JP7022979B2 - Transmission coil for non-contact power supply, its manufacturing method, and non-contact power supply device - Google Patents

Transmission coil for non-contact power supply, its manufacturing method, and non-contact power supply device Download PDF

Info

Publication number
JP7022979B2
JP7022979B2 JP2017243366A JP2017243366A JP7022979B2 JP 7022979 B2 JP7022979 B2 JP 7022979B2 JP 2017243366 A JP2017243366 A JP 2017243366A JP 2017243366 A JP2017243366 A JP 2017243366A JP 7022979 B2 JP7022979 B2 JP 7022979B2
Authority
JP
Japan
Prior art keywords
coil
magnetic film
transmission coil
coil conductor
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017243366A
Other languages
Japanese (ja)
Other versions
JP2019110252A (en
Inventor
勉 水野
穎剛 卜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2017243366A priority Critical patent/JP7022979B2/en
Publication of JP2019110252A publication Critical patent/JP2019110252A/en
Application granted granted Critical
Publication of JP7022979B2 publication Critical patent/JP7022979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thin Magnetic Films (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Details Of Aerials (AREA)

Description

本発明は、携帯電子機器等に非接触で給電する非接触給電用の伝送コイルおよびその製造方法に関する。さらにはそれを用いた非接触給電装置に関する。 The present invention relates to a transmission coil for non-contact power feeding that supplies power to a portable electronic device or the like in a non-contact manner, and a method for manufacturing the same. Further, the present invention relates to a non-contact power feeding device using the same.

近年、二次電池を搭載する携帯通信端末やデジタルカメラ等の携帯電子機器への給電装置として、送電用の1次コイルと受電用の2次コイルの間の電磁誘導を利用した非接触給電装置が提案されている。非接触給電装置では、送電コイルに高周波の交流電流を通電し、送電コイルから発生する高周波磁界を受電コイルが受け取ることで、非接触で電力送電する。このような非接触給電装置は、小型であること、特に薄型であることが要求される。そこで、送電用・受電用の伝送コイルとして渦巻型の平面コイルが使用されている。 In recent years, as a power supply device for mobile electronic devices such as mobile communication terminals and digital cameras equipped with secondary batteries, a non-contact power supply device that uses electromagnetic induction between the primary coil for power transmission and the secondary coil for power reception. Has been proposed. In the non-contact power feeding device, a high-frequency alternating current is applied to the power transmission coil, and the high-frequency magnetic field generated from the power transmission coil is received by the power receiving coil to transmit power in a non-contact manner. Such a non-contact power feeding device is required to be small, particularly thin. Therefore, a spiral flat coil is used as a transmission coil for power transmission and reception.

薄型コイルの形成技術として、例えば、特許文献1には、導電性インクの印刷パターンやプリント基板上に薄膜形成、表面処理によって形成された導電性パターンをコイルに使用することが記載されている。 As a technique for forming a thin coil, for example, Patent Document 1 describes that a print pattern of a conductive ink, a thin film formed on a printed circuit board, and a conductive pattern formed by surface treatment are used for the coil.

しかし、薄膜コイルにおいては、コイル導体厚が薄いため、渦電流による表皮効果や近接効果によってコイル導体の両端部で磁束線が集中し電流が集中する。特に、コイル膜厚がコイルの表皮深さと同程度の場合、コイル導体の側面から表皮深さの領域で電流集中が顕著である。このためコイルの交流抵抗が増大し電力伝送効率が低下する問題があった。 However, in the thin coil, since the coil conductor is thin, the magnetic flux lines are concentrated at both ends of the coil conductor due to the skin effect and the proximity effect due to the eddy current, and the current is concentrated. In particular, when the coil film thickness is about the same as the skin depth of the coil, the current concentration is remarkable in the region from the side surface of the coil conductor to the skin depth. Therefore, there is a problem that the AC resistance of the coil increases and the power transmission efficiency decreases.

このような表皮効果や近接効果による抵抗増大の対策として、例えば、特許文献2には、撚り線(リッツ線)のような絶縁された電線からなるコイルを使用することが記載されている。また、誘導加熱コイルに関する特許文献3では、コイル導体間に磁性体を挿入して配置し高周波損失を低減することが記載されている。 As a measure against an increase in resistance due to such a skin effect and a proximity effect, for example, Patent Document 2 describes the use of a coil made of an insulated electric wire such as a stranded wire (Ritz wire). Further, Patent Document 3 relating to an induction heating coil describes that a magnetic material is inserted and arranged between coil conductors to reduce high frequency loss.

しかし、特許文献2のリッツ線は電線であり、また特許文献3の磁性体はフェライトであって、何れもバルクであるため小型化・薄型化の要請に十分応えられるものではなかった。さらに、特許文献3のフェライトについては、焼結体であるため振動・落下などによる衝撃に弱いという欠点も有していた。 However, the litz wire of Patent Document 2 is an electric wire, and the magnetic material of Patent Document 3 is ferrite, both of which are bulk, so that the demand for miniaturization and thinning cannot be sufficiently met. Further, the ferrite of Patent Document 3 has a drawback that it is vulnerable to impacts such as vibration and dropping because it is a sintered body.

特開2016-59323号公報Japanese Unexamined Patent Publication No. 2016-59323 特開2006-42519号公報Japanese Unexamined Patent Publication No. 2006-42519 WO2011/030539号公報WO2011 / 030539A

そこで、本発明は、上記事情に鑑み、携帯電子機器において、小型化・薄型化を可能とし、かつ表皮効果や近接効果による高周波損失を低減して交流抵抗の増大を抑制できる非接触給電用の伝送コイルを提供することを目的とする。さらにこの伝送コイルを用いた高伝送効率の非接触給電装置を提供することを目的とする。 Therefore, in view of the above circumstances, the present invention is for non-contact power feeding that enables miniaturization and thinning of portable electronic devices, reduces high frequency loss due to skin effect and proximity effect, and suppresses increase in AC resistance. It is an object of the present invention to provide a transmission coil. Further, it is an object of the present invention to provide a non-contact power feeding device having high transmission efficiency using this transmission coil.

第1の発明の非接触給電用伝送コイルは、基板と、前記基板上に配置され渦巻状に巻回されたコイルとを備えた非接触給電用伝送コイルであって、前記コイルのコイル導体断面の両側面および両端部上に第一磁性膜を設け、前記コイル導体断面の上面において前記両端部以外の部分は磁性膜が覆われていないことを特徴とする。
The non-contact power feeding transmission coil of the first invention is a non-contact power feeding transmission coil including a substrate and a coil arranged on the substrate and wound in a spiral shape, and is a coil conductor cross section of the coil. The first magnetic film is provided on both side surfaces and both ends of the coil conductor, and the magnetic film is not covered on the upper surface of the coil conductor cross section other than the both ends .

第2の発明の非接触給電用伝送コイルは、第1の発明に係る非接触給電用伝送コイルにおいて、前記基板の裏面の前記第一磁性膜に対向する位置に第二磁性膜を設けたことを特徴とする。 In the non-contact power feeding transmission coil according to the first invention, the non-contact power feeding transmission coil according to the second invention is provided with a second magnetic film at a position facing the first magnetic film on the back surface of the substrate. It is characterized by.

第3の発明の非接触給電用伝送コイルは、第2の発明に係る非接触給電用伝送コイルにおいて、前記第一磁性膜における前記コイル導体断面の片端部上のコイル導体をかぶる部分の長さと、前記第二磁性膜における前記基板を介して対向する磁性膜部分の長さが略等しいことを特徴とする。
The non-contact power feeding transmission coil according to the third invention has the length of a portion of the first magnetic film that covers the coil conductor on one end of the coil conductor cross section in the non-contact power feeding transmission coil according to the second invention. , The second magnetic film is characterized in that the lengths of the magnetic film portions facing each other via the substrate are substantially equal .

第4の発明の非接触給電用伝送コイルは、第1から第3のいずれか一つの発明に係る非接触給電用伝送コイルにおいて、前記第一磁性膜における前記コイル導体断面の片端部上の磁性膜部分の長さがコイル導体の表皮深さの1倍以上20倍以下であることを特徴とする。
The non-contact power feeding transmission coil of the fourth invention is the non-contact power feeding transmission coil according to any one of the first to third inventions, and the magnetism on one end of the coil conductor cross section in the first magnetic film. It is characterized in that the length of the film portion is 1 time or more and 20 times or less the skin depth of the coil conductor .

第5の発明の非接触給電用伝送コイルは、第1から第4のいずれか一つの発明に係る非接触給電用伝送コイルにおいて、前記基板がフレキシブル基板であることを特徴とする。
The non-contact power supply transmission coil according to the fifth aspect of the invention is the non-contact power supply transmission coil according to any one of the first to fourth aspects , wherein the substrate is a flexible substrate. do.

第6の発明の非接触給電装置は、第1から第のいずれか1つの発明に係る非接触給電用伝送コイルを、送電コイルとして又は送電コイルおよび受電コイルとして用いることを特徴とする。
The non-contact power feeding device according to the sixth aspect of the invention is characterized in that the non-contact power feeding transmission coil according to any one of the first to fifth inventions is used as a power transmission coil or as a power transmission coil and a power receiving coil.

第1の発明によれば、コイル導体断面の両側面だけでなく、コイル導体断面の両端部上にも薄膜の磁性膜を設けているので、磁束線がコイル導体を迂回して分布するようになる。このためコイル導体断面の両端部での電流集中が緩和され、コイルの交流抵抗を低減できる。 According to the first invention, since the thin film magnetic film is provided not only on both side surfaces of the coil conductor cross section but also on both ends of the coil conductor cross section, the magnetic flux lines are distributed so as to bypass the coil conductor. Become. Therefore, the current concentration at both ends of the coil conductor cross section is relaxed, and the AC resistance of the coil can be reduced.

