JP2002299138A - Planar magnetic element for noncontact charger - Google Patents

Planar magnetic element for noncontact charger

Info

Publication number
JP2002299138A
JP2002299138A JP2001102738A JP2001102738A JP2002299138A JP 2002299138 A JP2002299138 A JP 2002299138A JP 2001102738 A JP2001102738 A JP 2001102738A JP 2001102738 A JP2001102738 A JP 2001102738A JP 2002299138 A JP2002299138 A JP 2002299138A
Authority
JP
Japan
Prior art keywords
coil
magnetic
planar
ferrite
magnetic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001102738A
Other languages
Japanese (ja)
Inventor
Yasutaka Fukuda
泰隆 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001102738A priority Critical patent/JP2002299138A/en
Publication of JP2002299138A publication Critical patent/JP2002299138A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a planar magnetic element, for a noncontact charger, by which a small shape and a thin shape are satisfied and which can obtain satisfactory charging efficiency. SOLUTION: A planar coil is embedded on one face of a ferrite magnetic layer whose magnetic-substance volume density is 25% or more, in such a way that its surface is exposed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非接触充電器に搭
載される薄型の平面磁気素子に関し、特にその充電効率
の有利な向上を図ったものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin planar magnetic element mounted on a non-contact charger, and more particularly to an advantageous improvement of its charging efficiency.

【0002】[0002]

【従来の技術】近年、電子情報端末の小型化・計量化に
伴い、Liイオン電池のような2次電池で駆動する携帯機
器が多用されている。このような分野では、機器寸法の
面での制約などから、主に接点を用いた充電システムが
用いられている。しかしながら、携帯機器は人体の近く
に常備されることが多く、接点形では信頼性に問題の生
じるおそれがあるため、非接触形の充電システムが要望
されている。
2. Description of the Related Art In recent years, with the miniaturization and weighing of electronic information terminals, portable devices driven by secondary batteries such as Li-ion batteries are widely used. In such a field, a charging system using contacts is mainly used due to restrictions on device dimensions and the like. However, portable devices are often kept near a human body, and there is a possibility that reliability may be deteriorated in a contact type. Therefore, a non-contact type charging system is demanded.

【0003】非接触充電システムは、シェーバーや電動
ハブラシなどの水廻りの機器には従来から用いられてき
た(例えば、特開平2000−78763 号公報)。一方、携帯
情報機器関連では、カード型非接触充電の例がある(Ka
nai et al:IEEE APEC Record, pp.1157 −1162 (2000)
や金井ら:電気学会マグネティクス研究会 MAG−00−1
50 など)。かかる非接触充電システムにおけるコイル
は、フェライト板やアモルフス薄帯上に銅線を巻き回し
た構造になっている。
[0003] A non-contact charging system has been conventionally used for a device around water such as a shaver or an electric toothbrush (for example, Japanese Patent Application Laid-Open No. 2000-78763). On the other hand, in the field of portable information devices, there is an example of card-type non-contact charging (Ka
nai et al: IEEE APEC Record, pp.1157-1162 (2000)
Yanai et al .: IEEJ Magnetics Research Group MAG-00-1
50). The coil in such a contactless charging system has a structure in which a copper wire is wound on a ferrite plate or an amorphous thin ribbon.

【0004】しかしながら、かかる構造のコイルには、
次に述べるような問題があった。 (1) コイル厚さが1mm程度でかつ寸法が数cm角と大きい
ため、占有体積が大きく、機器の小型・薄型化が阻害さ
れる。 (2) 磁性コア間を渡る磁束がコイルを横切るため、コイ
ルでの渦電流の発生が大きく、損失が大きい。
However, coils having such a structure include:
There were the following problems. (1) Since the coil thickness is as large as about 1 mm and the dimensions are as large as several cm square, the occupied volume is large and the miniaturization and thinning of the equipment is hindered. (2) Since the magnetic flux passing between the magnetic cores crosses the coil, eddy current is generated in the coil and loss is large.

【0005】ところで、極薄型のコイルとしては、印刷
法やシート法で形成したフェライト磁性膜を用いた平面
型の磁気素子が知られている(特開平11−26239 号公
報)。この平面磁気素子は、フェライト粉にバインダを
混ぜた磁性ペーストをSi基板上に印刷、焼成することに
よって高抵抗のフェライト磁性膜を形成し、この膜上に
コイルパターンをめっき法などで形成したのち、さらに
その上に磁性膜を形成して磁気素子とするものである。
As a very thin coil, a flat magnetic element using a ferrite magnetic film formed by a printing method or a sheet method is known (Japanese Patent Application Laid-Open No. H11-26239). This planar magnetic element forms a high-resistance ferrite magnetic film by printing and baking a magnetic paste in which a binder is mixed with ferrite powder on a Si substrate, and forms a coil pattern on this film by plating or the like. And a magnetic film formed thereon to form a magnetic element.

