g Teilhydriertes Mineralöldestillat
24,0 g Propylencarbonat 6,0 g ε-Caprolacton 19,2 mg D-Sorbitol 1 ,65 g Triticonazol 3,0 g Dispergiermittel 0,6 g Enzym Das Dispergiermittel wurde in einem Probengefäß vorgelegt und unter Rühren in teilhydriertem Mineralöldestillat gelöst. In einem weiteren Gefäß wurden Triticonazol und D-Sorbitol in einem Gemisch aus Caprolacton und Propylencarbonat gelöst. Die homogenen Lösungen wurden sodann miteinander vermischt und durch Rühren mit einem Magnetrührer 60 min bei Raumtemperatur voremulgiert. Mittels Ultraschall (Ultraschallprozessor UP 400S der Fa. Hielscher) wurde hieraus unter Kühlung mit einem Eisbad eine inverse Miniemulsion hergestellt (5 min, 100 % mit Sonotrode H7) und nach Zugabe von 100 mg Enzym 48 h bei 60 0C polymerisiert. Man erhielt eine Rohsuspension von Mikropartikeln. Bei Lichtmikroskopischen Aufnahmen (1000-fache Vergrößerung) zeigten sich intakte kugelförmige Teilchen (FIG 1 ).
Zur Vorbereitung einer SEM (scanning electron microscope) Aufnahme wurde das erhaltene Produkt zentrifugiert und der Feststoff mit Isobutanol und Hexan gewaschen und an der Luft getrocknet. Die SEM Aufnahme bei 5.00 kV zeigte weitgehend zerstörte Mikropartikel (FIG 2).
Beispiel 2: Polymerisation mit 300 % Hydroxyethylmethacrylat (HEMA) Zunächst wurde die Rohsuspension von Mikropartikeln wie in Beispiel 1 beschrieben hergestellt. Dann wurden 3,6 g Dispergiermittel zugesetzt und 15 min. gerührt. Nach vollständiger Auflösung des Dispergiermittels in der Ölphase wurde 18,0 g HEMA zugegeben und weitere 30 min gerührt. Die Polymerisationsreaktion wurde anschließend durch Zugabe eines Gemisches aus 72 g lsopar V und 0,36 g AIBN gestartet. Um einen vollständigen Umsatz zu gewährleisten, wurde nach einer Reaktionszeit von 6 h bei 60 0C die gleiche Menge an AIBN in 24 g lsopar V nochmals zugegeben und bis zum vollständigen Umsatz weiterpolymerisiert. Zur Vorbereitung einer SEM (scanning electron microscope) Aufnahme wurde das so erhaltene Produkt wie in Beispiel 1 zentrifugiert, der so erhaltene Feststoff mit Isobuta- nol und Hexan gewaschen und an der Luft getrocknet. Der getrocknete Feststoff wurde anschließend im Mörser fein zu einem Pulver zerstossen. Die SEM Aufnahme zeigte intakte, kugelförmige Mikropartikel (FIG 3). Zur weiteren Kontrolle der Stabilität der Partikel wurde das Pulver in einer 1 Gew.%- igen wässrigen SDS Lösung mittels Ultraschall (1 min, unter Eiskühlung, 100 % mit Sonotrode H7) redispergiert. Bei Lichtmikroskopischen Aufnahmen (1000-fache Vergrößerung) zeigten sich intakte kugelförmige Teilchen.
Die Versuche zeigen die hohe mechanische Stabilität, insbesondere im Vergleich zu den Partikeln aus Beispiel 1.
Beispiel 3: Polymerisation mit 200 % Hydroxyethylmethacrylat Zunächst wurde die Rohsuspension von Mikropartikeln wie in Beispiel 1 beschreiben hergestellt. Dann wurden 2,4 g Dispergiermittel zugesetzt und 15 min. gerührt. Nach vollständiger Auflösung des Dispergiermittels in der Ölphase wurde 12,0 g HEMA zu- gegeben und weitere 30 min gerührt. Die Polymerisationsreaktion wurde anschließend durch Zugabe eines Gemisches aus 24 g teilhydriertes Mineralöldestillat und 0,24 g AIBN gestartet. Um einen vollständigen Umsatz zu gewährleisten, wurde nach einer Reaktionszeit von 6 h bei 60 0C die gleiche Menge an AIBN in 24 g teilhydriertes Mineralöldestillat nochmals zugegeben und bis zum vollständigen Umsatz weiterpolymeri- siert. Zur Vorbereitung einer SEM Aufnahme wurde das erhaltene Produkt wie in
Beispiel 2 vorbereitet. Die SEM Aufnahme zeigte intakte, kugelförmige Mikropartikel.
Beispiel 4: Polymerisation mit dreimal 100 % Hydroxyethylmethacrylat
