EP2342778A1 - Receive antenna arrangement for wireless power - Google Patents
Receive antenna arrangement for wireless powerInfo
- Publication number
- EP2342778A1 EP2342778A1 EP09792322A EP09792322A EP2342778A1 EP 2342778 A1 EP2342778 A1 EP 2342778A1 EP 09792322 A EP09792322 A EP 09792322A EP 09792322 A EP09792322 A EP 09792322A EP 2342778 A1 EP2342778 A1 EP 2342778A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electronic device
- receive antenna
- loop conductor
- wireless
- antenna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/248—Supports; Mounting means by structural association with other equipment or articles with receiving set provided with an AC/DC converting device, e.g. rectennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2208—Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
- H01Q1/2225—Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/243—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q7/00—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/005—Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/20—Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
- H02J7/00036—Charger exchanging data with battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
Definitions
- the present invention relates generally to wireless charging, and more specifically to devices, systems, and methods relating to wireless receive antennas configured for integration within an electronic device.
- each powered device such as a wireless electronic device requires its own wired charger and power source, which is usually an alternating current (AC) power outlet.
- AC alternating current
- Wireless energy transmission may be based on coupling between a transmit antenna, a wireless receive antenna and a rectifying circuit embedded in the host electronic device to be powered or charged.
- An important element in wireless charging is the quality factor of a wireless receive antenna, which may be integrated within an electronic device.
- the quality factor of a wireless receive antenna may be affected by a magnetic field existing proximate the wireless receive antenna.
- an electronic device may include various conductive components, which may undesirably influence the performance of an associated wireless receive antenna. Specifically, the conductive components may adversely impact the behavior of a magnetic field existing adjacent a wireless receive antenna.
- FIG. 1 illustrates a simplified block diagram of a wireless power transmission system.
- FIG. 2 illustrates a simplified schematic diagram of a wireless power transmission system.
- FIG. 3 illustrates a schematic diagram of a loop antenna, in accordance with exemplary embodiments.
- FIG. 4 is a simplified block diagram of a receiver, in accordance with an exemplary embodiment.
- FIG. 5 is a simplified, cross-sectional view of an electronic device including at least one receive antenna, according to an exemplary embodiment.
- FIG. 6 is a simplified, cross-sectional view of another electronic device including at least one receive antenna, in accordance with an exemplary embodiment.
- FIG. 12 FIG.
- FIG. 7 is a simplified, cross-sectional view of yet another electronic device including at least one receive antenna, in accordance with an exemplary embodiment.
- FIG. 8 is a cross-sectional view of an electronic device including at least one receive antenna, according to an exemplary embodiment.
- FIG. 9 is a cross-sectional view of another electronic device including at least one receive antenna, in accordance with an exemplary embodiment.
- FIG. 10 is a simplified, planar view of an electronic device including at least one receive antenna, according to an exemplary embodiment.
- FIG. 11 is a simplified, planar view of another electronic device including at least one receive antenna, according to an exemplary embodiment.
- FIG. 12 depicts an electronic device including at least one receive antenna, in accordance with an exemplary embodiment.
- FIG. 13 is another illustration depicting the electronic device of FIG. 12.
- FIG. 14 illustrates an electronic device having a loop conductor of an integrated receive antenna spaced from a conductive component, according to an exemplary embodiment.
- FIG. 15 illustrates a flowchart of a method of integrating a wireless receive antenna into an electronic device, in accordance with an exemplary embodiment.
- FIG. 16 illustrates a flowchart of a method of charging an electronic device, in accordance with an exemplary embodiment.
- FIGS. 17A and 17B depict a single-loop conductor receive antenna, in accordance with an exemplary embodiment.
- FIGS. 18A and 18B depict a multi-loop conductor receive antenna, according to an exemplary embodiment.
- wireless power is used herein to mean any form of energy associated with electric fields, magnetic fields, electromagnetic fields, or otherwise that is transmitted from a transmitter to a receiver without the use of physical electromagnetic conductors.
- Power conversion in a system is described herein to wirelessly charge devices including, for example, mobile phones, cordless phones, iPod, MP3 players, headsets, etc.
- one underlying principle of wireless energy transfer includes magnetic coupled resonance (i.e., resonant induction) using frequencies, for example, below 30 MHz.
- frequencies may be employed including frequencies where license-exempt operation at relatively high radiation levels is permitted, for example, at either below 135 kHz (LF) or at 13.56 MHz (HF).
- FIG. 1 illustrates wireless power transmission system 100, in accordance with various exemplary embodiments.
- Input power 102 is provided to a transmitter 104 for generating a magnetic field 106 for providing energy transfer.
- a receiver 108 couples to the magnetic field 106 and generates an output power 110 for storing or consumption by a device (not shown) coupled to the output power 110. Both the transmitter 104 and the receiver 108 are separated by a distance 112.
- transmitter 104 and receiver 108 are configured according to a mutual resonant relationship and when the resonant frequency of receiver 108 and the resonant frequency of transmitter 104 are matched, transmission losses between the transmitter 104 and the receiver 108 are minimal when the receiver 108 is located in the "near-field" of the magnetic field 106.
- Transmitter 104 further includes a transmit antenna 114 for providing a means for energy transmission and receiver 108 further includes a receive antenna 118 for providing a means for energy reception or coupling.
- the transmit and receive antennas are sized according to applications and devices to be associated therewith. As stated, an efficient energy transfer occurs by coupling a large portion of the energy in the near-field of the transmitting antenna to a receiving antenna rather than propagating most of the energy in an electromagnetic wave to the far-field. In this near-field, a coupling may be established between the transmit antenna 114 and the receive antenna 118. The area around the antennas 114 and 118 where this near-field coupling may occur is referred to herein as a coupling-mode region.
- FIG. 2 shows a simplified schematic diagram of a wireless power transmission system.
- the transmitter 104 driven by input power 102, includes an oscillator 122, a power amplifier 124 and a filter and matching circuit 126.
- the oscillator is configured to generate a desired frequency, which may be adjusted in response to adjustment signal 123.
- the oscillator signal may be amplified by the power amplifier 124 with an amplification amount responsive to control signal 125.
- the filter and matching circuit 126 may be included to filter out harmonics or other unwanted frequencies and match the impedance of the transmitter 104 to the transmit antenna 114.
- the receiver 108 may include a matching circuit 132 and a rectifier and switching circuit 134 to generate a DC power output to charge a battery 136 as shown in FIG. 2 or power a device coupled to the receiver (not shown).
- the matching circuit 132 may be included to match the impedance of the receiver 108 to the receive antenna 118.
- antennas used in exemplary embodiments may be configured as a "loop" antenna 150, which may also be referred to herein as a "magnetic,” “resonant” or a “magnetic resonant” antenna. Loop antennas may be configured to include an air core or a physical core such as a ferrite core.
- an air core loop antenna allows the placement of other components within the core area.
- an air core loop may more readily enable placement of the receive antenna 118 (FIG. 2) within a plane of the transmit antenna 114 (FIG. 2) where the coupled-mode region of the transmit antenna 114 (FIG. 2) may be more effective.
- the resonant frequency of the loop antennas is based on the inductance and capacitance.
- Inductance in a loop antenna is generally the inductance created by the loop, whereas, capacitance is generally added to the loop antenna's inductance to create a resonant structure at a desired resonant frequency.
- capacitor 152 and capacitor 154 may be added to the antenna to create a resonant circuit that generates a sinusoidal or quasi-sinusoidal signal 156. Accordingly, for larger diameter loop antennas, the size of capacitance needed to induce resonance decreases as the diameter or inductance of the loop increases.
- the efficient energy transfer area of the near-field increases for "vicinity" coupled devices.
- other resonant circuits are possible.
- a capacitor may be placed in parallel between the two terminals of the loop antenna.
- the resonant signal 156 may be an input to the loop antenna 150.
- Exemplary embodiments of the invention include coupling power between two antennas that are in the near-fields of each other.
- the near-field is an area around the antenna in which electromagnetic fields exist but may not propagate or radiate away from the antenna. They are typically confined to a volume that is near the physical volume of the antenna.
- antennas such as single and multi-turn loop antennas are used for both transmit (Tx) and receive (Rx) antenna systems since most of the environment possibly surrounding the antennas is dielectric and thus has less influence on a magnetic field compared to an electric field.
- antennas dominantly configured as "electric" antennas e.g., dipoles and monopoles
- a combination of magnetic and electric antennas is also contemplated.
- the Tx antenna can be operated at a frequency that is low enough and with an antenna size that is large enough to achieve good coupling efficiency (e.g.,> 10%) to a small Rx antenna at significantly larger distances than allowed by far-field and inductive approaches mentioned earlier. If the Tx antenna is sized correctly, high coupling efficiencies (e.g., 30%) can be achieved when the Rx antenna on a host device is placed within a coupling-mode region (i.e., in the near-field or a strongly coupled regime) of the driven Tx loop antenna.
- a coupling-mode region i.e., in the near-field or a strongly coupled regime
- FIG. 4 is a block diagram of a receiver, in accordance with an embodiment.
- a receiver 300 includes receive circuitry 302 and a receive antenna 304. Receiver 300 further couples to device 350 for providing received power thereto. It should be noted that receiver 300 is illustrated as being external to device 350 but may be integrated into device 350. Generally, energy is propagated wirelessly to receive antenna 304 and then coupled through receive circuitry 302 to device 350.
- Receive antenna 304 is tuned to resonate at the same frequency, or near the same frequency, as transmit antenna 204 (FIG. 10). Receive antenna 304 may be similarly dimensioned with transmit antenna 204 or may be differently sized based upon the dimensions of an associated device 350.
- device 350 may be a portable electronic device having diametric or length dimension smaller that the diameter of length of transmit antenna 204.
- receive antenna 304 may be implemented as a multi-turn antenna in order to reduce the capacitance value of a tuning capacitor (not shown) and increase the receive antenna's impedance.
- receive antenna 304 may be placed around the substantial circumference of device 350 in order to maximize the antenna diameter and reduce the number of loop turns (i.e., windings) of the receive antenna and the inter- winding capacitance.
- Receive circuitry 302 provides an impedance match to the receive antenna 304.
- Receive circuitry 302 includes power conversion circuitry 306 for converting a received RF energy source into charging power for use by device 350.
- Power conversion circuitry 306 includes an RF-to-DC converter 308 and may also in include a DC-to-DC converter 310.
- RF-to-DC converter 308 rectifies the RF energy signal received at receive antenna 304 into a non-alternating power while DC-to-DC converter 310 converts the rectified RF energy signal into an energy potential (e.g., voltage) that is compatible with device 350.
- Various RF-to-DC converters are contemplated including partial and full rectifiers, regulators, bridges, doublers, as well as linear and switching converters.
- Receive circuitry 302 may further include switching circuitry 312 for connecting receive antenna 304 to the power conversion circuitry 306 or alternatively for disconnecting the power conversion circuitry 306. Disconnecting receive antenna 304 from power conversion circuitry 306 not only suspends charging of device 350, but also changes the "load” as "seen” by the transmitter 200 (FIG. 2) as is explained more fully below.
- transmitter 200 includes load sensing circuit 216 which detects fluctuations in the bias current provided to transmitter power amplifier 210. Accordingly, transmitter 200 has a mechanism for determining when receivers are present in the transmitter's near-field.
- Receive circuitry 302 may further include signaling detector and beacon circuitry
- signaling and beacon circuitry 314 used to identify received energy fluctuations, which may correspond to informational signaling from the transmitter to the receiver. Furthermore, signaling and beacon circuitry 314 may also be used to detect the transmission of a reduced RF signal energy (i.e., a beacon signal) and to rectify the reduced RF signal energy into a nominal power for awakening either un-powered or power-depleted circuits within receive circuitry 302 in order to configure receive circuitry 302 for wireless charging.
- a reduced RF signal energy i.e., a beacon signal
- Receive circuitry 302 further includes processor 316 for coordinating the processes of receiver 300 described herein including the control of switching circuitry 312 described herein. Cloaking of receiver 300 may also occur upon the occurrence of other events including detection of an external wired charging source (e.g., wall/USB power) providing charging power to device 350.
- Processor 316 in addition to controlling the cloaking of the receiver, may also monitor beacon circuitry 314 to determine a beacon state and extract messages sent from the transmitter. Processor 316 may also adjust DC- to-DC converter 310 for improved performance.
- the various exemplary embodiments disclosed herein relate to one or more wireless receive antennas configured for wireless charging and further configured to be integrated within an electronic device in a manner so as to provide a clearance (i.e., a physical separation) between a loop conductor of each receive antenna and any conductive component within the electronic device. Accordingly, the clearance may provide an escape path that may enable a magnetic field to exist around the loop conductor. It is noted that an "escape path,” as referenced herein, may exist within a vacant area void of any component, may exist within an area consisting of non- conductive material (e.g., plastic), or any combination thereof. It is further noted that according to the various exemplary embodiments, wireless receive antennas, as described herein, may either be configured to be retrofit to an existing electronic device, or made as part of its initial design and manufacturing.
- a wireless receive antenna may be integrated within an electronic device in a manner wherein a loop conductor of the wireless receive antenna is separated from each conductive component within the electronic device a sufficient distance so as to prevent an undamped quality factor of the associated wireless receive antenna from degrading more than a factor of about four upon integration thereof.
- an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of the wireless receive antenna upon integration into an electronic device. It is noted that degradation of a quality factor more than a factor of four may indicate that a separation distance between the antenna and at least one conductive component is inadequate.
- a wireless receive antenna may be integrated within an electronic device in a manner wherein a loop conductor of the wireless receive antenna is separated from each conductive component within the electronic device a sufficient distance so as to degrade an undamped quality factor of the associated wireless receive antenna by at least a factor of two upon integration thereof.
- an undamped quality factor of a wireless receive antenna should be more than substantially two times greater than a quality factor of the wireless receive antenna upon integration into an electronic device.
- a loop conductor of a wireless receive antenna may be integrated into an electronic device and separated from each conductive component within the electronic device by at least about 1 to 2 millimeters.
- the wireless receive antennas may comprise electrically small antennas.
- an electrically small antenna is one with a maximum geometrical dimension that is much less than the operating wavelength.
- k is the wavenumber
- 1 is the wavelength
- c is the speed of light
- f is the frequency
- d max is the diameter of the radiansphere.
- FIG. 5 depicts a simplified, cross-sectional view of an electronic device 500 having at least one wireless receive antenna integrated therein, according to an exemplary embodiment.
- Electronic device 500 may comprise any electronic device, such as, for example only, a cellular telephone, a portable media player, a camera, a gaming device, a navigation device, a headset (e.g., a Bluetooth headset), a tool, a toy, or any combination thereof.
- Electronic device 500 may include a first surface 510 and a second surface 508, wherein second surface 508 may include a metal frame.
- electronic device 500 includes a loop conductor 502 of a wireless receive antenna, which may be configured for wireless charging and may be operably coupled to a chargeable battery 504, which may include a metal housing.
- loop conductor 502 is separated from each of first surface
- clearance 506 may comprise a vacant space, a space comprising a non- conductive component, or any combination thereof.
- a portion of clearance 506 includes a vacant space 505 positioned between loop conductor 502 and chargeable battery 504.
