EP2347177A2 - Vorrichtung zur verbrennung eines brennstoff/oxidationsmittelgemisches - Google Patents

Vorrichtung zur verbrennung eines brennstoff/oxidationsmittelgemisches

Info

Publication number
EP2347177A2
EP2347177A2 EP09744981A EP09744981A EP2347177A2 EP 2347177 A2 EP2347177 A2 EP 2347177A2 EP 09744981 A EP09744981 A EP 09744981A EP 09744981 A EP09744981 A EP 09744981A EP 2347177 A2 EP2347177 A2 EP 2347177A2
Authority
EP
European Patent Office
Prior art keywords
zone
fuel
combustion
combustion chamber
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09744981A
Other languages
English (en)
French (fr)
Other versions
EP2347177B1 (de
Inventor
Marcus Franz
Sören GÖTZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SGL Carbon SE
Original Assignee
SGL Carbon SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGL Carbon SE filed Critical SGL Carbon SE
Publication of EP2347177A2 publication Critical patent/EP2347177A2/de
Application granted granted Critical
Publication of EP2347177B1 publication Critical patent/EP2347177B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • F23C99/006Flameless combustion stabilised within a bed of porous heat-resistant material

Definitions

  • the invention relates to a device for combustion of a fuel / oxidant mixture in a highly exothermic reaction consisting of a reactor with a combustion chamber containing at least a first porous material and at least one second porous material in separate zones, wherein the zones are designed in that an exothermic reaction can take place only in the second zone and is provided with one or more supply lines for the fuel as well as for the oxidizing agent.
  • zone A a region which has such small, effective pore diameters that do not allow stationary flame propagation, d. H.
  • zone C the subsequent actual combustion region, hereinafter referred to as zone C, has pore sizes large enough to permit steady state combustion.
  • a critical Peclet number of Pe> 65 is given in the specialist literature (for example, Babkin et al., In “Combustion and Flame,” Vol. 87, pp. 182-190, 1991).
  • porous combustion chamber filling of pore reactors for chemical industrial plants materials such.
  • alumina, zirconia, silicon carbide, among others are used, which in addition to high temperature resistance also have sufficient corrosion resistance.
  • zones of different pore structure or size according to DE 43 22 109 C2 are arranged to produce hydrogen chloride. This is done by using differently sized fillers for zones A and C.
  • structured packings and foams in zones A and B can also be used.
  • a further support grid can be arranged between the porous structures of the two zones of different pore size formed with packing, which prevents the discharge of smaller fillers of the zone A into the interstices of the larger packing of the zone C.
  • another, gas-permeable carrier grate which closes the combustion chamber. This makes it possible to arrange the reactor in any position despite loose bulk of the packing in the combustion chamber.
  • the porous reaction space is preferably surrounded by a corrosion-resistant, cooled wall, which consists for example of graphite impregnated with synthetic resin.
  • the cooling can be done by cooling water, air or the fuel gases themselves.
  • an insulating intermediate layer of high-temperature resistant, corrosion-resistant and thermally insulating materials which prevents heat loss and ensures that prevails in the combustion chamber at any point the desired combustion chamber temperature.
  • the adiabatic process allows, for example, a simple scale-up of such chemical reactors, since the heat transport properties to irrelevant to the cooled walls and the entire process in the direction of flow can be viewed almost one-dimensionally.
  • a pore reactor the reaction is carried out within a porous matrix of temperature-resistant material.
  • the combustion stabilizes at the interface between the two zones. Due to the small pore dimensions in the first zone, there is no combustion in this region in the stationary state but only preheating of the gas mixture. This property also meets the stringent safety requirements for a risk of re-ignition in chemical plants.
  • the premixing chamber is a component and safety-relevant component of the device described.
  • a disadvantage of the known designs is the localized temperature detection in the reaction zone by thermocouples.
  • a safe process under heavily varying gas flow conditions, especially for the controlled burning of large amounts of halogen-containing gases in case of accidents is possible only to a very limited extent.
  • the object of the invention is to provide a reactor which allows the abovementioned exothermic chemical reactions while reducing the disadvantages described in more detail above.
  • the object of the invention is achieved starting from the initially mentioned apparatus for combustion of a fuel / oxidant mixture in a highly exothermic reaction, which consists of a reactor with a combustion chamber containing at least a first porous material and at least one second porous material in separate zones, said Zones are designed so that an exothermic reaction can take place only in the second zone and is provided with one or more supply lines for the fuel and for the oxidizing agent, wherein the existing of the first porous material zone A by a distance of 10 mm Up to 4000 mm, preferably 20 mm to 500 mm, a zone B of the second porous material existing zone C is separated and arranged in the flow direction of the fuel / Oxidationsffenge- mix before the zone C.
  • the combustion chamber and the porous materials are made of materials that withstand a temperature of 1000 0 C to 2400 0 C.
  • a temperature monitoring device and an ignition device are arranged in the zone B.
  • the temperature monitoring device is preferably an infrared sensor that detects a range of 2 to 200 cm 2 at the interface to the zone C. A detection over the specified range is not possible according to the known prior art.
  • a preferred embodiment of the device is that it is arranged vertically and the zone A is above the zones B and C.
  • the bulk bodies of the zones A and C are arranged on supporting grids. A loosening or whirling of the bulk material and a change in the flow resistance and thus the Peclet number is prevented by the weight of the bulk body and the supporting grates.
  • a loosening of the packed bed is avoided in principle, because the bed C is thereby pressed in the direction of gravity against the supporting grid.
  • the fuel / oxidant mixture and the additionally supplied gas are at least partially mixed in a premixing device, which is connected upstream of the reactor.
  • a corresponding device according to this development is that it has a premixing chamber for the fuel / oxidant mixture from which this fuel / oxidant mixture flows into the combustion chamber.
  • the premixing chamber used here according to the invention enables a much better mixing and a more effective conversion of the reactants, which, for example, makes it possible to reduce the required methane content in the hydrogen chloride synthesis.
  • the premixing chamber is designed such that the component of the flow velocity of the mixture in the premixing chamber relative to the combustion chamber is greater than the flame velocity in the combustion chamber.
  • the premixing chamber is dimensioned such that a flame which possibly arises in the premixing chamber is blown out in the event of inadvertent ignition over the entire operating range, for example during startup.
  • a further improvement in this respect is achieved in a development of the invention by means of a cooling of the premixing chamber.
  • the porosity of the porous material having contiguous cavities in the direction of flame evolution changes to larger pores, with a critical Peclet number at an inner pore size interface above which flame evolution occurs and below which it is suppressed.
  • Combustion stabilization is achieved by increasing the pore size in the direction of flow, resulting in a zone of porous pore size material having a critical Peclet number above which flame evolution occurs and below which it is suppressed.
  • the premixing chamber is preferably made of corrosion-resistant materials, eg. B. made of resin-impregnated graphite. Enamelled or fluoroplastic-lined steel parts can also be used to construct a mixing chamber. From the premixing chamber, the premixed gases preferably enter the zone A of the pore reactor through a grid of corrosion-resistant material, for example silicon carbide, aluminum oxide or the like. As previously mentioned, a number of chemical reactants, such as. As chlorine and methane, under the influence of UV radiation for auto-ignition. The auto-ignition in the premix chamber should but for security reasons be avoided. A grate and the design of zone A are chosen such that no or only very little UV radiation from the zone A or C reaches the premixing chamber, which could lead to the ignition of the gas mixture of chlorine and methane into the premixing chamber.
