WO2013150784A1 - Coil unit, and power transmission device equipped with coil unit - Google Patents
Coil unit, and power transmission device equipped with coil unit Download PDFInfo
- Publication number
- WO2013150784A1 WO2013150784A1 PCT/JP2013/002293 JP2013002293W WO2013150784A1 WO 2013150784 A1 WO2013150784 A1 WO 2013150784A1 JP 2013002293 W JP2013002293 W JP 2013002293W WO 2013150784 A1 WO2013150784 A1 WO 2013150784A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- power transmission
- coil unit
- magnetic
- power
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/10—Composite arrangements of magnetic circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2871—Pancake coils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/005—Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/70—Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/90—Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
Definitions
- the present invention relates to a coil unit and a power transmission device including the coil unit, for example, a coil unit and a power transmission device that transmit power in a non-contact manner by electromagnetic induction from a power transmission device to an electronic device or the like.
- a wireless power transmission device electromagnetic induction between both coils between a primary-side power transmission coil provided on a power transmission device and a secondary-side power reception coil provided on an electronic device on the power reception side or the vehicle side.
- a wireless power transmission device that performs power transmission using an action.
- wireless power transmission there is no exposure of the contact part, so it is easy to ensure waterproofness, and there is no need to worry about defects or deterioration of the electrical contact part, and it is easy to attach and detach the power transmission device and power receiving device There are advantages such as being able to do.
- the primary side power transmission coil and the secondary side power reception coil that are mounted on these electronic devices or the like are generally used that are wound around a core or wound around a bobbin.
- portable electronic devices on the power receiving side are required to be downsized, thinned, and highly functional.
- the wireless power transmission device includes a primary power transmission coil and a secondary power reception coil facing each other so that electromagnetic induction coupling can be made efficient.
- a high-frequency AC magnetic flux of 60 to 600 kHz is generated in the primary-side power transmission coil.
- the charging means 2 Power is supplied to the secondary battery.
- a coil used as a power transmission / reception coil is reduced in size and thickness by using a planar coil formed in a spiral plane to reduce the size of the wireless power transmission device.
- the core cannot be used when it is planarized, it is necessary to suppress unnecessary radiation due to the magnetic field generated from the coil and to improve the efficiency of power transmission.
- the primary side power transmission planar coil and the secondary side power reception planar coil are each provided with a magnetic sheet on the surface opposite to the surface where both faces each other. Are listed.
- the wireless power transmission device described in Patent Document 1 uses a miniaturized coil at a high frequency of about 60 to 600 kHz in order to reduce the size of the device.
- the primary-side power transmission planar coil and the secondary-side power reception planar coil are each provided with a magnetic sheet on the surface opposite to the surface where both faces. Thereby, unnecessary radiation due to the magnetic field generated from the coil can be suppressed.
- the power transmission device described in Patent Document 1 simply disposes the magnetic sheet, the proximity effect between the coil wires cannot be sufficiently suppressed. Further, the power transmission device described in Patent Literature 1 increases the generated magnetic flux intensity to suppress the decrease in wireless power transmission efficiency, and the generated magnetic flux further strengthens electromagnetic coupling with the secondary coil on the power receiving side. I can't do enough.
- An object of the present invention is to provide a coil unit and a coil capable of suppressing the proximity effect between the lines and suppressing the resistance loss, increasing the directivity of the magnetic flux, increasing the inductance of the coil, and increasing the Q value of the coil. It is to provide a power transmission device including a unit.
- a coil unit includes a planar coil formed by winding a linear conductor in a spiral shape, a first magnetic body interposed between lines of the linear conductor, and one side of the planar coil. And a second magnetic body provided so as to cover the surface.
- a power transmission device is configured using the coil unit, and a power transmission coil in which a surface of the planar coil opposite to the surface facing the second magnetic body is disposed on a surface on the power transmission side. And a power transmission unit that supplies power to the power transmission coil.
- a power transmission device is configured using the coil unit, and a power receiving coil in which a surface opposite to a surface facing the second magnetic body of the planar coil is disposed on a power receiving side surface; And a power receiving device that outputs the power received by the power receiving coil.
- the present invention it is possible to suppress the proximity effect between the lines and suppress the resistance loss, increase the directivity of the magnetic flux, increase the inductance of the coil, and increase the Q value of the coil. In addition, it is possible to suppress a decrease in power transmission efficiency and realize long-distance power transmission between the power transmission side and power reception side coils with high efficiency. Furthermore, even if there is a slight misalignment between the power transmission side and power reception side coils, it is possible to provide a power transmission device in which the power transmission efficiency is not greatly reduced.
- FIG. A-A 'arrow sectional view of FIG. Sectional drawing which shows the other structure of the linear conductor of the coil unit which concerns on the said Embodiment 1.
- FIG. Sectional drawing which shows the other structure of the linear conductor of the coil unit which concerns on the said Embodiment 1.
- FIG. Sectional drawing which shows the structure which used the coil unit which concerns on the said Embodiment 1 as a primary side power transmission coil of a power transmission apparatus, and a secondary side power reception coil of an electronic device. Circuit diagram for measuring the power transmission efficiency of the coil unit according to the first embodiment.
- the figure which shows the magnetic flux generation of the magnetic flux generation path of the coil unit which concerns on the said Embodiment 1 by simulation The figure which shows the magnetic flux generation of the magnetic flux generation path of the coil unit which concerns on the said Embodiment 1 by simulation
- the figure which shows the transmission characteristic of the coil unit which concerns on the said Embodiment 1. The figure which shows the transmission characteristic of the coil unit which concerns on the said Embodiment 1.
- Main configuration diagram of electronic device and power transmission device of wireless power transmission device including coil unit according to embodiment 2 of the present invention The figure which shows the structure of a wireless power transmission apparatus provided with the coil unit which concerns on the said Embodiment 2.
- FIG. 1 is a perspective view showing a configuration of a coil unit according to Embodiment 1 of the present invention.
- 2 is a plan view of the coil unit according to the present embodiment
- FIG. 3 is a cross-sectional view taken along the line AA ′ in FIG.
- a coil unit according to the present invention is embodied by a planar coil applied to a wireless power transmission device.
- the coil unit 100 is a primary power transmission coil or a secondary power reception coil.
- the coil unit 100 is formed by winding a linear conductor 110 in a spiral shape (spiral shape), and a planar spiral coil in which an interline magnetic body 120 (first magnetic body) is interposed between the lines of the linear conductor 110. 111, a magnetic sheet 130 (second magnetic body) covering one surface of the planar spiral coil 111, a start terminal 140 connected to the start end 110a of the linear conductor 110, and an end 110b of the linear conductor 110 And a terminal terminal 150 connected thereto.
- the plane spiral coil 111 is formed by winding the linear conductor 110.
- the planar spiral coil 111 is produced by winding the linear conductor 110 and the inter-line magnetic body 120 together.
- the planar spiral coil 111 is manufactured by inserting the interline magnetic body 120 between the lines of the linear conductor 110.
- the magnetic material sheet 130 is a magnetic material layer provided on the surface opposite to the power transmission / reception surface of the flat spiral coil 111, and suppresses unnecessary radiation due to the magnetic field generated by the linear conductor 110.
- the magnetic sheet 130 is made of a magnetic material such as a silicon steel plate or an amorphous metal.
- the configuration of the coil unit 100 will be described in more detail.
- a high frequency current of several tens to several hundreds kHz is applied to the power transmission coil.
- a high-frequency current is passed through a linear conductor 110 in which a single wire is wound to form a coil
- the current distribution in the conductor cross section Becomes a shape biased toward the central axis, and the resistance value of the coil unit 100 increases and the so-called proximity effect that the loss increases tends to appear.
- the proximity effect between the wires can be suppressed.
- the resistance value of the coil unit 100 can be reduced and resistance loss can be suppressed.
- the inductance of the coil unit 100 also tends to decrease, and there is a limit to increasing the Q value of the coil unit 100.
- a high magnetic permeability interline magnetic body 120 is interposed between the linear conductors 110.