- another portion of clearance 506 includes a vacant space 511 positioned between loop conductor 502 and first surface 508.
- clearance 506 may provide an escape path for a magnetic field, which may be associated with and adjacent to loop conductor 502.
- electronic device 500 as configured, may provide an escape path entirely around loop conductor 502.
- an escape path adjacent loop conductor 502 may enable a magnetic field to exist around loop conductor 502 and, thus, the functionality of an associated wireless receive antenna may be enhanced. Furthermore, any adverse affect on a magnetic field adjacent to and associated with loop conductor 502 resulting from a conductive component (i.e., chargeable battery 504, second surface 508, or both), may be limited.
- a conductive component i.e., chargeable battery 504, second surface 508, or both
- a wireless receive antenna may be integrated into electronic device
- loop conductor 502 of the wireless receive antenna is separated from each of first surface 508 and chargeable battery 504 a sufficient distance so as to prevent an undamped quality factor of the wireless receive antenna from degrading more than a factor of about four upon integration thereof.
- an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of the wireless receive antenna upon integration into electronic device 500.
- loop conductor 502 may be integrated into electronic device 500 and separated from chargeable battery 504 by about 1 to 2 millimeters.
- FIG. 6 depicts a simplified, cross-sectional view of another electronic device 600 having at least one receive antenna integrated therein, according to an exemplary embodiment.
- electronic device 600 includes a first surface 610 and a second surface 608, wherein second surface 608 may include a metal frame.
- Electronic device 500 further includes a loop conductor 602 of a wireless receive antenna, which may be configured for wireless charging and may be operably coupled to a chargeable battery 604, which may include a metal housing.
- electronic device 600 includes a component 609, which is adjacent a portion of loop conductor 602 and consists of non-conductive material.
- loop conductor 602 is spaced from chargeable battery 604 with a clearance 606 positioned therebetween. Specifically, a portion of clearance 606 includes a vacant space 605 positioned between loop conductor 602 and chargeable battery 604. Therefore, any adverse affect on a magnetic field adjacent to and associated with loop conductor 602 caused by chargeable battery 604 may be limited.
- clearance 606 may comprise a portion of component 609.
- component 609 may not adversely affect a magnetic field associated with and adjacent to loop conductor 602.
- clearance 606 may provide an escape path for a magnetic field, which may be associated with and adjacent to loop conductor.
- electronic device 600 as configured, may provide an escape path entirely around loop conductor 602.
- an escape path adjacent loop conductor 602 may enable a magnetic field to exist around loop conductor 602 and, thus, the functionality of an associated wireless receive antenna may be enhanced.
- a wireless receive antenna may be integrated into electronic device 600 in a manner wherein loop conductor 602 of the wireless receive antenna is separated from chargeable battery 604 a sufficient distance so as to prevent an undamped quality factor of the wireless receive antenna from degrading more than a factor of about four upon integration thereof. Stated another way, an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of the wireless receive antenna upon integration into electronic device 600.
- loop conductor 602 may be integrated into electronic device 600 and separated from chargeable battery 604 by about 1 to 2 millimeters.
- FIG. 7 depicts a simplified, cross-sectional view of yet another example of an electronic device 700 having at least one receive antenna integrated therein, according to an exemplary embodiment.
- electronic device 700 includes a first surface 710 and a second surface 708, which may include a metal frame. Additionally, electronic device 700 may further include a loop conductor 702 of a wireless receive antenna that is configured for wireless charging and operably coupled to a chargeable battery 704, which may include a metal housing. Furthermore, electronic device 700 includes a component 709, which is adjacent loop conductor 702 and consists of non-conductive materials.
- loop conductor 702 is remote from each of chargeable battery 704 and second surface 708 with a clearance 706 positioned therebetween.
- a portion of clearance 706 includes a vacant space 705 positioned between loop conductor 702 and chargeable battery 704.
- another portion of clearance 706 includes a vacant space 711 positioned between loop conductor 702 and second surface 708.
- clearance 706 may comprise a portion of component 709.
- a magnetic field adjacent to and associated with loop conductor 702 may not be adversely affected by component 709. Therefore, clearance 706 may provide an escape path for a magnetic field, which may be associated with and adjacent to loop conductor 702.
- an escape path adjacent loop conductor 702 may enable a magnetic field to exist around loop conductor 702 and, thus, the functionality of an associated wireless receive antenna may be enhanced.
- electronic device 700 as configured, may provide an escape path entirely around loop conductor 702.
- a wireless receive antenna may be integrated into electronic device 700 in a manner wherein loop conductor 702 of the wireless receive antenna is separated from each of second surface 708 and chargeable battery 704 a sufficient distance so as to prevent an undamped quality factor of the wireless receive antenna from degrading more than a factor of about four upon integration thereof. Stated another way, an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of the wireless receive antenna upon integration into electronic device 700.
- loop conductor 702 may be integrated into electronic device 700 and separated from chargeable battery 704 by about 1 to 2 millimeters.
- FIG. 8 illustrates a cross-sectional view of an electronic device 570 having at least one receive antenna integrated therein, in accordance with an exemplary embodiment.
- Electronic device 570 includes a display device 574, which may comprise a metal frame surrounding a display area and a keyboard (not shown).
- Electronic device 570 also includes an electronics module 576 adjacent a printed circuit board 578, each of which may include conductive material.
- electronic device 570 includes a battery 580 having a metal housing and an RF electronics and antenna module 582 that may include various conductive components.
- electronic device 570 includes a camera 584 having a metal housing.
- a loop conductor 572 of a wireless receive antenna may be integrated within electronic device 570 in a manner so as to include a clearance 586 positioned between loop conductor 572 and each conductive component within electronic device 570. Accordingly, clearance 586 may provide an escape path for a magnetic field, which may exist adjacent loop conductor 572.
- an escape path adjacent loop conductor 572 may enable a magnetic field to exist around loop conductor 572, and, thus may enhance the functionality of an associated wireless receive antenna.
- electronic device 570 as configured, may provide an escape path entirely around loop conductor 572. Further, any adverse affect on a magnetic field adjacent to and associated with loop conductor 572 caused by one or more conductive components may be limited.
- a wireless receive antenna may be integrated into electronic device 570 in a manner wherein loop conductor 572 of the wireless receive antenna is separated from each conductive component within electronic device 570 a sufficient distance so as to prevent an undamped quality factor of the wireless receive antenna from degrading more than a factor of about four upon integration thereof. Stated another way, an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of the wireless receive antenna upon integration into electronic device 570.
- loop conductor 572 may be integrated into electronic device 570 and separated from each conductive component by at least about 1 to 2 millimeters.
- FIG. 9 illustrates a cross-section view of another electronic device 670 having at least one receive antenna integrated therein, in accordance with an exemplary embodiment.
- Electronic device 670 includes a display device 674, which may comprise a metal frame surrounding a display area and a keyboard (not shown).
- Electronic device 670 also includes an electronics module 676 adjacent a printed circuit board 678, each of which may include conductive material.
- electronic device 670 includes a battery 680 having a metal housing and an RF electronics and antenna module 682 that may include various conductive components.
- electronic device 670 includes a camera 684 having a metal housing.
- electronic device 670 includes a component 688, which is adjacent wireless receive antenna 672 and consisting of non-conductive material.
- a loop conductor 672 of a receive antenna which is configured for wireless charging, may be integrated within electronic device 670 in a manner so as to include a clearance 686 positioned between loop conductor 672 and each conductive component within electronic device 670. Stated another way, loop conductor 672 is spaced from each conductive component within electronic device 670 by a portion of clearance 686. As a result, any adverse affect on a magnetic field adjacent to and associated with loop conductor 672 caused by one or more conductive components within electronic device 670 may be limited.
- clearance 686 may comprise a portion of component 688.
- a magnetic field may exist in and around non-conductive components, and, therefore, component 688 may not adversely affect a magnetic field adjacent to loop conductor 672.
- clearance 686 may provide an escape path for a magnetic field, which may be associated with and adjacent to loop conductor 672.
- electronic device 670 as configured, may provide an escape path entirely around loop conductor 672.
- an escape path adjacent loop conductor 672 may enable a magnetic field to exist around loop conductor 672 and, thus, may enhance the functionality of an associated wireless receive antenna.
- a wireless receive antenna may be integrated into electronic device 670 in a manner wherein loop conductor 672 of the wireless receive antenna is separated from each conductive component within electronic device 670 a sufficient distance so as to prevent an undamped quality factor of the wireless receive antenna from degrading more than a factor of about four upon integration thereof. Stated another way, an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of the wireless receive antenna upon integration into electronic device 670.
- loop conductor 672 may be integrated into electronic device 670 and separated from each conductive component by about at least aboutl to 2 millimeters.
- FIG. 10 illustrates a simplified, planar view of an electronic device 800 having at least one receive antenna integrated therein and configured for wireless charging, according to an exemplary embodiment.
- Electronic device 800 may include an external surface 803, which may comprise a metal frame. Additionally, electronic device 800 may further include a loop conductor 802 of a wireless receive antenna that may be operably coupled to a chargeable battery 804, which may include a metal housing. As illustrated, loop conductor 802 is integrated within electronic device 800 and separated from each of chargeable battery 804 and external surface 803 by a clearance 806.
- loop conductor 802 may be integrated into electronic device 800 and separated from each of external surface 803 and chargeable battery 804 a sufficient distance so as to prevent an undamped quality factor of an associated wireless receive antenna from degrading more than a factor of about four upon integration. Stated another way, an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of the wireless receive antenna upon integration into electronic device 800. As a more specific, non-limiting example, loop conductor 802 may be integrated into electronic device 800 and separated from each of chargeable battery 804 and external surface 803 by about 1 to 2 millimeters or more.
- clearance 806 may provide an escape path for a magnetic field that may be adjacent to and associated with loop conductor 802.
- electronic device 800 as configured, may provide an escape path entirely around loop conductor 802.
- an escape path adjacent loop conductor 802 may enable a magnetic field to exist around loop conductor 802 and, thus, may enhance the functionality of an associated wireless receive antenna.
- any adverse affect on a magnetic field adjacent to and associated with loop conductor 802 caused by external surface 803, chargeable battery 804, or both, may be limited.
- FIG. 1 1 depicts a simplified, planar view of yet another electronic device 900 having at least one wireless receive antenna integrated therein and configured for wireless charging, according to an exemplary embodiment.
- electronic device 900 may include an external surface 903, which may comprise a metal frame.
- electronic device 900 may further include a loop conductor 902 of a wireless receive antenna that may be operably coupled to a chargeable battery 904, which may include a metal housing.
- electronic device 900 includes a component 909, which is adjacent loop conductor 902 and consists of non- conductive material.
- loop conductor 902 may be integrated within electronic device 900 and separated from external surface 903 by a portion of a clearance 906. Accordingly, any adverse affect on a magnetic field adjacent to and associated with loop conductor 902 caused by external surface 903 may be limited.
- loop conductor 902 may be integrated into electronic device 900 and separated from external surface 903 a sufficient distance so as to prevent an undamped quality factor of an associated wireless receive antenna from degrading more than a factor of about four upon integration thereof. Stated another way, an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of the wireless receive antenna upon integration into electronic device 900.
- loop conductor 902 may be integrated into electronic device 900 and separated from external surface 903 by about 1 to 2 millimeters.
- clearance 906 may comprise a portion of component 909.
- electronic device 900 may provide an escape path entirely around loop conductor 902.
- an escape path adjacent loop conductor 902 may enable a magnetic field to exist around loop conductor 902 and, thus, may enhance the functionality of an associated wireless receive antenna.
- FIG. 12 depicts a view of an electronic device 550 having at least one receive antenna integrated therein, in accordance with an exemplary embodiment.
- Electronic device 550 includes a display device 554, which may comprise a metal frame surrounding a display area and a keyboard (not shown).
- Electronic device 550 also includes an electronics module 556 adjacent a printed circuit board 558, each of which may include conductive material.
- electronic device 550 includes a battery 560 having a metal housing and an RF electronics and antenna module 562 that may include various conductive components.
- electronic device 550 includes a camera 564 having a metal housing.
- FIG. 13 illustrates another view of electronic device 550. As illustrated in each of
- a loop conductor 552 of a wireless receive antenna is physically spaced (i.e. a clearance exists) from each conductive component within electronic device 550.
- a clearance exists between loop conductor 552 and each of camera 564, battery 560, and RF electronics and antenna module 562. Accordingly, this spacing may provide an escape path (illustrated by arrows 564) for a magnetic field existing adjacent loop conductor 552.
- electronic device 550 may provide an escape path entirely around loop conductor 552.
- an escape path adjacent loop conductor 552 may enable a magnetic field to exist around loop conductor 552 and, thus, the functionality of an associated wireless receive antenna may be enhanced.
- a wireless receive antenna may be integrated into electronic device 550 in a manner wherein loop conductor 552 of the wireless receive antenna is separated from each conductive component within electronic device 550 a sufficient distance so as to prevent an undamped quality factor of the wireless receive antenna from degrading more than a factor of about four upon integration thereof. Stated another way, an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of the wireless receive antenna upon integration into electronic device 500.
- loop conductor 552 may be integrated into electronic device 550 and separated from each conductive component by about 1 to 2 millimeters or more.
- FIG. 14 is a simplified illustration of an electronic device 780 including a loop conductor 782 of a wireless receive antenna and a conductive component 784.
- conductive component 784 may comprise a rechargeable battery having a metal housing.
- loop conductor 782 is separated from conductive component 784 by a distance L having a clearance 786 therebetween.
- distance L may have a range of about 1 to 2 millimeters.
- clearance 786 may comprise, for example only, a vacant space, a non-conductive component, or any combination thereof. Accordingly, clearance 786 may provide an escape path (depicted by arrows 788) for a magnetic field associated with loop conductor 782. As a result, any adverse affect on a magnetic field adjacent to and associated with loop conductor 782 caused by conductive component 784 may be limited.
- a wireless receive antenna may be integrated into electronic device
- an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of wireless receive antenna upon integration into electronic device 780.
- FIG. 15 illustrates a flowchart of a method, in accordance with an exemplary embodiment.
- Method 700 for is supported by the various structures described herein.
- Method 700 includes a step 702 of integrating at least one wireless receive antenna into an electronic device.
- Method 700 further includes a step 704 of spacing a loop conductor of the at least one antenna from each conductive component within the electronic device.
- FIG. 15 illustrates a flowchart of another method, in accordance with an exemplary embodiment.
- Method 705 for is supported by the various structures described herein.
- Method 705 includes a step 706 of receiving wireless power in at least one receive antenna integrated within an electronic device and having a loop conductor spaced from each conductive component within the electronic device.
- Method 705 further includes a step 708 of transferring power from the at least one receive antenna to at least one chargeable battery coupled thereto.
- FIGS. 17A and 17B illustrate a single-loop conductor 650 of a wireless receive antenna configured for integration within an electronic device, according to an exemplary embodiment.
- Single-loop conductor 650 may comprise a wire or a ribbon 652, such as, for example only, a copper wire or a copper ribbon.
- ribbon 652 may comprise a copper ribbon having a silver plating.
- single-loop conductor 650 includes a capacitor 654 and terminals 656.