  • a grate and the design of zone A are chosen such that no or only very little UV radiation from the zone A or C reaches the premixing chamber, which could lead
  • the stability of the combustion in the described pore reactor Compared to the hydrogen sulfide reactors designed according to the prior art, which react very sensitively to pressure and flow fluctuations of the gases, so that the flame can easily go out, the combustion reaction in the pore reactor by the heat capacity of the packing in zone C even in short-term failure of the Gases ignited immediately.
  • the ignition and preheating of the reactor can be done with a fuel gas (hydrogen, methane, etc.) and air. However, this can also be a conventional ignition device, which is common for such chemical reactors used. After complete heating of the zone C can be gradually or immediately to the reactants, such as chlorine, methane and air, converted.
  • a fuel gas hydrogen, methane, etc.
  • air air
  • reactants such as chlorine, methane and air
  • the scale-up for technical systems is surprisingly easy due to the technical teaching for the dimensioning of pore reactors, especially in the previously described, adiabatic process management, must be complied with regardless of the size defined flow conditions in the zones A and C.
  • the pore reactors described below and modified for chemical processes are parts of process plants for the production of hydrochloric acid or for the afterburning of halogen-containing, preferably chlorine-containing compounds.
  • Such a plant has, for example, a modified pore reactor, a heat exchanger for cooling the reaction products or for utilizing their heat content and, depending on the type of plant, also an absorber, scrubber or scrubber at transition pieces between the apparatuses, pumps, pipelines and the usual safety devices. , Measuring and control equipment. Due to the reaction and the good mixing of the gases in the pore reactor, a voluminous combustion chamber is not required compared to the prior art.
  • the reactor can be directly attached to the following apparatuses, e.g. As a heat exchanger, a quencher with absorber or other devices are connected.
  • a partial stream of the cooled gas or gas mixture is returned to the reactor.
  • another gas for. As water vapor, are added.
  • Pore reactors for the afterburning of halogen-containing exhaust gases or vaporizable or gaseous, halogen-containing, organic compounds are, as will later become clearer by means of embodiments, carried out so that the oxidant and fuel gas are preferably premixed injected into the pre-mixing chamber. Due to the high reaction enthalpy of oxidant and fuel gas, a stable support flame is generated in the combustion zone C.
  • the nachverbParkde gas or gas mixture is injected via an inlet pipe in the premixing preferably via a support grid in front of the zone A of the pore reactor and mixed with the fuel / oxidant mixture.
  • the temperature of the post-combustion process it is preferable to use a corresponding excess of the oxidizing agent, in particular air.
  • the temperature is measured for example by means of an infrared pyrometer and further processed the signal for the oxidant control.
  • the subsequent post-combustion facilities differ from the plant components described above, depending on the halogen content of the exhaust gases. At low halogen content, in which the extraction of hydrochloric acid is not in the foreground, only a quencher and a scrubber is generally followed. Other accompanying substances, eg. B. sulfur compounds o. ⁇ ., Can also be subjected to the described facilities a harmless disposal. This also applies in principle to halogen-containing or sulfur-containing vaporizable substances or mixtures. Since the described post-combustion with pore reactor do not require a combustion chamber in the conventional sense, such systems can be made very compact and inexpensive.
  • the combustion chamber has at least two zones of material of different pore sizes, between which the pore size gives the critical Peclet number;
  • the continuous cavity material has, at least in part, a bulk of bodies such as are used for bulk solids or ordered packings in thermal separation processes, such as spheres or calipers;
  • a grid such as a support grid, is provided to prevent discharge of the bodies from one zone to the other, wherein the grid, in particular the supporting grid, may also be cooled;
  • the combustion chamber is designed for flame stability at positive and negative pressure; the supplied product gases are all or only partially preheated to avoid condense in the premixing chamber after admixture of cooling vapors such as water vapor (condensed components would significantly reduce the success of the reaction and lead to the formation of unwanted by-products);
  • the premixing chamber is not cooled but its walls are kept deliberately above the dew point temperature of the gas mixture so as to prevent condensation
  • the combustion chamber can now also be designed for flame stability under positive or negative pressure, which would have led to insufficient flame stability in the prior art. Due to the invention and its developments but a much larger pressure range available, so that a corresponding design for a large pressure range in a familiar to the expert way, especially for over or under pressure, can lead to a significant increase in flame stability. Regulations can be largely eliminated.
  • a combustion chamber insulation is provided for an approximately adiabatic combustion guidance without wall effects. Adiabatic combustion management is particularly advantageous for increasing the conversion rate.
  • the device has a device for obtaining or separating reaction products from the combusted fuel / oxidant.
  • the device for the synthesis of hydrogen chloride is provided that the device is designed for a chlorine-containing compound in the fuel and methane in the oxidizing agent for burning the hydrogen chloride and has a procedural device for the recovery of hydrogen chloride or hydrochloric acid behind the combustion chamber.
  • the named design is known to the person skilled in the art.
  • the corresponding safety devices are taken into account and the materials are correspondingly corrosion-resistant to chlorine.
  • the invention can be used not only for burning and for hydrogen chloride synthesis, but also as a device for post-combustion of exhaust gases and, in particular, for cleaning.
  • a device for post-combustion of exhaust gases and, in particular, for cleaning for example, it is possible for some in the embodiments shown in the following description, nachverbines proportions of chlorine-containing organic compounds without problems and thus to dispose of harmless.
  • Fig. 1 partial representation of a pore reactor plant
  • the above-explained in more detail pore reactor 1 was selected, which has particular advantages over other types of reactor with which the invention can be formed.
  • the essential feature of the invention is that the flame is cooled by supplying an additional gas to the fuel / oxidant mixture, which can be realized in all conceivable reactor types. Therefore, the following description of the embodiment alone based on the pore reactor 1 is not to be considered as limiting.
  • FIG. 1 An embodiment of a pore reactor 1 according to the invention is shown in FIG.
  • the housing of the pore reactor 1 consists of a thin-walled, high-temperature-resistant ceramic inner lining 8 made of oxide ceramic with a thickness of 2 mm to 50 mm, a Graphitstützmantel 9 and an outer steel shell 10 spaced apart between the graphite jacket 9 and the steel shell 10 cooling water is passed , which leaves the port reactor 12, the pore reactor 1. Further, the defined zones A - 2, the zone B - 4 and the zone C - 3 are shown.
  • the zone C - 3 acts as a combustion zone, in which the combustion takes place. In Zone A - 2, ignition is avoided by appropriate dimensioning.
  • the combustion zone C - 3 is filled with packing for this purpose, whereas the zone A - 2 is filled with pore bodies which act as a flame barrier. Zone A - 2 and Zone C - 3 are spaced by Zone B - 4.
  • the large-area temperature monitoring is carried out by access of a temperature sensor in the temperature measuring socket 6.
  • the gas mixture is passed from above into the pore reactor 1.
  • the reaction of the reaction mixture takes place in the zone C - 3, which is arranged on the support grid 7 and is additionally cooled by the heat exchanger 11 arranged underneath.
  • the wall temperature of the reaction zone C - 3 is monitored by a wall temperature sensor 13. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Gas Burners (AREA)
  • Incineration Of Waste (AREA)