- a magnetic field concentrates on the line
- the proximity effect is suppressed, an increase in the resistance value at the linear conductor 110 can be prevented, the inductance of the coil unit 100 can be increased, and the Q value of the coil unit 100 can be increased.
- the generated magnetic flux concentrates on the inter-line magnetic body 120, the concentrated magnetic flux can further strengthen the electromagnetic coupling with the secondary coil on the power receiving side.
- the width Wg of the interline magnetic body 120 By setting the width Wg of the interline magnetic body 120 to be not less than 0.2 times and not more than 3.5 times the cross-sectional maximum length Wc of the linear conductor 110, the effect of suppressing the proximity effect and the generated magnetic field Are concentrated on the inter-line magnetic body 120 to achieve both effects of strengthening electromagnetic coupling with the secondary coil on the power receiving side.
- the proximity effect suppressing effect When it is shorter than 0.2 times, the proximity effect suppressing effect is weakened, and when it is larger than 3.5 times, the effect of concentrating the generated magnetic field on the interline magnetic body 120 tends to be weakened.
- the coil unit 100 is provided with a magnetic sheet 130 on the surface opposite to the power transmission / reception surface of the planar spiral coil 111.
- the inductance of the coil unit 100 can be increased, the Q value of the coil unit 100 can be increased, and the generated magnetic flux is concentrated on the inter-line magnetic body 120, so that the concentrated magnetic flux is connected to the secondary coil on the power receiving side.
- the electromagnetic coupling can be made stronger.
- second magnetic body low permeability magnetic body
- leakage of magnetic flux generated from the coil unit 100 can be reduced and a magnetic shielding effect can be exhibited.
- the magnetic permeability of the line magnetic body 120 of the coil unit 100 is higher than the magnetic permeability of the magnetic sheet 130.
- the magnetic permeability of the magnetic material of the interline magnetic body 120 is 1000 [H / m] or more and 3000 [H / m] or less
- the magnetic permeability of the magnetic material of the magnetic material sheet 130 is 50 [H / m]. / M] or more and 500 [H / m] or less.
- the generated magnetic field is concentrated on the inter-line magnetic body 120, thereby suppressing the proximity effect.
- the concentrated magnetic flux can further strengthen the electromagnetic coupling with the secondary coil on the power receiving side.
- the leakage of magnetic flux generated from the coil unit 100 can be reduced to exhibit the magnetic shielding effect, and the directivity of the magnetic flux can be increased to increase the transmission efficiency.
- the magnetic permeability of the interline magnetic body 120 is smaller than 1000 [H / m], the effect of preventing an increase in resistance value in the linear conductor 110 is difficult to be exhibited, and electromagnetic coupling with the secondary coil on the power receiving side is difficult. There is a tendency that the effect of strengthening is weakened. Further, if the magnetic permeability of the interline magnetic body 120 is larger than 3000 [H / m], the material cost of the magnetic sheet 130 itself increases.
- the magnetic permeability of the magnetic sheet 130 is smaller than 50 [H / m], the effect of increasing the inductance characteristics in the power transmission direction in the coil unit 100 tends to be weakened.
- the magnetic permeability of the magnetic sheet 130 is larger than 500 [H / m], the magnetic shield function of the surface outside the power transmission direction tends to be weakened.
- the coil unit 100 was formed in a circular shape by winding a linear conductor 110, which is a coil wire, in a spiral shape from the start terminal 140 to the end terminal 150. At this time, winding was performed in such a manner that a certain line gap was maintained between the linear conductors 110 forming the coil unit 100, and the inter-line magnetic body 120 was present in the gap.
- a linear conductor 110 which is a coil wire
- a certain gap is provided between the linear conductor 110 and the adjacent linear conductor 110, and the inter-line magnetic body 120 is interposed in the gap. Further, the magnetic sheet 130 is provided on the surface opposite to the direction of the power transmission / reception surface.
- the linear conductor 110 is composed of a single strand having a certain thickness, a rectangular shape, a plurality of thin strands arranged, or a litz wire bundled with a plurality of strands. It can be configured.
- FIG. 3 shows a configuration using a rectangular linear conductor 110 such as a square as a preferable configuration.
- the area that the conducting wire per unit cross-sectional area can occupy increases, and the effect of increasing the inductance of the coil unit 100 can be obtained.
- the inductance of the coil unit 100 can be raised by interposing the high magnetic permeability line magnetic body 120 between the rectangular line magnetic bodies 120.
- the effect of concentrating the magnetic field by the interline magnetic body 120 is obtained, whereby the proximity effect is suppressed, and the effect of preventing the resistance value increase in the linear conductor 110 can be obtained.
- 4 and 5 are cross-sectional views showing a configuration of a linear conductor of another coil unit according to the present embodiment.
- the coil unit 100A has a linear conductor 110A made of one strand.
- the coil unit 100B has a linear conductor 110B in which a plurality of thin strands are arranged.
- the linear conductor 110B is a strand in which four wires are arranged in parallel. It is also preferable that the linear conductor 110B has a litz wire configuration in which a plurality of strands are bundled and wound.
- the coil unit 100 employs a configuration in which an interline magnetic body 120 such as ferrite is interposed between the linear conductors 110. With this configuration, the inductance of the coil unit 100 can be increased. Moreover, the resistance loss of the coil unit 100 can be reduced, the Q value of the coil unit 100 can be improved, and the transmission efficiency can be improved.
- the coil unit 100 of the present embodiment has the following relationship, where Wc is the cross-sectional width of the linear conductor 110 forming the coil, and Wg is the width of the interline magnetic body 120 interposed between the linear conductors 110. It is preferable to have a configuration that satisfies the above. 0.2 ⁇ Wg / Wc ⁇ 3.5
- the width Wg of the interline magnetic body 120 is not less than 0.2 times and not more than 3.5 times the maximum cross-sectional length Wc of the linear conductor 110, the proximity effect is suppressed and the coil unit 100 While reducing the loss resistance, the range in which the effect of increasing the inductance of the coil unit 100 was further clarified was clarified.
- the generated magnetic field is concentrated on the interline magnetic body 120 to further strengthen the electromagnetic coupling with the secondary coil on the power receiving side. If it is shorter than 0.2 times, the proximity effect suppressing effect is weakened, and if it is larger than 3.5 times, the effect of concentrating the generated magnetic field on the interline magnetic body 120 tends to be weakened when the coil unit 100 inductance is reduced. .
- the width Wg of the interline magnetic body 120 is not less than 0.4 times and not more than 2.5 times the maximum cross-sectional length Wc of the linear conductor 110, more preferably the width Wg of the interline magnetic body 120 is linear.
- the cross section maximum length Wc of the conductor 110 is 0.6 times or more and 1.5 times or less.
- the magnetic permeability of the interline magnetic body 120 is preferably 1000 [H / m] or higher, and the magnetic permeability of the magnetic sheet 130 is preferably 50 [H / m] or higher and 500 [H / m] or lower. .
- the generated magnetic field is concentrated on the interline magnetic body 120 to suppress the proximity effect, prevent an increase in the resistance value in the linear conductor 110, and the concentrated magnetic flux is electromagnetically coupled to the secondary coil on the power receiving side. Can be made stronger.
- a configuration in which leakage of magnetic flux generated from the coil unit 100 can be reduced and the magnetic shielding effect can be exhibited, and the directivity of the magnetic flux is increased to increase the transmission efficiency is clarified.
- the magnetic permeability of the interline magnetic body 120 is less than 1000, the effect of preventing an increase in the resistance value of the linear conductor 110 is difficult to be exhibited, and the effect of strengthening the electromagnetic coupling with the secondary coil on the power receiving side is weakened. There is a tendency.
- the magnetic permeability of the magnetic sheet 130 is smaller than 50 [H / m], the effect of improving the inductance characteristics in the power transmission direction in the coil unit 100 tends to be weakened.
- the magnetic permeability of the magnetic sheet 130 is larger than 500 [H / m], the magnetic shield function of the surface outside the power transmission direction tends to be weakened.