- single-loop conductor 650 may have a width A of about 44.0 millimeters, a height B of about 89.0 millimeters, and ribbon 652 may have a width C of about 3.0 millimeters. Further, single-loop conductor 650 may having a spacing F between the ends of ribbon 652, which may be, for example only, about 1.0 millimeter. Spacing F may be configured for placement of a capacitor, such as capacitor 654 as illustrated in FIG. 17 A.
- FIG. 18A illustrates a multi-loop conductor 660 of a wireless receive antenna configured for integration within an electronic device, in accordance with an exemplary embodiment.
- multi-loop conductor 660 may comprise a plurality of wires or ribbons 662, each of which may comprise, for example only, copper. Furthermore, as non-limiting examples, multi-loop conductor 660 may have a width D of about 47 millimeters and a height E of about 89 millimeters. Additionally, as illustrated in FIG. 18B, each wire 662 may have a width W, wires 662 may be separated by a distance X, and adjacent wires 662 may have a center-to-center spacing Z. According to "rules of thumb,” distance X may be substantially equal to width W and center-to-center spacing Z may be substantially twice the value of distance X. For example only, width W and distance X may each be about 0.8 millimeters. Furthermore, in this example, center-to- center spacing Z may be about 1.6 millimeters.
- control information and signals may be represented using any of a variety of different technologies and techniques.
- data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- a general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
- a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
- a software module may reside in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
- An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
- the storage medium may be integral to the processor.
- the processor and the storage medium may reside in an ASIC.
- the ASIC may reside in a user terminal.
- the processor and the storage medium may reside as discrete components in a user terminal.
- control functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
- Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
- a storage media may be any available media that can be accessed by a computer.
- such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
- any connection is properly termed a computer-readable medium.
- the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
- the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
- Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Support Of Aerials (AREA)
- Secondary Cells (AREA)
Abstract
Exemplary embodiments are directed to wireless charging. An electronic device may comprise at least one receive antenna integrated within an electronic device and configured to receive wireless power from a wireless transmit antenna. Further, the at least one receive antenna may be spaced from each conductive component within the electronic device having a clearance therebetween adapted to enable formation of a magnetic field around the loop conductor.
Description
RECEIVE ANTENNA ARRANGEMENT FOR WIRELESS POWER
Claim of Priority Under 35 U.S.C. §119
[0001] This application claims priority under 35 U.S.C. § 119(e) to:
U.S. Provisional Patent Application 61/095,264 entitled "INTEGRATION OF WIRELESS CHARGING ANTENNAS INTO MOBILE DEVICES" filed on September 8, 2008, the disclosure of which is hereby incorporated by reference in its entirety.
BACKGROUND Field
[0002] The present invention relates generally to wireless charging, and more specifically to devices, systems, and methods relating to wireless receive antennas configured for integration within an electronic device.
Background
[0003] Typically, each powered device such as a wireless electronic device requires its own wired charger and power source, which is usually an alternating current (AC) power outlet. Such a wired configuration becomes unwieldy when many devices need charging.
[0004] Approaches are being developed that use over-the-air or wireless power transmission between a transmitter and a receiver coupled to the electronic device to be charged. The receive antenna collects the radiated power and rectifies it into usable power for powering the device or charging the battery of the device.
[0005] Wireless energy transmission may be based on coupling between a transmit antenna, a wireless receive antenna and a rectifying circuit embedded in the host electronic device to be powered or charged. An important element in wireless charging is the quality factor of a wireless receive antenna, which may be integrated within an electronic device. The quality factor of a wireless receive antenna may be affected by a magnetic field existing proximate the wireless receive antenna. In addition to a wireless receive antenna, an electronic device may include various conductive components, which may undesirably influence the performance of an associated wireless receive antenna. Specifically, the conductive components may adversely impact the behavior of a magnetic field existing adjacent a wireless receive antenna. There is a need to provide an
electronic device having a receive antenna integrated therein and configured in a manner to enhance the quality factor and the inductance of the integrated receive antenna.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] FIG. 1 illustrates a simplified block diagram of a wireless power transmission system. [0007] FIG. 2 illustrates a simplified schematic diagram of a wireless power transmission system. [0008] FIG. 3 illustrates a schematic diagram of a loop antenna, in accordance with exemplary embodiments. [0009] FIG. 4 is a simplified block diagram of a receiver, in accordance with an exemplary embodiment. [0010] FIG. 5 is a simplified, cross-sectional view of an electronic device including at least one receive antenna, according to an exemplary embodiment. [0011] FIG. 6 is a simplified, cross-sectional view of another electronic device including at least one receive antenna, in accordance with an exemplary embodiment. [0012] FIG. 7 is a simplified, cross-sectional view of yet another electronic device including at least one receive antenna, in accordance with an exemplary embodiment. [0013] FIG. 8 is a cross-sectional view of an electronic device including at least one receive antenna, according to an exemplary embodiment. [0014] FIG. 9 is a cross-sectional view of another electronic device including at least one receive antenna, in accordance with an exemplary embodiment. [0015] FIG. 10 is a simplified, planar view of an electronic device including at least one receive antenna, according to an exemplary embodiment. [0016] FIG. 11 is a simplified, planar view of another electronic device including at least one receive antenna, according to an exemplary embodiment. [0017] FIG. 12 depicts an electronic device including at least one receive antenna, in accordance with an exemplary embodiment.
[0018] FIG. 13 is another illustration depicting the electronic device of FIG. 12.
[0019] FIG. 14 illustrates an electronic device having a loop conductor of an integrated receive antenna spaced from a conductive component, according to an exemplary embodiment. [0020] FIG. 15 illustrates a flowchart of a method of integrating a wireless receive antenna into an electronic device, in accordance with an exemplary embodiment.
[0021] FIG. 16 illustrates a flowchart of a method of charging an electronic device, in accordance with an exemplary embodiment. [0022] FIGS. 17A and 17B depict a single-loop conductor receive antenna, in accordance with an exemplary embodiment. [0023] FIGS. 18A and 18B depict a multi-loop conductor receive antenna, according to an exemplary embodiment.
DETAILED DESCRIPTION
[0024] The word "exemplary" is used herein to mean "serving as an example, instance, or illustration." Any embodiment described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments.
[0025] The detailed description set forth below in connection with the appended drawings is intended as a description of exemplary embodiments and is not intended to represent the only embodiments in which the present invention can be practiced. The term "exemplary" used throughout this description means "serving as an example, instance, or illustration," and should not necessarily be construed as preferred or advantageous over other exemplary embodiments. The detailed description includes specific details for the purpose of providing a thorough understanding of the exemplary embodiments of the invention. It will be apparent to those skilled in the art that the exemplary embodiments of the invention may be practiced without these specific details. In some instances, well- known structures and devices are shown in block diagram form in order to avoid obscuring the novelty of the exemplary embodiments presented herein.
[0026] The term "wireless power" is used herein to mean any form of energy associated with electric fields, magnetic fields, electromagnetic fields, or otherwise that is transmitted from a transmitter to a receiver without the use of physical electromagnetic conductors. Power conversion in a system is described herein to wirelessly charge devices including, for example, mobile phones, cordless phones, iPod, MP3 players, headsets, etc. Generally, one underlying principle of wireless energy transfer includes magnetic coupled resonance (i.e., resonant induction) using frequencies, for example, below 30 MHz. However, various frequencies may be employed including frequencies where license-exempt operation at relatively high radiation levels is permitted, for example, at either below 135 kHz (LF) or at 13.56 MHz (HF). At these frequencies normally used by Radio Frequency Identification (RFID) systems, systems must comply with interference and safety standards such as EN 300330 in Europe or FCC Part 15 norm
in the United States. By way of illustration and not limitation, the abbreviations LF and HF are used herein where "LF" refers to/0=135 kHz and "HF" to refers to/0=13.56 MHz.
[0027] FIG. 1 illustrates wireless power transmission system 100, in accordance with various exemplary embodiments. Input power 102 is provided to a transmitter 104 for generating a magnetic field 106 for providing energy transfer. A receiver 108 couples to the magnetic field 106 and generates an output power 110 for storing or consumption by a device (not shown) coupled to the output power 110. Both the transmitter 104 and the receiver 108 are separated by a distance 112. In one exemplary embodiment, transmitter 104 and receiver 108 are configured according to a mutual resonant relationship and when the resonant frequency of receiver 108 and the resonant frequency of transmitter 104 are matched, transmission losses between the transmitter 104 and the receiver 108 are minimal when the receiver 108 is located in the "near-field" of the magnetic field 106.
[0028] Transmitter 104 further includes a transmit antenna 114 for providing a means for energy transmission and receiver 108 further includes a receive antenna 118 for providing a means for energy reception or coupling. The transmit and receive antennas are sized according to applications and devices to be associated therewith. As stated, an efficient energy transfer occurs by coupling a large portion of the energy in the near-field of the transmitting antenna to a receiving antenna rather than propagating most of the energy in an electromagnetic wave to the far-field. In this near-field, a coupling may be established between the transmit antenna 114 and the receive antenna 118. The area around the antennas 114 and 118 where this near-field coupling may occur is referred to herein as a coupling-mode region.
[0029] FIG. 2 shows a simplified schematic diagram of a wireless power transmission system. The transmitter 104, driven by input power 102, includes an oscillator 122, a power amplifier 124 and a filter and matching circuit 126. The oscillator is configured to generate a desired frequency, which may be adjusted in response to adjustment signal 123. The oscillator signal may be amplified by the power amplifier 124 with an amplification amount responsive to control signal 125. The filter and matching circuit 126 may be included to filter out harmonics or other unwanted frequencies and match the impedance of the transmitter 104 to the transmit antenna 114.
[0030] The receiver 108 may include a matching circuit 132 and a rectifier and switching circuit 134 to generate a DC power output to charge a battery 136 as shown in FIG. 2 or power a device coupled to the receiver (not shown). The matching circuit 132 may be included to match the impedance of the receiver 108 to the receive antenna 118.
[0031] As illustrated in FIG. 3, antennas used in exemplary embodiments may be configured as a "loop" antenna 150, which may also be referred to herein as a "magnetic," "resonant" or a "magnetic resonant" antenna. Loop antennas may be configured to include an air core or a physical core such as a ferrite core. Furthermore, an air core loop antenna allows the placement of other components within the core area. In addition, an air core loop may more readily enable placement of the receive antenna 118 (FIG. 2) within a plane of the transmit antenna 114 (FIG. 2) where the coupled-mode region of the transmit antenna 114 (FIG. 2) may be more effective.
[0032] As stated, efficient transfer of energy between the transmitter 104 and receiver
108 occurs during matched or nearly matched resonance between the transmitter 104 and the receiver 108. However, even when resonance between the transmitter 104 and receiver 108 are not matched, energy may be transferred at a lower efficiency. Transfer of energy occurs by coupling energy from the near- field of the transmitting antenna to the receiving antenna residing in the neighborhood where this near-field is established rather than propagating the energy from the transmitting antenna into free space.
[0033] The resonant frequency of the loop antennas is based on the inductance and capacitance. Inductance in a loop antenna is generally the inductance created by the loop, whereas, capacitance is generally added to the loop antenna's inductance to create a resonant structure at a desired resonant frequency. As a non-limiting example, capacitor 152 and capacitor 154 may be added to the antenna to create a resonant circuit that generates a sinusoidal or quasi-sinusoidal signal 156. Accordingly, for larger diameter loop antennas, the size of capacitance needed to induce resonance decreases as the diameter or inductance of the loop increases. Furthermore, as the diameter of the loop antenna increases, the efficient energy transfer area of the near-field increases for "vicinity" coupled devices. Of course, other resonant circuits are possible. As another non-limiting example, a capacitor may be placed in parallel between the two terminals of the loop antenna. In addition, those of ordinary skill in the art will recognize that for transmit antennas the resonant signal 156 may be an input to the loop antenna 150.
[0034] Exemplary embodiments of the invention include coupling power between two antennas that are in the near-fields of each other. As stated, the near-field is an area around the antenna in which electromagnetic fields exist but may not propagate or radiate away from the antenna. They are typically confined to a volume that is near the physical volume of the antenna. In the exemplary embodiments of the invention, antennas such as single and multi-turn loop antennas are used for both transmit (Tx) and receive (Rx)
antenna systems since most of the environment possibly surrounding the antennas is dielectric and thus has less influence on a magnetic field compared to an electric field. Furthermore, antennas dominantly configured as "electric" antennas (e.g., dipoles and monopoles) or a combination of magnetic and electric antennas is also contemplated.
[0035] The Tx antenna can be operated at a frequency that is low enough and with an antenna size that is large enough to achieve good coupling efficiency (e.g.,> 10%) to a small Rx antenna at significantly larger distances than allowed by far-field and inductive approaches mentioned earlier. If the Tx antenna is sized correctly, high coupling efficiencies (e.g., 30%) can be achieved when the Rx antenna on a host device is placed within a coupling-mode region (i.e., in the near-field or a strongly coupled regime) of the driven Tx loop antenna.
[0036] FIG. 4 is a block diagram of a receiver, in accordance with an embodiment. A receiver 300 includes receive circuitry 302 and a receive antenna 304. Receiver 300 further couples to device 350 for providing received power thereto. It should be noted that receiver 300 is illustrated as being external to device 350 but may be integrated into device 350. Generally, energy is propagated wirelessly to receive antenna 304 and then coupled through receive circuitry 302 to device 350.
[0037] Receive antenna 304 is tuned to resonate at the same frequency, or near the same frequency, as transmit antenna 204 (FIG. 10). Receive antenna 304 may be similarly dimensioned with transmit antenna 204 or may be differently sized based upon the dimensions of an associated device 350. By way of example, device 350 may be a portable electronic device having diametric or length dimension smaller that the diameter of length of transmit antenna 204. In such an example, receive antenna 304 may be implemented as a multi-turn antenna in order to reduce the capacitance value of a tuning capacitor (not shown) and increase the receive antenna's impedance. By way of example, receive antenna 304 may be placed around the substantial circumference of device 350 in order to maximize the antenna diameter and reduce the number of loop turns (i.e., windings) of the receive antenna and the inter- winding capacitance.
[0038] Receive circuitry 302 provides an impedance match to the receive antenna 304.
Receive circuitry 302 includes power conversion circuitry 306 for converting a received RF energy source into charging power for use by device 350. Power conversion circuitry 306 includes an RF-to-DC converter 308 and may also in include a DC-to-DC converter 310. RF-to-DC converter 308 rectifies the RF energy signal received at receive antenna 304 into a non-alternating power while DC-to-DC converter 310 converts the rectified RF
energy signal into an energy potential (e.g., voltage) that is compatible with device 350. Various RF-to-DC converters are contemplated including partial and full rectifiers, regulators, bridges, doublers, as well as linear and switching converters.
[0039] Receive circuitry 302 may further include switching circuitry 312 for connecting receive antenna 304 to the power conversion circuitry 306 or alternatively for disconnecting the power conversion circuitry 306. Disconnecting receive antenna 304 from power conversion circuitry 306 not only suspends charging of device 350, but also changes the "load" as "seen" by the transmitter 200 (FIG. 2) as is explained more fully below. As disclosed above, transmitter 200 includes load sensing circuit 216 which detects fluctuations in the bias current provided to transmitter power amplifier 210. Accordingly, transmitter 200 has a mechanism for determining when receivers are present in the transmitter's near-field.