第2の発明によれば、コイル導体の両端部上だけでなく、基板の裏面側にも薄膜の磁性膜を設けているので、さらに磁束線がコイル導体を迂回しやすくなる。これにより、電流集中が緩和され交流抵抗をさらに低くできる。 According to the second invention, since the thin film magnetic film is provided not only on both ends of the coil conductor but also on the back surface side of the substrate, the magnetic flux line can easily bypass the coil conductor. As a result, the current concentration is relaxed and the AC resistance can be further lowered.

第3の発明によれば、コイル導体断面の片端部上のコイル導体をかぶる部分の長さと、第二磁性膜における基板を介して対向する磁性膜部分の長さが略等しくすることで、より効率的に交流抵抗を低減できる。
According to the third invention, the length of the portion covering the coil conductor on one end of the cross section of the coil conductor is made substantially equal to the length of the magnetic film portion facing the second magnetic film via the substrate. AC resistance can be reduced more efficiently .

第4の発明によれば、コイル導体断面の片端部上の磁性膜部分の長さを表皮深さの1倍以上20倍以下とすることで、コイル導体断面の側面から表皮深さまでの磁束線が集中する部分を磁性膜で覆うことができ、効率的に磁束線をコイル導体から迂回させて交流抵抗を低減できる。
According to the fourth invention, by setting the length of the magnetic film portion on one end of the coil conductor cross section to be 1 time or more and 20 times or less the skin depth, the magnetic flux line from the side surface of the coil conductor cross section to the skin depth. The part where the magnetic flux is concentrated can be covered with a magnetic film, and the magnetic flux line can be efficiently diverted from the coil conductor to reduce the AC resistance .

第5の発明によれば、基板にフレキシブル基板を用いることで、非接触給電用伝送コイルの小型化・薄型化を容易に実現でき、さらにその可撓性から耐衝撃性を向上させることができる。


According to the fifth invention, by using a flexible substrate as the substrate, it is possible to easily realize the miniaturization and thinning of the transmission coil for non-contact power feeding, and further improve the impact resistance due to its flexibility. ..


第6の発明によれば、表皮効果や近接効果による高周波損失を低減し低コストで製造できる伝送コイルを使用するので、伝送効率が高くかつ低コストの非接触給電装置を提供できる。 According to the sixth invention, since the transmission coil that can be manufactured at low cost by reducing the high frequency loss due to the skin effect and the proximity effect is used, it is possible to provide a non-contact power feeding device having high transmission efficiency and low cost.

第1及び第2の実施の形態に係る伝送コイルの平面概略図(磁性膜の部分は省略)である。It is a plan view (the part of a magnetic film is omitted) of the transmission coil which concerns on 1st and 2nd Embodiment. 第1の実施の形態に係る伝送コイルの断面概略図である。It is sectional drawing of the transmission coil which concerns on 1st Embodiment. 第2の実施の形態に係る伝送コイルの断面概略図である。It is sectional drawing of the transmission coil which concerns on 2nd Embodiment. 磁性材塗布による伝送コイルの磁性膜の製造プロセスを説明する図である。It is a figure explaining the manufacturing process of the magnetic film of a transmission coil by applying a magnetic material. 磁性材めっきによる伝送コイルの磁性膜の製造プロセスを説明する図である。It is a figure explaining the manufacturing process of the magnetic film of a transmission coil by magnetic material plating. 磁性材スパッタによる伝送コイルの磁性膜の製造プロセスを説明する図である。It is a figure explaining the manufacturing process of the magnetic film of a transmission coil by magnetic material sputtering. 一実施の形態に係る非接触給電装置を説明する回路ブロック図である。It is a circuit block diagram explaining the non-contact power feeding apparatus which concerns on one Embodiment. コイルの計算モデルを説明する図(平面図)である。It is a figure (plan view) explaining the calculation model of a coil. 第一磁性膜のみを有する伝送コイルの断面概略図である。It is sectional drawing of the transmission coil which has only the first magnetic film. 第一磁性膜のみを有する伝送コイルにおける、交流抵抗とD1、L1との関係を示す図である。It is a figure which shows the relationship between the AC resistance and D1 and L1 in the transmission coil which has only the first magnetic film. 第一磁性膜及び第二磁性膜を有する伝送コイルの断面概略図である。It is sectional drawing of the transmission coil which has the 1st magnetic film and the 2nd magnetic film. 第一磁性膜及び第二磁性膜を有する伝送コイルにおける、交流抵抗とD1、L1との関係を示す図である。It is a figure which shows the relationship between the AC resistance and D1 and L1 in the transmission coil which has the 1st magnetic film and the 2nd magnetic film. 磁性膜をコイル導体断面の両側面にのみ配置した伝送コイルの断面概略図である。It is sectional drawing of the transmission coil which arranged the magnetic film only on both side surface of the coil conductor cross section. 磁性膜をコイル導体断面の両側面にのみ配置した伝送コイルにおける、交流抵抗とD2との関係を示す図である。It is a figure which shows the relationship between AC resistance and D2 in the transmission coil which arranged the magnetic film only on both side surfaces of the coil conductor cross section.

本発明の実施形態に係る伝送コイルおよびその製造方法ならびに伝送コイルを用いた非接触給電装置について、図面に基づいて説明する。 A transmission coil according to an embodiment of the present invention, a method for manufacturing the same, and a non-contact power feeding device using the transmission coil will be described with reference to the drawings.

<1.伝送コイル>
(第1の実施の形態)
図1は、第1及び第2の実施の形態に係る伝送コイルのコイル部分のみの平面概略図である。磁性膜の部分については省略して図示していない。伝送コイル1は、基板2上にアルミニウム、銅又はマンガニン(登録商標)(銅、マンガン及びニッケルの合金)の金属からなるコイル導体11が渦巻状に巻回された平面コイル(巻き数は3巻)を備えている。
<1. Transmission coil>
(First Embodiment)
FIG. 1 is a schematic plan view of only the coil portion of the transmission coil according to the first and second embodiments. The magnetic film portion is not shown by omission. The transmission coil 1 is a flat coil (three turns) in which a coil conductor 11 made of a metal of aluminum, copper or manganin (registered trademark) (alloy of copper, manganese and nickel) is spirally wound on a substrate 2. ) Is provided.

図2は、第1の実施の形態に係る伝送コイルの断面概略図であり、図1のA-A′断面に磁性膜を追加して図示したものである。基板2上にコイル導体11を備え、さらに各巻のコイル導体11において断面の両側面および両端部上に第一磁性膜31を設けている。第一磁性膜31は、FeSiBCr等の鉄系アモルファス磁性粉を含有する磁性コンポジット材やNi系、Fe系の磁性薄膜などで構成することができる。 FIG. 2 is a schematic cross-sectional view of the transmission coil according to the first embodiment, and is shown by adding a magnetic film to the cross section of AA'in FIG. A coil conductor 11 is provided on the substrate 2, and a first magnetic film 31 is provided on both side surfaces and both ends of the cross section of the coil conductor 11 of each winding. The first magnetic film 31 can be made of a magnetic composite material containing an iron-based amorphous magnetic powder such as FeSiBCr, a Ni-based or Fe-based magnetic thin film, or the like.

コイル導体11に高周波の交流電流を流すとコイル導体11の周囲に磁束線を発生させるが、表皮効果及び近接効果によって磁束線はコイル導体断面の端部で集中しコイル導体11を貫通する。このため、コイル導体11の端部では電流が集中し当該端部での抵抗が増加する。この影響は、コイル導体11が薄く、断面のアスペクト比が大きいほど大きい。 When a high-frequency alternating current is passed through the coil conductor 11, magnetic flux lines are generated around the coil conductor 11, but due to the skin effect and proximity effect, the magnetic flux lines are concentrated at the end of the coil conductor cross section and penetrate the coil conductor 11. Therefore, the current is concentrated at the end of the coil conductor 11, and the resistance at the end increases. This effect is greater as the coil conductor 11 is thinner and the aspect ratio of the cross section is larger.

これに対し、本実施の形態では、コイル導体断面の両端部の両側面及びその上に第一磁性膜31を配置する。すなわち、第一磁性膜31をコイル導体の両端部でコイル導体を覆いかぶすように配置する。これにより、コイル導体11の周囲の磁束線は比透磁率の高い第一磁性膜31に吸い寄せられ誘導されコイル導体11を迂回して分布する。よって、本実施の形態においては、コイル導体11の両端部での磁束線の集中や電流集中の問題を解消でき、交流抵抗の増加を抑制できる。 On the other hand, in the present embodiment, the first magnetic film 31 is arranged on both side surfaces of both ends of the coil conductor cross section and on the both sides thereof. That is, the first magnetic film 31 is arranged so as to cover the coil conductor at both ends of the coil conductor. As a result, the magnetic flux lines around the coil conductor 11 are attracted to and guided by the first magnetic film 31 having a high relative magnetic permeability, and are distributed around the coil conductor 11. Therefore, in the present embodiment, the problems of the concentration of magnetic flux lines and the concentration of current at both ends of the coil conductor 11 can be solved, and the increase in AC resistance can be suppressed.

また、第一磁性膜31のコイル導体11に覆いかぶさる磁性膜部分の長さが長い場合、コイル導体11の周囲を流れる磁束線は当該磁性膜部分に吸い寄せられるが、磁性膜部分の比透磁率が小さいと、磁性膜部分からコイル導体11に磁束線が漏れてコイル導体11を貫通し易くなる。このため、コイル導体11内で電流集中が起き交流抵抗も高くなる。この影響は、コイル導体11の膜厚が表皮深さの程度に薄いとき大きい。コイル導体断面の側面から概ね表皮深さの距離の部分で電流集中が顕著に起きるからである。 Further, when the length of the magnetic film portion covering the coil conductor 11 of the first magnetic film 31 is long, the magnetic flux lines flowing around the coil conductor 11 are attracted to the magnetic film portion, but the relative permeability of the magnetic film portion is high. If is small, the magnetic flux line leaks from the magnetic film portion to the coil conductor 11 and easily penetrates the coil conductor 11. Therefore, current concentration occurs in the coil conductor 11, and the AC resistance also increases. This effect is large when the film thickness of the coil conductor 11 is as thin as the skin depth. This is because the current concentration occurs remarkably at a distance from the side surface of the coil conductor cross section to the depth of the skin.