- the magnetic permeability of the interline magnetic body 120 is preferably 3000 [H / m] or less. If it is larger than 3000 [H / m], the transmission efficiency tends to be lowered.
- Ni—Zn ferrite, Mn—Zn ferrite, Mg—Zn ferrite sheet, etc. can be used as the magnetic material.
- Amorphous metal can also be used as the magnetic sheet.
- ferrite is used as the magnetic body, it is advantageous in that the AC resistance of the coil unit 100 is reduced.
- amorphous metal is used as the magnetic body, the coil unit 100 can be thinned.
- the magnetic flux generated from the primary power transmission coil for power transmission passes through the interline magnetic body 120 and goes out from the end of the interline magnetic body 120 to the front without passing to the opposite surface.
- the magnetic flux emitted from the front surface is converged to the secondary power receiving coil on the power receiving side.
- the magnetic material it is preferable to use a ferrite made of a crystal of a compound containing an iron oxide, particularly a Ni—Zn ferrite having a large specific resistance and a small eddy current loss inside the ferrite.
- distributed the ferrite particle which is a magnetic body in resin can make magnetic permeability (micro) low.
- a dry film resist is applied to the entire surface of the magnetic sheet 130, portions other than the wiring pattern are subjected to heat curing or ultraviolet curing, and non-parts are removed by etching treatment. Thereafter, a sandblast treatment with silica fine particles can be performed to provide a spiral groove having a width of about 0.1 to 1 mm.
- the linear conductor 110 is inserted into the groove and fixed.
- the coil unit 100 can be obtained by fixing the magnetic sheet 130 having a certain thickness and magnetic permeability on the surface opposite to the direction of power transmission by bonding or the like.
- a nonmagnetic insulator (dielectric material or the like) having the shape is embedded in an unfired magnetic material, and the ferrite substrate is fired. Thereafter, the nonmagnetic insulator is removed by a process such as sandblasting (powder beam), laser, or etching.
- the linear conductor 110 can be inserted and fixed in the removed concave spiral pattern.
- a conductor layer made of Cu or the like is formed by performing processing such as plating, vapor deposition, and sputtering on the entire surface of the ferrite substrate.
- the surface is polished so that the conductor remains only in the groove of the concave portion, and the portion other than the conductor of the groove portion is deleted to form a spiral conductor to obtain a coil portion.
- an epoxy resin containing ferrite magnetic powder having a certain thickness and permeability on the surface opposite to the direction of power transmission is applied onto the coil by a screen printing method or the like, and thermally cured (for example, About 150 ° C.), an epoxy resin layer containing ferrite magnetic powder having a certain thickness can be formed on the coil.
- the coil unit 100 is used as a primary power transmission coil of a power transmission device or a secondary power reception coil of an electronic device.
- the coil unit 100 includes a linear conductor 110 that is a planar spiral coil, a line magnetic body 120 interposed between the lines of the linear conductor 110, and the line conductor 110 and the line magnetic body.
- the magnetic sheet 130 which covers one surface of 120, the start terminal 140, and the termination terminal 150 are provided.
- the start terminal 140 and the termination terminal 150 are electrically connected to a power transmission circuit unit or a power reception circuit unit (not shown).
- the magnetic flux generated from the coil unit 100 is directed in the Z-axis direction perpendicular to the paper surface.
- FIG. 6 is a cross-sectional view showing a configuration in which the coil unit 200 is used as a primary power transmission coil 210 of a power transmission device and a secondary power reception coil 220 of an electronic device.
- the coil unit 200 includes a primary power transmission coil 210 that transmits power by electromagnetic induction, a secondary power reception coil 220 that receives power from the primary power transmission coil 210, and a primary side.
- a power transmission device housing 230 that houses the power transmission coil 210 and an electronic device housing 240 that houses the secondary power receiving coil 220 are provided.
- the primary power transmission coil 210 is formed by winding a linear conductor 110 in a spiral shape (spiral shape), and a planar spiral coil 111 in which a magnetic body 120 is interposed between the lines of the linear conductor 110, and a planar spiral coil. And a magnetic material sheet 130 ⁇ / b> A covering one surface of 111.
- the primary power transmission coil 210 is installed on the inner surface of the housing 230 of the power transmission device so that the magnetic material sheet 130 ⁇ / b> A side is accommodated.
- the secondary power receiving coil 220 is formed by winding a linear conductor 110 in a spiral shape, and a planar spiral coil 111 having a magnetic body 120 interposed between the lines of the linear conductor 110 and a line between the linear conductors 110. And a magnetic sheet 130 ⁇ / b> B that covers one surface of the planar spiral coil 111.
- the power transmission device housing 230 and the electronic device housing 240 are close to each other and electromagnetically coupled to each other, so that power can be transmitted wirelessly.
- Example 1 Wireless power transmission was evaluated using the coil unit 100 shown in FIG. The evaluation was performed under the condition that the switching frequency was 150 kHz, the transmission distance between the primary side power transmission coil and the secondary side power reception coil was 40 mm, and the transmission power from the power transmission device was 20 W.
- FIG. 7 is a circuit diagram for measuring the power transmission efficiency of the coil unit 100.
- the measurement circuit 250 includes a constant voltage power source 251, a power transmission circuit 252, and a primary power transmission coil 210 on the power transmission side, and a secondary power reception coil 220, a power reception circuit 253, and a load 254 on the power reception side.
- the current (I 1 ) and voltage (V 1 ) supplied from the constant voltage source 251 by the constant voltage power supply 251 are sent to the primary power transmission coil 210 through the power transmission circuit 252. And the electric power transmission efficiency was measured from the voltage (V 2 ) applied to the voltage (V 2 ) applied to the current (I 2 ) and the load 254 through the power receiving circuit 253 for the voltage induced in the secondary side receiving coil 220 by electromagnetic induction.
- Table 1 shows the coil characteristics in Comparative Example 1-3 and Example 1.
- Wc [mm] indicates the maximum width of the coil unit 100, in this case, the diameter of the conducting wire.
- Wg [mm] indicates a gap between adjacent linear conductors 110 constituting the coil unit 100 or a width of the inter-line magnetic body 120 interposed in the gap.
- the inner diameter R1 [mm] and the outer diameter D1 [mm] when the coil unit 100 is a rectangular coil, the inner diameter corresponds to N1, and the outer diameter corresponds to M1.
- Re [ ⁇ ] is the resistance of the coil unit 100
- Q is the Q value of the coil unit 100
- ⁇ [%] is the transmission efficiency of power transmission.
- Comparative Example 1 is a conventional coil unit.
- This coil unit has a configuration in which a linear conductor having a diameter of 0.6 mm is wound in a spiral shape.
- Comparative Example 2 has a configuration in which the magnetic sheet 13 having a permeability of 2200 [H / m] and a thickness of 0.8 mm is disposed on the side opposite to the power transmission surface in the conventional coil unit.
- Comparative Example 3 is another conventional coil unit.
- a spiral pattern groove is formed on an epoxy resin substrate, and a linear conductor having a diameter of 0.6 mm is wound spirally around the groove, and a certain gap Wg is provided between adjacent linear conductors. This is a configuration provided.
- Example 1 shows the coil characteristics of the coil unit 100 shown in FIGS.
- the coil unit 100 forms a planar coil by spirally winding a linear conductor 110 having a diameter of 0.6 mm on a magnetic sheet 130 having a magnetic permeability of 400, and passes through a gap Wg between adjacent linear conductors 110.
- This is a configuration in which a linear magnetic body 120 having a magnetic permeability of 2800 [H / m] and a thickness of 0.8 mm is interposed.