【0006】この構造の磁気素子だと、薄型化は勿論、
コイルの損失を効果的に抑制することができるが、コイ
ルの両側に磁性体を配置しているため磁束の外部への取
り出しが十分とはいえず、受送電コイル間の磁束がお互
いのコイルを横切らないため、非接触充電器用としては
十分な能力を発揮できない。従って、本発明が対象とし
ているような非接触充電器用コイルとしては、適用する
ことができなかった。
With a magnetic element having this structure, not only can it be made thinner,
Although the loss of the coil can be suppressed effectively, the magnetic material is arranged on both sides of the coil, so the extraction of the magnetic flux to the outside cannot be said to be sufficient. Because it does not cross, it cannot demonstrate sufficient capacity for contactless chargers. Therefore, it could not be applied as a coil for a non-contact charger as the object of the present invention.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の現状
に鑑み開発されたもので、非接触充電器の特に受電側に
ついて、その小型・薄型化を満足しつつ、さらに良好な
充電効率が得られる、新規な構造になる非接触充電器用
平面磁気素子を提案することを目的とする。
SUMMARY OF THE INVENTION The present invention has been developed in view of the above-mentioned situation, and it is possible to improve the charging efficiency while satisfying the miniaturization and thinning of the non-contact charger, especially on the power receiving side. It is an object of the present invention to propose a novel structure of a planar magnetic element for a non-contact charger having a novel structure.

【0008】[0008]

【課題を解決するための手段】さて、発明者らは、上記
の目的を達成すべく鋭意研究を重ねたところ、フェライ
ト磁性層の片面に、平面コイルを、その上面を露出させ
て埋設し、さらに好ましくは平面コイルのコイル線の厚
みおよび幅をそれぞれ適正な範囲に調整することによっ
て、所期した目的が有利に達成されることの知見を得
た。本発明は、上記の知見に立脚するものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and found that a flat coil was embedded on one surface of a ferrite magnetic layer with its upper surface exposed, More preferably, it has been found that the intended purpose can be advantageously achieved by adjusting the thickness and width of the coil wire of the planar coil to appropriate ranges. The present invention is based on the above findings.

【0009】すなわち、本発明の要旨構成は次のとおり
である。 1.磁性層の片面に、上面を露出させて平面コイルを埋
設した構造になる平面磁気素子であって、該磁性層が磁
性体体積密度:25%以上のフェライト磁性層からなるこ
とを特徴とする非接触充電器用平面磁気素子。
That is, the gist of the present invention is as follows. 1. A planar magnetic element having a structure in which a planar coil is buried by exposing the upper surface on one side of a magnetic layer, wherein the magnetic layer is a ferrite magnetic layer having a magnetic material volume density of 25% or more. Flat magnetic element for contact charger.

【0010】上記1の発明では、平面コイルの上面が磁
性層から露出しているので、充電器側の送電コイルと機
器本体側の受電コイルとのギャップを小さくすることが
でき、ひいては受送電コイル間の磁束をお互いのコイル
に十分に横切らせることができるので、充電効率を格段
に向上させることができる。
In the first aspect of the present invention, since the upper surface of the planar coil is exposed from the magnetic layer, the gap between the power transmission coil on the charger side and the power reception coil on the equipment body can be reduced, and the power transmission coil can be reduced. Since the magnetic flux between the coils can sufficiently cross each other, the charging efficiency can be significantly improved.

【0011】図1に、本発明に従う代表的な平面磁気素
子(コイル形状はスパイラル型)を模式で示す。図1
(a) は平面図、同図(b) はそのA−A断面図であり、図
中番号1はフェライト磁性層、2は平面コイル、そして
3が端子である。上記のフェライト磁性層において、磁
性体の体積密度を 25vol%以上としたのは、これ未満で
は、充電器側の送電コイルと機器本体側の受電コイル間
の磁気的結合(次式に示す結合係数kで表される)が小
さくなって十分の充電特性が得られないからである。 k=M/(L1 ×L21/2 ここで、M:相互インダクタンス L1 ,L2 :コイル1,2の自己インダクタンス(例え
ば、L1が送電側コイルのインダクタンス、L2 が受電
側のインダクタンスとなる) なお、本発明を受電コイルとして利用する場合、500kHz
以上、 20MHz以下の周波数で受電する方式の非接触充電
システムに搭載すると特に有利である。
FIG. 1 schematically shows a typical planar magnetic element (coil shape is a spiral type) according to the present invention. FIG.
(a) is a plan view, and (b) is a sectional view taken along the line AA. In the figure, reference numeral 1 denotes a ferrite magnetic layer, 2 denotes a plane coil, and 3 denotes a terminal. In the above ferrite magnetic layer, the reason why the volume density of the magnetic material is set to 25 vol% or more is that the magnetic coupling between the power transmission coil on the charger side and the power reception coil on the device body (coupling coefficient shown in the following equation) This is because it is not possible to obtain sufficient charging characteristics. k = M / (L 1 × L 2 ) 1/2 where M: mutual inductance L 1 , L 2 : self-inductance of coils 1 and 2 (for example, L 1 is the inductance of the power transmitting side coil, and L 2 is the power receiving In addition, when the present invention is used as a receiving coil, 500 kHz
As described above, it is particularly advantageous to install the system in a wireless charging system that receives power at a frequency of 20 MHz or less.