[0040] Receive circuitry 302 may further include signaling detector and beacon circuitry
314 used to identify received energy fluctuations, which may correspond to informational signaling from the transmitter to the receiver. Furthermore, signaling and beacon circuitry 314 may also be used to detect the transmission of a reduced RF signal energy (i.e., a beacon signal) and to rectify the reduced RF signal energy into a nominal power for awakening either un-powered or power-depleted circuits within receive circuitry 302 in order to configure receive circuitry 302 for wireless charging.
[0041] Receive circuitry 302 further includes processor 316 for coordinating the processes of receiver 300 described herein including the control of switching circuitry 312 described herein. Cloaking of receiver 300 may also occur upon the occurrence of other events including detection of an external wired charging source (e.g., wall/USB power) providing charging power to device 350. Processor 316, in addition to controlling the cloaking of the receiver, may also monitor beacon circuitry 314 to determine a beacon state and extract messages sent from the transmitter. Processor 316 may also adjust DC- to-DC converter 310 for improved performance.
[0042] The various exemplary embodiments disclosed herein relate to one or more wireless receive antennas configured for wireless charging and further configured to be integrated within an electronic device in a manner so as to provide a clearance (i.e., a physical separation) between a loop conductor of each receive antenna and any conductive component within the electronic device. Accordingly, the clearance may provide an escape path that may enable a magnetic field to exist around the loop conductor. It is noted that an "escape path," as referenced herein, may exist within a
vacant area void of any component, may exist within an area consisting of non- conductive material (e.g., plastic), or any combination thereof. It is further noted that according to the various exemplary embodiments, wireless receive antennas, as described herein, may either be configured to be retrofit to an existing electronic device, or made as part of its initial design and manufacturing.
[0043] As an example, according to one exemplary embodiment, a wireless receive antenna may be integrated within an electronic device in a manner wherein a loop conductor of the wireless receive antenna is separated from each conductive component within the electronic device a sufficient distance so as to prevent an undamped quality factor of the associated wireless receive antenna from degrading more than a factor of about four upon integration thereof. Stated another way, an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of the wireless receive antenna upon integration into an electronic device. It is noted that degradation of a quality factor more than a factor of four may indicate that a separation distance between the antenna and at least one conductive component is inadequate.
[0044] According to another exemplary embodiment, a wireless receive antenna may be integrated within an electronic device in a manner wherein a loop conductor of the wireless receive antenna is separated from each conductive component within the electronic device a sufficient distance so as to degrade an undamped quality factor of the associated wireless receive antenna by at least a factor of two upon integration thereof. Stated another way, an undamped quality factor of a wireless receive antenna should be more than substantially two times greater than a quality factor of the wireless receive antenna upon integration into an electronic device. As a more specific, non-limiting example, a loop conductor of a wireless receive antenna may be integrated into an electronic device and separated from each conductive component within the electronic device by at least about 1 to 2 millimeters.
[0045] It is noted that the wireless receive antennas, as described herein, may comprise electrically small antennas. As will be understood by one having ordinary skill in the art, an electrically small antenna is one with a maximum geometrical dimension that is much less than the operating wavelength. An electrically small antenna may be defined as an antenna that can be fitted into a fraction of a radiansphere, which is a sphere of radius rmax defined as:
(1) w = 1/k = λ/2π = c/2πf = dmax/2;
where: k is the wavenumber, 1 is the wavelength, c is the speed of light, f is the frequency, and dmax is the diameter of the radiansphere.
[0046] FIG. 5 depicts a simplified, cross-sectional view of an electronic device 500 having at least one wireless receive antenna integrated therein, according to an exemplary embodiment. Electronic device 500 may comprise any electronic device, such as, for example only, a cellular telephone, a portable media player, a camera, a gaming device, a navigation device, a headset (e.g., a Bluetooth headset), a tool, a toy, or any combination thereof. Electronic device 500 may include a first surface 510 and a second surface 508, wherein second surface 508 may include a metal frame. Further, electronic device 500 includes a loop conductor 502 of a wireless receive antenna, which may be configured for wireless charging and may be operably coupled to a chargeable battery 504, which may include a metal housing.
[0047] As illustrated in FIG. 5, loop conductor 502 is separated from each of first surface
508 and chargeable battery 504 having a clearance 506 therebetween. The term "clearance," as used herein, may comprise a vacant space, a space comprising a non- conductive component, or any combination thereof. In the example depicted in FIG. 5, a portion of clearance 506 includes a vacant space 505 positioned between loop conductor 502 and chargeable battery 504. Further, another portion of clearance 506 includes a vacant space 511 positioned between loop conductor 502 and first surface 508. Accordingly, clearance 506 may provide an escape path for a magnetic field, which may be associated with and adjacent to loop conductor 502. Specifically, electronic device 500, as configured, may provide an escape path entirely around loop conductor 502. As mentioned above, an escape path adjacent loop conductor 502 may enable a magnetic field to exist around loop conductor 502 and, thus, the functionality of an associated wireless receive antenna may be enhanced. Furthermore, any adverse affect on a magnetic field adjacent to and associated with loop conductor 502 resulting from a conductive component (i.e., chargeable battery 504, second surface 508, or both), may be limited.
[0048] It is noted that a wireless receive antenna may be integrated into electronic device
500 in a manner wherein loop conductor 502 of the wireless receive antenna is separated from each of first surface 508 and chargeable battery 504 a sufficient distance so as to prevent an undamped quality factor of the wireless receive antenna from degrading more
than a factor of about four upon integration thereof. Stated another way, an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of the wireless receive antenna upon integration into electronic device 500. As a more specific, non-limiting example, loop conductor 502 may be integrated into electronic device 500 and separated from chargeable battery 504 by about 1 to 2 millimeters.
[0049] FIG. 6 depicts a simplified, cross-sectional view of another electronic device 600 having at least one receive antenna integrated therein, according to an exemplary embodiment. Similarly to electronic device 500 depicted in FIG. 5, electronic device 600 includes a first surface 610 and a second surface 608, wherein second surface 608 may include a metal frame. Electronic device 500 further includes a loop conductor 602 of a wireless receive antenna, which may be configured for wireless charging and may be operably coupled to a chargeable battery 604, which may include a metal housing. Furthermore, electronic device 600 includes a component 609, which is adjacent a portion of loop conductor 602 and consists of non-conductive material.
[0050] As illustrated in FIG. 6, loop conductor 602 is spaced from chargeable battery 604 with a clearance 606 positioned therebetween. Specifically, a portion of clearance 606 includes a vacant space 605 positioned between loop conductor 602 and chargeable battery 604. Therefore, any adverse affect on a magnetic field adjacent to and associated with loop conductor 602 caused by chargeable battery 604 may be limited.
[0051] Moreover, it is noted that another portion of clearance 606 may comprise a portion of component 609. As mentioned above, because a magnetic field may exist in and around non-conductive parts, component 609 may not adversely affect a magnetic field associated with and adjacent to loop conductor 602. Accordingly, clearance 606 may provide an escape path for a magnetic field, which may be associated with and adjacent to loop conductor. Specifically, electronic device 600, as configured, may provide an escape path entirely around loop conductor 602. As mentioned above, an escape path adjacent loop conductor 602 may enable a magnetic field to exist around loop conductor 602 and, thus, the functionality of an associated wireless receive antenna may be enhanced.
[0052] It is further noted that a wireless receive antenna may be integrated into electronic device 600 in a manner wherein loop conductor 602 of the wireless receive antenna is separated from chargeable battery 604 a sufficient distance so as to prevent an undamped quality factor of the wireless receive antenna from degrading more than a factor of about
four upon integration thereof. Stated another way, an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of the wireless receive antenna upon integration into electronic device 600. As a more specific, non-limiting example, loop conductor 602 may be integrated into electronic device 600 and separated from chargeable battery 604 by about 1 to 2 millimeters.
[0053] FIG. 7 depicts a simplified, cross-sectional view of yet another example of an electronic device 700 having at least one receive antenna integrated therein, according to an exemplary embodiment. Similarly to electronic devices 500 and 600 described above, electronic device 700 includes a first surface 710 and a second surface 708, which may include a metal frame. Additionally, electronic device 700 may further include a loop conductor 702 of a wireless receive antenna that is configured for wireless charging and operably coupled to a chargeable battery 704, which may include a metal housing. Furthermore, electronic device 700 includes a component 709, which is adjacent loop conductor 702 and consists of non-conductive materials.
[0054] As depicted in FIG. 7, loop conductor 702 is remote from each of chargeable battery 704 and second surface 708 with a clearance 706 positioned therebetween. Specifically, a portion of clearance 706 includes a vacant space 705 positioned between loop conductor 702 and chargeable battery 704. Further, another portion of clearance 706 includes a vacant space 711 positioned between loop conductor 702 and second surface 708. As a result, any adverse affect on a magnetic field adjacent to and associated with loop conductor 702 as a result of chargeable battery 704, second surface 708, or both, may be limited.
[0055] Moreover, it is noted that another portion of clearance 706 may comprise a portion of component 709. As mentioned above, because a magnetic field may exist in and around non-conductive parts, a magnetic field adjacent to and associated with loop conductor 702 may not be adversely affected by component 709. Therefore, clearance 706 may provide an escape path for a magnetic field, which may be associated with and adjacent to loop conductor 702. As mentioned above, an escape path adjacent loop conductor 702 may enable a magnetic field to exist around loop conductor 702 and, thus, the functionality of an associated wireless receive antenna may be enhanced. Specifically, electronic device 700, as configured, may provide an escape path entirely around loop conductor 702.
[0056] It is further noted that a wireless receive antenna may be integrated into electronic device 700 in a manner wherein loop conductor 702 of the wireless receive antenna is separated from each of second surface 708 and chargeable battery 704 a sufficient distance so as to prevent an undamped quality factor of the wireless receive antenna from degrading more than a factor of about four upon integration thereof. Stated another way, an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of the wireless receive antenna upon integration into electronic device 700. As a more specific, non-limiting example, loop conductor 702 may be integrated into electronic device 700 and separated from chargeable battery 704 by about 1 to 2 millimeters.
[0057] FIG. 8 illustrates a cross-sectional view of an electronic device 570 having at least one receive antenna integrated therein, in accordance with an exemplary embodiment. Electronic device 570 includes a display device 574, which may comprise a metal frame surrounding a display area and a keyboard (not shown). Electronic device 570 also includes an electronics module 576 adjacent a printed circuit board 578, each of which may include conductive material. In addition, electronic device 570 includes a battery 580 having a metal housing and an RF electronics and antenna module 582 that may include various conductive components. Furthermore, electronic device 570 includes a camera 584 having a metal housing.
[0058] As illustrated in FIG. 8, a loop conductor 572 of a wireless receive antenna, which may be configured for wireless charging, may be integrated within electronic device 570 in a manner so as to include a clearance 586 positioned between loop conductor 572 and each conductive component within electronic device 570. Accordingly, clearance 586 may provide an escape path for a magnetic field, which may exist adjacent loop conductor 572. As mentioned above, an escape path adjacent loop conductor 572 may enable a magnetic field to exist around loop conductor 572, and, thus may enhance the functionality of an associated wireless receive antenna. Specifically, electronic device 570, as configured, may provide an escape path entirely around loop conductor 572. Further, any adverse affect on a magnetic field adjacent to and associated with loop conductor 572 caused by one or more conductive components may be limited.
[0059] It is further noted that a wireless receive antenna may be integrated into electronic device 570 in a manner wherein loop conductor 572 of the wireless receive antenna is separated from each conductive component within electronic device 570 a sufficient distance so as to prevent an undamped quality factor of the wireless receive antenna from
degrading more than a factor of about four upon integration thereof. Stated another way, an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of the wireless receive antenna upon integration into electronic device 570. As a more specific, non-limiting example, loop conductor 572 may be integrated into electronic device 570 and separated from each conductive component by at least about 1 to 2 millimeters.
[0060] FIG. 9 illustrates a cross-section view of another electronic device 670 having at least one receive antenna integrated therein, in accordance with an exemplary embodiment. Electronic device 670 includes a display device 674, which may comprise a metal frame surrounding a display area and a keyboard (not shown). Electronic device 670 also includes an electronics module 676 adjacent a printed circuit board 678, each of which may include conductive material. In addition, electronic device 670 includes a battery 680 having a metal housing and an RF electronics and antenna module 682 that may include various conductive components. Furthermore, electronic device 670 includes a camera 684 having a metal housing. Additionally, electronic device 670 includes a component 688, which is adjacent wireless receive antenna 672 and consisting of non-conductive material.
[0061] As depicted in FIG. 9, a loop conductor 672 of a receive antenna, which is configured for wireless charging, may be integrated within electronic device 670 in a manner so as to include a clearance 686 positioned between loop conductor 672 and each conductive component within electronic device 670. Stated another way, loop conductor 672 is spaced from each conductive component within electronic device 670 by a portion of clearance 686. As a result, any adverse affect on a magnetic field adjacent to and associated with loop conductor 672 caused by one or more conductive components within electronic device 670 may be limited.
[0062] Moreover, it is noted that another portion of clearance 686 may comprise a portion of component 688. As described above, a magnetic field may exist in and around non-conductive components, and, therefore, component 688 may not adversely affect a magnetic field adjacent to loop conductor 672. Accordingly, clearance 686 may provide an escape path for a magnetic field, which may be associated with and adjacent to loop conductor 672. Specifically, electronic device 670, as configured, may provide an escape path entirely around loop conductor 672. As mentioned above, an escape path adjacent loop conductor 672 may enable a magnetic field to exist around loop conductor 672 and, thus, may enhance the functionality of an associated wireless receive antenna.
[0063] It is further noted that a wireless receive antenna may be integrated into electronic device 670 in a manner wherein loop conductor 672 of the wireless receive antenna is separated from each conductive component within electronic device 670 a sufficient distance so as to prevent an undamped quality factor of the wireless receive antenna from degrading more than a factor of about four upon integration thereof. Stated another way, an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of the wireless receive antenna upon integration into electronic device 670. As a more specific, non-limiting example, loop conductor 672 may be integrated into electronic device 670 and separated from each conductive component by about at least aboutl to 2 millimeters.
[0064] FIG. 10 illustrates a simplified, planar view of an electronic device 800 having at least one receive antenna integrated therein and configured for wireless charging, according to an exemplary embodiment. Electronic device 800 may include an external surface 803, which may comprise a metal frame. Additionally, electronic device 800 may further include a loop conductor 802 of a wireless receive antenna that may be operably coupled to a chargeable battery 804, which may include a metal housing. As illustrated, loop conductor 802 is integrated within electronic device 800 and separated from each of chargeable battery 804 and external surface 803 by a clearance 806. As an example, loop conductor 802 may be integrated into electronic device 800 and separated from each of external surface 803 and chargeable battery 804 a sufficient distance so as to prevent an undamped quality factor of an associated wireless receive antenna from degrading more than a factor of about four upon integration. Stated another way, an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of the wireless receive antenna upon integration into electronic device 800. As a more specific, non-limiting example, loop conductor 802 may be integrated into electronic device 800 and separated from each of chargeable battery 804 and external surface 803 by about 1 to 2 millimeters or more.