- the coil unit 100 first applies a dry film resist to the entire surface of the magnetic sheet 130, performs UV curing on portions other than the wiring pattern, and removes the wiring portion by etching. Then, a spiral groove having a width of 0.6 mm is provided by sandblasting with silica fine particles. The linear conductor 110 is inserted into the groove and fixed. And the magnetic body sheet 130 of thickness 0.8mm was fixed to the surface opposite to the electric power transmission direction by adhesion
- Comparative Example 2 when the magnetic sheet 130 is disposed on the surface opposite to the power transmission surface of the coil unit 100, the coil inductance increases. However, the loss resistance of the coil unit 10 increases, and as a result, the Q value of the coil unit 100 decreases and the transmission efficiency decreases. In Comparative Example 3, the coil inductance is reduced by providing a certain gap between the adjacent linear conductors 110. By suppressing the proximity effect, the loss resistance of the coil unit 200 is reduced, the Q value of the coil unit 100 is increased, and the transmission efficiency is improved.
- the coil unit 100 of the first embodiment has a coil inductance increased by interposing the interline magnetic body 120 between the adjacent linear conductors 110, but the coil inductance increases. As the Q value of the coil is increased, the effect of improving the transmission efficiency is obtained.
- FIG. 8 and 9 are diagrams showing the magnetic flux generation in the magnetic flux generation path of the coil unit by simulation.
- FIG. 8 shows magnetic flux generation in the magnetic flux generation path when a certain gap is provided between the linear conductors 110 of the coil unit 200 of Comparative Example 3.
- the linear conductor 110 is spirally wound on the magnetic sheet 130 of the coil unit 100 of the first embodiment, and the interline magnetic body 120 is interposed in the gap between the adjacent linear conductors 110.
- the magnetic flux generation of the magnetic flux generation path in the case is shown.
- Table 2 shows the coil characteristics when the Wg of the coil unit 100 is changed.
- N1 and M1 are the inner side length and the outer side length shown in FIG.
- FIG. 10 is a diagram showing the transmission characteristics of the coil unit 100.
- the horizontal axis represents the ratio (Wg / Wc) of the width Wg of the interline magnetic body 120 to the cross-sectional maximum width Wc of the linear conductor 110, and the vertical axis represents the resistance value Re [ ⁇ ] of the coil unit 100 of each example.
- FIG. 11 is a diagram showing the transmission characteristics of the coil unit 100.
- the horizontal axis represents Wg / Wc, and the vertical axis represents the Q value of each coil.
- FIG. 12 is a diagram showing the transmission characteristics of the coil unit 100.
- the horizontal axis represents Wg / Wc, and the vertical axis represents the transmission efficiency.
- FIG. 12 shows a tendency similar to the Q value of the coil, and it is possible to maintain high transmission efficiency as a whole.
- the coil unit 100 has a coil loss by providing a gap between the adjacent linear conductors 110 and interposing the interline magnetic body 120 with respect to the comparative example 1-3 described above.
- the resistance tends to increase slightly, the coil inductance increases and the coil Q value becomes higher, so that the effect of improving the transmission efficiency is obtained.
- Table 3 shows the characteristics of the coil unit 100 when the magnetic permeability ( ⁇ 1) of the interline magnetic body 120 and the magnetic permeability ( ⁇ 2) of the magnetic body B in FIG. 3 are changed.
- FIG. 13 is a diagram showing the transmission characteristics of the coil unit 100.
- the horizontal axis represents the magnetic permeability of the interline magnetic body 120 and the magnetic permeability ( ⁇ 1 / ⁇ 2) of the magnetic sheet 130, and the vertical axis represents the coil resistance value Re ( ⁇ ).
- FIG. 14 is a diagram showing the transmission characteristics of the coil unit 100.
- the horizontal axis represents the magnetic permeability of the interline magnetic body 120 and the magnetic permeability of the magnetic sheet 130 ( ⁇ 1 / ⁇ 2), and the vertical axis represents the Q value of each coil.
- FIG. 15 is a diagram showing the transmission characteristics of the coil unit 100.
- the horizontal axis represents the magnetic permeability of the interline magnetic body 120 and the magnetic permeability ( ⁇ 1 / ⁇ 2) of the magnetic sheet 130, and the vertical axis represents the transmission efficiency.
- FIG. 15 shows a tendency similar to the Q value of the coil, and it is possible to maintain high transmission efficiency as a whole.
- a high coil inductance causes a high coil Q.
- the value can be held, and the effect of improving the transmission efficiency can be obtained.
- the coil unit 100 is formed by winding the linear conductor 110 into a spiral planar curved line, and the magnetic body 120 between the lines of the linear conductor 110. And a magnetic sheet 130 that covers a surface opposite to the power transmission / reception surface of the planar spiral coil 111.
- the maximum cross-sectional length of the linear conductor 110 is Wc and the width of the interline magnetic body 120 is Wg, 0.2 ⁇ Wg / Wc ⁇ 3.5.
- the magnetic permeability of the line magnetic body 120 is 1000 [H / m] or more and 3000 [H / m] or less, and the magnetic permeability of the magnetic sheet 130 is 50 [H / m] or more and 500 [H / m]. It is the following.
- the magnetic field concentrates on the inter-magnetic line magnetic body 120.
- the proximity effect is suppressed, and an increase in resistance value in the linear conductor 110 can be prevented.
- the generated magnetic flux is concentrated on the interline magnetic body 120, and the concentrated magnetic flux can further strengthen the electromagnetic coupling with the secondary coil on the power receiving side.
- the linear conductor 110 By covering the surface opposite to the power transmission / reception surface of the linear conductor 110 with the magnetic sheet 130 having a lower magnetic permeability than the interline magnetic body 120 interposed between the linear conductors 110, the linear conductor is covered.
- the leakage of magnetic flux generated from 110 can be reduced and the magnetic shielding effect can be exhibited.
- the directivity of magnetic flux can be improved and the inductance of a coil can be made high. As a result, it is possible to increase the Q value of the coil transmission characteristics and to reduce the propagation loss.
- Embodiment 2 describes a wireless power transmission device including a coil unit 100.
- FIG. 16 and 17 are diagrams showing a configuration of a wireless power transmission device including the coil unit according to the second embodiment of the present invention.
- FIG. 16 is a main configuration diagram of the electronic device and the power transmission device of the wireless power transmission device
- FIG. 17 is a control circuit diagram of wireless power transmission between the charging device and the electronic device terminal.
- the same components as those in FIG. 6 are denoted by the same reference numerals.
- the wireless power transmission device 300 includes a power transmission device 310 and an electronic device 320 that is a power reception device.
- the power transmission device 310 and the electronic device 320 form a wireless power transmission device that wirelessly transmits power by electromagnetic induction coupling.
- the power transmission device 310 is a charging device on which the electronic device 320 is placed and charges the secondary battery 321 of the electronic device 320.
- the power transmission device 310 includes a primary power transmission coil 210, a power transmission control unit 312, and a power transmission circuit unit 313.
- the primary side power transmission coil 210 is a wireless power transmission coil on the power transmission side when charging the secondary battery 321 of the electronic device 320.
- the primary power transmission coil 210 uses the coil unit 100 of the first embodiment.
- the power transmission control unit 312 supplies power to the primary power transmission coil 210 and controls it.
- the electronic device 320 is a power receiving side electronic device.
- the present invention is applied to an electronic device having a built-in secondary battery 321 for power storage as a load in the electronic device.
- the electronic device 320 includes a circuit board including a secondary power receiving coil 220, a secondary battery 321, and a charge control circuit 322.
- the secondary-side power receiving coil 220 is a power-receiving-side wireless power transmission coil that serves as a power-receiving side when the secondary battery 321 is charged, and uses the coil unit 100 of the first embodiment.
- the secondary battery 321 generates operating power for the terminal.
- the AC voltage of 100 [V], which is the commercial power supply 311, is converted into a predetermined DC voltage by an AC / DC converter (not shown), the DC voltage is generated as an AC voltage having a predetermined frequency, and the generated AC voltage is generated.
- the generated AC voltage is supplied from the power transmission circuit unit 313 to the primary side power transmission coil 210, and causes the primary side power transmission coil 210 to oscillate at a predetermined resonance frequency.
- an AC voltage is induced in the secondary power receiving coil 220 by the oscillation of the primary power transmitting coil 210 of the power transmitting device 310.
- the induced AC voltage is rectified through a rectifier circuit (not shown), and the secondary battery 321 is charged with the DC voltage smoothed by the smoothing circuit.