【0012】また、本発明において、フェライト磁性層
の厚みは5〜500 μm 程度とすることが好ましい。とい
うのは、この厚みが5μm に満たないと結合係数が小さ
く、一方 500μm を超えると磁気素子の厚みが厚くなる
からである。さらに、コイルの厚みは5〜200 μm 程度
とすることが好ましい。というのは、この厚みが5μm
に満たないとコイル直流抵抗が大きくなり、一方 200μ
m を超えるとレジスト露出やコイル線間をフェライトで
埋めることが困難となるからである。
In the present invention, the ferrite magnetic layer preferably has a thickness of about 5 to 500 μm. This is because if the thickness is less than 5 μm, the coupling coefficient is small, while if it exceeds 500 μm, the thickness of the magnetic element is increased. Further, the thickness of the coil is preferably about 5 to 200 μm. Because this thickness is 5μm
If less, the DC resistance of the coil will increase, while 200μ
If it exceeds m, it becomes difficult to expose the resist and fill the space between the coil wires with ferrite.

【0013】2.上記1において、平面コイルのコイル
線の幅および厚みをそれぞれ、次式で示される表皮厚み
δの 0.5倍以上、8倍以下としたことを特徴とする非接
触充電器用平面磁気素子。 δ={2/(μ・σ・ω)}1/2 ここで、μ:透磁率 σ:電気伝導率(S) ω:角振動数(=2πf) なお、透磁率および電気伝統率は、平面コイルの透磁率
および電気伝統率である。
2. 2. The planar magnetic element for a non-contact charger according to the above item 1, wherein the width and the thickness of the coil wire of the planar coil are respectively 0.5 times or more and 8 times or less the skin thickness δ represented by the following equation. δ = {2 / (μ · σ · ω)} 1/2 where μ: magnetic permeability σ: electric conductivity (S) ω: angular frequency (= 2πf) The magnetic permeability and electric tradition are Permeability and electric tradition of a planar coil.

【0014】上記2の発明では、コイル線の厚みおよび
幅をそれぞれ、好適範囲に規定したものである。コイル
線の厚みや幅が表皮厚み以上のコイルに高周波電流を流
すとコイル表面にしか電流が流れず、交流抵抗が大きく
なる。しかしながら、これらの値を表皮厚みに揃える
と、コイル断面積が小さくなり、直流抵抗が大きくなっ
て、その結果損失が大きくなる。これを避けるために、
コイル線の幅を表皮厚み程度に分割したコイルが用いら
れることが多い。しかしながら、この場合、コイル線間
のスペースが大きくなるため、素子の小型化が損なわれ
る。
In the second aspect of the invention, the thickness and the width of the coil wire are each defined in a preferable range. When a high-frequency current is applied to a coil having a coil wire thickness or width equal to or greater than the skin thickness, the current flows only on the coil surface and the AC resistance increases. However, when these values are made equal to the skin thickness, the coil cross-sectional area becomes smaller, the DC resistance becomes larger, and as a result, the loss becomes larger. To avoid this,
In many cases, a coil in which the width of the coil wire is divided into approximately the skin thickness is used. However, in this case, since the space between the coil wires becomes large, miniaturization of the element is impaired.

【0015】そこで、交流抵抗による損失と直流抵抗に
よる損失の和が最小となる組み合わせについて種々検討
を重ねたところ、図2に示すコイル線の厚みaおよび幅
bをそれぞれ、次式で示される表皮厚みδの 0.5倍以
上、8倍以下とすることが有効であることが分かった。 δ={2/(μ・σ・ω)}1/2 なお、コイル線の厚みおよび幅が表皮厚みδの 0.5倍に
満たないと、コイル直流抵抗が大きくなり、コイルが発
熱する。一方、8倍を超えると、直流抵抗は小さくなる
ものの、表皮効果による交流抵抗が大きくなって、全体
としての損失の増大を招いたり、磁気素子の寸法が大き
くなる。より好適には2倍以上、4倍以下である。
Therefore, when various examinations were repeatedly conducted on a combination that minimizes the sum of the loss due to the AC resistance and the loss due to the DC resistance, the thickness a and the width b of the coil wire shown in FIG. It was found that it is effective to set the thickness to 0.5 times or more and 8 times or less of the thickness δ. δ = {2 / (μ · σ · ω)} 1/2 If the thickness and width of the coil wire are less than 0.5 times the skin thickness δ, the DC resistance of the coil increases and the coil generates heat. On the other hand, when it exceeds eight times, although the DC resistance is reduced, the AC resistance due to the skin effect is increased, resulting in an increase in overall loss and an increase in the size of the magnetic element. More preferably, it is 2 times or more and 4 times or less.

【0016】ここで、コイル形状につしては、スパイラ
ル型およびミアンダー型のいずれでも良く、また、スパ
イラル型は1つあるいは2つ以上の組み合わせでもい
い。また、本発明の平面磁気素子は、そのまま使用して
も何ら問題ないが、表面を保護するために、図2に示し
たように、コイルの露出している面に、エポキシ樹脂、
ポリイミド樹脂などの樹脂やガラス等の非磁性でかつ電
気的絶縁体からなる保護被膜4を被覆することが有利で
ある。
Here, the coil shape may be any of a spiral type and a meander type, and the spiral type may be one or a combination of two or more. The planar magnetic element of the present invention can be used as it is without any problem. However, in order to protect the surface, as shown in FIG.
It is advantageous to cover the protective coating 4 made of a non-magnetic and electrically insulating material such as a resin such as a polyimide resin or glass.