Abstract

Die Erfindung bezieht sich auf eine Vorrichtung zur Verbrennung eines Brennstoff/Oxidationsmittelgemisches in stark exothermer Reaktion bestehend aus einem Reaktor (1) mit einem Brennraum, der mindestens ein erstes poröses Material und mindestens ein zweites poröses Material in getrennten Zonen A (2) und C (3) enthält, wobei die Zonen so gestaltet sind, dass eine exotherme Reaktion lediglich in der Zone B (3) stattfinden kann und mit einer oder mehreren Zuführungsleitungen für den Brennstoff sowie für das Oxidationsmittel versehen ist, wobei die aus dem ersten porösen Material bestehende Zone A (2) durch einen Abstand von 10 mm bis 4000 mm, vorzugsweise 20 mm bis 500 mm, einer Zone B (4) von der aus dem zweiten porösen Material bestehende Zone C (3) getrennt und in Strömungsrichtung des Brennstoff/Oxidationsmittelgemisches vor der Zone C (3) angeordnet ist.

Description

Vorrichtung zur Verbrennung eines Brennstoff/Oxidationsmittelgemisches
Die Erfindung bezieht sich auf eine Vorrichtung zur Verbrennung eines Brenn- stoff/Oxidationsmittelgemisches in stark exothermer Reaktion bestehend aus einem Reaktor mit einem Brennraum, der mindestens ein erstes poröses Material und mindestens ein zweites poröses Material in getrennten Zonen enthält, wobei die Zonen so gestaltet sind, dass eine exotherme Reaktion lediglich in der zweiten Zone stattfinden kann und mit einer oder mehreren Zuführungsleitungen für den Brennstoff sowie für das Oxidationsmittel versehen ist.
In den Dokumenten DE 43 22 109 C2 und DE 199 39 951 C2 sind Vorrichtungen beschrieben, die als sogenannte Porenbrenner gestaltet sind. Das brennbare Gasgemisch durchströmt danach zunächst eine Region, im folgenden mit Zone A bezeichnet, die derart kleine, effektive Porendurchmesser aufweist, die keine stationäre Flammenausbreitung ermöglichen, d. h. die erste poröse Zone ist einer Flammenrückschlagsperre wirkungsmässig ähnlich. Die nachfolgende, eigentliche Verbrennungsregion, im folgenden als Zone C bezeichnet, weist jedoch Porengrößen auf, die groß genug sind, um eine stationäre Verbrennung zuzulassen. Als Kriterium für die Flammenausbreitung im Inneren einer porösen Matrix wird in der Fachliteratur (beispielsweise Babkin et al. in "Combustion and Flame", Vol. 87, S. 182-190, 1991 ) eine kritische Peclet-Zahl von Pe > 65 angegeben.
Als poröse Brennraumfüllung von Poren reaktoren für chemische Industrieanlagen können Materialien, wie z. B. Aluminiumoxid, Zirkonoxid, Siliziumkarbid u. a., verwendet werden, die neben hoher Temperaturbeständigkeit auch eine ausreichende Korrosionsbeständigkeit aufweisen. Vorzugsweise verwendet man zur Herstellung des porösen Brennraumes Schüttungen aus temperaturbeständigen, keramischen Kugeln, Sattelkörpern und ähnlichen Körpern, wie sie beispielsweise als ungeordnete Packung für thermische Trennverfahren verwendet werden. Schüttungen werden deshalb bevorzugt, weil sie eine einfache Reinigung von Ablagerungen, beispielsweise bei der Chlorwasserstoffsynthese entstehende Salzrückstände, ermöglichen, die aus den Brenngasen stammen. Auch für Porenbrenner werden zur Erzeugung von Chlorwasserstoff Zonen unterschiedlicher Porenstruktur bzw. -große gemäss DE 43 22 109 C2 angeordnet. Dies geschieht durch die Verwendung unterschiedlich großer Füllkörper für die Zonen A und C. Darüber hinaus können auch strukturierte Packungen und Schäume in den Zonen A und B eingesetzt werden.
Gemäß dem Dokument DE 199 39 951 C2 kann zwischen den mit Füllkörpern ausgebildeten, porösen Strukturen der zwei Zonen mit unterschiedlicher Porengröße vorzugsweise ein weiterer Tragrost angeordnet werden, welcher den Austrag kleinerer Füllkörper der Zone A in die Zwischenräume der größeren Füllkörper der Zone C verhindert. Auch am Gasaustritt aus der Zone C wird bei Brennern, bei denen die Gase nicht senkrecht nach oben austreten, ein weiterer, gasdurchlässiger Tragrost angeordnet, welcher den Brennraum abschließt. Dadurch wird es möglich, den Reaktor trotz loser Schüttung der Füllkörper im Brennraum in beliebiger Lage anzuordnen.
Der poröse Reaktionsraum ist bevorzugt von einer korrosionsfesten, gekühlten Wand umgeben, die beispielsweise aus kunstharzimprägniertem Graphit besteht. Die Kühlung kann durch Kühlwasser, Luft oder die Brenngase selbst erfolgen. Zwischen der gekühlten Wand und dem Brennraum befindet sich dann vorzugsweise eine isolierende Zwischenschicht aus hochtemperaturbeständigen, korrosionsbeständigen und thermisch isolierenden Werkstoffen, welche Wärmeverluste verhindert und sicherstellt, dass im Brennraum an jeder Stelle die gewünschte Brennraumtemperatur herrscht. Gemäß dem Dokument DE 199 39 951 C2 wird durch eine starke Isolierung eine nahezu adiabate Prozessführung ermöglicht, bei der kein Temperatureinfluss durch die gekühlte Wand auf den Verbrennungspro- zess erfolgt. Die adiabate Prozessführung erlaubt beispielsweise ein einfaches Scale-Up solcher chemischen Reaktoren, da die Wärmetransporteigenschaften zu den gekühlten Wänden irrelevant sind und der gesamte Prozess in Strömungs- richtung nahezu eindimensional betrachtet werden kann. Bei einem Porenreaktor wird die Reaktion innerhalb einer porösen Matrix aus temperaturbeständigem Material durchgeführt. Abweichend von konventionellen Reaktorvorrichtungen ist es nicht erforderlich, den Reaktor in einer voluminösen Brennkammer anzuordnen oder eine solche nachzuschalten. Aus dem Reaktor selbst strömen die heißen Reaktionsprodukte ohne direkte Flammenbildung. In der DE 43 22 109 C2 wird vorgeschlagen, für die erste Zone eine deutlich niedrigere und für die Verbrennungszone eine deutlich höhere als die kritische Peclet- Zahl von Pe = 65 zu verwenden.
Wird der Porenreaktor gezündet, so stabilisiert sich die Verbrennung an der Schnittstelle zwischen den zwei Zonen. Durch die kleinen Porenabmessungen in der ersten Zone kommt es in dieser Region im stationären Zustand nicht zu einer Verbrennung sondern lediglich zu einer Vorwärmung des Gasgemisches. Diese Eigenschaft erfüllt auch die strengen Sicherheitsanforderungen bezüglich einer Rückzündungsgefahr bei chemischen Anlagen.