- the electronic device 320 serving as the power reception device transmits the power transmission device 310. It is detected that it is installed on the terminal mounting table.
- the electronic device 320 is placed on the terminal mounting base of the power transmission device 310, and the secondary side power receiving coil 220 of the electronic device 320 and the primary side power transmission coil 210 of the power transmission device 310 are disposed close to each other. Due to this proximity arrangement, the load impedance changes, and the voltage or current value fluctuates in the primary side power transmission coil 210.
- the power transmission control unit 312 detects the presence of the electronic device 320 to be charged by comparing the fluctuation value with a predetermined value.
- the electronic device 320 on the power receiving side the electronic device 320 is placed on the terminal mounting base of the power transmission device 310, and the secondary power receiving coil 220 and the primary power transmission coil 210 are disposed in proximity to each other. A change in voltage or current value generated in the primary side power transmission coil 210 due to a change in load impedance is detected.
- the power reception control circuit 322 compares the fluctuation value with a predetermined value and detects that the electronic device 320 is placed on the mounting table of the power transmission device 310 that is a charging device.
- the electronic device 320 When the electronic device 320 is placed on the mounting table of the power transmission device 310, highly efficient power transmission is performed by placing the coils in an appropriate proximity. However, when the electronic device 320 is placed at an inappropriate position, the power transmission efficiency tends to decrease. For this reason, it is preferable to notify the user whether or not it is placed in an appropriate positional relationship by some method, and to prompt the user to place it in an appropriate position.
- the wireless power transmission device 300 does not greatly reduce power transmission efficiency even if there is a slight misalignment between both coils. Transmission efficiency can be obtained.
- the power transmission device 310 and the electronic device 320 can transmit information signals regarding both devices via the primary power transmission coil 210 and the secondary power reception coil 220. It is. For example, when the primary-side power transmission coil 210 and the secondary-side power reception coil 220 are arranged close to each other, the voltage fluctuation at that time is detected and an appropriate arrangement is detected, the primary-side power transmission coil 210 and the secondary-side power reception coil The identification information of each device and apparatus is exchanged between the coils 220 to mutually authenticate each other.
- the secondary side from the primary side power transmission coil 210 Power is transmitted to the side power receiving coil 220, and the secondary battery 321 of the electronic device 320 is charged with the transmitted power.
- the power transmission device 310 includes a power transmission control unit 312, a power transmission circuit unit 312, and a primary side power transmission coil 210.
- AC voltage supplied from the commercial power supply 311 is converted into a predetermined DC voltage through an AC / DC converter (not shown). This DC voltage is supplied to the power transmission circuit unit 312 via the power transmission control unit 312.
- the power transmission circuit unit 313 has at least a driver and a resonance circuit (both not shown).
- the driver converts the DC voltage from the AC / DC converter into an AC voltage having a predetermined frequency under the control of the power transmission control unit 312.
- the resonance circuit resonates according to the AC voltage from the driver by a resonance circuit composed of a capacitor C and an inductance L of the coil. Thereby, the primary side power transmission coil 210 is oscillated at a predetermined resonance frequency.
- the power transmission circuit unit 313 superimposes a modulation signal including information on the state of the device supplied from the power transmission control unit 312 and information on the AC signal for power transmission, or electronically only the information alone. Information transmission to the device 320 can also be performed.
- the power transmission control unit 312 controls the driver of the power transmission circuit unit 313 and supplies an AC voltage of a predetermined frequency from the driver to the primary power transmission coil 210.
- the power transmission control unit 312 detects voltage or current fluctuations generated in the primary power transmission coil 210 due to the close arrangement or movement of the electronic device 320 to the mounting table of the power transmission device 310. Then, based on the detection of the close arrangement and movement of the electronic device 320 to the mounting table of the power transmission device 310, the control of the supply and stop of the AC voltage from the driver to the primary power transmission coil 210 is performed.
- the power transmission control unit 312 has a modulation / demodulation circuit (not shown) that transmits information on each device state between the power transmission device 310 and the electronic device 320.
- Information is transmitted from the primary side power transmission coil 210 to the secondary side power reception coil 220 by generating and transmitting a signal modulated according to information on the state of the device.
- the modulation signal sent from the electronic device 320 is taken out, the modulation signal is demodulated by the modulation / demodulation circuit, and the information sent from the electronic device 320 is received. Is called.
- the electronic device 320 mainly includes a secondary power receiving coil 220, a power receiving circuit unit 323, a power receiving control unit 324, a charging control circuit 322, and a secondary battery 321.
- the power receiving circuit unit 323 includes a rectifier circuit (not shown) that converts an alternating voltage induced in the secondary power receiving coil 220 into a direct voltage by electromagnetic induction from the primary power transmitting coil 210, and a direct current sent from the rectifier circuit. It is comprised from the regulator (not shown) which converts a voltage into the predetermined voltage used by charge of the electronic device 320. FIG. In addition, a resonance circuit and a driver (both not shown) of the secondary power receiving coil 220 for sending device state information to the power transmission device 310 are provided.
- the DC voltage converted into a predetermined voltage by the regulator is sent to the power reception control unit 324.
- the power reception control unit 324 sends the power received by the power reception circuit unit 323 to the charge control circuit 322 and charges the secondary battery 321.
- the power reception control unit 324 detects a device state of the electronic device 320, for example, a temperature rise, a charging state of the secondary battery 321, a voltage variation generated in the secondary power receiving coil 220, and the like.
- the power reception control unit 324 includes a modulation / demodulation circuit (not shown) that sends a signal modulated according to the device information to the power transmission device 310 to the power reception circuit unit 323.
- the driver When the oscillation circuit of the power reception circuit unit 323 transmits information from the electronic device 320 to the power transmission device 310, the driver causes the power reception control unit 324 to resonate the resonance circuit so that the secondary side reception coil 220 has a predetermined resonance frequency. Oscillate with.
- the driver transmits a modulation signal for information transmission supplied from the power reception control unit 324.
- Transmission / reception of information signals between the power transmission apparatus 310 and the electronic device 320 may be simple bit communication or coded communication.
- the power transmission device 310 is used when the voltage value based on the change in the load impedance does not become a predetermined voltage value determined in advance or when the identification and authentication between the devices cannot be performed. It is controlled not to supply power to the primary side power transmission coil 210 as being in some abnormal state.
- an AC voltage is induced in the secondary power receiving coil 220 by the electromagnetic induction coupling between both the primary power transmitting coil 210 and the secondary power receiving coil 220 and is supplied to the power receiving circuit unit 323.
- the secondary battery 321 of the electronic device 320 When the secondary battery 321 of the electronic device 320 is charged, the secondary battery 321 is interposed between the power transmission device 310 and the electrical device 2 via the primary side power transmission coil 210 and the secondary side power reception coil 220.
- the charging information is transmitted. For example, when the secondary battery 321 needs to be continuously charged, the power transmission from the primary power transmission coil 210 is continued. Further, when the charging of the secondary battery 321 is completed, the power transmission is stopped. Control is also performed to stop power transmission when information indicating some abnormality is supplied.
- the coil unit may be applied to any electronic device such as a portable terminal. Any device may be used as long as the device transmits electric power in a non-contact manner by electromagnetic induction.
- the device may be applied to a mobile terminal device such as a mobile phone.
- the coil unit may be either a power transmission coil or a power reception coil.
- the names of the coil unit and the power transmission device are used.
- the coil unit is a planar coil, a power transmission coil or a power reception coil
- the power transmission device is a wireless power transmission device.
- a non-contact power transmission system or the like may be used.
- the parts constituting the coil unit for example, the type / shape of the linear conductor, the inter-line magnetic body, the magnetic sheet, and the mounting method are not limited to the above-described embodiment.
- the linear conductor may be formed by being spirally wound, and the shape may be a circle or a polygon including a rectangle.
- the coil unit and the power transmission device according to the present invention are detachably mounted or approached to a power transmission device such as a charging device, so that the electronic device or the like as a power reception target is detachably attached to the electronic device from the power transmission device by electromagnetic induction.