【0017】また、本発明におけるフェライトとして
は、絶縁体であるNiZn系フェライト、中でも焼成温度を
低くしたNiCuZn系フェライトが好適である。その組成に
ついては特に限定されることはないが、代表組成を示す
と次のとおりである。なお、この組成は、磁気素子全体
おいて、必ずしも同一組成とする必要はなく、下部フェ
ライト、上部フェライトおよびコイル線間に充填するフ
ェライトなど、場所に応じて適宜組成を変更することが
できる。
Further, as the ferrite in the present invention, NiZn-based ferrite which is an insulator, in particular, NiCuZn-based ferrite whose firing temperature is lowered is preferable. The composition is not particularly limited, but typical compositions are as follows. Note that this composition does not necessarily have to be the same composition in the entire magnetic element, and the composition can be appropriately changed depending on the location such as the lower ferrite, the upper ferrite, and the ferrite filled between the coil wires.

【0018】Fe203 :40〜50 mol% Fe203 が50 mol%を超えると、Fe2+イオンの存在により
電気抵抗値が急激に低下する。電気抵抗の低下は高周波
領域で使用するとき渦電流の発生でフェライトコアでの
損失を急増させてしまう。また、40 mol%未満になると
フェライトの透磁率低下にともなうインダクタンスの劣
化が大きいため、Fe203 は40〜50 mol%程度とすること
が好ましい。
The Fe 2 0 3: 40~50 the mol% Fe 2 0 3 exceeds 50 mol%, the electric resistance value decreases abruptly due to the presence of Fe 2+ ions. The decrease in the electric resistance causes an eddy current to be generated when used in a high frequency range, so that the loss in the ferrite core increases rapidly. Moreover, 40 for less than mol% the deterioration in inductance due to the permeability reduction of the ferrite is large, Fe 2 0 3 is preferably about 40 to 50 mol%.

【0019】ZnO:15〜35mol % ZnOは、インダクタンスとキュリー温度に大きな影響を
与える。キュリー温度は磁気素子の耐熱性を決める重要
なパラメータである。15 mol%未満ではキュリー温度は
高いもののインダクタンスが低下する。一方、35 mol%
を超えるとインダクタンスは高いものの、キュリー温度
が低下する。従って、ZnOは15〜35 mol%程度とするこ
とが好ましい。
ZnO: 15 to 35 mol% ZnO has a large effect on inductance and Curie temperature. The Curie temperature is an important parameter that determines the heat resistance of a magnetic element. If it is less than 15 mol%, the Curie temperature is high, but the inductance decreases. On the other hand, 35 mol%
When the temperature exceeds the above, the Curie temperature is lowered though the inductance is high. Therefore, it is preferable that ZnO be about 15 to 35 mol%.

【0020】CuO:20 mol%以下 CuOは、焼成温度を下げるために加える。しかしなが
ら、20 mol%を超えると焼成温度は低下するがインダク
タンスが劣化するので、CuOは 20mol%以下程度とする
ことが好ましい。
CuO: 20 mol% or less CuO is added to lower the firing temperature. However, if it exceeds 20 mol%, the firing temperature is lowered, but the inductance is deteriorated. Therefore, it is preferable that CuO is set to about 20 mol% or less.

【0021】Bi203 :10 mol%以下 Bi203 は、CuOと同じく、焼成温度を低下する効果があ
る。しかしながら、10mol %を超えると焼成温度は低下
するものの、インダクタンスが劣化するため、Bi203
10mol%以下程度とすることが好ましい。残部はNiOで
ある。
Bi 2 O 3 : 10 mol% or less Bi 2 O 3 , like CuO, has the effect of lowering the firing temperature. However, although more than 10 mol% and calcination temperature is lowered, since the inductance is deteriorated, Bi 2 0 3 is
It is preferable that the content be about 10 mol% or less. The balance is NiO.

【0022】以上、好適フェライトとして、NiZn系フェ
ライトについて主に説明したが、これ以外のフェライト
であってもNiZn系フェライトと同等の特性を持つもので
あれば、いずれもが使用できるのはいうまでもない。
As described above, NiZn-based ferrite has been mainly described as a preferred ferrite. However, any other ferrite may be used as long as it has the same characteristics as NiZn-based ferrite. Nor.

【0023】次に、本発明の平面磁気素子の好適製造方
法について説明する。まず初めに、Si基板上にポリイミ
ド樹脂をスピンコートにより塗布したのち、熱硬化させ
て、保護被膜とする。この保護被膜の好適厚みは10μm
程度である。ついで、この上に、この上にコイル形成の
下地層として無電解めっきによりCu膜を 0.5μm 厚程度
に成膜する。ついで、この下地めっき層の上にフォトレ
ジストを塗布したのち、フォトエッチングにより所望の
コイル形状のレジストフレームを形成する。引き続き、
電気めっきにより、レジストフレーム内にCuを析出させ
たのち、レジストを剥離し、ついで化学エッチングによ
りコイル線間の下地めっき層を除去して、平面コイルを
保護被膜上に形成する。この時、コイル端子も併せて形
成することが好ましい。
Next, a preferred method of manufacturing the planar magnetic element of the present invention will be described. First, a polyimide resin is applied on a Si substrate by spin coating, and then thermally cured to form a protective film. The preferred thickness of this protective coating is 10 μm
It is about. Next, a Cu film is formed thereon by electroless plating to a thickness of about 0.5 μm as an underlayer for forming a coil. Next, a photoresist is applied on the base plating layer, and a desired coil-shaped resist frame is formed by photoetching. Continued
After depositing Cu in the resist frame by electroplating, the resist is peeled off, and then the underlying plating layer between the coil wires is removed by chemical etching to form a planar coil on the protective film. At this time, it is preferable to form the coil terminals together.