そこで、効率的に磁束線を吸い寄せ誘導するため、コイル導体断面の片端部上の第一磁性膜31の磁性膜部分の長さL1は、表皮深さの1倍以上20倍以下であることが好ましい。電流集中が起きるコイル断面両端のコイルの表皮深さの部分を磁性膜部分で完全に覆うことができ、磁性膜部分の長さL1が表皮深さの20倍を超えると当該磁性膜部分からの磁束線の漏れの影響が大きくなるからである。さらに好ましくは、磁性膜部分の長さL1は表皮深さの3倍以上12倍以下である。 Therefore, in order to efficiently attract and guide the magnetic flux lines, the length L1 of the magnetic film portion of the first magnetic film 31 on one end of the coil conductor cross section may be 1 time or more and 20 times or less the skin depth. preferable. The magnetic film portion can completely cover the skin depth of the coil at both ends of the coil cross section where current concentration occurs, and when the length L1 of the magnetic film portion exceeds 20 times the skin depth, the magnetic film portion is used. This is because the influence of the leakage of the magnetic flux line becomes large. More preferably, the length L1 of the magnetic film portion is 3 times or more and 12 times or less the depth of the epidermis.

なお表皮深さdは、次の式で表すことができる。 The skin depth d can be expressed by the following equation.

Figure 0007022979000001
ρ:コイル導体の電気抵抗率
ω:電流の角周波数(=2π×周波数f)
μ:コイル導体の透磁率(=コイル導体の比透磁率μr×真空の透磁率μ
Figure 0007022979000001
ρ: Electrical resistivity of coil conductor ω: Angular frequency of current (= 2π × frequency f)
μ: Magnetic permeability of coil conductor (= relative magnetic permeability of coil conductor μr × magnetic permeability of vacuum μ 0 )

ここで、ρ=1.72×10-8Ωm(銅を想定)、μ=4π×10-7H/m(μr=1に相当)とすると、f=85kHzのとき表皮深さd=226.4μm、f=1MHzのとき表皮深さd=66μm、f=13.56MHzのとき表皮深さd=17.9μmである。 Here, assuming that ρ = 1.72 × 10-8 Ωm (assuming copper) and μ = 4π × 10-7 H / m (corresponding to μr = 1), the skin depth d = 226 when f = 85 kHz. When .4 μm and f = 1 MHz, the skin depth d = 66 μm, and when f = 13.56 MHz, the skin depth d = 17.9 μm.

さらに、第一磁性膜31の比透磁率についても、磁束線の漏れ軽減の観点から、比透磁率は2以上10,000以下であることが好ましく、さらに好ましくは10以上10,000以下である。 Further, regarding the specific magnetic permeability of the first magnetic film 31, the specific magnetic permeability is preferably 2 or more and 10,000 or less, and more preferably 10 or more and 10,000 or less, from the viewpoint of reducing leakage of magnetic flux lines. ..

(第2の実施の形態)
図3は、第2の実施の形態に係る伝送コイルの断面概略図である。第2の実施の形態に係る伝送コイル(磁性膜を省略したもの)の平面概略図は、図1と同じであり、図3は、平面概略図の図1のA-A′断面に磁性膜を追加して図示したものである。
(Second embodiment)
FIG. 3 is a schematic cross-sectional view of the transmission coil according to the second embodiment. The schematic plan view of the transmission coil (without the magnetic film) according to the second embodiment is the same as that in FIG. 1, and FIG. 3 shows a magnetic film on the AA'cross section of FIG. 1 in the schematic plan view. Is added and illustrated.

第2の実施の形態は、第1の実施の形態である伝送コイルにおいて、基板2を介して第一磁性膜31に対向する基板2の裏面にも、断面矩形の第二磁性膜32を追加し配備したものである。第一磁性膜31と第二磁性膜32について、コイル導体11への磁束線の漏れを抑える観点から、基板2を介して互いに対向する磁性膜部分のそれぞれの長さは略等しい(すなわち、第一磁性膜31におけるコイル導体断面上のコイル導体をかぶる部分の長さL1と、第二磁性膜32における基板2を介して対向する磁性膜部分の長さL2と略等しい)ことが好ましい。 In the second embodiment, in the transmission coil according to the first embodiment, a second magnetic film 32 having a rectangular cross section is added to the back surface of the substrate 2 facing the first magnetic film 31 via the substrate 2. It was deployed. With respect to the first magnetic film 31 and the second magnetic film 32, the lengths of the magnetic film portions facing each other via the substrate 2 are substantially equal (that is, the first) from the viewpoint of suppressing leakage of magnetic flux lines to the coil conductor 11. It is preferable that the length L1 of the portion of the magnetic film 31 that covers the coil conductor on the cross section of the coil conductor is substantially equal to the length L2 of the magnetic film portion facing the second magnetic film 32 via the substrate 2).

第二磁性膜32は、第一磁性体31と同様にアモルファス磁性粉を含有する磁性コンポジット材やNi系、Fe系の磁性薄膜などで構成することができる。また、比透磁率についても、第一磁性膜31と同様に、第二磁性膜32の比透磁率は2以上10,000以下であることが好ましく、さらに好ましくは10以上10,000以下である。 Like the first magnetic material 31, the second magnetic film 32 can be made of a magnetic composite material containing an amorphous magnetic powder, a Ni-based or Fe-based magnetic thin film, or the like. As for the specific magnetic permeability, the specific magnetic permeability of the second magnetic film 32 is preferably 2 or more and 10,000 or less, and more preferably 10 or more and 10,000 or less, as in the case of the first magnetic film 31. ..

第2の実施の形態では、第一磁性膜31の他に第二磁性膜32をコイル導体11の両端部に配備しているため、コイルの交流抵抗の増大をさらに抑制できる。 In the second embodiment, since the second magnetic film 32 is arranged at both ends of the coil conductor 11 in addition to the first magnetic film 31, it is possible to further suppress the increase in the AC resistance of the coil.

(第3の実施の形態)
第3の実施の形態に係る伝送コイルは、第1又は第2の実施の形態に係る伝送コイルにおいて、基板にフレキシブル基板を用いたものである。薄いフレキシブル基板を使用することにより、基板を含む伝送コイルの厚みさらに薄くでき、伝送コイルの小型化・薄型化を実現できる。さらにフレキシブル基板は可撓性を有するので、伝送コイルについて優れた耐衝撃性を実現することができる。
(Third embodiment)
The transmission coil according to the third embodiment is a transmission coil according to the first or second embodiment in which a flexible substrate is used as a substrate. By using a thin flexible substrate, the thickness of the transmission coil including the substrate can be further reduced, and the transmission coil can be made smaller and thinner. Further, since the flexible substrate has flexibility, excellent impact resistance can be realized for the transmission coil.

<2.伝送コイルの製造方法>
(磁性材塗布による磁性膜の製造プロセス)
図4は、一実施の形態に係る伝送コイルの製造プロセス、特に磁性材塗布による第一磁性膜の製造プロセスを説明する図である。渦巻状に3巻に巻回され形成された薄膜の伝送コイルの断面を図示している。
<2. Transmission coil manufacturing method>
(Manufacturing process of magnetic film by applying magnetic material)
FIG. 4 is a diagram illustrating a transmission coil manufacturing process according to an embodiment, particularly a first magnetic film manufacturing process by applying a magnetic material. The cross section of the transmission coil of the thin film formed by spirally winding into three turns is shown.

第一磁性膜は、次のように製造する。すなわち、(a)基板2上に貼り付けられた所定膜厚の銅箔をエッチング等で所望のサイズの渦巻状にパターニングしコイル導体11を形成する。そして、当該基板2上にレジストを塗布し又はレジストフィルムを貼り付け、所定の膜厚のレジスト41の層を形成する。(b)その後、フォトマスクを介してレジストに紫外線を露光(照射)し、現像・水洗してレジスト41をパターニングし、コイル導体11の両端部にレジストの開口を設ける。(c)さらに、FeSiBCr等の鉄系アモルファス磁性粉をエポキシ樹脂又はシリコン樹脂に含有させた磁性材42を基板2の表面に塗布し、磁性材42をレジストの開口部に充填する。(d)そして、スキージ等で表面を平に仕上げ、レジスト41上の不要な磁性材42を除去し、(e)その後、磁性材42をエポキシ樹脂のときは200℃、シリコン樹脂のときは120℃で加熱成形して、レジストを溶剤でリムーブする。これにより、コイル導体11の両端部の側面及び上面に所定の形状の第一磁性膜を製造する。 The first magnetic film is manufactured as follows. That is, (a) a copper foil having a predetermined film thickness attached on the substrate 2 is patterned in a spiral shape of a desired size by etching or the like to form the coil conductor 11. Then, a resist is applied or a resist film is attached onto the substrate 2 to form a layer of the resist 41 having a predetermined film thickness. (B) After that, the resist is exposed (irradiated) with ultraviolet rays via a photomask, developed and washed with water to pattern the resist 41, and openings of the resist are provided at both ends of the coil conductor 11. (C) Further, a magnetic material 42 containing an iron-based amorphous magnetic powder such as FeSiBCr in an epoxy resin or a silicon resin is applied to the surface of the substrate 2, and the magnetic material 42 is filled in the opening of the resist. (D) Then, the surface is flattened with a squeegee or the like to remove the unnecessary magnetic material 42 on the resist 41. (e) After that, the magnetic material 42 is 200 ° C. when it is an epoxy resin and 120 when it is a silicon resin. Heat mold at ° C and remove the resist with solvent. As a result, a first magnetic film having a predetermined shape is manufactured on the side surfaces and the upper surface of both ends of the coil conductor 11.