Aufgrund der exzellenten Wärmeübertragung zwischen Gas- und Festkörperphase innerhalb der porösen Matrix stehen diese annähernd in thermischem Gleichgewicht. Das annähernd thermische Gleichgewicht zwischen Gas- und Festkörperphase und die intensive Vermischung innerhalb des Porenkörpers bewirkt wesentlich das Verschwinden von freien Flammen in der mit größeren Poren ausgestatteten Brennzone. Der Verbrennungsprozess vollzieht sich nun in einem ausgedehnten Reaktionsgebiet, das eher als Verbrennungsreaktor denn als Brennraum mit freien Flammen charakterisiert werden kann.
Gemäß dem Dokument DE 199 39 951 C2 ist die Vormischkammer Bestandteil und sicherheitsrelevante Komponente der beschriebenen Vorrichtung.
Ein Nachteil der bekannten Bauformen besteht in der lokal begrenzten Temperaturerfassung in der Reaktionszone durch Thermoelemente. Ein weiterer Nachteil von Poren reaktoren, deren poröse Schichten aus Schüttkörpern aufgebaut sind, besteht darin, dass die Schüttkörper bei einem größeren oder schlagartig erhöhten Gasdurchsatz vom Gasstrom mitgerissen werden und damit zu Veränderungen der Schüttdichte sowie der Peclet-Zahl führen. Eine sichere Verfahrensführung unter stark wechselnden Gasdurchsatzbedingungen insbesondere für das kontrollierte Verbrennen von größeren Mengen halogenhaltiger Gase bei Störfällen ist nur in einem stark begrenzten Umfang möglich.
Aufgabe der Erfindung ist es, einen Reaktor bereitzustellen, der die oben genannten, exothermen, chemischen Reaktionen unter Verminderung der oben näher beschriebenen Nachteile gestattet.
Die Aufgabe der Erfindung wird ausgehend von der einleitend genannten Vorrichtung zur Verbrennung eines Brennstoff/Oxidationsmittelgemisches in stark exothermer Reaktion gelöst, die aus einem Reaktor mit einem Brennraum, der mindestens ein erstes poröses Material und mindestens ein zweites poröses Material in getrennten Zonen enthält, wobei die Zonen so gestaltet sind, dass eine exotherme Reaktion lediglich in der zweiten Zone stattfinden kann und mit einer oder mehreren Zuführungsleitungen für den Brennstoff sowie für das Oxidationsmittel versehen ist, besteht, wobei die aus dem ersten porösen Material bestehende Zone A durch einen Abstand von 10 mm bis 4000 mm, vorzugsweise 20 mm bis 500 mm, einer Zone B von der aus dem zweiten porösen Material bestehende Zone C getrennt und in Strömungsrichtung des Brennstoff/Oxidationsmittelge- misches vor der Zone C angeordnet ist.
Bei einer bevorzugten Weiterbildung der Vorrichtung ist vorgesehen, dass der Brennraum und die porösen Materialien aus Werkstoffen bestehen, die einer Temperatur von 10000C bis 24000C standhalten.
Vorteilhafter Weise sind in der Zone B eine Temperaturüberwachungsvorrichtung und eine Zündvorrichtung angeordnet. Die Temperaturüberwachungsvorrichtung ist vorzugsweise ein Infrarot-Sensor, der einen Bereich von 2 bis 200 cm2 an der Grenzfläche zur Zone C erfasst. Eine Erfassung über den angegebenen Bereich ist nach dem bekannten Stand der Technik nicht möglich. Eine bevorzugte Weiterbildung der Vorrichtung besteht darin, dass sie vertikal angeordnet ist und sich die Zone A oberhalb der Zonen B und C befindet. Dabei sind die Schüttkörper der Zonen A und C auf Tragrosten angeordnet. Eine Lockerung oder Aufwirbelung der Schüttkörper und eine Veränderung des Strömungswider- standes und damit der Peclet-Zahl wird durch das Eigengewicht der Schüttkörper und die Tragroste verhindert. Zudem wird durch das Anordnen der Zone A oberhalb der Zone C eine Auflockerung der Schüttschicht prinzipiell vermieden, weil die Schüttung C dadurch in Richtung der Schwerkraft gegen den Tragrost ge- presst wird.
Gemäss einer anderen Weiterbildung der Erfindung ist beim Verfahren vorgesehen, dass das Brennstoff/Oxidationsmittelgemisch und das zusätzlich zugeführte Gas zumindest teilweise in einer Vormischeinrichtung gemischt werden, die dem Reaktor vorgeschaltet ist. Eine entsprechende Vorrichtung gemäss dieser Weiterbildung besteht darin, dass sie eine Vormischkammer für das Brenn- stoff/Oxidationsmittelgemisch aufweist, aus der dieses Brennstoff/Oxidationsmittel- gemisch in die Brennkammer strömt.
Die hier nun gemäss Weiterbildung eingesetzte Vormischkammer ermöglicht eine wesentlich bessere Durchmischung und einen effektiveren Umsatz der Reak- tanden, was beispielsweise eine Verringerung des benötigten Methananteils bei der Chlorwasserstoffsynthese ermöglicht.
Insbesondere ist bei einer vorteilhaften Weiterbildung der Erfindung vorgesehen, dass die Vormischkammer so ausgelegt ist, dass die in Richtung auf den Brennraum bezogene Komponente der Strömungsgeschwindigkeit des Gemisches in der Vormischkammer größer als die Flammengeschwindigkeit im Brennraum ist.
Dadurch wird die Vormischkammer so dimensioniert, dass eine eventuell in der Vormischkammer entstehende Flamme im Fall einer unbeabsichtigten Zündung im gesamten Betriebsbereich, beispielsweise beim Anfahren, ausgeblasen wird. Eine weitere, diesbezügliche Verbesserung wird bei einer Weiterbildung der Erfindung mittels einer Kühlung der Vormischkammer erreicht.
Gemäss einer anderen, vorteilhaften Weiterbildung ist vorgesehen, dass in der Brennkammer ein poröses Material mit zusammenhängenden, für eine Flammenentwicklung genügend, großen Hohlräumen vorgesehen ist.
Insbesondere ändert sich die Porosität des porösen Materials mit zusammenhängenden Hohlräumen in Richtung der Flammenentwicklung zu größeren Poren, wobei sich an einer inneren Grenzfläche für die Porengröße eine kritische Peclet- Zahl ergibt, oberhalb der die Flammenentwicklung erfolgt und unterhalb der sie unterdrückt ist.
Eine Verbrennungsstabilisierung wird durch Zunahme der Porengröße in Strömungsrichtung erreicht, wobei sich in einer Zone des porösen Materials für die Porengröße eine kritische Peclet-Zahl ergibt, oberhalb der die Flammenentwicklung erfolgt und unterhalb der sie unterdrückt ist.
Die Anwendung dieser Technik zur Herstellung von chemischen Produkten, wie beispielsweise Chlorwasserstoff, oder zur Nachverbrennung von Schadgasen, wie beispielsweise halogenhaltigen Gasen, wirkt sich nicht nur auf die Verbrennung selbst vorteilhaft aus, sondern ermöglicht es auch, diejenigen Anlagenteile, in die der Porenreaktor integriert ist, vorteilhaft zu gestalten und anzuordnen.