【0024】その後、コイル線間を含めて平面コイルの
上に、エポキシ樹脂やポリイミド樹脂などの樹脂とフェ
ライト粉末を混ぜた樹脂ペーストを印刷法にて塗布した
後、熱硬化処理を施して、上部フェライト磁性層を形成
する。この上部フェライト磁性層の形成に際し、樹脂ペ
ーストの硬化処理温度は 150〜400 ℃程度とすることが
好ましい。なお、場合によっては基板を付けたまま、あ
るいは裏面研磨を施してもよく、また基板の種類はSi以
外にもアルミナやセラミックスなどでもよい。
Thereafter, a resin paste obtained by mixing a resin such as an epoxy resin or a polyimide resin and a ferrite powder is applied by a printing method on the flat coil including the space between the coil wires, and then subjected to a thermosetting treatment, and the A ferrite magnetic layer is formed. In forming the upper ferrite magnetic layer, the curing temperature of the resin paste is preferably set to about 150 to 400 ° C. In some cases, the substrate may be polished with the substrate attached or the back surface may be polished. The type of the substrate may be alumina, ceramics, or the like other than Si.

【0025】[0025]

【実施例】実施例1 Si基板上に、ポリイミド樹脂をスピンコートにより塗布
したのち、熱硬化させて、厚み:10μm の保護被膜を形
成した。ついで、下地めっき層として 0.5μm厚のCu膜
を無電解めっき法で成膜した。ついで、この上にフォト
レジストを塗布したのち、フォトエッチングにより所望
のコイル形状のレジストフレームを形成した。その後、
電気めっきにより、レジストフレーム内にCuを析出させ
たのち、レジストを剥離し、ついで化学エッチングでコ
イル線間の下地めっきを除去して、平面コイルとした。
かくして、コイル線の厚みa:100 μm 、幅b:100 μ
m 、間隔c:30μm でターン数が14のスパイラル型の平
面コイルを作製した。
EXAMPLES Example 1 A polyimide resin was applied on a Si substrate by spin coating, and then thermally cured to form a protective film having a thickness of 10 μm. Next, a Cu film having a thickness of 0.5 μm was formed as an underlying plating layer by an electroless plating method. Then, after a photoresist was applied thereon, a desired coil-shaped resist frame was formed by photoetching. afterwards,
After depositing Cu in the resist frame by electroplating, the resist was peeled off, and the underlying plating between the coil wires was removed by chemical etching to obtain a planar coil.
Thus, the coil wire thickness a: 100 μm, width b: 100 μm
A spiral type planar coil having a number of turns of 14 and a length c of 30 μm was prepared.

【0026】その後、Fe2O3 :49 mol%、ZnO :23 mol
%、CuO :12 mol%、NiO :16 mol%の組成になるフェ
ライト磁粉を、硬化後のフェライト体積が表1に示す割
合になるように調合したエポキシ樹脂ペーストをを、ス
クリーン印刷法にてその上部に塗布し、150 ℃で熱硬化
させて、コイルトップからの膜厚:100 μm のフェライ
ト磁性層を形成した。ついで、基板と保護被膜間を剥が
して約 200μm の薄型受電コイルを作製した。送電コイ
ルは、ドラム型のNiZnフェライトで作製し、これを3MH
z の周波数で駆動したものに、受電側平面磁気素子を0.
5 mmのスペースで接触させて、そのときの結合係数kと
発生電圧を測定した。得られた結果を表1に併記する。
Then, Fe 2 O 3 : 49 mol%, ZnO: 23 mol
%, CuO: 12 mol%, NiO: 16 mol%, and an epoxy resin paste prepared so that the ferrite volume after curing becomes the ratio shown in Table 1 by a screen printing method. It was applied to the upper part and thermally cured at 150 ° C. to form a ferrite magnetic layer having a thickness of 100 μm from the coil top. Next, the substrate and the protective film were peeled off to produce a thin receiving coil of about 200 μm. The power transmission coil is made of drum type NiZn ferrite,
Driven at the frequency of z, the power receiving side planar magnetic element is set to 0.
Contact was made with a space of 5 mm, and the coupling coefficient k and the generated voltage at that time were measured. The results obtained are also shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】同表から明らかなように、結合係数kおよ
び発生電圧の両者が共に大きく、薄型化に寄与するのは
言うまでもなく、非接触充電に適していることが分か
る。
As is clear from the table, both the coupling coefficient k and the generated voltage are both large, which contributes to the reduction in thickness, and is suitable for non-contact charging.

【0029】実施例2 コイル線の厚みaおよび幅bを表2に示すように種々に
変化させること以外は、実施例1のNo.2と同じ製造条件
で、保護被膜、平面コイルおよびフェライト磁性層を形
成して薄型受電コイルを製造した。かくして得られた薄
型受電コイルの結合係数kと発生電圧について調べた結
果を、表2に併記する。
Example 2 Except that the thickness a and width b of the coil wire were variously changed as shown in Table 2, under the same manufacturing conditions as in No. 2 of Example 1, the protective film, the planar coil and the ferrite magnetic material were used. The layer was formed to produce a thin receiving coil. The results of examining the coupling coefficient k and the generated voltage of the thin receiving coil thus obtained are also shown in Table 2.