なお(e)において、レジストをリムーブせず、そのまま残しておくこともできる。また、基板2はフレキシブル基板であってもよい。 In (e), the resist can be left as it is without being removed. Further, the substrate 2 may be a flexible substrate.

上に述べた第一磁性膜の製造方法は、第二磁性膜の製造プロセスにも応用できる。すなわち、上述の製造プロセスにより第一磁性膜を形成した基板の裏面に、上述の製造プロセスと同様に、レジストを塗布又はレジストフィルムを貼り付けパターニングし、開口部に磁性材を充填して不要部を除去して、第二磁性膜を製造可能である。なお、第一磁性膜と第二磁性膜が基板の表面と裏面の同じ位置に形成できるようにするため、基板を貫通するピンを位置マーカとして利用することもできる。 The method for producing the first magnetic film described above can also be applied to the process for producing the second magnetic film. That is, in the same manner as in the above-mentioned manufacturing process, resist is applied or a resist film is attached and patterned on the back surface of the substrate on which the first magnetic film is formed by the above-mentioned manufacturing process, and the opening is filled with a magnetic material to form an unnecessary portion. The second magnetic film can be manufactured by removing the above. In order to allow the first magnetic film and the second magnetic film to be formed at the same positions on the front surface and the back surface of the substrate, a pin penetrating the substrate can also be used as a position marker.

(磁性材めっき又は磁性材スパッタによる磁性膜の製造プロセス)
図5は、他の実施の形態に係る伝送コイルの製造プロセス、特に磁性材めっきによる第一磁性膜の製造プロセスを説明する図である。図4と同様に、渦巻状に3巻に巻回され形成された薄膜の伝送コイルの断面を図示している。
(Manufacturing process of magnetic film by magnetic material plating or magnetic material sputtering)
FIG. 5 is a diagram illustrating a transmission coil manufacturing process according to another embodiment, particularly a first magnetic film manufacturing process by magnetic material plating. Similar to FIG. 4, a cross section of a thin film transmission coil formed by being spirally wound into three turns is shown.

第一磁性膜は、次のように製造する。すなわち、(a)基板2上に貼り付けられた所定膜厚の銅箔をエッチング等で所望のサイズの渦巻状にパターニングしコイル導体11を形成する。そして、当該基板2の表面の全面に、例えば酸化シリコン(SiO)又はアルミナ(Al)からなる絶縁層43をスパッタにより成膜し、続いて例えばニッケル(Ni)又はパーマロイ(NiFe)からなるめっきベース44をスパッタ又は蒸着により成膜する。絶縁層43は、後述の金属からなる磁性材42にコイル導体11から電流が流れないようにするためのものである。そして、めっきベース44上にレジストを塗布又はレジストフィルムを貼り付け、所定の膜厚のレジスト41の層を形成する。(b)その後、フォトマストを介してレジストに紫外線を露光(照射)し、現像・水洗してレジスト41をパターニングし、コイル導体11の両端部にレジストの開口を設ける。(c)そして、この基板をニッケル、又はニッケル及び鉄(Fe)が溶けためっき液に浸漬し、めっきベース44を陰極、例えば白金を陽極にして電界をかけて、レジストが開口してめっきベース44が露出した部分にニッケル又はパーマロイをめっき成膜して磁性材42を形成する。(d)さらに、レジスト41を溶剤でリムーブし、(e)磁性材42及びめっきベース44が露出した表面をアルゴンガス等によるイオンミリング又は逆スパッタによってめっきベース44を削る。これにより、コイル導体11の両端部の側面及び上面に所定の形状の第一磁性膜を製造する。 The first magnetic film is manufactured as follows. That is, (a) a copper foil having a predetermined film thickness attached on the substrate 2 is patterned in a spiral shape of a desired size by etching or the like to form the coil conductor 11. Then, an insulating layer 43 made of, for example, silicon oxide (SiO 2 ) or alumina (Al 2 O 3 ) is formed on the entire surface of the substrate 2 by sputtering, and subsequently, for example, nickel (Ni) or permalloy (NiFe). A plating base 44 made of silicon is formed into a film by sputtering or vapor deposition. The insulating layer 43 is for preventing a current from flowing from the coil conductor 11 through the magnetic material 42 made of metal, which will be described later. Then, a resist is applied or a resist film is attached onto the plating base 44 to form a layer of the resist 41 having a predetermined film thickness. (B) After that, the resist is exposed (irradiated) with ultraviolet rays via a photo mast, developed and washed with water to pattern the resist 41, and openings of the resist are provided at both ends of the coil conductor 11. (C) Then, this substrate is immersed in a plating solution containing nickel or nickel and iron (Fe), and an electric field is applied using the plating base 44 as a cathode, for example platinum as an anode, and the resist opens to open the plating base. Nickel or permalloy is plated on the exposed portion of 44 to form a magnetic material 42. (D) Further, the resist 41 is removed with a solvent, and (e) the surface on which the magnetic material 42 and the plating base 44 are exposed is scraped by ion milling with argon gas or the like or reverse sputtering. As a result, a first magnetic film having a predetermined shape is manufactured on the side surfaces and the upper surface of both ends of the coil conductor 11.

図6は、また別の実施の形態に係る伝送コイルの製造プロセス、特に磁性材スパッタによる第一磁性膜の製造プロセスを説明する図である。図4及び図5と同様に、渦巻状に3巻に巻回され形成された薄膜の伝送コイルの断面を図示している。 FIG. 6 is a diagram illustrating a transmission coil manufacturing process according to another embodiment, particularly a manufacturing process of a first magnetic film by magnetic material sputtering. Similar to FIGS. 4 and 5, a cross section of a thin film transmission coil formed by being spirally wound into three turns is shown.

第一磁性膜は、次のように製造する。すなわち、(a)基板2上に貼り付けられた所定膜厚の銅箔をエッチング等で所望のサイズの渦巻状にパターニングしコイル導体11を形成する。そして、当該基板2の表面の全面に、例えば酸化シリコン(SiO)又はアルミナ(Al)からなる絶縁層43をスパッタにより成膜し、そして、その上にレジストを塗布し又はレジストフィルムを貼り付け、所定の膜厚のレジスト41の層を形成する。絶縁層43は、後述の金属からなる磁性材42にコイル導体11から電流が流れないようにするためのものである。(b)その後、フォトマストを介してレジストに紫外線を露光(照射)し、現像・水洗してレジスト41をパターニングし、コイル導体11の両端部にレジストの開口を設ける。(c)そして、基板2の全面にニッケル、パーマロイ又は鉄をスパッタして、(d)さらに、基板ごと溶剤に浸漬してレジスト41をリムーブし、レジスト41上の磁性材42をリフトオフする。これにより、コイル導体11の両端部の側面及び上面に所定の形状の第一磁性膜を製造する。なお磁性材42としては、ニッケル、パーマロイ又は鉄など強磁性体材料の他、Siなど添加した珪素鋼の他に、アモルファス、センダストや金属の酸化物(フェライト)などを使用できる。 The first magnetic film is manufactured as follows. That is, (a) a copper foil having a predetermined film thickness attached on the substrate 2 is patterned in a spiral shape of a desired size by etching or the like to form the coil conductor 11. Then, an insulating layer 43 made of, for example, silicon oxide (SiO 2 ) or alumina (Al 2 O 3 ) is formed on the entire surface of the substrate 2 by sputtering, and a resist is applied or a resist film is applied thereto. Is attached to form a layer of resist 41 having a predetermined thickness. The insulating layer 43 is for preventing a current from flowing from the coil conductor 11 through the magnetic material 42 made of metal, which will be described later. (B) After that, the resist is exposed (irradiated) with ultraviolet rays via a photo mast, developed and washed with water to pattern the resist 41, and openings of the resist are provided at both ends of the coil conductor 11. (C) Then, nickel, permalloy or iron is sputtered on the entire surface of the substrate 2, and (d) the resist 41 is further removed by immersing the substrate in a solvent to lift off the magnetic material 42 on the resist 41. As a result, a first magnetic film having a predetermined shape is manufactured on the side surfaces and the upper surface of both ends of the coil conductor 11. As the magnetic material 42, in addition to a ferromagnetic material such as nickel, permalloy, or iron, in addition to silicon steel to which Si or the like is added, amorphous, sendust, metal oxide (ferrite), or the like can be used.

第二磁性膜についても、上述した磁性材めっき又は磁性材スパッタによる方法を応用可能である。 The above-mentioned method of magnetic material plating or magnetic material sputtering can also be applied to the second magnetic film.

磁性材めっきの場合は、第一磁性膜を形成した基板の裏面にめっきベースをスパッタ又は蒸着しレジストを塗布又はレジストフィルムを貼り付けレジストの層を形成し、露光・現像によって所定の位置にレジスト開口部を設けて、基板ごとめっき液に浸してめっきベースを通電し、第二磁性膜をめっき成膜する。なお、基板は絶縁性を有するので、第二磁性膜の形成については、第一磁性膜の場合とは異なり絶縁層の形成は不要である。 In the case of magnetic material plating, a plating base is sputtered or vapor-deposited on the back surface of the substrate on which the first magnetic film is formed, and a resist is applied or a resist film is attached to form a resist layer, and the resist is placed in a predetermined position by exposure and development. An opening is provided, and the entire substrate is immersed in a plating solution to energize the plating base to form a plating film on the second magnetic film. Since the substrate has insulating properties, it is not necessary to form an insulating layer for forming the second magnetic film, unlike the case of the first magnetic film.