- the present invention can be applied to a coil unit for transmitting electric power and a power transmission device including the coil unit in general.
- Coil unit 110 110A, 110B Linear conductor 111 Planar spiral coil 120 Interlinear magnetic body (first magnetic body) 130, 130A, 130B Magnetic sheet (second magnetic body) 140 Start terminal 150 Termination terminal 210 Primary power transmission coil 220 Secondary power reception coil 300 Wireless power transmission device 310 Power transmission device 312 Power transmission control unit 313 Power transmission circuit unit 320 Electronic device 321 Secondary battery 322 Charge control circuit 323 Power reception circuit unit 324 Power reception control unit
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
Provided is a coil unit with which the proximity effect between lines is suppressed and resistance loss is inhibited, with which magnetic flux directivity is improved and coil inductance is increased, and with which coil Q value is increased. A coil unit (100) is provided with: a planar spirally wound coil (111) in which a magnetic material (120) is provided between the lines of a linear conductor (110); and a magnetic material sheet (130) which covers a surface of the planar spirally wound coil (111), said surface being opposite to a power transmission/receiving surface of the planar spirally wound coil (111). If the greatest cross-sectional length of the linear conductor (110) is Wc, and the width of the magnetic material (120) between the lines is Wg, then 0.2 ≤ Wg/Wc ≤ 3.5. Moreover, the magnetic permeability of the magnetic material (120) between the lines is in the range of 1000-3000[H/m] inclusive, and the magnetic permeability of the magnetic material sheet (130) is in the range of 50-500[H/m] inclusive.
Description
本発明は、コイルユニット及びコイルユニットを備える電力伝送装置に関し、例えば送電装置から電子機器等に対して電磁誘導により非接触で電力を伝送するコイルユニット及び電力伝送装置に関する。
The present invention relates to a coil unit and a power transmission device including the coil unit, for example, a coil unit and a power transmission device that transmit power in a non-contact manner by electromagnetic induction from a power transmission device to an electronic device or the like.
従来、ワイヤレス電力伝送装置として、送電装置に設けた1次側送電用コイルと、受電側である電子機器や車両側に設けた2次側受電用コイルとの間で、両コイル間の電磁誘導作用を利用して電力伝送を行うワイヤレス電力伝送装置がある。ワイヤレス電力伝送では接点部分の露出がないために防水性の確保が容易なことや、電気的接点部分の不良や劣化を気にしなくてもよく、電力送電装置と電力受電機器の着脱を容易に行うことができるなどの利点がある。
Conventionally, as a wireless power transmission device, electromagnetic induction between both coils between a primary-side power transmission coil provided on a power transmission device and a secondary-side power reception coil provided on an electronic device on the power reception side or the vehicle side There is a wireless power transmission device that performs power transmission using an action. In wireless power transmission, there is no exposure of the contact part, so it is easy to ensure waterproofness, and there is no need to worry about defects or deterioration of the electrical contact part, and it is easy to attach and detach the power transmission device and power receiving device There are advantages such as being able to do.
これらの電子機器等に搭載されている1次側送電コイル及び2次側受電コイルは、コアに巻き線を巻いたものやボビンに巻き線を巻いたものが一般的に用いられている。近年、受電側の携帯電子機器に対して、小型化、薄型化、高機能化が要求されている。これらの要求に対して、送電装置及び受電側の電子機器に設ける送受電のコイルとして平面コイルを用いることが提案されている。
The primary side power transmission coil and the secondary side power reception coil that are mounted on these electronic devices or the like are generally used that are wound around a core or wound around a bobbin. In recent years, portable electronic devices on the power receiving side are required to be downsized, thinned, and highly functional. In response to these demands, it has been proposed to use a planar coil as a power transmission / reception coil provided in a power transmission device and a power receiving electronic device.
上記ワイヤレス電力伝送装置は、1次側送電コイルと2次側受電コイルを電磁誘導結合が効率化できるように対向して備える。商用電源からの電圧を高周波インバータ回路により高周波交流電圧に変換して1次側送電コイルに加えることで、この1次側送電コイルに60~600kHzの高周波の交流磁束が発生する。そして、電磁誘導作用により、受電側の電子機器内の2次側受電コイルにて該交流磁束により誘起された交流電圧が、2次側の整流平滑回路で直流に変換した後に充電手段である2次電池に給電される。
The wireless power transmission device includes a primary power transmission coil and a secondary power reception coil facing each other so that electromagnetic induction coupling can be made efficient. By converting the voltage from the commercial power source into a high-frequency AC voltage by a high-frequency inverter circuit and applying it to the primary-side power transmission coil, a high-frequency AC magnetic flux of 60 to 600 kHz is generated in the primary-side power transmission coil. Then, after the AC voltage induced by the AC magnetic flux in the secondary power receiving coil in the power receiving side electronic device is converted into DC by the secondary side rectifying and smoothing circuit by the electromagnetic induction action, the charging means 2 Power is supplied to the secondary battery.
送受電のコイルとして用いられるコイルは、ワイヤレス電力伝送装置を小型化するため、スパイラルで平面状に構成された平面コイルを用いることにより、小型化、薄型化される。しかし、それを平面化した場合にはコアの使用ができないので、コイルから発生する磁界による不要輻射の抑制、及び電力伝送の効率化を図る必要がある。
A coil used as a power transmission / reception coil is reduced in size and thickness by using a planar coil formed in a spiral plane to reduce the size of the wireless power transmission device. However, since the core cannot be used when it is planarized, it is necessary to suppress unnecessary radiation due to the magnetic field generated from the coil and to improve the efficiency of power transmission.
特許文献1には、電力伝送の効率化を図るため1次側送電用平面コイル及び2次側受電平面コイルは、その両者が対向する面の反対側の面に、磁性シートをそれぞれ設ける装置が記載されている。
In Patent Document 1, in order to increase the efficiency of power transmission, the primary side power transmission planar coil and the secondary side power reception planar coil are each provided with a magnetic sheet on the surface opposite to the surface where both faces each other. Are listed.
上記特許文献1に記載のワイヤレス電力伝送装置は、装置を小型化するため、小型化されたコイルが約60~600kHzの高周波で用いられる。そして、1次側送電用平面コイル及び2次側受電平面コイルには、その両者が対向する面の反対側の面に、磁性シートがそれぞれ設けられている。これによりコイルから発生する磁界による不要輻射を抑制することができる。
The wireless power transmission device described in Patent Document 1 uses a miniaturized coil at a high frequency of about 60 to 600 kHz in order to reduce the size of the device. The primary-side power transmission planar coil and the secondary-side power reception planar coil are each provided with a magnetic sheet on the surface opposite to the surface where both faces. Thereby, unnecessary radiation due to the magnetic field generated from the coil can be suppressed.
しかしながら、特許文献1に記載の電力伝送装置は、単に磁性シートを配置するだけであったため、コイル線間での近接効果を抑制することが十分にできない。また、特許文献1に記載の電力伝送装置は、発生する磁束強度を高めてワイヤレス電力電送効率の低下を抑えること、及び、発生する磁束が受電側の2次コイルとの電磁結合をより強くすることについても十分にできない。
However, since the power transmission device described in Patent Document 1 simply disposes the magnetic sheet, the proximity effect between the coil wires cannot be sufficiently suppressed. Further, the power transmission device described in Patent Literature 1 increases the generated magnetic flux intensity to suppress the decrease in wireless power transmission efficiency, and the generated magnetic flux further strengthens electromagnetic coupling with the secondary coil on the power receiving side. I can't do enough.
本発明の目的は、線間での近接効果を抑制して抵抗損失を抑えるとともに、磁束の指向性を高め、コイルのインダクタンスを高くして、コイルのQ値を上げることができるコイルユニット及びコイルユニットを備える電力伝送装置を提供することである。
An object of the present invention is to provide a coil unit and a coil capable of suppressing the proximity effect between the lines and suppressing the resistance loss, increasing the directivity of the magnetic flux, increasing the inductance of the coil, and increasing the Q value of the coil. It is to provide a power transmission device including a unit.