【0030】[0030]

【表2】 [Table 2]

【0031】同表から明らかなように、本発明に従い、
コイル線の厚みaおよび幅bを表皮厚みδの 0.5倍以
上、8倍以下の範囲に調整したものは、結合係数kはい
ずれも0.80、また発生電圧はいずれも 4.2Vであり、従
来よりも優れた結合係数kおよび発生電圧が得られてい
る。
As is clear from the table, according to the present invention,
When the thickness a and the width b of the coil wire are adjusted to a range of 0.5 times or more and 8 times or less of the skin thickness δ, the coupling coefficient k is 0.80 and the generated voltage is 4.2V. Excellent coupling coefficient k and generated voltage are obtained.

【0032】[0032]

【発明の効果】かくして、本発明によれば、薄型化は勿
論のこと、充電効率に優れた非接触充電器用平面磁気素
子を得ることができる。
As described above, according to the present invention, it is possible to obtain a flat magnetic element for a non-contact charger which is excellent in charging efficiency as well as being thin.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 コイル形状としてスパイラル型を採用した場
合の、本発明に従う代表的な平面磁気素子の平面図(a)
およびA−A断面図(b) である。
FIG. 1 is a plan view of a typical planar magnetic element according to the present invention when a spiral shape is adopted as a coil shape (a).
And AA sectional view (b).

【図2】 コイル線の断面形状を示した図である。FIG. 2 is a diagram showing a cross-sectional shape of a coil wire.

【符号の説明】[Explanation of symbols]

1 フェライト磁性層 2 平面コイル 3 端子 4 保護被膜 DESCRIPTION OF SYMBOLS 1 Ferrite magnetic layer 2 Planar coil 3 Terminal 4 Protective coating

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁性層の片面に、上面を露出させて平面
コイルを埋設した構造になる平面磁気素子であって、該
磁性層が磁性体体積密度:25%以上のフェライト磁性層
からなることを特徴とする非接触充電器用平面磁気素
子。
1. A planar magnetic element having a structure in which a planar coil is buried by exposing the upper surface on one side of a magnetic layer, wherein the magnetic layer comprises a ferrite magnetic layer having a magnetic substance volume density of 25% or more. A planar magnetic element for a non-contact charger characterized by the following.
【請求項2】 請求項1において、平面コイルのコイル
線の幅および厚みをそれぞれ、次式で示される表皮厚み
δの 0.5倍以上、8倍以下としたことを特徴とする非接
触充電器用平面磁気素子。 δ={2/(μ・σ・ω)}1/2 ここで、μ:透磁率 σ:電気伝導率(S) ω:角振動数(=2πf)
2. The flat surface for a non-contact charger according to claim 1, wherein the width and the thickness of the coil wire of the planar coil are respectively 0.5 times or more and 8 times or less of the skin thickness δ represented by the following equation. Magnetic element. δ = {2 / (μ · σ · ω)} 1/2 where μ: magnetic permeability σ: electric conductivity (S) ω: angular frequency (= 2πf)
JP2001102738A 2001-04-02 2001-04-02 Planar magnetic element for noncontact charger Pending JP2002299138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001102738A JP2002299138A (en) 2001-04-02 2001-04-02 Planar magnetic element for noncontact charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001102738A JP2002299138A (en) 2001-04-02 2001-04-02 Planar magnetic element for noncontact charger

Publications (1)

Publication Number Publication Date
JP2002299138A true JP2002299138A (en) 2002-10-11

Family

ID=18955892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001102738A Pending JP2002299138A (en) 2001-04-02 2001-04-02 Planar magnetic element for noncontact charger

Country Status (1)