Zunächst wurde die Rohsuspension von Mikropartikeln wie in Beispiel 1 beschrieben hergestellt. Dann wurden 1 ,2 g Dispergiermittel zugesetzt und 15 min. gerührt. Nach vollständiger Auflösung des Dispergiermittels in der Ölphase wurde 6,0 g HEMA zugegeben und weitere 30 min gerührt. Die Polymerisationsreaktion wurde anschließend durch Zugabe eines Gemisches aus 24 g teilhydrierten Mineralöldestillat und 0,12 g AIBN gestartet. Nach einer Reaktionszeit von 6 h bei 60 0C erfolgte die Zugabe der 6,0 g HEMA und nach weiteren 20 h die Zugabe von weiteren 6,0 g HEMA, jeweils in Verbindung mit einer Zugabe von 1 ,2 g Dispergiermittel und 0,12 g AIBN in 24 g IsoparV. Nach der letzten HEMA Zugabe wurde bei 60 0C bis zu vollständigem Umsatz 12 h weiterpolymerisiert. Zur Vorbereitung einer SEM Aufnahme wurde das erhaltene Produkt wie in Beispiel 2 vorbereitet. Die SEM Aufnahme zeigte intakte, kugelförmige Mik- ropartikel.
Beispiel 5: Partikel ohne Propylencarbonat, Polymerisation mit 300 % HEMA Folgende Mengen wurden eingesetzt zur Herstellung der inversen Miniemulsion: 114,0 g Teil hydriertes Mineralöldestillat 30,0 g ε-Caprolacton 96 mg D-Sorbitol 0,82 g Triticonazol 6,0 g Dispergiermittel 3,0 g Novozym 435
Das Dispergiermittel wurde in einem Probengefäß vorgelegt und unter Rühren in teilhydriertem Mineralöldestillat gelöst. In einem weiteren Gefäß wurde Triticonazol in ei- nem Gemisch aus Caprolacton und Sorbitol gelöst. Die homogenen Lösungen wurden sodann miteinander vermischt und durch Rühren mit dem Magnetrührer (60 min bei Raumtemperatur) voremulgiert. Mittels Ultraschall (Ultraschallprozessor UP 400S der Fa. Hielscher) wurde hieraus unter Kühlung mit einem Eisbad eine inverse Miniemulsion hergestellt (5 min, 100 % mit Sonotrode H7) und nach Zugabe des Enzyms 48 h bei 60 0C polymerisiert.
Anschließend wurden 93,0 g des erhaltenen Produktes mit 10,8 g Dispergiermittel versetzt und 15 min. gerührt. Nach vollständiger Auflösung des Dispergiermittels in der Ölphase wurde 54,0 g HEMA zugegeben und weitere 30 min gerührt. Die Polymerisationsreaktion wurde anschließend durch Zugabe eines Gemisches aus 50 g IsoparV und 1 ,1 g AIBN gestartet. Um einen vollständigen Umsatz zu gewährleisten, wurde nach einer Reaktionszeit von 6 h bei 60 0C die gleiche Menge an AIBN in 50 g IsoparV nochmals zugegeben und bis zum vollständigen Umsatz 12 h weiterpolymerisiert. Zur Vorbereitung einer SEM Aufnahme wurde das erhaltene Produkt wie in Beispiel 2 vorbereitet. Die SEM Aufnahme zeigte intakte, kugelförmige Mikropartikel.
Beispiel 6) Polymerisation mit 300 % HEMA und Isocyanat A 237,5 g des in Beispiel 5) erhaltenen Endprodukts wurden unter Rühren mit 13,7 g Isocyanat A versetzt. Nach Zugabe von DBTL als Katalysator wurde das Reaktionsgemisch bis zum vollständigen Umsatz bei 60 0C 4 h gerührt (Reaktionskontrolle per FTIR).
Zur Vorbereitung einer SEM Aufnahme wurde das erhaltene Produkt wie in Beispiel 2 vorbereitet. Die SEM Aufnahme zeigte intakte, kugelfürmige Mikropartikel.
Beispiel 7) Polymerisation mit HEMA und Isocyanat A - NCO / OH Verhältniss Im diesem Beispiel werden OH-Gruppen von HEMA mit Isocyanat A vernetzt bei unterschiedlichen Verhältnissen von OH zu NCO. 30,0 g des in Beispiel 2) erhaltenen Endprodukts wurden mit Isocyanat A versetzt und unter Rühren mit einem Magnetrührer auf 60 0C erhitzt. Nach Zugabe von 0,01 g DBTL als Katalysator wurde das Reaktionsgemisch über Nacht bis zur vollständigem NCO- Umsatz gerührt. Eingesetzte Menge Isocyanat A: a) 0,5 g (entspricht NCO / OH = 0,25) b) 1 ,02 g (entspricht NCO / OH = 0,5) c) 1 ,52 g (entspricht NCO / OH = 0,75) d) 2,03 g (entspricht NCO / OH = 1 ,0) Zur Vorbereitung einer SEM Aufnahme wurde das erhaltene Produkt jeweils wie in Beispiel 2 vorbereitet. Die SEM Aufnahme zeigte intakte, kugelförmige Mikropartikel.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Effektstoff-haltigen Mikropartikeln M umfassend