Die Vormischkammer ist vorzugsweise aus korrosionsfesten Werkstoffen, z. B. aus kunstharzimprägniertem Graphit, hergestellt. Emaillierte oder Fluorkunststoff ausgekleidete Stahlteile können ebenfalls zum Bau einer Mischkammer verwendet werden. Aus der Vormischkammer treten die vorgemischten Gase bevorzugt durch einen Rost aus korrosionsbeständigem Material, beispielsweise Siliziumkarbid, Aluminiumoxid o. a., in die Zone A des Porenreaktors ein. Wie vorher schon angesprochen wurde, neigen mehrere chemische Reaktanden, wie z. B. Chlor und Methan, unter dem Einfluss von UV-Strahlung zur Selbstentzündung. Die Selbstentzündung in der Vormischkammer sollte aber aus Sicherheitsgründen vermieden werden. Ein Rost und die Auslegung der Zone A wird so gewählt, dass von der Zone A bzw. C keine oder nur sehr wenig UV-Strahlung in die Vormisch- kammer gelangt, die zur Zündung des Gasgemisches aus Chlor und Methan in die Vormischkammer führen könnte.
Besonders ist die Stabilität der Verbrennung bei dem beschriebenen Porenreaktor hervorzuheben. Gegenüber den nach dem Stand der Technik ausgeführten Chlorwasserstoffreaktoren, die sehr empfindlich auf Druck- und Mengenschwankungen der Gase reagieren, bei denen also die Flamme leicht erlöschen kann, wird die Verbrennungsreaktion im Porenreaktor dagegen durch die Wärmekapazität der Füllkörper in Zone C sogar bei kurzzeitigem Ausfall der Gase sofort wieder gezündet. Aus Sicherheitsgründen ist es jedoch zweckmäßig, bei Ausfall eines der Gase auch das andere Gas abzustellen und eine Inertgasspülung anzuschließen. Selbst nach mehreren Minuten kann der Reaktor dann ohne erneute Anfahrprozedur auch nach einer Inertgasspülung verzögerungsfrei wieder in Betrieb genommen werden.
Die Zündung und Vorwärmung des Reaktors kann mit einem Brenngas (Wasserstoff, Methan o. a.) und Luft erfolgen. Allerdings kann hierfür auch eine konventionelle Zündvorrichtung, die für solche chemischen Reaktoren üblich ist, genutzt werden. Nach völliger Durchwärmung der Zone C kann nach und nach oder auch sofort auf die Reaktanden, wie beispielsweise Chlor, Methan und Luft, umgestellt werden.
Plötzliche Lastschwankungen bis zu 50 % der Nennlast, die in solchen Anlagen auftreten können, sind mit den beschriebenen Poren reaktoren ohne Schwierigkeiten zu beherrschen.
Das Scale-Up für technische Anlagen wird aufgrund der technischen Lehre für die Dimensionierung von Poren reaktoren, insbesondere bei der im vorherigen beschriebenen, adiabaten Prozessführung, nach der unabhängig von der Baugröße definierte Strömungsbedingungen in den Zonen A und C eingehalten werden müssen, überraschend einfach. Die nachfolgend beschriebenen und für chemischen Prozesse modifizierten Porenreaktoren sind Teile verfahrenstechnischer Anlagen zur Erzeugung von Salzsäure oder zur Nachverbrennung halogenhaltiger, vorzugsweise chlorhaltiger Verbindungen.
Eine solche Anlage weist beispielsweise einen modifizierten Porenreaktor, einen Wärmetauscher für die Kühlung der Reaktionsprodukte bzw. zur Nutzung von deren Wärmeinhalt und je nach Anlagetyp auch einen Absorber, Scrubber oder Ab- gaswäscher an Übergangsstücken zwischen den Apparaten, Pumpen, Rohrleitungen und die üblichen Sicherheits-, Mess- und Regeleinrichtungen auf. Aufgrund der Reaktionsführung und der guten Durchmischung der Gase im Porenreaktor ist im Vergleich zum Stand der Technik eine voluminöse Brennkammer nicht erforderlich. Der Reaktor kann direkt an die nachfolgenden Apparate, z. B. einen Wärmetauscher, eine Quenche mit Absorber oder andere Apparate angeschlossen werden. Nach Abkühlung der aus dem Reaktor strömenden Reaktionsprodukte in einem Wärmetauscher oder nach einer Quenche wird ein Teilstrom des gekühlten Gases bzw. Gasgemisches, wie oben beschrieben, wieder dem Reaktor zugeführt. Alternativ dazu kann, wie beschrieben, auch ein anderes Gas, z. B. Wasserdampf, zugesetzt werden.
Je nach Anforderungen an das Produkt können auch nur Teile der verfahrenstechnischen Anlage benötigt werden, z. B. Reaktor und Gaskühler oder Reaktor und Quenche, je nachdem, ob das Produkt gasförmig oder in Wasser gelöst als Salzsäure benötigt wird.
Eine weitere Ausführungsform einer Anlage zur Erzeugung von Chlorwasserstoff benutzt als Wasserstofflieferant Kohlenwasserstoffgase, z. B. Erdgas, Methan, Propan usw., Chlor und Luft. Die Verbrennung erfolgt nach den stark vereinfacht dargestellten Reaktionsgleichungen (1 ) und (2): CH4 + O2 + Cl2 -> CO + 2HCI + H2O (1 ), CO + 1/2O2 -> CO2 (2). Diese Verbrennung ist in Anlagen gemäss Stand der Technik schwierig zu führen, da bei ungünstigen Randbedingungen Russ entstehen kann, der die Anlage und die Säure verschmutzt. Die beschriebenen, besonderen Eigenschaften des Porenreaktors ermöglichen unerwarteterweise auch für diese kritische Anwendung eine stabile, russfreie Verbrennung.
Porenreaktoren für die Nachverbrennung von halogenhaltigen Abgasen oder verdampfbaren oder gasförmigen, halogenhaltigen, organischen Verbindungen werden, wie später anhand von Ausführungsbeispielen noch deutlicher wird, so ausgeführt, dass Oxidationsmittel und Brenngas vorzugsweise vorgemischt in die Vor- mischkammer eingeblasen werden. Durch die hohe Reaktionsenthalpie von Oxidationsmittel und Brenngas wird in der Brennzone C eine stabile Stützflamme erzeugt. Das nachzuverbrennende Gas oder Gasgemisch wird über ein Einleitrohr in die Vormischkammer vorzugsweise über einen Tragrost vor der Zone A des Porenreaktors eingeblasen und mit dem Brennstoff/Oxidationsmittelgemisch gemischt. Zur Temperaturregelung des Nachverbrennungsprozesses verwendet man vorzugsweise einen entsprechenden Überschuss des Oxidationsmittels, insbesondere Luft. Zur Regelung der Temperatur in der Zone C des Porenreaktors wird die Temperatur beispielsweise mittels Infrarotpyrometer gemessen und das Signal für die Oxidationsmittelregelung weiterverarbeitet. Die nachfolgenden Einrichtungen bei Nachverbrennungen unterscheiden sich abhängig vom Halogengehalt der Abgase von den oben beschriebenen Anlageteilen. Bei kleinem Halogengehalt, bei dem die Gewinnung von Salzsäure nicht im Vordergrund steht, wird im allgemeinen nur eine Quenche und ein Wäscher nachgeschaltet. Andere Begleitstoffe, z. B. Schwefelverbindungen o. ä., können mit den beschriebenen Einrichtungen ebenso einer schadlosen Beseitigung unterzogen werden. Dies gilt grundsätzlich auch für halogenhaltige oder schwefelhaltige verdampfbaren Reinstoffe oder Gemische. Da die beschriebenen Nachverbrennungsanlagen mit Porenreaktor keine Brennkammer im herkömmlichen Sinn benötigen, können solche Anlagen sehr kompakt und kostengünstig ausgeführt werden.