[0065] Accordingly, clearance 806 may provide an escape path for a magnetic field that may be adjacent to and associated with loop conductor 802. Specifically, electronic device 800, as configured, may provide an escape path entirely around loop conductor 802. As mentioned above, an escape path adjacent loop conductor 802 may enable a magnetic field to exist around loop conductor 802 and, thus, may enhance the functionality of an associated wireless receive antenna. Moreover, any adverse affect on
a magnetic field adjacent to and associated with loop conductor 802 caused by external surface 803, chargeable battery 804, or both, may be limited.
[0066] FIG. 1 1 depicts a simplified, planar view of yet another electronic device 900 having at least one wireless receive antenna integrated therein and configured for wireless charging, according to an exemplary embodiment. Similarly to electronic device 800 described above, electronic device 900 may include an external surface 903, which may comprise a metal frame. Additionally, electronic device 900 may further include a loop conductor 902 of a wireless receive antenna that may be operably coupled to a chargeable battery 904, which may include a metal housing. Furthermore, electronic device 900 includes a component 909, which is adjacent loop conductor 902 and consists of non- conductive material.
[0067] As illustrated in FIG. 1 1, loop conductor 902 may be integrated within electronic device 900 and separated from external surface 903 by a portion of a clearance 906. Accordingly, any adverse affect on a magnetic field adjacent to and associated with loop conductor 902 caused by external surface 903 may be limited. As an example, loop conductor 902 may be integrated into electronic device 900 and separated from external surface 903 a sufficient distance so as to prevent an undamped quality factor of an associated wireless receive antenna from degrading more than a factor of about four upon integration thereof. Stated another way, an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of the wireless receive antenna upon integration into electronic device 900. As a more specific, non-limiting example, loop conductor 902 may be integrated into electronic device 900 and separated from external surface 903 by about 1 to 2 millimeters.
[0068] Furthermore, it is noted that another portion of clearance 906 may comprise a portion of component 909. Accordingly, electronic device 900, as configured, may provide an escape path entirely around loop conductor 902. As mentioned above, an escape path adjacent loop conductor 902 may enable a magnetic field to exist around loop conductor 902 and, thus, may enhance the functionality of an associated wireless receive antenna.
[0069] FIG. 12 depicts a view of an electronic device 550 having at least one receive antenna integrated therein, in accordance with an exemplary embodiment. Electronic device 550 includes a display device 554, which may comprise a metal frame surrounding a display area and a keyboard (not shown). Electronic device 550 also includes an electronics module 556 adjacent a printed circuit board 558, each of which may include
conductive material. In addition, electronic device 550 includes a battery 560 having a metal housing and an RF electronics and antenna module 562 that may include various conductive components. Furthermore, electronic device 550 includes a camera 564 having a metal housing.
[0070] FIG. 13 illustrates another view of electronic device 550. As illustrated in each of
FIG. 12 and FIG. 13, a loop conductor 552 of a wireless receive antenna is physically spaced (i.e. a clearance exists) from each conductive component within electronic device 550. Specifically, a clearance exists between loop conductor 552 and each of camera 564, battery 560, and RF electronics and antenna module 562. Accordingly, this spacing may provide an escape path (illustrated by arrows 564) for a magnetic field existing adjacent loop conductor 552. It is noted that, electronic device 550, as configured, may provide an escape path entirely around loop conductor 552. As mentioned above, an escape path adjacent loop conductor 552 may enable a magnetic field to exist around loop conductor 552 and, thus, the functionality of an associated wireless receive antenna may be enhanced.
[0071] As an example, a wireless receive antenna may be integrated into electronic device 550 in a manner wherein loop conductor 552 of the wireless receive antenna is separated from each conductive component within electronic device 550 a sufficient distance so as to prevent an undamped quality factor of the wireless receive antenna from degrading more than a factor of about four upon integration thereof. Stated another way, an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of the wireless receive antenna upon integration into electronic device 500. As a more specific, non-limiting example, loop conductor 552 may be integrated into electronic device 550 and separated from each conductive component by about 1 to 2 millimeters or more.
[0072] FIG. 14 is a simplified illustration of an electronic device 780 including a loop conductor 782 of a wireless receive antenna and a conductive component 784. For example, conductive component 784 may comprise a rechargeable battery having a metal housing. As illustrated in FIG. 14, loop conductor 782 is separated from conductive component 784 by a distance L having a clearance 786 therebetween. As a non-limiting example, distance L may have a range of about 1 to 2 millimeters. Furthermore, clearance 786 may comprise, for example only, a vacant space, a non-conductive component, or any combination thereof. Accordingly, clearance 786 may provide an escape path (depicted by arrows 788) for a magnetic field associated with loop conductor
782. As a result, any adverse affect on a magnetic field adjacent to and associated with loop conductor 782 caused by conductive component 784 may be limited.
[0073] It is noted that, a wireless receive antenna may be integrated into electronic device
780 in a manner wherein loop conductor 782 of the wireless receive antenna is separated from conductive component 784 a sufficient distance so as to prevent an undamped quality factor of the wireless receive antenna from degrading more than a factor of about four upon integration thereof. Stated another way, an undamped quality factor of a wireless receive antenna should not be more than substantially four times greater than a quality factor of wireless receive antenna upon integration into electronic device 780.
[0074] FIG. 15 illustrates a flowchart of a method, in accordance with an exemplary embodiment. Method 700 for is supported by the various structures described herein. Method 700 includes a step 702 of integrating at least one wireless receive antenna into an electronic device. Method 700 further includes a step 704 of spacing a loop conductor of the at least one antenna from each conductive component within the electronic device.
[0075] FIG. 15 illustrates a flowchart of another method, in accordance with an exemplary embodiment. Method 705 for is supported by the various structures described herein. Method 705 includes a step 706 of receiving wireless power in at least one receive antenna integrated within an electronic device and having a loop conductor spaced from each conductive component within the electronic device. Method 705 further includes a step 708 of transferring power from the at least one receive antenna to at least one chargeable battery coupled thereto.
FIGS. 17A and 17B illustrate a single-loop conductor 650 of a wireless receive antenna configured for integration within an electronic device, according to an exemplary embodiment. Single-loop conductor 650 may comprise a wire or a ribbon 652, such as, for example only, a copper wire or a copper ribbon. According to one exemplary embodiment, ribbon 652 may comprise a copper ribbon having a silver plating. Further, as illustrated in FIG. 17B, single-loop conductor 650 includes a capacitor 654 and terminals 656. With reference to FIG. 17A, as non-limiting examples, single-loop conductor 650 may have a width A of about 44.0 millimeters, a height B of about 89.0 millimeters, and ribbon 652 may have a width C of about 3.0 millimeters. Further, single-loop conductor 650 may having a spacing F between the ends of ribbon 652, which may be, for example only, about 1.0 millimeter. Spacing F may be configured for placement of a capacitor, such as capacitor 654 as illustrated in FIG. 17 A.
FIG. 18A illustrates a multi-loop conductor 660 of a wireless receive antenna configured for integration within an electronic device, in accordance with an exemplary embodiment. As illustrated, multi-loop conductor 660 may comprise a plurality of wires or ribbons 662, each of which may comprise, for example only, copper. Furthermore, as non-limiting examples, multi-loop conductor 660 may have a width D of about 47 millimeters and a height E of about 89 millimeters. Additionally, as illustrated in FIG. 18B, each wire 662 may have a width W, wires 662 may be separated by a distance X, and adjacent wires 662 may have a center-to-center spacing Z. According to "rules of thumb," distance X may be substantially equal to width W and center-to-center spacing Z may be substantially twice the value of distance X. For example only, width W and distance X may each be about 0.8 millimeters. Furthermore, in this example, center-to- center spacing Z may be about 1.6 millimeters.
[0076] Those of skill in the art would understand that control information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
[0077] Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, and controlled by computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented and controlled as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the exemplary embodiments of the invention.
[0078] The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be controlled with a general purpose processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any
combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
[0079] The control steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
[0080] In one or more exemplary embodiments, the control functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and
microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. The previous description of the disclosed exemplary embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these exemplary embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims
1. An electronic device, comprising: at least one receive antenna integrated within an electronic device and configured to receive wireless power from a wireless transmit antenna; wherein a loop conductor of the at least one receive antenna is configured to be spaced from each conductive component within the electronic device having a clearance therebetween adapted to enable formation of a magnetic field around the loop conductor.
2. The electronic device of claim 1, wherein the loop conductor of the at least one receive antenna comprises one of a single-loop conductor and a multi-loop conductor.
3. The electronic device of claim 1, wherein the loop conductor of the at least one receive antenna is configured to be spaced from a chargeable battery within the electronic device.
4. The electronic device of claim 1, wherein the loop conductor of the at least one receive antenna is adjacent a non-conductive component.
5. The electronic device of claim 1, wherein the clearance comprises a vacant space, a non-conductive component, or any combination thereof.
6. The electronic device of claim 1, wherein the loop conductor of the at least one receive antenna is spaced from each conductive component a sufficient distance so as to prevent a quality factor of an associated wireless receive antenna from degrading more than a factor of about four upon integration of the wireless receive antenna into the electronic device.
7. The electronic device of claim 1, wherein the loop conductor of the at least one receive antenna is spaced from each conductive component a sufficient distance so as to degrade a quality factor of an associated wireless receive antenna by at least a factor of about two upon integration of the wireless receive antenna into the electronic device.
8. The electronic device of claim 1, wherein the loop conductor of the at least one receive antenna is spaced from each conductive component a sufficient distance so as to degrade a quality factor of an associated wireless receive antenna by at least a factor of about two but not more than a factor of about four upon integration of the wireless receive antenna into the electronic device.
9. The electronic device of claim 1, wherein a loop conductor of the at least one receive antenna is spaced from each conductive component by at least about 1 to 2 millimeters.
10. A device, comprising: at least one wireless receive antenna configured to receive wireless power from a wireless transmit antenna; wherein a loop conductor of the at least one receive antenna is configured to be positioned within a device to enable a magnetic field associated with the loop conductor to exist entirely around the loop conductor.
11. The device of claim 10, wherein the loop conductor is configured to be positioned proximate a non-conductive component.
12. The device of claim 11, wherein the magnetic field exists within the non- conductive component.
13. The device of claim 10, wherein the loop conductor is configured to be separated from each conductive component within the device having at least a portion of a clearance therebetween.
14. A method of integrating a receive antenna within an electronic device, comprising: integrating at least one wireless receive antenna into an electronic device; and enabling for formation of a magnetic field around a loop conductor of the at least one antenna.
15. The method of claim 14, wherein enabling for a magnetic field to exist around a loop conductor of the at least one antenna comprises spacing the loop conductor from each conductive component within the electronic device.
16. The method of claim 15, wherein spacing a loop conductor comprises spacing the loop conductor from each conductive component within the electronic device a sufficient distance so as to prevent a quality factor of an associated wireless receive antenna from degrading more than a factor of about four upon integration of the associated wireless receive antenna into the electronic device.
17. The method of claim 14, further comprising positioning a non-conductive component adjacent the loop conductor.
18. The method of claim 14, wherein spacing a loop conductor of the at least one antenna from each conductive component within the electronic device comprises spacing the loop conductor from a chargeable battery having a distance between about 1 to 2 millimeters therebetween.
19. The method of claim 14, wherein enabling for formation of a magnetic field adjacent the loop conductor comprises enabling for formation of a magnetic field entirely around the loop conductor.
20. A method of charging an electronic device, comprising: receiving wireless power in at least one receive antenna integrated within an electronic device and having a loop conductor separated from each conductive component within the electronic device; and transferring power from the at least one receive antenna to at least one chargeable battery coupled thereto.
21. The method of claim 20, wherein receiving wireless power in at least one receive antenna having a loop conductor comprises receiving wireless power in at least one receive antenna having a loop conductor separated from each conductive element so as to prevent a quality factor of an associated wireless receive antenna from degrading more than a factor of about four upon integration of the associated wireless receive antenna into the electronic device.
22. A device that facilitates charging a chargeable device, the device comprising: means for receiving wireless power in at least one receive antenna integrated within an electronic device and having a loop conductor separated from each conductive component within the electronic device; and means for transferring power from the at least one receive antenna to at least one chargeable battery coupled thereto.
23. An system, comprising: at least one wireless receive antenna configured to receive wireless power from a wireless transmit antenna; wherein the at least one wireless receive antenna is further configured for integration within an electronic device to enable a magnetic field to exist around a loop conductor of the at least one wireless receive antenna.
24. The system of claim 23, wherein the loop conductor of at least one wireless receive antenna is positioned proximate at least one non-conductive component of the electronic device.
25. The system of claim 23, wherein the loop conductor of the at least one wireless receive antenna is spaced about 1 to 2 millimeters from a conductive element closest thereto.