Country Link
JP (1) JP2002299138A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047700A (en) * 2002-07-11 2004-02-12 Jfe Steel Kk Planar magnetic element for non-contact charger
KR100665114B1 (en) 2005-01-07 2007-01-09 삼성전기주식회사 Method for manufacturing planar magnetic inductor
JP2008166455A (en) * 2006-12-28 2008-07-17 Tdk Corp Coil device, and manufacturing method of coil device
WO2009081934A1 (en) * 2007-12-25 2009-07-02 Panasonic Electric Works Co., Ltd. Plane coil, and non-contact power transmission device using the same
KR100976158B1 (en) 2008-12-12 2010-08-16 주식회사 한림포스텍 Non-contact charging system of wireless power transmision with pt-pcb core having planar spiral core structure
KR100976061B1 (en) * 2006-10-05 2010-08-17 쇼와 히코키 고교 가부시키가이샤 Non-contact electric power supply device
CN102611210A (en) * 2012-03-27 2012-07-25 东南大学 Design method of disc resonator in wireless power transmission system
JP2012204440A (en) * 2011-03-24 2012-10-22 Nitto Denko Corp Magnetic element for wireless power transmission and manufacturing method of the same
CN103326473A (en) * 2012-03-23 2013-09-25 Lg伊诺特有限公司 Wireless power receiver and method of manufacturing the same
WO2013150784A1 (en) * 2012-04-02 2013-10-10 パナソニック株式会社 Coil unit, and power transmission device equipped with coil unit
WO2013150785A1 (en) * 2012-04-02 2013-10-10 パナソニック株式会社 Coil unit, and power transmission device equipped with coil unit
EP2744119A1 (en) * 2012-12-13 2014-06-18 LG Innotek Co., Ltd. Wireless power receiver and method of manufacturing the same
JP2014239644A (en) * 2008-09-08 2014-12-18 クゥアルコム・インコーポレイテッドQualcomm Incorporated Receive antenna arrangement for wireless power
CN104335297A (en) * 2012-04-30 2015-02-04 Lg伊诺特有限公司 Magnetic film having wireless charging radiator function, method of manufacturing the same, and wireless charging device using the same
CN105551769A (en) * 2014-10-22 2016-05-04 日本压着端子制造株式会社 Electrical connection apparatus
JP2016072957A (en) * 2014-09-26 2016-05-09 キヤノン・コンポーネンツ株式会社 Antenna device, power transmission device, and power reception device
US9553476B2 (en) 2012-03-23 2017-01-24 Lg Innotek Co., Ltd. Antenna assembly and method for manufacturing same
CN108447674A (en) * 2018-04-28 2018-08-24 深圳市信维通信股份有限公司 A kind of wireless charging transmitting-receiving module preparation process and wireless charging receive and dispatch module
US10804745B2 (en) 2008-12-12 2020-10-13 Ge Hybrid Technologies, Llc Non-contact power reception apparatus for non-contact charging and electronic settlement performed in a single portable terminal
US11296557B2 (en) 2017-05-30 2022-04-05 Wireless Advanced Vehicle Electrification, Llc Single feed multi-pad wireless charging
US11462943B2 (en) 2018-01-30 2022-10-04 Wireless Advanced Vehicle Electrification, Llc DC link charging of capacitor in a wireless power transfer pad