A) die Bildung einer Rohsuspension von Mikropartikeln A mittels enzymatischer Polyestersynthese in einer inversen Miniemulsion enthaltend Enzym, Effektstoff und Polyester-Monomere; und
B) die Polymerisation von Wand-Monomeren aus der Gruppe ethylenisch ungesättigter Monomere, Polyisocyanate und/oder Polyepoxide in der Rohsuspension von Mikropartikeln A.
2. Verfahren nach Anspruch 1 , dadurch charakterisiert, dass als Wand-Monomere ethylenisch ungesättigte Monomere; ethylenisch ungesättigte Monomere und Polyisocyanate; einfach und mehrfach ethylenisch ungesättigte Monomere; Polyisocyanate und Polyole;
Polyisocyanate und Polyamine; oder Polyepoxide und Polyamine verwendet werden.
3. Verfahren nach einem der Ansprüche 1 bis 2, dadurch charakterisiert, dass als Wand-Monomere ethylenisch ungesättigte Monomere; oder ethylenisch ungesättigte Monomere und Polyisocyanate verwendet werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch charakterisiert, dass als ethylenisch ungesättigte Monomere (Meth)Acrylsäure, (Meth)Acrylate oder (Meth)acrylamid verwendet werden.
5. Verfahren nach einem der Ansprüche 1 bis 4 dadurch charakterisiert, dass als Polyisocyanate aliphatische oder aromatische Polyisocyanate mit einer mittleren
Funktionalität von 2 bis 3,5 verwendet werden.
6. Verfahren nach einem der Ansprüche 1 bis 5 dadurch charakterisiert, dass als Polyester-Monomere Hydroxysäuren verwendet werden.
7. Verfahren nach einem der Ansprüche 1 bis 6, in dem der Effektstoff ein Farbmittel, Kosmetikum, Pharmakum, Biozid, Pflanzenschutzmittel, agrochemische Adjuvantien, Düngemittel, Zusatzstoff für Lebensmittel oder Tierfutter, Hilfsmittel für Polymere, Papier, Textil, Leder oder Wasch- und Reinigungsmittel ist.
8. Verfahren nach einem der Ansprüche 1 bis 7, in dem der Effektstoff ein Pflanzenschutzmittel oder ein Düngemittel ist.
9. Mikropartikel M erhältlich mittels eines Verfahrens gemäß einem der Ansprüche 1 bis 8.
10. Verwendung von Mikropartikel M erhältlich nach einem der Ansprüche 1 bis 10 als Komponente in Farbmitteln, Kosmetika, Pharmaka, Pflanzenschutzmittel, Düngemittel, Zusatzstoffen für Lebensmittel oder Tierfutter, Hilfsmitteln für Polymere, Papier, Textil, Leder oder Wasch- und Reinigungsmittel.
1 1. Agrochemische Formulierung umfassend Mikropartikel M gemäß Anspruch 9 oder hergestellt nach einem der Ansprüche 1 bis 8.
12. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses dadurch gekennzeichnet, dass man die unerwünschten Pflanzen, den Boden auf denen die unerwünschten Pflanzen wachsen, oder deren Saatgüter mit einer Formulierung gemäß Anspruch 1 1 behandelt.
13. Verfahren zur Bekämpfung von unerwünschtem Insekten- oder Milbenbefall auf Pflanzen und/oder zur Bekämpfung von phytopathogenen Pilzen, dadurch gekennzeichnet, dass man die Pilze / Insekten, deren Lebensraum oder die vor Pilz- oder Insektenbefall zu schützenden Pflanzen oder Böden bzw. die Pflanzen, den Boden auf denen die Pflanzen wachsen, oder deren Saatgüter mit ei- ner Formulierung gemäß Anspruch 11 behandelt.
14. Saatgut behandelt mit einer Formulierung gemäß Anspruch 1 1.
EP09821620A 2008-10-24 2009-10-14 Verfahren zur herstellung von effektstoff-haltigen mikropartikeln Withdrawn EP2352580A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09821620A EP2352580A1 (de) 2008-10-24 2009-10-14 Verfahren zur herstellung von effektstoff-haltigen mikropartikeln