26. The system of claim 23, wherein the at least one wireless receive antenna is further configured for integration within the electronic device to enable for formation of a magnetic field entirely around the loop conductor.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9526408P | 2008-09-08 | 2008-09-08 | |
US12/554,478 US8581542B2 (en) | 2008-09-08 | 2009-09-04 | Receive antenna arrangement for wireless power |
PCT/US2009/056242 WO2010028375A1 (en) | 2008-09-08 | 2009-09-08 | Receive antenna arrangement for wireless power |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2342778A1 true EP2342778A1 (en) | 2011-07-13 |
Family
ID=41210494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09792322A Withdrawn EP2342778A1 (en) | 2008-09-08 | 2009-09-08 | Receive antenna arrangement for wireless power |
Country Status (6)
Country | Link |
---|---|
US (1) | US8581542B2 (en) |
EP (1) | EP2342778A1 (en) |
JP (2) | JP2012502613A (en) |
KR (1) | KR101290381B1 (en) |
CN (1) | CN102292868B (en) |
WO (1) | WO2010028375A1 (en) |
Families Citing this family (314)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7825543B2 (en) | 2005-07-12 | 2010-11-02 | Massachusetts Institute Of Technology | Wireless energy transfer |
US8115448B2 (en) | 2007-06-01 | 2012-02-14 | Michael Sasha John | Systems and methods for wireless power |
US9421388B2 (en) | 2007-06-01 | 2016-08-23 | Witricity Corporation | Power generation for implantable devices |
KR101478269B1 (en) | 2008-05-14 | 2014-12-31 | 메사추세츠 인스티튜트 오브 테크놀로지 | Wireless energy transfer, including interference enhancement |
US9601261B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Wireless energy transfer using repeater resonators |
US9396867B2 (en) | 2008-09-27 | 2016-07-19 | Witricity Corporation | Integrated resonator-shield structures |
US8461720B2 (en) | 2008-09-27 | 2013-06-11 | Witricity Corporation | Wireless energy transfer using conducting surfaces to shape fields and reduce loss |
US8772973B2 (en) | 2008-09-27 | 2014-07-08 | Witricity Corporation | Integrated resonator-shield structures |
US9601266B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Multiple connected resonators with a single electronic circuit |
US8410636B2 (en) | 2008-09-27 | 2013-04-02 | Witricity Corporation | Low AC resistance conductor designs |
US8569914B2 (en) | 2008-09-27 | 2013-10-29 | Witricity Corporation | Wireless energy transfer using object positioning for improved k |
US8461722B2 (en) | 2008-09-27 | 2013-06-11 | Witricity Corporation | Wireless energy transfer using conducting surfaces to shape field and improve K |
US8482158B2 (en) | 2008-09-27 | 2013-07-09 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
US9035499B2 (en) | 2008-09-27 | 2015-05-19 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
US8692412B2 (en) | 2008-09-27 | 2014-04-08 | Witricity Corporation | Temperature compensation in a wireless transfer system |
US9577436B2 (en) | 2008-09-27 | 2017-02-21 | Witricity Corporation | Wireless energy transfer for implantable devices |
US8587155B2 (en) | 2008-09-27 | 2013-11-19 | Witricity Corporation | Wireless energy transfer using repeater resonators |
US8552592B2 (en) | 2008-09-27 | 2013-10-08 | Witricity Corporation | Wireless energy transfer with feedback control for lighting applications |
US8629578B2 (en) | 2008-09-27 | 2014-01-14 | Witricity Corporation | Wireless energy transfer systems |
US8476788B2 (en) | 2008-09-27 | 2013-07-02 | Witricity Corporation | Wireless energy transfer with high-Q resonators using field shaping to improve K |
US9544683B2 (en) | 2008-09-27 | 2017-01-10 | Witricity Corporation | Wirelessly powered audio devices |
US8963488B2 (en) | 2008-09-27 | 2015-02-24 | Witricity Corporation | Position insensitive wireless charging |
US8304935B2 (en) | 2008-09-27 | 2012-11-06 | Witricity Corporation | Wireless energy transfer using field shaping to reduce loss |
US9106203B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Secure wireless energy transfer in medical applications |
US8461721B2 (en) | 2008-09-27 | 2013-06-11 | Witricity Corporation | Wireless energy transfer using object positioning for low loss |
US8598743B2 (en) | 2008-09-27 | 2013-12-03 | Witricity Corporation | Resonator arrays for wireless energy transfer |
US8907531B2 (en) | 2008-09-27 | 2014-12-09 | Witricity Corporation | Wireless energy transfer with variable size resonators for medical applications |
US8937408B2 (en) | 2008-09-27 | 2015-01-20 | Witricity Corporation | Wireless energy transfer for medical applications |
US8497601B2 (en) | 2008-09-27 | 2013-07-30 | Witricity Corporation | Wireless energy transfer converters |
US9184595B2 (en) | 2008-09-27 | 2015-11-10 | Witricity Corporation | Wireless energy transfer in lossy environments |
US8946938B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Safety systems for wireless energy transfer in vehicle applications |
JP2012504387A (en) | 2008-09-27 | 2012-02-16 | ウィトリシティ コーポレーション | Wireless energy transfer system |
US9744858B2 (en) | 2008-09-27 | 2017-08-29 | Witricity Corporation | System for wireless energy distribution in a vehicle |
US9065423B2 (en) | 2008-09-27 | 2015-06-23 | Witricity Corporation | Wireless energy distribution system |
US8587153B2 (en) | 2008-09-27 | 2013-11-19 | Witricity Corporation | Wireless energy transfer using high Q resonators for lighting applications |
US9246336B2 (en) | 2008-09-27 | 2016-01-26 | Witricity Corporation | Resonator optimizations for wireless energy transfer |
US9105959B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Resonator enclosure |
US8947186B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Wireless energy transfer resonator thermal management |
US8324759B2 (en) | 2008-09-27 | 2012-12-04 | Witricity Corporation | Wireless energy transfer using magnetic materials to shape field and reduce loss |
US8922066B2 (en) | 2008-09-27 | 2014-12-30 | Witricity Corporation | Wireless energy transfer with multi resonator arrays for vehicle applications |
US8441154B2 (en) | 2008-09-27 | 2013-05-14 | Witricity Corporation | Multi-resonator wireless energy transfer for exterior lighting |
US8901779B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with resonator arrays for medical applications |
US8912687B2 (en) | 2008-09-27 | 2014-12-16 | Witricity Corporation | Secure wireless energy transfer for vehicle applications |
US8928276B2 (en) | 2008-09-27 | 2015-01-06 | Witricity Corporation | Integrated repeaters for cell phone applications |
US9515494B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless power system including impedance matching network |
US8723366B2 (en) | 2008-09-27 | 2014-05-13 | Witricity Corporation | Wireless energy transfer resonator enclosures |
US9160203B2 (en) | 2008-09-27 | 2015-10-13 | Witricity Corporation | Wireless powered television |
US8400017B2 (en) | 2008-09-27 | 2013-03-19 | Witricity Corporation | Wireless energy transfer for computer peripheral applications |
US9093853B2 (en) | 2008-09-27 | 2015-07-28 | Witricity Corporation | Flexible resonator attachment |
US9601270B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Low AC resistance conductor designs |
US8643326B2 (en) | 2008-09-27 | 2014-02-04 | Witricity Corporation | Tunable wireless energy transfer systems |
US8487480B1 (en) | 2008-09-27 | 2013-07-16 | Witricity Corporation | Wireless energy transfer resonator kit |
US8933594B2 (en) | 2008-09-27 | 2015-01-13 | Witricity Corporation | Wireless energy transfer for vehicles |
US8901778B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with variable size resonators for implanted medical devices |
US9318922B2 (en) | 2008-09-27 | 2016-04-19 | Witricity Corporation | Mechanically removable wireless power vehicle seat assembly |
US8471410B2 (en) | 2008-09-27 | 2013-06-25 | Witricity Corporation | Wireless energy transfer over distance using field shaping to improve the coupling factor |
US8686598B2 (en) | 2008-09-27 | 2014-04-01 | Witricity Corporation | Wireless energy transfer for supplying power and heat to a device |
US8692410B2 (en) | 2008-09-27 | 2014-04-08 | Witricity Corporation | Wireless energy transfer with frequency hopping |
US8466583B2 (en) | 2008-09-27 | 2013-06-18 | Witricity Corporation | Tunable wireless energy transfer for outdoor lighting applications |
US8669676B2 (en) | 2008-09-27 | 2014-03-11 | Witricity Corporation | Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor |
US8957549B2 (en) | 2008-09-27 | 2015-02-17 | Witricity Corporation | Tunable wireless energy transfer for in-vehicle applications |
WO2010039967A1 (en) | 2008-10-01 | 2010-04-08 | Massachusetts Institute Of Technology | Efficient near-field wireless energy transfer using adiabatic system variations |
EP2396796A4 (en) * | 2009-02-13 | 2017-03-22 | Witricity Corporation | Wireless energy transfer in lossy environments |
WO2018063919A1 (en) * | 2016-09-30 | 2018-04-05 | View, Inc. | Wirelessly powered and powering electrochromic windows |
US20130271813A1 (en) | 2012-04-17 | 2013-10-17 | View, Inc. | Controller for optically-switchable windows |
US11630366B2 (en) | 2009-12-22 | 2023-04-18 | View, Inc. | Window antennas for emitting radio frequency signals |
US11732527B2 (en) | 2009-12-22 | 2023-08-22 | View, Inc. | Wirelessly powered and powering electrochromic windows |
JP5465575B2 (en) * | 2010-03-31 | 2014-04-09 | 長野日本無線株式会社 | Non-contact power transmission antenna device, power transmission device, power reception device, and non-contact power transmission system |
KR101142096B1 (en) * | 2010-08-02 | 2012-05-03 | 주식회사 네오펄스 | Harmonic emission prevented wireless power supply |
US9602168B2 (en) | 2010-08-31 | 2017-03-21 | Witricity Corporation | Communication in wireless energy transfer systems |
US8551163B2 (en) | 2010-10-07 | 2013-10-08 | Everheart Systems Inc. | Cardiac support systems and methods for chronic use |
US9496924B2 (en) | 2010-12-10 | 2016-11-15 | Everheart Systems, Inc. | Mobile wireless power system |
US9948145B2 (en) | 2011-07-08 | 2018-04-17 | Witricity Corporation | Wireless power transfer for a seat-vest-helmet system |
JP6148234B2 (en) | 2011-08-04 | 2017-06-14 | ワイトリシティ コーポレーションWitricity Corporation | Tunable wireless power architecture |
WO2013036947A2 (en) | 2011-09-09 | 2013-03-14 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US20130062966A1 (en) | 2011-09-12 | 2013-03-14 | Witricity Corporation | Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems |
US9479227B2 (en) | 2011-09-13 | 2016-10-25 | Samsung Electronics Co., Ltd. | Wireless electromagnetic receiver and wireless power transfer system |
US9318257B2 (en) | 2011-10-18 | 2016-04-19 | Witricity Corporation | Wireless energy transfer for packaging |
WO2013067484A1 (en) | 2011-11-04 | 2013-05-10 | Witricity Corporation | Wireless energy transfer modeling tool |
US9079043B2 (en) | 2011-11-21 | 2015-07-14 | Thoratec Corporation | Transcutaneous power transmission utilizing non-planar resonators |
JP2015508987A (en) | 2012-01-26 | 2015-03-23 | ワイトリシティ コーポレーションWitricity Corporation | Wireless energy transmission with reduced field |
US8933589B2 (en) | 2012-02-07 | 2015-01-13 | The Gillette Company | Wireless power transfer using separately tunable resonators |
US11300848B2 (en) | 2015-10-06 | 2022-04-12 | View, Inc. | Controllers for optically-switchable devices |
US9343922B2 (en) | 2012-06-27 | 2016-05-17 | Witricity Corporation | Wireless energy transfer for rechargeable batteries |
US10270261B2 (en) | 2015-09-16 | 2019-04-23 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10439448B2 (en) | 2014-08-21 | 2019-10-08 | Energous Corporation | Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver |
US10063106B2 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for a self-system analysis in a wireless power transmission network |
US9882427B2 (en) | 2013-05-10 | 2018-01-30 | Energous Corporation | Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters |
US10038337B1 (en) | 2013-09-16 | 2018-07-31 | Energous Corporation | Wireless power supply for rescue devices |
US10291066B1 (en) | 2014-05-07 | 2019-05-14 | Energous Corporation | Power transmission control systems and methods |
US10186913B2 (en) | 2012-07-06 | 2019-01-22 | Energous Corporation | System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas |
US10211674B1 (en) | 2013-06-12 | 2019-02-19 | Energous Corporation | Wireless charging using selected reflectors |
US9124125B2 (en) | 2013-05-10 | 2015-09-01 | Energous Corporation | Wireless power transmission with selective range |
US9939864B1 (en) | 2014-08-21 | 2018-04-10 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
US10381880B2 (en) | 2014-07-21 | 2019-08-13 | Energous Corporation | Integrated antenna structure arrays for wireless power transmission |
US10223717B1 (en) | 2014-05-23 | 2019-03-05 | Energous Corporation | Systems and methods for payment-based authorization of wireless power transmission service |
US20150326070A1 (en) | 2014-05-07 | 2015-11-12 | Energous Corporation | Methods and Systems for Maximum Power Point Transfer in Receivers |
US9838083B2 (en) | 2014-07-21 | 2017-12-05 | Energous Corporation | Systems and methods for communication with remote management systems |
US9787103B1 (en) | 2013-08-06 | 2017-10-10 | Energous Corporation | Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter |
US10141768B2 (en) | 2013-06-03 | 2018-11-27 | Energous Corporation | Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position |
US9843213B2 (en) | 2013-08-06 | 2017-12-12 | Energous Corporation | Social power sharing for mobile devices based on pocket-forming |
US10211680B2 (en) | 2013-07-19 | 2019-02-19 | Energous Corporation | Method for 3 dimensional pocket-forming |
US20140008993A1 (en) | 2012-07-06 | 2014-01-09 | DvineWave Inc. | Methodology for pocket-forming |
US9859797B1 (en) | 2014-05-07 | 2018-01-02 | Energous Corporation | Synchronous rectifier design for wireless power receiver |
US10312715B2 (en) | 2015-09-16 | 2019-06-04 | Energous Corporation | Systems and methods for wireless power charging |
US10243414B1 (en) | 2014-05-07 | 2019-03-26 | Energous Corporation | Wearable device with wireless power and payload receiver |
US9893554B2 (en) | 2014-07-14 | 2018-02-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
US9893555B1 (en) | 2013-10-10 | 2018-02-13 | Energous Corporation | Wireless charging of tools using a toolbox transmitter |
US9871398B1 (en) | 2013-07-01 | 2018-01-16 | Energous Corporation | Hybrid charging method for wireless power transmission based on pocket-forming |
US9973021B2 (en) | 2012-07-06 | 2018-05-15 | Energous Corporation | Receivers for wireless power transmission |
US11502551B2 (en) | 2012-07-06 | 2022-11-15 | Energous Corporation | Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations |
US9893768B2 (en) | 2012-07-06 | 2018-02-13 | Energous Corporation | Methodology for multiple pocket-forming |
US9899873B2 (en) | 2014-05-23 | 2018-02-20 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US10050462B1 (en) | 2013-08-06 | 2018-08-14 | Energous Corporation | Social power sharing for mobile devices based on pocket-forming |
US9948135B2 (en) | 2015-09-22 | 2018-04-17 | Energous Corporation | Systems and methods for identifying sensitive objects in a wireless charging transmission field |
US9867062B1 (en) | 2014-07-21 | 2018-01-09 | Energous Corporation | System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system |
US9812890B1 (en) | 2013-07-11 | 2017-11-07 | Energous Corporation | Portable wireless charging pad |
US10063064B1 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US10230266B1 (en) | 2014-02-06 | 2019-03-12 | Energous Corporation | Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof |
US9847679B2 (en) | 2014-05-07 | 2017-12-19 | Energous Corporation | System and method for controlling communication between wireless power transmitter managers |
US12057715B2 (en) | 2012-07-06 | 2024-08-06 | Energous Corporation | Systems and methods of wirelessly delivering power to a wireless-power receiver device in response to a change of orientation of the wireless-power receiver device |
US9906065B2 (en) | 2012-07-06 | 2018-02-27 | Energous Corporation | Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array |
US10205239B1 (en) | 2014-05-07 | 2019-02-12 | Energous Corporation | Compact PIFA antenna |
US9923386B1 (en) | 2012-07-06 | 2018-03-20 | Energous Corporation | Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver |
US9806564B2 (en) | 2014-05-07 | 2017-10-31 | Energous Corporation | Integrated rectifier and boost converter for wireless power transmission |
US10090699B1 (en) | 2013-11-01 | 2018-10-02 | Energous Corporation | Wireless powered house |
US9991741B1 (en) | 2014-07-14 | 2018-06-05 | Energous Corporation | System for tracking and reporting status and usage information in a wireless power management system |
US10218227B2 (en) | 2014-05-07 | 2019-02-26 | Energous Corporation | Compact PIFA antenna |
US10199835B2 (en) | 2015-12-29 | 2019-02-05 | Energous Corporation | Radar motion detection using stepped frequency in wireless power transmission system |
US10224758B2 (en) | 2013-05-10 | 2019-03-05 | Energous Corporation | Wireless powering of electronic devices with selective delivery range |
US10211682B2 (en) | 2014-05-07 | 2019-02-19 | Energous Corporation | Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network |
US10063105B2 (en) | 2013-07-11 | 2018-08-28 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US10992187B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices |
US9876379B1 (en) | 2013-07-11 | 2018-01-23 | Energous Corporation | Wireless charging and powering of electronic devices in a vehicle |
US10008889B2 (en) | 2014-08-21 | 2018-06-26 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US9847677B1 (en) | 2013-10-10 | 2017-12-19 | Energous Corporation | Wireless charging and powering of healthcare gadgets and sensors |
US10128693B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
US10193396B1 (en) | 2014-05-07 | 2019-01-29 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
US9912199B2 (en) | 2012-07-06 | 2018-03-06 | Energous Corporation | Receivers for wireless power transmission |
US9954374B1 (en) | 2014-05-23 | 2018-04-24 | Energous Corporation | System and method for self-system analysis for detecting a fault in a wireless power transmission Network |
US9438045B1 (en) | 2013-05-10 | 2016-09-06 | Energous Corporation | Methods and systems for maximum power point transfer in receivers |
US10256657B2 (en) | 2015-12-24 | 2019-04-09 | Energous Corporation | Antenna having coaxial structure for near field wireless power charging |
US10992185B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers |
US9887739B2 (en) | 2012-07-06 | 2018-02-06 | Energous Corporation | Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves |
US10199849B1 (en) | 2014-08-21 | 2019-02-05 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US10263432B1 (en) | 2013-06-25 | 2019-04-16 | Energous Corporation | Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access |
US9843201B1 (en) | 2012-07-06 | 2017-12-12 | Energous Corporation | Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof |
US9831718B2 (en) | 2013-07-25 | 2017-11-28 | Energous Corporation | TV with integrated wireless power transmitter |
US10124754B1 (en) | 2013-07-19 | 2018-11-13 | Energous Corporation | Wireless charging and powering of electronic sensors in a vehicle |
US9825674B1 (en) | 2014-05-23 | 2017-11-21 | Energous Corporation | Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions |
US9941754B2 (en) | 2012-07-06 | 2018-04-10 | Energous Corporation | Wireless power transmission with selective range |
US10128699B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | Systems and methods of providing wireless power using receiver device sensor inputs |
US9853458B1 (en) | 2014-05-07 | 2017-12-26 | Energous Corporation | Systems and methods for device and power receiver pairing |
US10148097B1 (en) | 2013-11-08 | 2018-12-04 | Energous Corporation | Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers |
US9876394B1 (en) | 2014-05-07 | 2018-01-23 | Energous Corporation | Boost-charger-boost system for enhanced power delivery |
US9899861B1 (en) | 2013-10-10 | 2018-02-20 | Energous Corporation | Wireless charging methods and systems for game controllers, based on pocket-forming |
US10224982B1 (en) | 2013-07-11 | 2019-03-05 | Energous Corporation | Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations |
US9966765B1 (en) | 2013-06-25 | 2018-05-08 | Energous Corporation | Multi-mode transmitter |
US9252628B2 (en) | 2013-05-10 | 2016-02-02 | Energous Corporation | Laptop computer as a transmitter for wireless charging |
US10103582B2 (en) | 2012-07-06 | 2018-10-16 | Energous Corporation | Transmitters for wireless power transmission |
US10965164B2 (en) | 2012-07-06 | 2021-03-30 | Energous Corporation | Systems and methods of wirelessly delivering power to a receiver device |
US10291055B1 (en) | 2014-12-29 | 2019-05-14 | Energous Corporation | Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device |
US10206185B2 (en) | 2013-05-10 | 2019-02-12 | Energous Corporation | System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions |
US10090886B1 (en) | 2014-07-14 | 2018-10-02 | Energous Corporation | System and method for enabling automatic charging schedules in a wireless power network to one or more devices |
US9859756B2 (en) | 2012-07-06 | 2018-01-02 | Energous Corporation | Transmittersand methods for adjusting wireless power transmission based on information from receivers |
US9876648B2 (en) | 2014-08-21 | 2018-01-23 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
US10141791B2 (en) | 2014-05-07 | 2018-11-27 | Energous Corporation | Systems and methods for controlling communications during wireless transmission of power using application programming interfaces |
US10383990B2 (en) | 2012-07-27 | 2019-08-20 | Tc1 Llc | Variable capacitor for resonant power transfer systems |
US9287040B2 (en) | 2012-07-27 | 2016-03-15 | Thoratec Corporation | Self-tuning resonant power transfer systems |
WO2014018973A1 (en) | 2012-07-27 | 2014-01-30 | Thoratec Corporation | Resonant power transmission coils and systems |
WO2014018971A1 (en) | 2012-07-27 | 2014-01-30 | Thoratec Corporation | Resonant power transfer systems with protective algorithm |
US9592397B2 (en) | 2012-07-27 | 2017-03-14 | Thoratec Corporation | Thermal management for implantable wireless power transfer systems |
US10525181B2 (en) | 2012-07-27 | 2020-01-07 | Tc1 Llc | Resonant power transfer system and method of estimating system state |
US9805863B2 (en) | 2012-07-27 | 2017-10-31 | Thoratec Corporation | Magnetic power transmission utilizing phased transmitter coil arrays and phased receiver coil arrays |
US10291067B2 (en) | 2012-07-27 | 2019-05-14 | Tc1 Llc | Computer modeling for resonant power transfer systems |
US9287607B2 (en) | 2012-07-31 | 2016-03-15 | Witricity Corporation | Resonator fine tuning |
CN104584372B (en) * | 2012-08-31 | 2017-07-04 | 西门子公司 | For battery charging system and method to battery wireless charging |
CN104604077B (en) * | 2012-09-05 | 2018-10-19 | 瑞萨电子株式会社 | Non-contact charging device and the contactless power supply system for using the non-contact charging device |
US10033225B2 (en) | 2012-09-07 | 2018-07-24 | Solace Power Inc. | Wireless electric field power transmission system, transmitter and receiver therefor and method of wirelessly transferring power |
US9595378B2 (en) | 2012-09-19 | 2017-03-14 | Witricity Corporation | Resonator enclosure |
CN109995149A (en) | 2012-10-19 | 2019-07-09 | 韦特里西提公司 | External analyte detection in wireless energy transfer system |
US9842684B2 (en) | 2012-11-16 | 2017-12-12 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
KR101397668B1 (en) * | 2012-12-27 | 2014-05-23 | 전자부품연구원 | A transmitting antenna and a transmitter for wireless power charging |
US9680310B2 (en) | 2013-03-15 | 2017-06-13 | Thoratec Corporation | Integrated implantable TETS housing including fins and coil loops |
WO2014145895A1 (en) | 2013-03-15 | 2014-09-18 | Thoratec Corporation | Malleable tets coil with improved anatomical fit |
US9538382B2 (en) | 2013-05-10 | 2017-01-03 | Energous Corporation | System and method for smart registration of wireless power receivers in a wireless power network |
US9537357B2 (en) | 2013-05-10 | 2017-01-03 | Energous Corporation | Wireless sound charging methods and systems for game controllers, based on pocket-forming |
US10103552B1 (en) | 2013-06-03 | 2018-10-16 | Energous Corporation | Protocols for authenticated wireless power transmission |
US10021523B2 (en) | 2013-07-11 | 2018-07-10 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US9979440B1 (en) | 2013-07-25 | 2018-05-22 | Energous Corporation | Antenna tile arrangements configured to operate as one functional unit |
EP3039770B1 (en) | 2013-08-14 | 2020-01-22 | WiTricity Corporation | Impedance tuning |
JP6521992B2 (en) | 2013-11-11 | 2019-05-29 | ティーシー1 エルエルシー | Resonance power transmission system having communication |
US10615642B2 (en) | 2013-11-11 | 2020-04-07 | Tc1 Llc | Resonant power transfer systems with communications |
US9855437B2 (en) | 2013-11-11 | 2018-01-02 | Tc1 Llc | Hinged resonant power transfer coil |
US9780573B2 (en) | 2014-02-03 | 2017-10-03 | Witricity Corporation | Wirelessly charged battery system |
US9935482B1 (en) | 2014-02-06 | 2018-04-03 | Energous Corporation | Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device |
US10075017B2 (en) | 2014-02-06 | 2018-09-11 | Energous Corporation | External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power |
US9952266B2 (en) | 2014-02-14 | 2018-04-24 | Witricity Corporation | Object detection for wireless energy transfer systems |
KR102431749B1 (en) | 2014-03-05 | 2022-08-11 | 뷰, 인크. | Monitoring sites containing switchable optical devices and controllers |
WO2015134871A1 (en) | 2014-03-06 | 2015-09-11 | Thoratec Corporation | Electrical connectors for implantable devices |
US9842687B2 (en) | 2014-04-17 | 2017-12-12 | Witricity Corporation | Wireless power transfer systems with shaped magnetic components |
WO2015161035A1 (en) | 2014-04-17 | 2015-10-22 | Witricity Corporation | Wireless power transfer systems with shield openings |
US10158257B2 (en) | 2014-05-01 | 2018-12-18 | Energous Corporation | System and methods for using sound waves to wirelessly deliver power to electronic devices |
US9966784B2 (en) | 2014-06-03 | 2018-05-08 | Energous Corporation | Systems and methods for extending battery life of portable electronic devices charged by sound |
US9837860B2 (en) | 2014-05-05 | 2017-12-05 | Witricity Corporation | Wireless power transmission systems for elevators |
US9800172B1 (en) | 2014-05-07 | 2017-10-24 | Energous Corporation | Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves |
US10153645B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters |
US10170917B1 (en) | 2014-05-07 | 2019-01-01 | Energous Corporation | Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter |
US10153653B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver |
US10018744B2 (en) | 2014-05-07 | 2018-07-10 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
WO2015196123A2 (en) | 2014-06-20 | 2015-12-23 | Witricity Corporation | Wireless power transfer systems for surfaces |
US10381875B2 (en) * | 2014-07-07 | 2019-08-13 | Qualcomm Incorporated | Wireless power transfer through a metal object |
US10574091B2 (en) | 2014-07-08 | 2020-02-25 | Witricity Corporation | Enclosures for high power wireless power transfer systems |
US9842688B2 (en) | 2014-07-08 | 2017-12-12 | Witricity Corporation | Resonator balancing in wireless power transfer systems |
US10116143B1 (en) | 2014-07-21 | 2018-10-30 | Energous Corporation | Integrated antenna arrays for wireless power transmission |
US10068703B1 (en) | 2014-07-21 | 2018-09-04 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
US9871301B2 (en) | 2014-07-21 | 2018-01-16 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
US9917477B1 (en) | 2014-08-21 | 2018-03-13 | Energous Corporation | Systems and methods for automatically testing the communication between power transmitter and wireless receiver |
US9965009B1 (en) | 2014-08-21 | 2018-05-08 | Energous Corporation | Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver |
EP2992776B1 (en) * | 2014-09-04 | 2019-11-06 | WITS Co., Ltd. | Case and apparatus including the same |
US9871384B2 (en) * | 2014-09-05 | 2018-01-16 | Qualcomm Incorporated | Wireless charging of metal backed electronic devices |
JP6730257B2 (en) | 2014-09-05 | 2020-07-29 | ソレース・パワー・インコーポレイテッド | Wireless electric field power transmission system, method, and transmitter and receiver therefor |
US10186760B2 (en) | 2014-09-22 | 2019-01-22 | Tc1 Llc | Antenna designs for communication between a wirelessly powered implant to an external device outside the body |
WO2016057525A1 (en) | 2014-10-06 | 2016-04-14 | Thoratec Corporation | Multiaxial connector for implantable devices |
US20160111889A1 (en) * | 2014-10-20 | 2016-04-21 | Qualcomm Incorporated | Segmented conductive back cover for wireless power transfer |
US11114742B2 (en) | 2014-11-25 | 2021-09-07 | View, Inc. | Window antennas |
EP3224901B1 (en) | 2014-11-25 | 2023-09-20 | View, Inc. | Window antennas |
US10122415B2 (en) | 2014-12-27 | 2018-11-06 | Energous Corporation | Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver |
US9843217B2 (en) | 2015-01-05 | 2017-12-12 | Witricity Corporation | Wireless energy transfer for wearables |
US9729210B2 (en) * | 2015-04-27 | 2017-08-08 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Chassis NFC antenna booster |
KR102389704B1 (en) | 2015-08-12 | 2022-04-25 | 삼성전자주식회사 | Electronic device with wireless power transmitting/receiving conductive pattern |
US10148126B2 (en) | 2015-08-31 | 2018-12-04 | Tc1 Llc | Wireless energy transfer system and wearables |
US9906275B2 (en) | 2015-09-15 | 2018-02-27 | Energous Corporation | Identifying receivers in a wireless charging transmission field |
US10523033B2 (en) | 2015-09-15 | 2019-12-31 | Energous Corporation | Receiver devices configured to determine location within a transmission field |
US10008875B1 (en) | 2015-09-16 | 2018-06-26 | Energous Corporation | Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver |
US11710321B2 (en) | 2015-09-16 | 2023-07-25 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10211685B2 (en) | 2015-09-16 | 2019-02-19 | Energous Corporation | Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US10158259B1 (en) | 2015-09-16 | 2018-12-18 | Energous Corporation | Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field |
US9871387B1 (en) | 2015-09-16 | 2018-01-16 | Energous Corporation | Systems and methods of object detection using one or more video cameras in wireless power charging systems |
US10778041B2 (en) | 2015-09-16 | 2020-09-15 | Energous Corporation | Systems and methods for generating power waves in a wireless power transmission system |
US9941752B2 (en) | 2015-09-16 | 2018-04-10 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US9893538B1 (en) | 2015-09-16 | 2018-02-13 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10186893B2 (en) | 2015-09-16 | 2019-01-22 | Energous Corporation | Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US10199850B2 (en) | 2015-09-16 | 2019-02-05 | Energous Corporation | Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter |
US10033222B1 (en) | 2015-09-22 | 2018-07-24 | Energous Corporation | Systems and methods for determining and generating a waveform for wireless power transmission waves |
US10135295B2 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for nullifying energy levels for wireless power transmission waves |
US10153660B1 (en) | 2015-09-22 | 2018-12-11 | Energous Corporation | Systems and methods for preconfiguring sensor data for wireless charging systems |
US10050470B1 (en) | 2015-09-22 | 2018-08-14 | Energous Corporation | Wireless power transmission device having antennas oriented in three dimensions |
US10027168B2 (en) | 2015-09-22 | 2018-07-17 | Energous Corporation | Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter |
US10135294B1 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers |
US10020678B1 (en) | 2015-09-22 | 2018-07-10 | Energous Corporation | Systems and methods for selecting antennas to generate and transmit power transmission waves |
US10128686B1 (en) | 2015-09-22 | 2018-11-13 | Energous Corporation | Systems and methods for identifying receiver locations using sensor technologies |
US10248899B2 (en) | 2015-10-06 | 2019-04-02 | Witricity Corporation | RFID tag and transponder detection in wireless energy transfer systems |
EP3902100A1 (en) | 2015-10-07 | 2021-10-27 | Tc1 Llc | Resonant power transfer systems having efficiency optimization based on receiver impedance |
US10734717B2 (en) | 2015-10-13 | 2020-08-04 | Energous Corporation | 3D ceramic mold antenna |
US10333332B1 (en) | 2015-10-13 | 2019-06-25 | Energous Corporation | Cross-polarized dipole antenna |
US9929721B2 (en) | 2015-10-14 | 2018-03-27 | Witricity Corporation | Phase and amplitude detection in wireless energy transfer systems |
US10063110B2 (en) | 2015-10-19 | 2018-08-28 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
WO2017070009A1 (en) | 2015-10-22 | 2017-04-27 | Witricity Corporation | Dynamic tuning in wireless energy transfer systems |
US9899744B1 (en) | 2015-10-28 | 2018-02-20 | Energous Corporation | Antenna for wireless charging systems |
US9853485B2 (en) | 2015-10-28 | 2017-12-26 | Energous Corporation | Antenna for wireless charging systems |
US10135112B1 (en) | 2015-11-02 | 2018-11-20 | Energous Corporation | 3D antenna mount |
US10027180B1 (en) | 2015-11-02 | 2018-07-17 | Energous Corporation | 3D triple linear antenna that acts as heat sink |
US10063108B1 (en) | 2015-11-02 | 2018-08-28 | Energous Corporation | Stamped three-dimensional antenna |
US10075019B2 (en) | 2015-11-20 | 2018-09-11 | Witricity Corporation | Voltage source isolation in wireless power transfer systems |
US11863001B2 (en) | 2015-12-24 | 2024-01-02 | Energous Corporation | Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns |
US10256677B2 (en) | 2016-12-12 | 2019-04-09 | Energous Corporation | Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad |
US10320446B2 (en) | 2015-12-24 | 2019-06-11 | Energous Corporation | Miniaturized highly-efficient designs for near-field power transfer system |
US10027159B2 (en) | 2015-12-24 | 2018-07-17 | Energous Corporation | Antenna for transmitting wireless power signals |
US10038332B1 (en) | 2015-12-24 | 2018-07-31 | Energous Corporation | Systems and methods of wireless power charging through multiple receiving devices |
US10141771B1 (en) | 2015-12-24 | 2018-11-27 | Energous Corporation | Near field transmitters with contact points for wireless power charging |
US10079515B2 (en) | 2016-12-12 | 2018-09-18 | Energous Corporation | Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad |
US10164478B2 (en) | 2015-12-29 | 2018-12-25 | Energous Corporation | Modular antenna boards in wireless power transmission systems |
JP6956728B2 (en) | 2016-02-02 | 2021-11-02 | ワイトリシティ コーポレーションWitricity Corporation | Control of wireless power transfer system |
AU2017218337A1 (en) | 2016-02-08 | 2018-08-09 | Witricity Corporation | PWM capacitor control |
EP4084271A1 (en) | 2016-09-21 | 2022-11-02 | Tc1 Llc | Systems and methods for locating implanted wireless power transmission devices |
US10923954B2 (en) | 2016-11-03 | 2021-02-16 | Energous Corporation | Wireless power receiver with a synchronous rectifier |
KR20220008939A (en) | 2016-12-12 | 2022-01-21 | 에너저스 코포레이션 | Methods of selectively activating antenna zones of a near-field charging pad to maximize wireless power delivered |
US10389161B2 (en) | 2017-03-15 | 2019-08-20 | Energous Corporation | Surface mount dielectric antennas for wireless power transmitters |
US10439442B2 (en) | 2017-01-24 | 2019-10-08 | Energous Corporation | Microstrip antennas for wireless power transmitters |
US10680319B2 (en) | 2017-01-06 | 2020-06-09 | Energous Corporation | Devices and methods for reducing mutual coupling effects in wireless power transmission systems |
US11197990B2 (en) | 2017-01-18 | 2021-12-14 | Tc1 Llc | Systems and methods for transcutaneous power transfer using microneedles |
WO2018183892A1 (en) | 2017-03-30 | 2018-10-04 | Energous Corporation | Flat antennas having two or more resonant frequencies for use in wireless power transmission systems |
US10511097B2 (en) | 2017-05-12 | 2019-12-17 | Energous Corporation | Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain |
US20180328903A1 (en) * | 2017-05-12 | 2018-11-15 | Qualcomm Incorporated | Multi-power source perishable item sensor apparatus |
US12074452B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Networked wireless charging system |
US11462949B2 (en) | 2017-05-16 | 2022-10-04 | Wireless electrical Grid LAN, WiGL Inc | Wireless charging method and system |
US12074460B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Rechargeable wireless power bank and method of using |
US10848853B2 (en) | 2017-06-23 | 2020-11-24 | Energous Corporation | Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power |
US11031818B2 (en) | 2017-06-29 | 2021-06-08 | Witricity Corporation | Protection and control of wireless power systems |
US10122219B1 (en) | 2017-10-10 | 2018-11-06 | Energous Corporation | Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves |
US11342798B2 (en) | 2017-10-30 | 2022-05-24 | Energous Corporation | Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band |
EP3480963A1 (en) * | 2017-11-07 | 2019-05-08 | STMicroelectronics Austria GmbH | Nfc antenna device in a metallic environment |
US10770923B2 (en) | 2018-01-04 | 2020-09-08 | Tc1 Llc | Systems and methods for elastic wireless power transmission devices |
US10615647B2 (en) | 2018-02-02 | 2020-04-07 | Energous Corporation | Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad |
US11159057B2 (en) | 2018-03-14 | 2021-10-26 | Energous Corporation | Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals |
US11515732B2 (en) | 2018-06-25 | 2022-11-29 | Energous Corporation | Power wave transmission techniques to focus wirelessly delivered power at a receiving device |
CN108899721B (en) * | 2018-06-27 | 2020-07-28 | 珠海市魅族科技有限公司 | Charging interconnection module |
US11437735B2 (en) | 2018-11-14 | 2022-09-06 | Energous Corporation | Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body |
US11211827B2 (en) * | 2018-11-19 | 2021-12-28 | Ossia Inc. | Wireless power receiver technology |
US11539243B2 (en) | 2019-01-28 | 2022-12-27 | Energous Corporation | Systems and methods for miniaturized antenna for wireless power transmissions |
WO2020163574A1 (en) | 2019-02-06 | 2020-08-13 | Energous Corporation | Systems and methods of estimating optimal phases to use for individual antennas in an antenna array |
CN113940014A (en) | 2019-05-09 | 2022-01-14 | 唯景公司 | Antenna system for controlled coverage in buildings |
KR102105688B1 (en) * | 2019-09-11 | 2020-04-28 | 울산과학기술원 | Apparatus and method for wireless charging |
WO2021055898A1 (en) | 2019-09-20 | 2021-03-25 | Energous Corporation | Systems and methods for machine learning based foreign object detection for wireless power transmission |
WO2021055900A1 (en) | 2019-09-20 | 2021-03-25 | Energous Corporation | Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems |
US11381118B2 (en) | 2019-09-20 | 2022-07-05 | Energous Corporation | Systems and methods for machine learning based foreign object detection for wireless power transmission |
US11411441B2 (en) | 2019-09-20 | 2022-08-09 | Energous Corporation | Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers |
EP4073905A4 (en) | 2019-12-13 | 2024-01-03 | Energous Corporation | Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device |
US10985617B1 (en) | 2019-12-31 | 2021-04-20 | Energous Corporation | System for wirelessly transmitting energy at a near-field distance without using beam-forming control |
TW202206925A (en) | 2020-03-26 | 2022-02-16 | 美商視野公司 | Access and messaging in a multi client network |
US11799324B2 (en) | 2020-04-13 | 2023-10-24 | Energous Corporation | Wireless-power transmitting device for creating a uniform near-field charging area |
US11631493B2 (en) | 2020-05-27 | 2023-04-18 | View Operating Corporation | Systems and methods for managing building wellness |
US11916398B2 (en) | 2021-12-29 | 2024-02-27 | Energous Corporation | Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07264272A (en) * | 1994-03-25 | 1995-10-13 | Sony Corp | Cordless telephone set |
JP2006115562A (en) * | 2004-10-12 | 2006-04-27 | Matsushita Electric Ind Co Ltd | Noncontact charging battery system, charger and battery pack |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08236334A (en) * | 1995-02-28 | 1996-09-13 | Sony Corp | Rotary transformer |
JP3427663B2 (en) | 1996-06-18 | 2003-07-22 | 凸版印刷株式会社 | Non-contact IC card |
JPH1141824A (en) * | 1997-07-14 | 1999-02-12 | Casio Comput Co Ltd | Portable electronic equipment |
JPH1140208A (en) * | 1997-07-23 | 1999-02-12 | Sanyo Electric Co Ltd | Charging table and pack battery set on the same |
JPH1195922A (en) | 1997-09-22 | 1999-04-09 | Tokin Corp | Mouse pad, cordless mouse and combination thereof |
JPH11103531A (en) * | 1997-09-29 | 1999-04-13 | Nec Mori Energy Kk | Noncontact charger |
EP0977297B1 (en) | 1997-11-20 | 2005-08-17 | Seiko Epson Corporation | Electronic device |
JPH11243024A (en) * | 1998-02-25 | 1999-09-07 | Kyocera Corp | Electrical equipment applicable to non-contact charger |
JP2000078763A (en) * | 1998-09-01 | 2000-03-14 | Matsushita Electric Ind Co Ltd | Non-contact charger |
FR2812962B1 (en) * | 2000-08-08 | 2004-09-24 | Schneider Electric Ind Sa | ELECTRICAL APPARATUS COMPRISING A CONTROL DEVICE, SUPPORT AND MONITORING DEVICE FOR SUCH AN APPARATUS, AND ELECTRICAL INSTALLATION COMPRISING SAME |
JP2002299138A (en) * | 2001-04-02 | 2002-10-11 | Kawasaki Steel Corp | Planar magnetic element for noncontact charger |
EP2479866B1 (en) | 2002-06-10 | 2018-07-18 | City University of Hong Kong | Planar inductive battery charger |
JP2006174256A (en) * | 2004-12-17 | 2006-06-29 | Yonezawa Densen Kk | Antenna coil |
JP4624768B2 (en) * | 2004-11-29 | 2011-02-02 | オリンパス株式会社 | Intra-subject introduction apparatus and intra-subject introduction system |
TW200628062A (en) * | 2004-12-03 | 2006-08-01 | Nitta Corp | Electromagnetic interference suppressor, antenna device, and electron information transfer device |
US7495414B2 (en) | 2005-07-25 | 2009-02-24 | Convenient Power Limited | Rechargeable battery circuit and structure for compatibility with a planar inductive charging platform |
JP4592542B2 (en) * | 2005-09-08 | 2010-12-01 | 三菱電機株式会社 | Semiconductor device |
US8169185B2 (en) * | 2006-01-31 | 2012-05-01 | Mojo Mobility, Inc. | System and method for inductive charging of portable devices |
KR101052961B1 (en) * | 2006-03-24 | 2011-07-29 | 도시바 마테리알 가부시키가이샤 | Power reception device, electronic device and non-contact charging device using the same |
US8132026B2 (en) * | 2006-06-02 | 2012-03-06 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device and mobile electronic device having the same |
JP4057038B2 (en) * | 2006-06-05 | 2008-03-05 | メレアグロス株式会社 | Power transmission method, method for selecting and using coil of power transmission device |
JP2008029125A (en) * | 2006-07-21 | 2008-02-07 | Sony Corp | Electromagnetic induction processor |
KR100836634B1 (en) * | 2006-10-24 | 2008-06-10 | 주식회사 한림포스텍 | Non-contact charger available of wireless data and power transmission, charging battery-pack and mobile divice using non-contact charger |
EP2082468A2 (en) * | 2006-10-26 | 2009-07-29 | Koninklijke Philips Electronics N.V. | Floor covering and inductive power system |
US7683572B2 (en) * | 2006-11-10 | 2010-03-23 | Sanyo Electric Co., Ltd. | Battery charging cradle and mobile electronic device |
JP2008205216A (en) | 2007-02-20 | 2008-09-04 | Seiko Epson Corp | Laminated coil unit and electronic apparatus having the same, and charger |
JP4737109B2 (en) * | 2007-02-20 | 2011-07-27 | セイコーエプソン株式会社 | Non-contact rechargeable electronic equipment |
US7667431B2 (en) * | 2007-03-16 | 2010-02-23 | Motorola, Inc. | Mechanically featureless inductive charging using an alignment marking feature |
TW200922073A (en) * | 2007-11-08 | 2009-05-16 | Amic Technology Corp | Charger system capable of enhancing convenience |
KR100976161B1 (en) * | 2008-02-20 | 2010-08-16 | 정춘길 | Charging control method of non-contact charging system of wireless power transmision and chrging control method thereof |
KR101094253B1 (en) * | 2008-04-28 | 2011-12-19 | 정춘길 | Non-contact power receier, non-contact power trasmitter related to the same and non-contact power transmitting and receiving system |
-
2009
- 2009-09-04 US US12/554,478 patent/US8581542B2/en active Active
- 2009-09-08 KR KR1020117008070A patent/KR101290381B1/en active IP Right Grant
- 2009-09-08 CN CN200980135159.1A patent/CN102292868B/en not_active Expired - Fee Related
- 2009-09-08 WO PCT/US2009/056242 patent/WO2010028375A1/en active Application Filing
- 2009-09-08 EP EP09792322A patent/EP2342778A1/en not_active Withdrawn
- 2009-09-08 JP JP2011526275A patent/JP2012502613A/en not_active Withdrawn
-
2014
- 2014-07-17 JP JP2014146946A patent/JP6138733B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07264272A (en) * | 1994-03-25 | 1995-10-13 | Sony Corp | Cordless telephone set |
JP2006115562A (en) * | 2004-10-12 | 2006-04-27 | Matsushita Electric Ind Co Ltd | Noncontact charging battery system, charger and battery pack |
Non-Patent Citations (1)
Title |
---|
See also references of WO2010028375A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2012502613A (en) | 2012-01-26 |
US20100210233A1 (en) | 2010-08-19 |
WO2010028375A1 (en) | 2010-03-11 |
CN102292868A (en) | 2011-12-21 |
CN102292868B (en) | 2014-04-16 |
JP6138733B2 (en) | 2017-05-31 |
KR20110051291A (en) | 2011-05-17 |
US8581542B2 (en) | 2013-11-12 |
JP2014239644A (en) | 2014-12-18 |
KR101290381B1 (en) | 2013-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8581542B2 (en) | Receive antenna arrangement for wireless power | |
US9013141B2 (en) | Parasitic devices for wireless power transfer | |
CN106953419B (en) | Wireless power receiver with multiple receiver coils | |
US9559405B2 (en) | Devices and methods related to a display assembly including an antenna | |
US9287732B2 (en) | Variable wireless power transmission | |
EP2411940B1 (en) | Optimization of wireless power devices for charging batteries | |
EP2478587B1 (en) | Focused antenna, multi-purpose antenna, and methods related thereto | |
EP2599233B1 (en) | Low power detection of wireless power devices | |
EP2396901B1 (en) | Wireless power for chargeable and charging devices | |
EP2332096B1 (en) | Passive receivers for wireless power transmission | |
EP2394349B1 (en) | Wireless power for charging devices | |
US9240633B2 (en) | Tunable wireless power device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110408 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20150915 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20190207 |