本発明に係るコイルユニットは、線状導体をスパイラル状に巻回して形成された平面コイルと、前記線状導体の線間に介在された第1の磁性体と、前記平面コイルの一側の面を覆って設けられた第2の磁性体と、を備える構成を採る。
A coil unit according to the present invention includes a planar coil formed by winding a linear conductor in a spiral shape, a first magnetic body interposed between lines of the linear conductor, and one side of the planar coil. And a second magnetic body provided so as to cover the surface.
本発明に係る電力伝送装置は、上記コイルユニットを用いて構成され、前記平面コイルの前記第2の磁性体との対向面とは反対側の面が送電側の面に配置された送電コイルと、該送電コイルに電力を供給する送電部と、を含む構成を採る。
A power transmission device according to the present invention is configured using the coil unit, and a power transmission coil in which a surface of the planar coil opposite to the surface facing the second magnetic body is disposed on a surface on the power transmission side. And a power transmission unit that supplies power to the power transmission coil.
本発明に係る電力伝送装置は、上記コイルユニットを用いて構成され、前記平面コイルの前記第2の磁性体との対向面とは反対側の面が受電側の面に配置された受電コイルと、該受電コイルで受電された電力を出力する受電装置と、を含む構成を採る。
A power transmission device according to the present invention is configured using the coil unit, and a power receiving coil in which a surface opposite to a surface facing the second magnetic body of the planar coil is disposed on a power receiving side surface; And a power receiving device that outputs the power received by the power receiving coil.
本発明によれば、線間での近接効果を抑制して抵抗損失を抑えるとともに、磁束の指向性を高め、コイルのインダクタンスを高くして、コイルのQ値を上げることができる。また、電力電送効率の低下を抑え、高効率での送電側・受電側コイル間での長距離の電力伝送を実現することができる。さらに、送電側・受電側コイル間の少々の位置ずれがあったとしても、電力電送効率が大きく低下することがない電力伝送装置を提供することができる。
According to the present invention, it is possible to suppress the proximity effect between the lines and suppress the resistance loss, increase the directivity of the magnetic flux, increase the inductance of the coil, and increase the Q value of the coil. In addition, it is possible to suppress a decrease in power transmission efficiency and realize long-distance power transmission between the power transmission side and power reception side coils with high efficiency. Furthermore, even if there is a slight misalignment between the power transmission side and power reception side coils, it is possible to provide a power transmission device in which the power transmission efficiency is not greatly reduced.
以下、本発明の各実施の形態について図面を参照して詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(実施の形態1)
図1は、本発明の実施の形態1に係るコイルユニットの構成を示す斜視図である。図2は、本実施の形態に係るコイルユニットの平面図、図3は、図2のA-A’矢視断面図である。以下、本発明に係るコイルユニットを、ワイヤレス電力伝送装置に適用される平面コイルで具現化した例で説明する。 (Embodiment 1)
FIG. 1 is a perspective view showing a configuration of a coil unit according toEmbodiment 1 of the present invention. 2 is a plan view of the coil unit according to the present embodiment, and FIG. 3 is a cross-sectional view taken along the line AA ′ in FIG. Hereinafter, an example in which a coil unit according to the present invention is embodied by a planar coil applied to a wireless power transmission device will be described.
図1は、本発明の実施の形態1に係るコイルユニットの構成を示す斜視図である。図2は、本実施の形態に係るコイルユニットの平面図、図3は、図2のA-A’矢視断面図である。以下、本発明に係るコイルユニットを、ワイヤレス電力伝送装置に適用される平面コイルで具現化した例で説明する。 (Embodiment 1)
FIG. 1 is a perspective view showing a configuration of a coil unit according to
図1乃至図3に示すように、コイルユニット100は、1次側送電コイル又は2次側受電コイルである。
As shown in FIGS. 1 to 3, the coil unit 100 is a primary power transmission coil or a secondary power reception coil.
コイルユニット100は、線状導体110をスパイラル状(渦巻き状)に巻回して形成され、線状導体110の線間に線間磁性体120(第1の磁性体)を介在させた平面渦巻きコイル111と、平面渦巻きコイル111の一方の面を覆う磁性体シート130(第2の磁性体)と、線状導体110の始端110aに接続された始端端子140と、線状導体110の終端110bに接続された終端端子150と、を備える。
The coil unit 100 is formed by winding a linear conductor 110 in a spiral shape (spiral shape), and a planar spiral coil in which an interline magnetic body 120 (first magnetic body) is interposed between the lines of the linear conductor 110. 111, a magnetic sheet 130 (second magnetic body) covering one surface of the planar spiral coil 111, a start terminal 140 connected to the start end 110a of the linear conductor 110, and an end 110b of the linear conductor 110 And a terminal terminal 150 connected thereto.
ここで、平面渦巻きコイル111は、線状導体110が巻き回されて形成されたものである。平面渦巻きコイル111は、線状導体110と線間磁性体120とを一緒に巻き回して作製される。あるいは、平面渦巻きコイル111は、線状導体110の線間に線間磁性体120を挿入することにより作製される。
Here, the plane spiral coil 111 is formed by winding the linear conductor 110. The planar spiral coil 111 is produced by winding the linear conductor 110 and the inter-line magnetic body 120 together. Alternatively, the planar spiral coil 111 is manufactured by inserting the interline magnetic body 120 between the lines of the linear conductor 110.
磁性体シート130は、平面渦巻きコイル111の送受電面と反対の面に設けた磁性体層であり、線状導体110が発生する磁界による不要輻射を抑制する。磁性体シート130は、ケイ素鋼板、アモルファス金属などの磁性材料からなる。
The magnetic material sheet 130 is a magnetic material layer provided on the surface opposite to the power transmission / reception surface of the flat spiral coil 111, and suppresses unnecessary radiation due to the magnetic field generated by the linear conductor 110. The magnetic sheet 130 is made of a magnetic material such as a silicon steel plate or an amorphous metal.
コイルユニット100の構成についてより詳細に説明する。
The configuration of the coil unit 100 will be described in more detail.
一般的に電力伝送コイルには、数十~数百kHzの高周波電流が印加される。1本の単線を巻回してコイルを形成した線状導体110に高周波電流を流す場合、近接する2本以上の線状導体110に平行して同じ向きの電流が流れると、導体断面の電流分布は中心軸側に偏った形となり、コイルユニット100の抵抗値が増大し、損失が増大するといういわゆる近接効果が現れやすくなる傾向にある。
Generally, a high frequency current of several tens to several hundreds kHz is applied to the power transmission coil. When a high-frequency current is passed through a linear conductor 110 in which a single wire is wound to form a coil, if a current in the same direction flows parallel to two or more adjacent linear conductors 110, the current distribution in the conductor cross section Becomes a shape biased toward the central axis, and the resistance value of the coil unit 100 increases and the so-called proximity effect that the loss increases tends to appear.
コイルユニット100を構成する線状導体110間に一定の間隙を設けることで、線間での近接効果を抑制することができる。これにより、コイルユニット100の抵抗値を低減することができ、抵抗損失を抑えることができる。しかし、コイルユニット100のインダクタンスも減少する傾向にあり、コイルユニット100のQ値を高めるには限界がある。
By providing a certain gap between the linear conductors 110 constituting the coil unit 100, the proximity effect between the wires can be suppressed. Thereby, the resistance value of the coil unit 100 can be reduced and resistance loss can be suppressed. However, the inductance of the coil unit 100 also tends to decrease, and there is a limit to increasing the Q value of the coil unit 100.