Aufgrund der vorstehenden, detaillierten Ausführungen ergeben sich insbesondere folgende bevorzugte Weiterbildungen der Erfindung: der Brennraum weist mindestens zwei Zonen mit Material unterschiedlicher Porengröße auf, zwischen denen die Porengröße die kritische Peclet-Zahl ergibt; das Material mit zusammenhängenden Hohlräumen weist zumindest teilweise eine Schüttung von Körpern auf, wie sie für Festkörperschüttungen oder geordnete Packungen bei thermischen Trennverfahren eingesetzt werden, wie Kugeln oder Sattelkörper; an der Grenzfläche für Zonen unterschiedlicher Porosität ist ein Gitter, wie ein Tragrost, vorgesehen, um einen Austrag der Körper aus einer Zone in die andere zu vermeiden, wobei das Gitter, insbesondere der Tragrost, auch gekühlt sein kann; die Brennkammer ist für Flammenstabilität bei Über- und Unterdruck ausgelegt; die zugeführten Produktgase werden alle oder nur zum Teil vorgewärmt, um nach Zumischung von kühlenden Dämpfen wie z.B. Wasserdampf ein Auskondensieren in der Vormischkammer vermeiden (auskondensierte Bestandteile würden den Reaktionserfolg erheblich verschlechtern und zur Bildung von unerwünschten Nebenprodukte führen); die Vormischkammer wird nicht gekühlt, sondern deren Wände werden gezielt über Taupunkttemperatur der Gasmischung gehalten, um so ein Auskondensieren von Gasbestandteilen zu verhindern.
Die Brennkammer kann nun auch für Flammenstabilität bei Über- oder Unterdruck ausgelegt werden, was im vorbekannten Stand der Technik nur zu ungenügender Flammenstabilität geführt hätte. Aufgrund der Erfindung und ihrer Weiterbildungen steht aber ein wesentlich größerer Druckbereich zur Verfügung, so dass eine entsprechende Auslegung für einen großen Druckbereich in einer dem Fachmann geläufigen Weise, insbesondere auch für Über- oder Unterdruck, zu einer wesentlichen Erhöhung der Flammenstabilität führen kann. Regelungen können dabei weitgehend entfallen. Insbesondere ist bei einer bevorzugten Weiterbildung der Erfindung eine Brenn- kammerisolierung für eine annähernd adiabatische Verbrennungsführung ohne Wandeffekte vorgesehen. Eine adiabatische Verbrennungsführung ist insbesondere für die Erhöhung der Umsatzrate besonders vorteilhaft.
Neben der Verbrennung ist es auch möglich, Reaktionsprodukte zu gewinnen, beispielsweise bei der Chlorwasserstoffgasverbrennung zur Chlorwasserstoffsynthese. Dazu ist bei einer bevorzugten Weiterbildung der Erfindung vorgesehen, dass die Vorrichtung eine Einrichtung zur Gewinnung oder Trennung von Reaktionsprodukten aus dem verbrannten Brennstoff/Oxidationsmittel aufweist. Insbesondere für die Chlorwasserstoffsynthese ist vorgesehen, dass die Vorrichtung für eine chlorhaltige Verbindung im Brennstoff sowie Methan im Oxidationsmittel zum Verbrennen des Chlorwasserstoffs ausgelegt ist und dafür eine verfahrenstechnische Einrichtung zur Gewinnung von Chlorwasserstoff oder Salzsäure hinter dem Brennraum aufweist. Die genannte Auslegung ist dem Fachmann bekannt. Insbesondere ist dabei anzumerken, dass die entsprechenden Sicherheitseinrichtungen berücksichtigt werden und die Materialien entsprechend korrosionsbeständig gegen Chlor sind.
Wie vorstehend schon ausgeführt wurde, ist die Erfindung nicht nur zum Verbrennen und zur Chlorwasserstoffsynthese einsetzbar, sondern auch als Einrichtung zum Nachverbrennen von Abgasen und dabei insbesondere zum Reinigen. So ist es beispielsweise bei einigen in den in der nachfolgenden Beschreibung dargestellten Ausführungsbeispielen möglich, Anteile an chlorhaltigen, organischen Verbindungen problemlos nachzuverbrennen und somit schadlos zu entsorgen.
Weitere Maßnahmen und Besonderheiten bei der Erfindung ergeben sich auch aus der nachfolgenden Beschreibung eines Ausführungsbeispiels unter Bezugnahme auf die beigefügte Zeichnung. Es zeigen:
Fig. 1 Teildarstellung einer Porenreaktor-Anlage Für das folgende Ausführungsbeispiel wurde der vorstehend schon näher erläuterte Porenreaktor 1 ausgewählt, der gegenüber anderen Reaktortypen, mit dem die Erfindung ausgebildet werden kann, besondere Vorteile aufweist. Das wesentliche Merkmal bei der Erfindung besteht darin, dass die Flamme durch Zufuhr eines zusätzlichen Gases zu dem Brennstoff/Oxidationsmittelgemisch gekühlt wird, was bei allen denkbaren Reaktortypen verwirklicht werden kann. Deshalb ist die nachfolgende Beschreibung des Ausführungsbeispiels allein auf Basis des Porenreaktors 1 nicht als Beschränkung zu sehen.
Eine Ausführungsform eines erfindungsgemäßen Porenreaktors 1 ist in Fig. 1 dargestellt. Das Gehäuse des Porenreaktors 1 besteht aus einer dünnwandigen, hochtemperaturfesten keramischen Innenauskleidung 8 aus Oxidkeramik mit einer Dicke von 2 mm bis 50 mm, einem Graphitstützmantel 9 und einem davon be- abstandeten äußeren Stahlmantel 10. Zwischen dem Graphitstützmantel 9 und dem Stahlmantel 10 wird Kühlwasser geleitet, welches am Stutzen 12 den Porenreaktor 1 verlässt. Weiter sind die definierten Zonen A - 2, die Zone B - 4 und die Zone C - 3 gezeigt. Die Zone C - 3 wirkt dabei als Verbrennungszone, in der die Verbrennung stattfindet. In der Zone A - 2 wird durch entsprechende Dimensionierung ein Entflammen vermieden. Die Verbrennungszone C - 3 ist zu diesem Zweck mit Füllkörpern gefüllt, die Zone A - 2 dagegen mit Porenkörpern, die als Flammsperre wirken. Die Zone A - 2 und die Zone C - 3 sind durch die Zone B - 4 beabstandet. An der Grenzfläche zwischen der Zone B - 4 und der Zone C - 3 erfolgt die großflächige Temperaturüberwachung durch Zugang eines Temperaturmessfühlers im Temperaturmessstutzen 6. Über die Vormischkammer 5 wird das Gasgemisch von oben in den Porenreaktor 1 geleitet. Die Umsetzung des Reaktionsgemisches erfolgt in der Zone C - 3, die auf dem Tragrost 7 angeordnet ist und zusätzlich durch den darunter angeordneten Wärmetauscher 11 gekühlt wird. Die Wandtemperatur der Reaktionszone C - 3 wird durch einen Wand-Temperaturfühler 13 überwacht. Bezugszeichenliste
1 Poren reaktor
2 Zone A
3 Zone C
4 Zone B
5 Vormischkammer
6 Stutzen für Temperaturmessfühler
7 Tragrost
8 keramische Innenauskleidung
9 Graphitwandung
10 Stahlaußenwandung
11 Wärmetauscher
12 Kühlmediumanschluss
13 Wand-Temperaturmessfühler