磁性材スパッタの場合は、第一磁性膜を形成した基板の裏面にレジストを塗布又はレジストフィルムを貼り付けレジストの層を形成し、露光・現像に所定の位置にレジスト開口部を設けて、基板裏面の全面に磁性材をスパッタし、リフトオフによってレジストおよび不要部分の磁性材を除去して、第二磁性膜をスパッタ成膜する。なお、基板は絶縁性を有するので、第二磁性膜の形成については、第一磁性膜の場合とは異なり絶縁層の形成は不要である。 In the case of magnetic material sputtering, a resist is applied or a resist film is attached to the back surface of the substrate on which the first magnetic film is formed to form a resist layer, and a resist opening is provided at a predetermined position for exposure and development to provide the substrate. A magnetic material is sputtered on the entire surface of the back surface, the resist and the magnetic material in an unnecessary portion are removed by lift-off, and a second magnetic film is sputtered and formed. Since the substrate has insulating properties, it is not necessary to form an insulating layer for forming the second magnetic film, unlike the case of the first magnetic film.

なお、第一磁性膜と第二磁性膜が基板の表面と裏面の同じ位置に形成できるようにするため、基板を貫通するピンを位置マーカとして利用することもできる。 In order to allow the first magnetic film and the second magnetic film to be formed at the same positions on the front surface and the back surface of the substrate, a pin penetrating the substrate can also be used as a position marker.

<3.非接触給電装置>
図7は、一実施の形態に係る非接触給電装置を説明する回路ブロック図である。この例では、携帯電子機器に適用したものである。この非接触給電装置は、充電器として機能する送電装置5と携帯電子機器本体7の電源となる二次電池64を含む受電装置6とを備えている。送電装置5と受電装置6は、電磁的に結合することにより、非接触で電力送電を行う非接触給電装置を形成するようになっている。
<3. Non-contact power supply device>
FIG. 7 is a circuit block diagram illustrating a non-contact power feeding device according to an embodiment. In this example, it is applied to a portable electronic device. This non-contact power supply device includes a power transmission device 5 that functions as a charger and a power receiving device 6 that includes a secondary battery 64 that serves as a power source for the mobile electronic device main body 7. The power transmitting device 5 and the power receiving device 6 are electromagnetically coupled to form a non-contact power feeding device that transmits power in a non-contact manner.

送電装置5は、図7に示すように、電源51と整流回路52と送電回路53と送電コイル54とを備えている。電源51は、例えば100Vの単相交流電圧を供給する系統電源である。整流回路52は、入力端が電源51に接続されるとともに出力端が送電回路53に接続されており、電源51から供給される交流電圧を整流して直流電圧に変換し、変換した直流電圧を送電回路53に出力する。送電回路53は、入力端が整流回路52に接続されるとともに出力端が送電コイル54の両端に接続されており、整流回路52からの直流電圧を使用して所定の周波数の交流を生成する回路であり、その生成した交流電圧を送電コイル54に供給するようになっている。 As shown in FIG. 7, the power transmission device 5 includes a power supply 51, a rectifier circuit 52, a power transmission circuit 53, and a power transmission coil 54. The power supply 51 is a system power supply that supplies, for example, a single-phase AC voltage of 100 V. In the rectifier circuit 52, the input end is connected to the power supply 51 and the output end is connected to the power transmission circuit 53, and the AC voltage supplied from the power supply 51 is rectified and converted into a DC voltage, and the converted DC voltage is converted. Output to the power transmission circuit 53. The transmission circuit 53 is a circuit in which an input end is connected to a rectifying circuit 52 and an output end is connected to both ends of a transmission coil 54, and an alternating current having a predetermined frequency is generated using a DC voltage from the rectifying circuit 52. The generated AC voltage is supplied to the transmission coil 54.

受電装置6は、図7に示すように、受電コイル61と受電回路62と充放電制御回路63と二次電池64とを備えている。 As shown in FIG. 7, the power receiving device 6 includes a power receiving coil 61, a power receiving circuit 62, a charge / discharge control circuit 63, and a secondary battery 64.

受電コイル61は、送電装置5の送電コイル54と接近させて対向させ使用する場合に、両コイル61、54が電磁結合して両者の間で変圧器を形成するようになっている。この電磁誘導により受電コイル61に誘起される交流電圧は、受電回路62に供給され、受電回路62において整流されて直流電圧に変換される。そして、受電回路62から出力される直流電圧は、充放電制御回路63を介して二次電池64に供給され、二次電池64を充電するようになっている。充放電制御回路63は、受電回路62からの出力により二次電池64を充電する場合にはその充電の制御を行い、二次電池64の負荷である携帯電子機器本体7を動作させる場合には放電の制御を行う回路である。二次電池64には、放電後に充電により繰り返して使用可能なリチウムイオン電池やニッケル水素電池等が用いられる。 When the power receiving coil 61 is used so as to be close to and opposed to the power transmission coil 54 of the power transmission device 5, both coils 61 and 54 are electromagnetically coupled to form a transformer between them. The AC voltage induced in the power receiving coil 61 by this electromagnetic induction is supplied to the power receiving circuit 62, rectified in the power receiving circuit 62, and converted into a DC voltage. The DC voltage output from the power receiving circuit 62 is supplied to the secondary battery 64 via the charge / discharge control circuit 63 to charge the secondary battery 64. The charge / discharge control circuit 63 controls the charging of the secondary battery 64 when it is charged by the output from the power receiving circuit 62, and controls the charging when the portable electronic device main body 7 which is the load of the secondary battery 64 is operated. It is a circuit that controls the discharge. As the secondary battery 64, a lithium ion battery, a nickel hydrogen battery, or the like that can be repeatedly used by charging after discharging is used.

本実施の形態に係る非接触給電装置においては、送電コイル54に、前述した本発明に係る伝送コイルが用いることができる。これにより、表皮効果や近接効果による高周波損失を低減し低コストで製造できる伝送コイル部品を使用しているので、伝送効率が高くかつ低コストの非接触給電装置を提供できる。 In the non-contact power feeding device according to the present embodiment, the above-mentioned transmission coil according to the present invention can be used for the transmission coil 54. As a result, since the transmission coil component that can be manufactured at low cost by reducing the high frequency loss due to the skin effect and the proximity effect is used, it is possible to provide a non-contact power feeding device having high transmission efficiency and low cost.

また、受電コイル61に前述した本発明に係る伝送コイルを用いてもよい。さらに伝送効率が高い低コストの非接触給電装置を提供できる。 Further, the transmission coil according to the present invention described above may be used for the power receiving coil 61. Further, it is possible to provide a low-cost non-contact power feeding device having high transmission efficiency.

本発明に係る非接触給電装置は、携帯電話やスマートフォン、タブレットなどの携帯電子機器に限定されるものではない。電気自動車やハイブリッド型自動車などの車両の電力給電に用いられてもよい。また、本発明に係る伝送コイル部品は、誘導式加熱装置などにも適用されてもよい。さらに、本発明に係る伝送コイル部品は、電磁誘導方式の非接触給電装置における使用に限定されない。磁界共鳴方式の非接触給電装置にも適用されてもよい。 The non-contact power supply device according to the present invention is not limited to mobile electronic devices such as mobile phones, smartphones, and tablets. It may be used to power a vehicle such as an electric vehicle or a hybrid vehicle. Further, the transmission coil component according to the present invention may also be applied to an inductive heating device or the like. Further, the transmission coil component according to the present invention is not limited to use in an electromagnetic induction type non-contact power feeding device. It may also be applied to a magnetic field resonance type non-contact power feeding device.

以下、本発明に係る伝送コイル部品を実施・適用した場合のシミュレーション結果について述べるが、本発明はここで述べられる適用例に限定されるものではない。 Hereinafter, simulation results when the transmission coil component according to the present invention is implemented and applied will be described, but the present invention is not limited to the application examples described here.

<1.シミュレーション解析モデル>
本発明に係る伝送コイルのシミュレーションによる適用例を説明する前に、まず、コイルの特性(交流抵抗、インダクタンス、Q値、結合係数k、伝送効率η)について解析するためのシミュレーションモデルについて説明する。シミュレーション用の解析ソフトには、電磁場解析ソフトウェアのANSYS Maxwell(ANSYS社製)を用いた。表1に解析の諸条件をまとめる。
<1. Simulation analysis model>
Before explaining an application example of the transmission coil according to the present invention by simulation, first, a simulation model for analyzing the characteristics of the coil (AC resistance, inductance, Q value, coupling coefficient k, transmission efficiency η) will be described. As the analysis software for the simulation, the electromagnetic field analysis software ANSYS Maxwell (manufactured by ANSYS) was used. Table 1 summarizes the conditions of analysis.

Figure 0007022979000002
Figure 0007022979000002

図8は、コイルの計算モデルを説明する図(平面図)である。ただし、磁性膜については省略し図示していない。コイル導体は、抵抗率1.72×10-8 Ωmの銅材を想定している。巻数が3回巻の渦巻状の平面コイルである。コイルの外径(直径)をOD、内径(直径)をIDする。 FIG. 8 is a diagram (plan view) for explaining the calculation model of the coil. However, the magnetic film is omitted and not shown. The coil conductor is assumed to be a copper material having a resistivity of 1.72 × 10-8 Ωm. It is a spiral flat coil with three turns. The outer diameter (diameter) of the coil is OD, and the inner diameter (diameter) is ID.

<2.送電コイルへの適用>
本発明に係る伝送コイルを送電コイルとして適用した場合、磁性膜の膜厚やコイル導体上の長さを変化させてコイル特性(交流抵抗、インダクタンス、Q値)を計算する。送電コイルの外径ODはφ73mm、内径IDはφ47mmであり、コイルに通電する交流電流の周波数は13.56MHzである。
<2. Application to power transmission coil>
When the transmission coil according to the present invention is applied as a power transmission coil, the coil characteristics (AC resistance, inductance, Q value) are calculated by changing the film thickness of the magnetic film and the length on the coil conductor. The outer diameter OD of the power transmission coil is φ73 mm, the inner diameter ID is φ47 mm, and the frequency of the alternating current energizing the coil is 13.56 MHz.