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08167474 2008-10-24
EP09821620A EP2352580A1 (de) 2008-10-24 2009-10-14 Verfahren zur herstellung von effektstoff-haltigen mikropartikeln
PCT/EP2009/063379 WO2010046286A1 (de) 2008-10-24 2009-10-14 Verfahren zur herstellung von effektstoff-haltigen mikropartikeln

Publications (1)

Publication Number Publication Date
EP2352580A1 true EP2352580A1 (de) 2011-08-10

Family

ID=40546009

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09821620A Withdrawn EP2352580A1 (de) 2008-10-24 2009-10-14 Verfahren zur herstellung von effektstoff-haltigen mikropartikeln

Country Status (6)

Country Link
US (1) US20110230343A1 (de)
EP (1) EP2352580A1 (de)
JP (1) JP2012508090A (de)
CN (1) CN102264464A (de)
BR (1) BRPI0919589A2 (de)
WO (1) WO2010046286A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8263327B2 (en) * 2007-04-26 2012-09-11 Basf Se Enzymatic method for the production of microcapsules
JP2013151472A (ja) * 2011-12-27 2013-08-08 Sumitomo Chemical Co Ltd 殺菌活性成分を含有するマイクロカプセル
DE102012200077A1 (de) * 2012-01-04 2013-07-18 Cortronik GmbH Ballonkatheter mit einer aktiven Beschichtung
AU2013229954B2 (en) 2012-03-09 2016-12-15 Kraft Foods Group Brands Llc Food and beverage products containing 1,3-propanediol and methods of modifying flavor release using 1,3-propanediol
AU2013230765B2 (en) 2012-03-09 2016-02-04 Kraft Foods Group Brands Llc Oxidized flavor note suppression in comestibles
US10402794B2 (en) * 2014-10-31 2019-09-03 Square, Inc. Money transfer in a forum using a payment proxy
CN104624129B (zh) * 2015-01-08 2016-10-05 华南理工大学 基于离子液体型表面活性剂微乳液体系淀粉纳米微球的制备方法
JP6114879B2 (ja) * 2015-02-17 2017-04-12 大阪ガスケミカル株式会社 徐放性粒子およびその製造方法
JP6910954B2 (ja) * 2015-04-17 2021-07-28 ザ ユニバーシティー オブ クイーンズランド 組成物、粒子状材料および粒子状材料を作るための方法
US10049349B1 (en) 2015-09-29 2018-08-14 Square, Inc. Processing electronic payment transactions in offline-mode
CN113164897A (zh) * 2018-10-30 2021-07-23 巴斯夫欧洲公司 制备被活性材料填充的微粒的方法
EP3744838A1 (de) * 2019-05-29 2020-12-02 Novozymes A/S Lipolytische polymerpartikel zur veresterung und umesterung
RU2744839C1 (ru) * 2020-02-02 2021-03-16 Михаил Викторович Комаров Микроконтейнеры для защиты микроорганизмов, применяемые в сельском хозяйстве
CN111454959B (zh) * 2020-03-31 2021-09-28 山西大学 一种飞蝗Spinless基因dsRNA及其应用
CN115024339A (zh) * 2022-05-16 2022-09-09 江苏大学 一种植物源纳米农药微胶囊制备方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4637905A (en) * 1982-03-04 1987-01-20 Batelle Development Corporation Process of preparing microcapsules of lactides or lactide copolymers with glycolides and/or ε-caprolactones
JPH05165202A (ja) * 1991-12-17 1993-07-02 Brother Ind Ltd 感光性マイクロカプセル
US5583162A (en) * 1994-06-06 1996-12-10 Biopore Corporation Polymeric microbeads and method of preparation
DE4434638A1 (de) * 1994-09-28 1996-04-04 Hoechst Schering Agrevo Gmbh Mikroverkapselte Pflanzenschutzmittel, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung
US6022500A (en) * 1995-09-27 2000-02-08 The United States Of America As Represented By The Secretary Of The Army Polymer encapsulation and polymer microsphere composites
JP4354011B2 (ja) * 1995-12-29 2009-10-28 チバ スペシャリティー ケミカルズ ウォーター トリートメンツ リミテッド 高分子シェルを有する粒子及びそれらの製造
US6146665A (en) * 1998-09-09 2000-11-14 Mcgill University Entrapment or microencapsulation of drugs in a polyhydroxyalkanoate formed by enzyme synthesis
DE19932144A1 (de) * 1999-07-09 2001-01-11 Basf Ag Mikrokapselzubereitungen und Mikrokapseln enthaltende Wasch- und Reinigungsmittel
GB0001752D0 (en) * 2000-01-27 2000-03-15 Ciba Spec Chem Water Treat Ltd Particulate compositions and their manufacture
JP2003175092A (ja) * 2001-07-10 2003-06-24 Canon Inc ポリヒドロキシアルカノエートを含有する粒状体及びその製造方法ならびにその用途
EP1275378B1 (de) * 2001-07-10 2009-04-15 Canon Kabushiki Kaisha Partikel auf Basis von Polyhydroxyalkanoat und Verfahren zu deren Herstellung
US7691296B2 (en) * 2002-11-25 2010-04-06 Amorepacific Corporation Method for stabilizing active components using polyol/polymer microcapsule, and cosmetic composition containing the microcapsule
DE10318044A1 (de) * 2003-04-17 2004-11-04 Basf Ag Verwendung von wässrigen Mikrokapseldispersionen als Wärmeträgerflüssigkeiten
WO2004105734A1 (en) * 2003-05-28 2004-12-09 Valorisation Recherche, Societe En Commandite Method of preparing microcapsules
ES2481167T3 (es) * 2003-08-22 2014-07-29 Dupont Nutrition Biosciences Aps Composición que comprende una bacteriocina y un extracto de una planta de la familia Labiatae
US20070009441A1 (en) * 2004-07-08 2007-01-11 Molecular Therapeutics, Inc. Biodegradable nanoparticles
JP2008518764A (ja) * 2004-11-05 2008-06-05 ビーエーエスエフ ソシエタス・ヨーロピア マイクロカプセル分散液
DE102004058073A1 (de) * 2004-12-01 2006-06-08 Basf Ag Verfahren zur Herstellung einer wässrigen Polyamid-Dispersion
DE102004058072A1 (de) * 2004-12-01 2006-06-08 Basf Ag Verfahren zur Herstellung einer wässrigen Polyamid-Dispersion
US20090220789A1 (en) * 2006-01-27 2009-09-03 The University Of North Carolina At Chapel Hill Taggants and methods and systems for fabricating same
US9493635B2 (en) * 2006-07-31 2016-11-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nanocomposites from stable dispersions of carbon nanotubes in polymeric matrices using dispersion interaction
EP2059550B1 (de) * 2006-08-30 2011-10-26 Basf Se Verfahren zur herstellung von polyesterolen
US20090318605A1 (en) * 2006-09-20 2009-12-24 Basf Se Polymer additives containing particles
US9522970B2 (en) * 2006-10-05 2016-12-20 Basf Se Comb polymers and use thereof for the production of active or effective ingredient formulations
CN101547736B (zh) * 2006-12-13 2013-11-13 巴斯夫欧洲公司 微胶囊
EP1972651B1 (de) * 2007-03-23 2012-12-26 Universität Ulm Nanokapseln und Herstellungsverfahren dafür
US8263327B2 (en) * 2007-04-26 2012-09-11 Basf Se Enzymatic method for the production of microcapsules
CA2683037A1 (en) * 2007-04-26 2008-11-06 Basf Se Active ingredient compositions for plant protection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010046286A1 *