Claims

Patentansprüche
1. Vorrichtung zur Verbrennung eines Brennstoff/Oxidationsmittelgemisches in stark exothermer Reaktion bestehend aus einem Reaktor (1 ) mit einem Brennraum, der mindestens ein erstes poröses Material und mindestens ein zweites poröses Material in getrennten Zonen enthält, wobei die Zonen so gestaltet sind, dass eine exotherme Reaktion lediglich in der zweiten Zone stattfinden kann und mit einer oder mehreren Zuführungsleitungen für den Brennstoff sowie für das Oxidationsmittel versehen ist, dadurch gekennzeichnet, dass die aus dem ersten porösen Material bestehende Zone A (2) in einem Abstand von 10 mm bis 4000 mm, einer Zone B (4) vor der aus dem zweiten porösen Material bestehende Zone C (3) in Strömungsrichtung des Brennstoff/Oxidationsmittelgemisches angeordnet ist.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass der durch die Zone B (4) gebildete Abstand zwischen der Zone A (2) und der Zone C (3) 20 mm bis 500 mm beträgt.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Brennraum und die porösen Materialien aus Werkstoffen bestehen, die einer Temperatur von 10000C bis 24000C standhalten.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass in der Zone B (4) eine Temperaturüberwachungsvorrichtung (6) und gegebenenfalls eine Zündvorrichtung angeordnet sind.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Temperaturüberwachungsvorrichtung (6) ein Infrarot-Sensor ist.
6. Vorrichtung nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass sie vertikal angeordnet ist und sich die Zone A (2) oberhalb der Zone B (4) und Zone C (3) befindet.
7. Vorrichtung nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass eine Vor- mischkammer (5) für das Brennstoff/Oxidationsmittelgemisch vorgesehen ist.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Vormisch- kammer (5) so ausgelegt ist, dass die in Richtung auf den Brennraum bezogene Komponente der Strömungsgeschwindigkeit des Gemisches in der Vor- mischkammer (5) größer als die Flammengeschwindigkeit im Brennraum ist.
9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass eine Kühlung der Vormischkammer (5) vorgesehen ist.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die porösen Materialien zumindest teilweise als eine Schüttung von Körpern ausgebildet ist, wie sie als Füllkörperschüttungen oder geordnete Packungen bei thermischen Trennverfahren eingesetzt werden.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass an der Grenzfläche ein Gitter, wie ein Tragrost (7), vorgesehen ist.
12. Vorrichtung nach mindestens einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die Brennkammer für Flammenstabilität bei Über- und/oder Unterdruck ausgelegt ist.
13. Vorrichtung nach mindestens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass eine Brennkammertemperierung für eine annähernd adiabatische Verbrennungsführung ohne thermische Wandeffekte vorgesehen ist.
14. Vorrichtung nach einem der Ansprüche 1 bis 13, gekennzeichnet durch eine Einrichtung zur Gewinnung oder Trennung von Reaktionsprodukten aus dem verbrannten Brennstoff/Oxidationsmittel .
15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass sie für Chlor oder eine chlorhaltige Verbindung sowie Wasserstoff oder eine wasserstoff- haltige Verbindung im Brennstoff/Oxidationsmittelgemisch zum Gewinnen von Chlorwasserstoff durch Verbrennung ausgelegt ist und dass sie eine verfahrenstechnische Einrichtung zur Gewinnung von Chlorwasserstoff oder Salzsäure hinter dem Brennraum aufweist.
EP09744981.3A 2008-09-22 2009-09-21 Vorrichtung zur verbrennung eines brennstoff/oxidationsmittelgemisches Active EP2347177B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008048359A DE102008048359B4 (de) 2008-09-22 2008-09-22 Vorrichtung zur Verbrennung eines Brennstoff/Oxidationsmittelgemisches
PCT/EP2009/062215 WO2010031869A2 (de) 2008-09-22 2009-09-21 Vorrichtung zur verbrennung eines brennstoff/oxidationsmittelgemisches

Publications (2)

Publication Number Publication Date
EP2347177A2 true EP2347177A2 (de) 2011-07-27
EP2347177B1 EP2347177B1 (de) 2018-01-03

Family

ID=41821055

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09744981.3A Active EP2347177B1 (de) 2008-09-22 2009-09-21 Vorrichtung zur verbrennung eines brennstoff/oxidationsmittelgemisches

Country Status (8)