(第一磁性膜のみを有する場合)
図9は、第一磁性膜のみを有し、第二磁性膜は有しない場合の送電コイルの断面概略図である。図8のA-A′断面図に相当する。ただし図8では磁性膜を省略したが、図9では磁性膜(第一磁性膜)の断面も図示している。
(When having only the first magnetic film)
FIG. 9 is a schematic cross-sectional view of the power transmission coil when it has only the first magnetic film and does not have the second magnetic film. Corresponds to the cross-sectional view taken along the line AA'in FIG. However, although the magnetic film is omitted in FIG. 8, the cross section of the magnetic film (first magnetic film) is also shown in FIG.

図9において、基板2の厚さT1は0.025mmである。コイル導体11は、断面が矩形であって、コイル導体断面の長手方向の幅W1が3mm、厚さT2が0.035mmであり、コイル導体間のスペースW2は2mmである。また、第一磁性膜31のコイル導体上の磁性膜部分の厚みとコイル導体断面の両側面に配置される第一磁性膜31の基板2上の磁性膜部分の幅は等しく、その値をD1とする。また、第一磁性膜31のコイル導体上の磁性膜部分の長さ(第一磁性膜31とコイル導体11がオーバーラップしている距離)をL1とする。 In FIG. 9, the thickness T1 of the substrate 2 is 0.025 mm. The coil conductor 11 has a rectangular cross section, the width W1 in the longitudinal direction of the coil conductor cross section is 3 mm, the thickness T2 is 0.035 mm, and the space W2 between the coil conductors is 2 mm. Further, the thickness of the magnetic film portion on the coil conductor of the first magnetic film 31 and the width of the magnetic film portion on the substrate 2 of the first magnetic film 31 arranged on both side surfaces of the coil conductor cross section are equal, and the value is D1. And. Further, the length of the magnetic film portion on the coil conductor of the first magnetic film 31 (distance where the first magnetic film 31 and the coil conductor 11 overlap) is defined as L1.

図10(a)は、図9において、D1及びL1を変化させたときのコイルの交流抵抗の変化(交流抵抗とD1、L1との関係)を表すグラフである。図10(a)から、何れのD1に対してもL1の増加に伴い交流抵抗は減少し、L1が0.1mm付近で最小となり、さらにこの値を超えると交流抵抗が増加しているのが分かる。よって、L1が0mmであり第一磁性膜31がコイル導体11上にオーバーラップしない場合(すなわち、コイル導体断面の両側に、幅がD1で厚みがD1+T2の矩形の第一磁性膜31が配置される場合)に比べ、コイル導体上に第一磁性膜31(コイル導体上の磁性膜部分の長さがL1である)を配置することによって、交流抵抗を低減できることが分かる。 FIG. 10A is a graph showing the change in the AC resistance of the coil (relationship between the AC resistance and D1 and L1) when D1 and L1 are changed in FIG. From FIG. 10A, it can be seen that the AC resistance decreases with the increase of L1 for any D1, the L1 becomes the minimum at around 0.1 mm, and the AC resistance increases when this value is exceeded. I understand. Therefore, when L1 is 0 mm and the first magnetic film 31 does not overlap on the coil conductor 11 (that is, rectangular first magnetic films 31 having a width of D1 and a thickness of D1 + T2 are arranged on both sides of the coil conductor cross section. It can be seen that the AC resistance can be reduced by arranging the first magnetic film 31 (the length of the magnetic film portion on the coil conductor is L1) on the coil conductor.

図10(b)は、図10(a)についてL1が0~0.5mmの範囲のものを拡大して図示したものである。図10(b)からL1=0mmにおいて最も交流抵抗が大きいのは、D1=1.0mmの場合である。このときの抵抗Rmaxは、Rmax=180mΩである。 10 (b) is an enlarged view of FIG. 10 (a) in which L1 is in the range of 0 to 0.5 mm. From FIG. 10B, when L1 = 0 mm, the AC resistance is the largest when D1 = 1.0 mm. The resistance R max at this time is R max = 180 mΩ.

コイル導体の抵抗率=1.72×10-8 Ωm、電流の周波数f=13.56MHzであるから、表皮深さdは、d=17.9μmである。この表皮深さdを用いれば、L1がd以上20×d以下の範囲であれば、何れのD1についても、交流抵抗をさらに小さくすることができるのが分かる。さらにD1が0.25mm以上のとき、L1が3×d以上12×d以下の範囲で、後述する第一磁性膜31がコイル導体11の側面にのみ接して配置する場合(第一磁性膜31の膜厚はコイル導体11の膜厚と同じ)に比べて、交流抵抗を15%以上低減できる。 Since the resistivity of the coil conductor = 1.72 × 10-8 Ωm and the frequency of the current f = 13.56 MHz, the skin depth d is d = 17.9 μm. It can be seen that by using this skin depth d, the AC resistance can be further reduced for any D1 as long as L1 is in the range of d or more and 20 × d or less. Further, when D1 is 0.25 mm or more and L1 is 3 × d or more and 12 × d or less, the first magnetic film 31 described later is arranged in contact with only the side surface of the coil conductor 11 (first magnetic film 31). The thickness of the coil conductor 11 is the same as that of the coil conductor 11), and the AC resistance can be reduced by 15% or more.

また、D1が0.1mm、L1が0.1mmのときのコイル特性(交流抵抗、インダクタンス、Q値)を実施例1として表2に示す。さらに、第一磁性膜を有しない場合、すなわちコイル導体のみで磁性膜が無い場合(図9において、D1=0mm、L1=0mmの場合に相当)について、コイル特性を計算した。求めた交流抵抗、インダクタンス、Q値を比較例1として表2にまとめる。 Further, the coil characteristics (AC resistance, inductance, Q value) when D1 is 0.1 mm and L1 is 0.1 mm are shown in Table 2 as Example 1. Further, the coil characteristics were calculated in the case of not having the first magnetic film, that is, in the case of only the coil conductor and no magnetic film (corresponding to the case of D1 = 0 mm and L1 = 0 mm in FIG. 9). The obtained AC resistance, inductance, and Q value are summarized in Table 2 as Comparative Example 1.

(第一磁性膜及び第二磁性膜を有する場合)
図11は、第一磁性膜31及び第二磁性膜32を有する場合の送電コイルの断面概略図である。図8のA-A′断面図に相当する。ただし図8では磁性膜を省略していたが、図11では磁性膜(第一磁性膜及び第二磁性膜)の断面も図示している。
(If you have a first magnetic film and a second magnetic film)
FIG. 11 is a schematic cross-sectional view of the power transmission coil when the first magnetic film 31 and the second magnetic film 32 are provided. Corresponds to the cross-sectional view taken along the line AA'in FIG. However, although the magnetic film is omitted in FIG. 8, the cross section of the magnetic film (first magnetic film and second magnetic film) is also shown in FIG.

図11において、基板2の厚さT1、コイル導体断面の長手方向の幅W1、コイル導体断面の厚さT2及びコイル導体間のスペースW2は、図9に示した第一磁性膜のみを有する場合のものと同じである。すなわち、T1=0.025mm、W1=3mm、T2=0.035mm、W2=2mmである。そして、第二磁性膜32は、膜厚がD1、コイル導体断面の長手方向に平行な方向の長さがD1+L1である。第二磁性膜32は、基板2を介して、第一磁性膜31に対向する位置に配置されている。したがって、コイル導体および基板を介して対向する第一磁性膜31と第二磁性膜32のそれぞれの部分の長さは略等しくなっている。 In FIG. 11, the thickness T1 of the substrate 2, the width W1 in the longitudinal direction of the coil conductor cross section, the thickness T2 of the coil conductor cross section, and the space W2 between the coil conductors have only the first magnetic film shown in FIG. It is the same as the one. That is, T1 = 0.025 mm, W1 = 3 mm, T2 = 0.035 mm, and W2 = 2 mm. The thickness of the second magnetic film 32 is D1, and the length of the second magnetic film 32 in the direction parallel to the longitudinal direction of the coil conductor cross section is D1 + L1. The second magnetic film 32 is arranged at a position facing the first magnetic film 31 via the substrate 2. Therefore, the lengths of the respective portions of the first magnetic film 31 and the second magnetic film 32 facing each other via the coil conductor and the substrate are substantially equal.

図12は、図11において、D1及びL1を変化させたときのコイルの交流抵抗の変化(交流抵抗とD1、L1との関係)を表すグラフである。図12(b)は、図12(a)についてL1が0~0.5mmの範囲のものを拡大して図示したものである。図12から、何れのD1に対してもL1の増加に伴い交流抵抗は減少しL1が0.1mm付近で最小となり、この値を超えると交流抵抗が増加しているのが分かる。D1が0.1mm、L1が0.1mmのときのコイル特性(交流抵抗、インダクタンス、Q値)を実施例2として表2に示す。 FIG. 12 is a graph showing the change in the AC resistance of the coil (relationship between the AC resistance and D1 and L1) when D1 and L1 are changed in FIG. 12 (b) is an enlarged view of FIG. 12 (a) in which L1 is in the range of 0 to 0.5 mm. From FIG. 12, it can be seen that the AC resistance decreases with the increase of L1 for any D1, and L1 becomes the minimum at around 0.1 mm, and when this value is exceeded, the AC resistance increases. Table 2 shows the coil characteristics (AC resistance, inductance, Q value) when D1 is 0.1 mm and L1 is 0.1 mm as Example 2.