Also Published As

Publication number Publication date
WO2010046286A1 (de) 2010-04-29
JP2012508090A (ja) 2012-04-05
BRPI0919589A2 (pt) 2015-12-08
CN102264464A (zh) 2011-11-30
US20110230343A1 (en) 2011-09-22

Similar Documents

Publication Publication Date Title
EP2352580A1 (de) Verfahren zur herstellung von effektstoff-haltigen mikropartikeln
EP2142293A2 (de) Enzymatisches verfahren zur herstellung von mikrokapseln
Singh et al. Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture
CA2937809C (en) High-load pyrethroid encapsulated seed treatment formulations
US9138417B2 (en) Controlled release particles and production method thereof
WO2003099005A1 (de) Mikrokapsel-formulierungen
US20210051950A1 (en) Sustained-release composite particles, method for producing sustained-release composite particles, dry powder, and wallpaper
WO2011081787A2 (en) Sustained-release silica microcapsules
EA017372B1 (ru) Агрохимический продукт, способ его получения и его применение
WO2009135865A1 (de) Verfahren zur herstellung von partikeln enthaltend agrochemische wirkstoffe in amorpher form
TW201038195A (en) Method for treatment of crop with an encapsulated pesticide
JP2010530394A (ja) 植物の成長を改善する方法
WO2011000794A1 (de) Heterocyclische 3-ringverbindungen und jodhaltige verbindungen enthaltende polymere
EP1221838A1 (de) Mikrokapseln
EP2440042A2 (de) Pestizid-haltige dispersion eines polyurethans
EP3071035B1 (de) Wirbelschicht-granulierung mit wässrigen lösungen von prohexadion-calcium und anorganischem sulfat
CN106342797A (zh) 缓释性粒子及其制造方法、木材处理剂及乳浊液的制造方法
US9204632B2 (en) Process for producing microcapsule formulation and microcapsule formulation produced by same process
DE102009022893A1 (de) Pulverformulierungen mit Adsorbens-Partikeln
JP2006523200A (ja) ミクロビーズ殺虫剤の製造方法と、このミクロビーズ殺虫剤の穀物保護での使用

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110524

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DYLLICK-BRENZINGER, RAINER

Inventor name: BARG, HEIKO

Inventor name: MERK, MICHAEL

Inventor name: SCHROERS, MICHAEL

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140120

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140501