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047700A (en) * 2002-07-11 2004-02-12 Jfe Steel Kk Planar magnetic element for non-contact charger
KR100665114B1 (en) 2005-01-07 2007-01-09 삼성전기주식회사 Method for manufacturing planar magnetic inductor
US7480980B2 (en) 2005-01-07 2009-01-27 Samsung Electro-Mechanics Co., Ltd. Planar magnetic inductor and method for manufacturing the same
KR100976061B1 (en) * 2006-10-05 2010-08-17 쇼와 히코키 고교 가부시키가이샤 Non-contact electric power supply device
JP2008166455A (en) * 2006-12-28 2008-07-17 Tdk Corp Coil device, and manufacturing method of coil device
WO2009081934A1 (en) * 2007-12-25 2009-07-02 Panasonic Electric Works Co., Ltd. Plane coil, and non-contact power transmission device using the same
JP2009158598A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Planar coil and non-contact power transfer device using the same
JP2014239644A (en) * 2008-09-08 2014-12-18 クゥアルコム・インコーポレイテッドQualcomm Incorporated Receive antenna arrangement for wireless power
KR100976158B1 (en) 2008-12-12 2010-08-16 주식회사 한림포스텍 Non-contact charging system of wireless power transmision with pt-pcb core having planar spiral core structure
US11095163B2 (en) 2008-12-12 2021-08-17 Ge Hybrid Technologies, Llc Non-contact power reception apparatus for non-contact charging and electronic settlement performed in a single portable terminal
US10992184B2 (en) 2008-12-12 2021-04-27 Ge Hybrid Technologies, Llc Non-contact power reception apparatus for non-contact charging and electronic settlement performed in a single portable terminal
US10804745B2 (en) 2008-12-12 2020-10-13 Ge Hybrid Technologies, Llc Non-contact power reception apparatus for non-contact charging and electronic settlement performed in a single portable terminal
US11601014B2 (en) 2008-12-12 2023-03-07 Ge Hybrid Technologies, Llc Non-contact power reception apparatus for non-contact charging and electronic settlement performed in a single portable terminal
JP2012204440A (en) * 2011-03-24 2012-10-22 Nitto Denko Corp Magnetic element for wireless power transmission and manufacturing method of the same
US9251950B2 (en) 2011-03-24 2016-02-02 Nitto Denko Corporation Magnetic element for wireless power transmission and method for manufacturing same
US10256540B2 (en) 2012-03-23 2019-04-09 Lg Innotek Co., Ltd. Antenna assembly and method for manufacturing same
US9553476B2 (en) 2012-03-23 2017-01-24 Lg Innotek Co., Ltd. Antenna assembly and method for manufacturing same
TWI459418B (en) * 2012-03-23 2014-11-01 Lg伊諾特股份有限公司 Wireless power receiver and portable terminal comprising the same
US10270291B2 (en) 2012-03-23 2019-04-23 Lg Innotek Co., Ltd. Wireless power receiver and method of manufacturing the same
CN103326473A (en) * 2012-03-23 2013-09-25 Lg伊诺特有限公司 Wireless power receiver and method of manufacturing the same
JP2015228521A (en) * 2012-03-23 2015-12-17 エルジー イノテック カンパニー リミテッド Wireless power receiver and terminal
JP2013201415A (en) * 2012-03-23 2013-10-03 Lg Innotek Co Ltd Wireless power receiver and method of manufacturing the same
US10277071B2 (en) 2012-03-23 2019-04-30 Lg Innotek Co., Ltd. Wireless power receiver and method of manufacturing the same
US10804740B2 (en) 2012-03-23 2020-10-13 Lg Innotek Co., Ltd. Wireless power receiver and method of manufacturing the same
US10673141B2 (en) 2012-03-23 2020-06-02 Lg Innotek Co., Ltd. Antenna assembly and method for manufacturing same
US9806565B2 (en) 2012-03-23 2017-10-31 Lg Innotek Co., Ltd. Wireless power receiver and method of manufacturing the same
CN102611210A (en) * 2012-03-27 2012-07-25 东南大学 Design method of disc resonator in wireless power transmission system
WO2013150784A1 (en) * 2012-04-02 2013-10-10 パナソニック株式会社 Coil unit, and power transmission device equipped with coil unit
WO2013150785A1 (en) * 2012-04-02 2013-10-10 パナソニック株式会社 Coil unit, and power transmission device equipped with coil unit
CN104335297B (en) * 2012-04-30 2018-02-09 Lg伊诺特有限公司 Magnetic film and its manufacture method and the wireless charging device using magnetic film with wireless charging radiation body function
CN104335297A (en) * 2012-04-30 2015-02-04 Lg伊诺特有限公司 Magnetic film having wireless charging radiator function, method of manufacturing the same, and wireless charging device using the same
US9697945B2 (en) 2012-04-30 2017-07-04 Lg Innotek Co., Ltd. Magnetic film having wireless charging radiator condition, method of manufacturing the same, and wireless charging device using the same
EP2845204A4 (en) * 2012-04-30 2016-03-30 Lg Innotek Co Ltd Magnetic film having wireless charging radiator function, method of manufacturing the same, and wireless charging device using the same
EP2744119A1 (en) * 2012-12-13 2014-06-18 LG Innotek Co., Ltd. Wireless power receiver and method of manufacturing the same
CN103872790A (en) * 2012-12-13 2014-06-18 Lg伊诺特有限公司 Wireless power receiver and method of manufacturing the same
US9653208B2 (en) 2012-12-13 2017-05-16 Lg Innotek Co., Ltd. Wireless power receiver and method of manufacturing the same
CN103872790B (en) * 2012-12-13 2017-03-01 Lg伊诺特有限公司 Wireless power receptor and the method manufacturing wireless power receptor
KR102019080B1 (en) * 2012-12-13 2019-11-04 엘지이노텍 주식회사 Wireless power receiver and method of manufacturing the same
KR20140076994A (en) * 2012-12-13 2014-06-23 엘지이노텍 주식회사 Wireless power receiver and method of manufacturing the same
JP2016072957A (en) * 2014-09-26 2016-05-09 キヤノン・コンポーネンツ株式会社 Antenna device, power transmission device, and power reception device
CN105551769A (en) * 2014-10-22 2016-05-04 日本压着端子制造株式会社 Electrical connection apparatus
CN105551769B (en) * 2014-10-22 2018-11-20 日本压着端子制造株式会社 Arrangements of electric connection
US11296557B2 (en) 2017-05-30 2022-04-05 Wireless Advanced Vehicle Electrification, Llc Single feed multi-pad wireless charging
US11621586B2 (en) 2017-05-30 2023-04-04 Wireless Advanced Vehicle Electrification, Llc Single feed multi-pad wireless charging
US11462943B2 (en) 2018-01-30 2022-10-04 Wireless Advanced Vehicle Electrification, Llc DC link charging of capacitor in a wireless power transfer pad
CN108447674A (en) * 2018-04-28 2018-08-24 深圳市信维通信股份有限公司 A kind of wireless charging transmitting-receiving module preparation process and wireless charging receive and dispatch module

Similar Documents

Publication Publication Date Title
JP2002299138A (en) Planar magnetic element for noncontact charger
JP2004047701A (en) Planar magnetic element for noncontact charger
EP3179489B1 (en) Power inductor
US6404317B1 (en) Planar magnetic element
JP4043306B2 (en) Planar magnetic element
EP2980949A1 (en) Thin-film coil component and charging apparatus and method for manufacturing the component
JP2004047700A (en) Planar magnetic element for non-contact charger
WO2014017351A1 (en) Coil module and power receiver
CN106605279A (en) Power inductor
JP2003173921A (en) Planar magnetic element for non-contact charger
JP4711593B2 (en) Planar magnetic element
JP2008294085A (en) Planar magnetic element, and electronic apparatus employing the same
JP2005109173A (en) Planar magnetic element for non-contact charger
JP2001267155A (en) Planar magnetic element
JP4420586B2 (en) Planar magnetic element and switching power supply
JPH05275247A (en) Thin inductor/transformer
JP3540733B2 (en) Planar magnetic element and semiconductor device using the same
JP2001244124A (en) Planar magnetic element and switching power supply
JP2007081349A (en) Inductor
JP2002222712A (en) Lc composite device
JP2003332163A (en) Flat magnetic element
JP7022979B2 (en) Transmission coil for non-contact power supply, its manufacturing method, and non-contact power supply device
JP2003133136A (en) Magnetic part and its manufacturing method
JP2002299120A (en) Planar magnetic element
KR102560966B1 (en) Method of manufaturing wireless charging module coated with magnetic material on the coil surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051018