さらに、磁性膜をコイル導体断面の全周に配置した場合、すなわち、図11においてD1が1mm、L1が1.5mmの場合について、求めたコイル特性(交流抵抗、インダクタンス、Q値)を比較例2として表2に示す。 Further, when the magnetic film is arranged on the entire circumference of the coil conductor cross section, that is, when D1 is 1 mm and L1 is 1.5 mm in FIG. 11, the obtained coil characteristics (AC resistance, inductance, Q value) are compared. It is shown in Table 2 as 2.

(磁性膜をコイル導体断面の両側面のみに配置した場合)
図13は、磁性膜をコイル導体11の断面の両側面にのみに配置した送電コイルの断面概略図である。図8のA-A′断面図に相当する。ただし図8では磁性膜を省略していたが、図13では磁性膜(側面磁性膜)の断面も図示している。側面磁性膜33は、断面が矩形でありコイル導体11の断面の両側面に配置されている。側面磁性膜33の膜厚はコイル導体断面の厚さに等しい。
(When the magnetic film is placed only on both sides of the coil conductor cross section)
FIG. 13 is a schematic cross-sectional view of a power transmission coil in which magnetic films are arranged only on both side surfaces of the cross section of the coil conductor 11. Corresponds to the cross-sectional view taken along the line AA'in FIG. However, although the magnetic film was omitted in FIG. 8, the cross section of the magnetic film (side magnetic film) is also shown in FIG. The side magnetic film 33 has a rectangular cross section and is arranged on both side surfaces of the cross section of the coil conductor 11. The film thickness of the side magnetic film 33 is equal to the thickness of the coil conductor cross section.

図13において、基板2の厚さT1、コイル導体断面の長手方向の幅W1、コイル導体断面の厚さT2及びコイル導体間のスペースW2は、図9に示した第一磁性膜のみを有する場合のものと同じである。すなわち、T1=0.025mm、W1=3mm、T2=0.035mm、W2=2mmである。そして、側面磁性膜33の膜厚はコイル導体断面の厚さT2である。また、コイル導体断面の長手方向に平行な方向の側面磁性膜33の長さをD2とする。 In FIG. 13, the thickness T1 of the substrate 2, the width W1 in the longitudinal direction of the coil conductor cross section, the thickness T2 of the coil conductor cross section, and the space W2 between the coil conductors have only the first magnetic film shown in FIG. It is the same as the one. That is, T1 = 0.025 mm, W1 = 3 mm, T2 = 0.035 mm, and W2 = 2 mm. The film thickness of the side magnetic film 33 is the thickness T2 of the cross section of the coil conductor. Further, the length of the side magnetic film 33 in the direction parallel to the longitudinal direction of the coil conductor cross section is defined as D2.

図14は、図13において、D2を変化させたときのコイルの交流抵抗の変化(交流抵抗とD2との関係)を表すグラフである。D2が0.1mmのときのコイル特性(交流抵抗、インダクタンス、Q値)を比較例3として表2に示す。 FIG. 14 is a graph showing the change in the AC resistance of the coil (relationship between the AC resistance and D2) when D2 is changed in FIG. Table 2 shows the coil characteristics (AC resistance, inductance, Q value) when D2 is 0.1 mm as Comparative Example 3.

<3.送電コイル及び受電コイルへの適用>
本発明に係る伝送コイル部品を送電コイルと受電コイルとして使用する。両コイルの中心を一致させて両コイルを互いに向い合せ、両コイルを10mmの距離(伝送距離)を離して対向させた場合のコイル特性(結合係数kと伝送効率η)を計算する。結合係数kは、トランスを構成する送電コイルと受電コイルとの結合の度合いを表す数である。また伝送効率ηは、結合係数kとQ値の積により求めることができる。
<3. Application to power transmission coil and power reception coil>
The transmission coil component according to the present invention is used as a power transmission coil and a power reception coil. The coil characteristics (coupling coefficient k and transmission efficiency η) are calculated when the centers of both coils are aligned, the two coils face each other, and the two coils are opposed to each other with a distance (transmission distance) of 10 mm. The coupling coefficient k is a number representing the degree of coupling between the power transmitting coil and the power receiving coil constituting the transformer. Further, the transmission efficiency η can be obtained by the product of the coupling coefficient k and the Q value.

送電コイルの外径ODと内径IDは、上述の<2.送電コイルへの適用>で示したものと同様に、それぞれφ73mm、φ47mmである。受電コイルの外径ODと内径IDは、それぞれφ63mm、φ37mmであって、受電コイルは送信コイルよりも小さい構造となっている。 The outer diameter OD and inner diameter ID of the power transmission coil are described in <2. Application to power transmission coil> Similar to the one shown in>, φ73 mm and φ47 mm, respectively. The outer diameter OD and inner diameter ID of the power receiving coil are φ63 mm and φ37 mm, respectively, and the power receiving coil has a structure smaller than that of the transmitting coil.

(第一磁性膜のみを有する場合)
送電コイルは、実施例1で用いたものを使用する。
(When having only the first magnetic film)
As the power transmission coil, the one used in the first embodiment is used.

受電コイルは、基本的には実施例1と同じであり、外径ODと内径IDが異なる。すなわち、図9において、受電コイルの基板2の厚さT1、コイル導体断面の長手方向の幅W1、コイル導体断面の厚さT2、コイル導体間のスペースW2、第一磁性膜31のコイル導体上の磁性膜部分の厚み(=コイル導体断面の両側面に配置される第一磁性膜31の基板2上の磁性膜部分の幅)D1及び第一磁性膜31のコイル導体上の磁性膜部分の長さ(第一磁性膜31とコイル導体11がオーバーラップしている距離)L1は、実施例1のものと同じく、T1=0.025mm、W1=3mm、T2=0.035mm、W2=2mm、D1=0.1mm、L1=0.1mmである。 The power receiving coil is basically the same as in the first embodiment, and the outer diameter OD and the inner diameter ID are different. That is, in FIG. 9, the thickness T1 of the substrate 2 of the power receiving coil, the width W1 in the longitudinal direction of the coil conductor cross section, the thickness T2 of the coil conductor cross section, the space W2 between the coil conductors, and the coil conductor of the first magnetic film 31. Thickness of the magnetic film portion (= width of the magnetic film portion on the substrate 2 of the first magnetic film 31 arranged on both side surfaces of the coil conductor cross section) D1 and the magnetic film portion on the coil conductor of the first magnetic film 31 The length (distance where the first magnetic film 31 and the coil conductor 11 overlap) L1 is the same as that of the first embodiment, T1 = 0.025 mm, W1 = 3 mm, T2 = 0.035 mm, W2 = 2 mm. , D1 = 0.1 mm, L1 = 0.1 mm.

計算したコイル特性(結合係数kと伝送効率η)を実施例3として表2に示す。 The calculated coil characteristics (coupling coefficient k and transmission efficiency η) are shown in Table 2 as Example 3.

さらに、送電コイル及び受電コイル共に第一磁性膜を有しない場合、すなわちコイル導体のみで磁性膜が無い場合(図9において、T1=0.025mm、W1=3mm、T2=0.035mm、W2=2mmであるが、D1=0mm、L1=0mmの場合に相当)についてコイル特性(結合係数kと伝送効率η)を求めた。結果を比較例4として表2にまとめる。 Further, when neither the transmission coil nor the power receiving coil has the first magnetic film, that is, when only the coil conductor has no magnetic film (T1 = 0.025 mm, W1 = 3 mm, T2 = 0.035 mm, W2 = in FIG. 9). Although it is 2 mm, the coil characteristics (coupling coefficient k and transmission efficiency η) were obtained for D1 = 0 mm and L1 = 0 mm. The results are summarized in Table 2 as Comparative Example 4.

(第一磁性膜及び第二磁性層を有する場合)
送電コイルは、実施例2で用いたものを使用する。
(When having a first magnetic film and a second magnetic layer)
As the power transmission coil, the one used in the second embodiment is used.

受電コイルは、基本的には実施例2と同じであり、外径ODと内径IDが異なる。すなわち、図11において、受電コイルのT1、W1、T2、W2、D1及びL1は、実施例2と同じく、T1=0.025mm、W1=3mm、T2=0.035mm、W2=2mm、D1=0.1mm、L1=0.1mmである。 The power receiving coil is basically the same as in the second embodiment, and the outer diameter OD and the inner diameter ID are different. That is, in FIG. 11, the power receiving coils T1, W1, T2, W2, D1 and L1 are T1 = 0.025 mm, W1 = 3 mm, T2 = 0.035 mm, W2 = 2 mm, D1 = as in the second embodiment. 0.1 mm, L1 = 0.1 mm.

計算したコイル特性(結合係数kと伝送効率η)を実施例4として表2に示す。 The calculated coil characteristics (coupling coefficient k and transmission efficiency η) are shown in Table 2 as Example 4.

さらに、送電コイル及び受電コイル共に、磁性膜をコイル導体断面の全周に配置した場合、すなわち、図11においてD1が1mm、L1が1.5mmの場合について、求めたコイル特性(結合係数kと伝送効率η)を比較例5として表2に示す。 Further, in both the transmission coil and the power receiving coil, when the magnetic film is arranged on the entire circumference of the coil conductor cross section, that is, when D1 is 1 mm and L1 is 1.5 mm in FIG. 11, the obtained coil characteristics (coupling coefficient k and The transmission efficiency η) is shown in Table 2 as Comparative Example 5.

(磁性膜をコイル導体断面の両側面のみに配置した場合)
送電コイルは、比較例3で用いたものを使用する。
(When the magnetic film is placed only on both sides of the coil conductor cross section)
As the power transmission coil, the one used in Comparative Example 3 is used.