Country Link
US (1) US8926319B2 (de)
EP (1) EP2347177B1 (de)
CN (1) CN102165256B (de)
BR (1) BRPI0919820B1 (de)
CA (1) CA2738003C (de)
DE (1) DE102008048359B4 (de)
RU (1) RU2487299C2 (de)
WO (1) WO2010031869A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10281173B2 (en) * 2012-06-28 2019-05-07 Purpose Co., Ltd. Burner, combustion apparatus, method for combustion, method for controlling combustion, recording medium, and water heater
US10413879B2 (en) * 2015-10-01 2019-09-17 Sgl Carbon Se Type of burning device for producing gas mixtures
CN114183751A (zh) * 2021-11-25 2022-03-15 北京动力机械研究所 一种基于锂和六氟化硫反应的闭式循环热源装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4392814A (en) * 1979-06-08 1983-07-12 Can-Eng Holdings Limited Fluidized bed
US4785768A (en) * 1986-09-15 1988-11-22 Iowa State University Research Foundation, Inc. Means and method for controlling load turndown in a fluidized bed combustor
FR2628511B1 (fr) * 1988-03-10 1990-06-22 Perie Rene Procede et dispositif pour la combustion complete a l'interieur d'une brique refractaire poreuse d'un melange de gaz combustible et comburant
ES2111048T3 (es) * 1991-07-05 1998-03-01 Thermatrix Inc A Delaware Corp Metodo y aparato para la reaccion controlada en una matriz de reaccion.
US5165884A (en) * 1991-07-05 1992-11-24 Thermatrix, Inc. Method and apparatus for controlled reaction in a reaction matrix
DE4322109C2 (de) 1993-07-02 2001-02-22 Franz Durst Brenner für ein Gas/Luft-Gemisch
DE19527583C2 (de) * 1995-07-28 1998-01-29 Max Rhodius Gmbh Brenner, insbesondere für Heizungsanlagen
NL1005800C2 (nl) * 1996-11-16 1999-05-10 Fasto Nefit Bv Branderlichaam voor een brander voor gasvormige brandstoffen.
DE19939951C2 (de) 1999-08-23 2002-10-24 Sgl Acotec Gmbh Verfahren für einen Brenner und eine entsprechende Vorrichtung
DE10228411C1 (de) * 2002-06-25 2003-09-18 Enginion Ag Porenbrenner mit verringerter Startemission
DE10309799A1 (de) * 2003-03-05 2004-09-23 Sgl Acotec Gmbh Verfahren und Vorrichtung zur Herstellung von Chlorwasserstoff
JP4653082B2 (ja) * 2004-03-30 2011-03-16 謙治 岡安 携帯式熱伝達装置
EP1695759B1 (de) * 2005-01-31 2008-04-16 Basf Se Verfahren zur Herstellung von nanopartikulären Feststoffen
DE102005044494B3 (de) * 2005-09-16 2007-03-08 Wenzel, Lothar Vorrichtung zur Beseitigung von schädlichen Bestandteilen aus Abgasen von Brennkraftmaschinen
AT504398B1 (de) * 2006-10-24 2008-07-15 Windhager Zentralheizung Techn Porenbrenner, sowie verfahren zum betrieb eines porenbrenners

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010031869A2 *

Also Published As

Publication number Publication date
BRPI0919820B1 (pt) 2020-03-24
EP2347177B1 (de) 2018-01-03
CN102165256A (zh) 2011-08-24
BRPI0919820A2 (pt) 2016-02-10
US8926319B2 (en) 2015-01-06
CA2738003C (en) 2014-02-11
CA2738003A1 (en) 2010-03-25
RU2487299C2 (ru) 2013-07-10
DE102008048359A1 (de) 2010-04-15
WO2010031869A3 (de) 2010-07-01
US20110229835A1 (en) 2011-09-22
DE102008048359B4 (de) 2010-08-26
RU2011115810A (ru) 2012-10-27
WO2010031869A2 (de) 2010-03-25
CN102165256B (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
DE19939951C2 (de) Verfahren für einen Brenner und eine entsprechende Vorrichtung
EP0657011B1 (de) Brenner
DE2611671C2 (de) Verfahren zur gemeinsamen Verbrennung von Abgasen und flüssigen Rückständen
DE69017318T2 (de) Verbrennungsverfahren mit verbesserter Temperaturverteilung.
DE69224239T2 (de) Verfahren und Vorrichtung zur gesteuerten Reaktion in einer Reaktionsmatrix
DE10230149B4 (de) Vorrichtung zur Erzeugung von Wasserstoff
DE69213162T2 (de) Verfahren zur Abfallverbrennung
DE3752053T2 (de) Verfahren zur Vernichtung organischen Abfallstoffs
DE3224328A1 (de) Verfahren und anlage zur umwandlung von abfallstoffen in bestaendige endprodukte
DE2735139A1 (de) Verbrennungsofen fuer abfaelle
DE69912768T2 (de) Verfahren zur herstellung von einem kohlenstoffhaltigen feststoff und wasserstoffreichen gasen
DE19643258A1 (de) Vorrichtung zur Verwertung von kohlenstoff- und aschehaltigen Brenn- und Abfallstoffen
CH626704A5 (de)
EP2347177B1 (de) Vorrichtung zur verbrennung eines brennstoff/oxidationsmittelgemisches
DE10304489B4 (de) Einrichtung zur Reinigung von Abgasen mit fluorhaltigen Verbindungen in einem Verbrennungsreaktor mit niedriger Stickoxidemission
DE19949142C1 (de) Verfahren und Vorrichtung zur Entsorgung und Nutzbarmachung von Abfallgütern
DE102006034032B4 (de) Thermische Abgasreinigungsvorrichtung und Verfahren zur thermischen Abgasreinigung
DE2952502A1 (de) Verfahren zur steuerung des verlaufs einer kontaktkinetischen flammenlosen verbrennung und kessel zur durchfuehrung dieses verfahrens
EP1865257B9 (de) Verfahren zur Reduzierung halogen-salzinduzierter Korrosion und Dioxin-sowie Furanemissionen in Verbrennungsanlagen
CH656636A5 (en) Process and equipment for converting waste materials into stable end products
DE102014001785B4 (de) Kleinstfeuerungsanlage für biogene Festbrennstoffe
WO1991009650A2 (de) Verfahren und vorrichtung zum entsorgen von substanzen, die halogenierte kohlenwasserstoffverbindungen enthalten
DE19706606A1 (de) Verfahren zur Regelung der Temperatur in thermischen Abfallbehandlunganlagen und Abfallbehandlunganlage
DE68921485T2 (de) Verfahren zur Rückgewinnung von Abgas einer Kohlefeuerung.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110426

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SGL CARBON SE

17Q First examination report despatched

Effective date: 20160309

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170725

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GOETZ, SOEREN

Inventor name: FRANZ, MARCUS

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 960631

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009014646

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180103

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180503

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009014646

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

26N No opposition filed

Effective date: 20181005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220927

Year of fee payment: 14

Ref country code: AT

Payment date: 20220919

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220920

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220930

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220928

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230930

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 960631

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230921

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230921

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230921