受電コイルは、基本的には比較例3と同じであり、外径ODと内径IDが異なる。すなわち、図13において、受電コイルのT1、W1、T2、W2及びD2は、比較例3と同じく、T1=0.025mm、W1=3mm、T2=0.035mm、W2=2mm、D2=0.1mmである。 The power receiving coil is basically the same as in Comparative Example 3, and the outer diameter OD and the inner diameter ID are different. That is, in FIG. 13, the power receiving coils T1, W1, T2, W2 and D2 have T1 = 0.025 mm, W1 = 3 mm, T2 = 0.035 mm, W2 = 2 mm and D2 = 0. It is 1 mm.

計算したコイル特性(結合係数kと伝送効率η)を比較例6として表2に示す。 The calculated coil characteristics (coupling coefficient k and transmission efficiency η) are shown in Table 2 as Comparative Example 6.

Figure 0007022979000003
Figure 0007022979000003

表2から、実施例1及び2について、比較例1~3に比べ交流抵抗が減少し、Q値が高なって高周波損失が少なくなっている。 From Table 2, in Examples 1 and 2, the AC resistance is reduced, the Q value is high, and the high frequency loss is small as compared with Comparative Examples 1 and 3.

また表2から、実施例3及び4について、比較例4~6に比べ高い伝送効率ηが得られることが分かる。 Further, from Table 2, it can be seen that higher transmission efficiency η can be obtained for Examples 3 and 4 as compared with Comparative Examples 4 to 6.

したがって、本発明に係る伝送コイル部品を送電コイルとして、また送電コイルおよび受電コイルとして使用することにより、交流抵抗の増大を抑制し、高い伝送効率の非接触給電を実現することができることが分かる。 Therefore, it can be seen that by using the transmission coil component according to the present invention as a power transmission coil, and as a power transmission coil and a power reception coil, it is possible to suppress an increase in AC resistance and realize non-contact power supply with high transmission efficiency.

本発明に係る伝送コイルおよび非接触給電装置は、携帯電話等の電子機器や自動車、誘導式加熱装置の分野で利用が可能である。 The transmission coil and the non-contact power feeding device according to the present invention can be used in the fields of electronic devices such as mobile phones, automobiles, and inductive heating devices.

1 伝送コイル
11 コイル導体
2 基板
31 第一磁性膜
32 第二磁性膜
33 側面磁性膜
41 レジスト
42 磁性材
43 絶縁層
44 めっきベース
5 送電装置
51 電源
52 整流回路
53 送電回路
54 送電コイル
6 受電装置
61 受電コイル
62 受電回路
63 充放電制御回路
64 二次電池
7 携帯電子機器本体
1 Transmission coil 11 Coil conductor 2 Substrate 31 First magnetic film 32 Second magnetic film 33 Side magnetic film 41 Resist 42 Magnetic material 43 Insulation layer 44 Plating base 5 Transmission device 51 Power supply 52 Rectification circuit 53 Transmission circuit 54 Transmission coil 6 Power receiving device 61 Power receiving coil 62 Power receiving circuit 63 Charging / discharging control circuit 64 Secondary battery 7 Portable electronic device body

Claims (6)

基板と、前記基板上に配置され渦巻状に巻回されたコイルとを備えた非接触給電用伝送コイルであって、
前記コイルのコイル導体断面の両側面および両端部上に第一磁性膜を設け
前記コイル導体断面の上面において前記両端部以外の部分は磁性膜が覆われていない
ことを特徴とする非接触給電用伝送コイル。
A non-contact power supply transmission coil including a substrate and a coil arranged on the substrate and wound in a spiral shape.
A first magnetic film is provided on both sides and both ends of the coil conductor cross section of the coil .
The magnetic film is not covered on the upper surface of the coil conductor cross section except for both ends.
A transmission coil for non-contact power supply, which is characterized by the fact that.
前記基板の裏面において前記第一磁性膜に対向する位置に第二磁性膜を設けた
ことを特徴とする請求項1記載の非接触給電用伝送コイル。
The non-contact power feeding transmission coil according to claim 1 , wherein a second magnetic film is provided on the back surface of the substrate at a position facing the first magnetic film.
前記第一磁性膜における前記コイル導体断面の片端部上のコイル導体をかぶる部分の長さと、前記第二磁性膜における前記基板を介して対向する磁性膜部分の長さが略等しい
ことを特徴とする請求項2記載の非接触給電用伝送コイル。
The length of the portion of the first magnetic film that covers the coil conductor on one end of the cross section of the coil conductor is substantially equal to the length of the magnetic film portion of the second magnetic film that faces the substrate via the substrate. The non-contact power feeding transmission coil according to claim 2.
前記第一磁性膜における前記コイル導体断面の片端部上の磁性膜部分の長さがコイル導体の表皮深さの1倍以上20倍以下である
ことを特徴とする請求項1~3に記載の非接触給電用伝送コイル。
The invention according to claim 1 to 3, wherein the length of the magnetic film portion on one end of the cross section of the coil conductor in the first magnetic film is 1 time or more and 20 times or less the skin depth of the coil conductor. Transmission coil for non-contact power supply.
前記基板がフレキシブル基板である
ことを特徴とする請求項1~4に記載の非接触給電用伝送コイル。
The non-contact power feeding transmission coil according to claim 1 to 4, wherein the substrate is a flexible substrate.
請求項1~5のいずれか1項記載の非接触給電用伝送コイルを送電コイルとして又は送電コイルおよび受電コイルとして用いる
ことを特徴とする非接触給電装置。
A non-contact power feeding device according to any one of claims 1 to 5 , wherein the non-contact power feeding transmission coil is used as a power transmission coil, or as a power transmission coil and a power receiving coil.
JP2017243366A 2017-12-20 2017-12-20 Transmission coil for non-contact power supply, its manufacturing method, and non-contact power supply device Active JP7022979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017243366A JP7022979B2 (en) 2017-12-20 2017-12-20 Transmission coil for non-contact power supply, its manufacturing method, and non-contact power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017243366A JP7022979B2 (en) 2017-12-20 2017-12-20 Transmission coil for non-contact power supply, its manufacturing method, and non-contact power supply device

Publications (2)

Publication Number Publication Date
JP2019110252A JP2019110252A (en) 2019-07-04
JP7022979B2 true JP7022979B2 (en) 2022-02-21

Family

ID=67180156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017243366A Active JP7022979B2 (en) 2017-12-20 2017-12-20 Transmission coil for non-contact power supply, its manufacturing method, and non-contact power supply device

Country Status (1)

Country Link
JP (1) JP7022979B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7373709B2 (en) 2019-08-23 2023-11-06 Spiral Tech株式会社 High frequency coil parts, coil parts for wireless power supply, wireless power supply device, and manufacturing method of frequency coil parts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289231A (en) 2002-03-28 2003-10-10 Yamaha Corp Film noise filter and manufacturing method therefor
JP2011054672A (en) 2009-08-31 2011-03-17 Sony Corp Electric magnetic element, and method for manufacturing the same
JP2012204440A (en) 2011-03-24 2012-10-22 Nitto Denko Corp Magnetic element for wireless power transmission and manufacturing method of the same
JP2013229851A (en) 2012-03-30 2013-11-07 Tdk Corp High frequency transmission line, antenna and electronic circuit board
JP2016018882A (en) 2014-07-08 2016-02-01 株式会社デンソー Magnetic circuit component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289231A (en) 2002-03-28 2003-10-10 Yamaha Corp Film noise filter and manufacturing method therefor
JP2011054672A (en) 2009-08-31 2011-03-17 Sony Corp Electric magnetic element, and method for manufacturing the same
JP2012204440A (en) 2011-03-24 2012-10-22 Nitto Denko Corp Magnetic element for wireless power transmission and manufacturing method of the same
JP2013229851A (en) 2012-03-30 2013-11-07 Tdk Corp High frequency transmission line, antenna and electronic circuit board
JP2016018882A (en) 2014-07-08 2016-02-01 株式会社デンソー Magnetic circuit component

Also Published As

Publication number Publication date
JP2019110252A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
US10123467B2 (en) Magnetic field shielding sheet for a wireless charger, method for manufacturing same, and receiving apparatus for a wireless charger using the sheet
KR101890326B1 (en) Wireless power transfer module and portable auxiliary battery including the same
CN207781316U (en) Magnetic piece and electronic device
CN106170196B (en) Sheet for shielding electromagnetic wave and wireless charging device
JP2004047701A (en) Planar magnetic element for noncontact charger
JP2011134959A (en) Magnetic sheet
JP2020178034A (en) Non-contact power supply transmission coil unit, manufacturing method thereof, and non-contact power supply device
KR20160140502A (en) Antenna unit for wireless power transfer and Wireless power transmission module having the same
US11805631B2 (en) Magnetic field shielding sheet for a wireless charger, method for manufacturing same, and receiving apparatus for a wireless charger using the sheet
JP2014036116A (en) Receiver for non-contact power supply
US20220209586A1 (en) Shielding of electronics from magnetic fields
JP7022979B2 (en) Transmission coil for non-contact power supply, its manufacturing method, and non-contact power supply device
KR102315813B1 (en) Heat dissipation member for reception device module of wireless power charger, Reception device module of wireless power charger containing the same and Reception device of wireless power charger containing the same
KR102348415B1 (en) wireless power transfer module
US10020671B2 (en) Magnetic sheet for wireless power charging system
KR102085925B1 (en) Wireless charging device
JP7082785B2 (en) Transmission coil parts for non-contact power supply, their manufacturing method, and non-contact power supply equipment
JP2013243250A (en) Coil for non-contact power supply
CN208521760U (en) A kind of wire winding device and electronic equipment
KR102503650B1 (en) wireless power transmission module
KR101994746B1 (en) Sheet for shielding electromagnetic wave and wireless power charging device
JP7296081B2 (en) inductor
JP7182766B2 (en) chip inductor
US20140145512A1 (en) Contactless power transmission device and method of fabricating the same
WO2023002373A1 (en) Coil, electrical system including the same and method of making coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220201

R150 Certificate of patent or registration of utility model

Ref document number: 7022979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150