(1)コイルユニット100は、線状導体110間に高透磁率の線間磁性体120を介在させる。これにより、磁界が線間磁性体120に集中し、隣り合う導線パターン間での磁束の干渉を抑制することができる。これにより、近接効果が抑制されるとともに、線状導体110での抵抗値増大を防げるとともに、コイルユニット100のインダクタンスを高めることができ、コイルユニット100のQ値を高めることに寄与する。そして、発生する磁束が線間の線間磁性体120に集中するので、その集中した磁束が受電側の2次コイルとの電磁結合をより強くすることができる。
(1) In the coil unit 100, a high magnetic permeability interline magnetic body 120 is interposed between the linear conductors 110. Thereby, a magnetic field concentrates on the line | wire magnetic body 120, and interference of the magnetic flux between adjacent conducting wire patterns can be suppressed. As a result, the proximity effect is suppressed, an increase in the resistance value at the linear conductor 110 can be prevented, the inductance of the coil unit 100 can be increased, and the Q value of the coil unit 100 can be increased. And since the generated magnetic flux concentrates on the inter-line magnetic body 120, the concentrated magnetic flux can further strengthen the electromagnetic coupling with the secondary coil on the power receiving side.
(2)コイルユニット100は、平面渦巻きコイル111を形成する線状導体110の断面最大長さをWc、線状導体110の間に介在させた磁性体120の幅をWgとした場合、以下の関係を満たす構成とする。
0.2≦Wg/Wc≦3.5 (2) In thecoil unit 100, when the maximum cross-sectional length of the linear conductor 110 forming the planar spiral coil 111 is Wc and the width of the magnetic body 120 interposed between the linear conductors 110 is Wg, The structure satisfies the relationship.
0.2 ≦ Wg / Wc ≦ 3.5
0.2≦Wg/Wc≦3.5 (2) In the
0.2 ≦ Wg / Wc ≦ 3.5
線間磁性体120の幅Wgを線状導体110の断面最大長さWcの0.2倍以上、3.5倍以下とする構成とすることにより、近接効果を抑制する効果と、発生する磁界を線間磁性体120に集中させて受電側の2次コイルとの電磁結合をより強いものとする効果を両立させる。0.2倍よりも短くすると近接効果抑制効果が弱まり、3.5倍よりも大きくなると、発生する磁界を線間磁性体120に集中させる効果が弱まる傾向にある。
By setting the width Wg of the interline magnetic body 120 to be not less than 0.2 times and not more than 3.5 times the cross-sectional maximum length Wc of the linear conductor 110, the effect of suppressing the proximity effect and the generated magnetic field Are concentrated on the inter-line magnetic body 120 to achieve both effects of strengthening electromagnetic coupling with the secondary coil on the power receiving side. When it is shorter than 0.2 times, the proximity effect suppressing effect is weakened, and when it is larger than 3.5 times, the effect of concentrating the generated magnetic field on the interline magnetic body 120 tends to be weakened.
(3)コイルユニット100は、平面渦巻きコイル111の送受電面と反対の面に磁性体シート130を設ける。
(3) The coil unit 100 is provided with a magnetic sheet 130 on the surface opposite to the power transmission / reception surface of the planar spiral coil 111.
この構成により、コイルユニット100のインダクタンスを高めることができ、コイルユニット100のQ値を高め、発生する磁束が線間磁性体120に集中するので、その集中した磁束が受電側の2次コイルとの電磁結合をより強くすることができる。また、コイルユニット100の伝送面と反対側に低透磁率の磁性体(第2の磁性体)を設けることにより、コイルユニット100から発生した磁束の漏れを低減して磁気シールド効果を発揮できる。さらに、高周波成分のコイルユニット間での結合係数を高めて電送効率を向上することができ、低ノイズ化を図ることができる。その結果、磁束の指向性を高め、伝播損失の低減を図ることができる。
With this configuration, the inductance of the coil unit 100 can be increased, the Q value of the coil unit 100 can be increased, and the generated magnetic flux is concentrated on the inter-line magnetic body 120, so that the concentrated magnetic flux is connected to the secondary coil on the power receiving side. The electromagnetic coupling can be made stronger. Further, by providing a low permeability magnetic body (second magnetic body) on the opposite side of the transmission surface of the coil unit 100, leakage of magnetic flux generated from the coil unit 100 can be reduced and a magnetic shielding effect can be exhibited. Furthermore, it is possible to improve the transmission efficiency by increasing the coupling coefficient between the coil units of high frequency components, and to reduce the noise. As a result, the directivity of the magnetic flux can be increased and the propagation loss can be reduced.
(4)コイルユニット100の線間磁性体120の透磁率は、磁性体シート130の透磁率よりも高い。具体的には、線間磁性体120の磁性体の透磁率は、1000[H/m]以上3000[H/m]以下であり、磁性体シート130の磁性体の透磁率は、50[H/m]以上500[H/m]以下である。
(4) The magnetic permeability of the line magnetic body 120 of the coil unit 100 is higher than the magnetic permeability of the magnetic sheet 130. Specifically, the magnetic permeability of the magnetic material of the interline magnetic body 120 is 1000 [H / m] or more and 3000 [H / m] or less, and the magnetic permeability of the magnetic material of the magnetic material sheet 130 is 50 [H / m]. / M] or more and 500 [H / m] or less.
線間磁性体120よりも透磁率の低い磁性シート130をコイルユニット100の送受電面と反対側に設ける構成により、発生する磁界を線間磁性体120に集中させて近接効果を抑制し、線状導体110での抵抗値増大を防ぐとともに、集中した磁束が受電側の2次コイルとの電磁結合をより強くすることができる。そして、コイルユニット100から発生した磁束の漏れを低減して磁気シールド効果を発揮できるとともに、磁束の指向性を高めて電送効率を上げることができる。
With the configuration in which the magnetic sheet 130 having a lower magnetic permeability than the inter-line magnetic body 120 is provided on the side opposite to the power transmission / reception surface of the coil unit 100, the generated magnetic field is concentrated on the inter-line magnetic body 120, thereby suppressing the proximity effect. In addition to preventing an increase in the resistance value at the conductor 110, the concentrated magnetic flux can further strengthen the electromagnetic coupling with the secondary coil on the power receiving side. In addition, the leakage of magnetic flux generated from the coil unit 100 can be reduced to exhibit the magnetic shielding effect, and the directivity of the magnetic flux can be increased to increase the transmission efficiency.
線間磁性体120の透磁率が1000[H/m]よりも小さいと、線状導体110での抵抗値増大を防ぐ効果が発揮されにくく、また、受電側の2次コイルとの電磁結合をより強くする効果が弱まる傾向がある。また、線間磁性体120の透磁率が3000[H/m]よりも大きいと、磁性シート130自体の材料コストが上がる。
If the magnetic permeability of the interline magnetic body 120 is smaller than 1000 [H / m], the effect of preventing an increase in resistance value in the linear conductor 110 is difficult to be exhibited, and electromagnetic coupling with the secondary coil on the power receiving side is difficult. There is a tendency that the effect of strengthening is weakened. Further, if the magnetic permeability of the interline magnetic body 120 is larger than 3000 [H / m], the material cost of the magnetic sheet 130 itself increases.
磁性体シート130の透磁率が50[H/m]よりも小さいと、コイルユニット100における電力伝送方向へのインダクタンス特性を高める効果が弱くなる傾向がある。磁性体シート130の透磁率が500[H/m]よりも大きいと、電力伝送方向外での面の磁気シールド機能が弱まる傾向がある。
When the magnetic permeability of the magnetic sheet 130 is smaller than 50 [H / m], the effect of increasing the inductance characteristics in the power transmission direction in the coil unit 100 tends to be weakened. When the magnetic permeability of the magnetic sheet 130 is larger than 500 [H / m], the magnetic shield function of the surface outside the power transmission direction tends to be weakened.
以下、本実施の形態のコイルユニット100の具体的な構造について説明する。
Hereinafter, a specific structure of the coil unit 100 of the present embodiment will be described.
図2に示すように、コイルの素線である線状導体110を始端端子140から終端端子150までスパイラル状に巻回して円形状にコイルユニット100を形成した。このとき、コイルユニット100を形成する線状導体110間に一定の線間隙を保持した形で巻回し、その間隙に線間磁性体120を存在させた。
As shown in FIG. 2, the coil unit 100 was formed in a circular shape by winding a linear conductor 110, which is a coil wire, in a spiral shape from the start terminal 140 to the end terminal 150. At this time, winding was performed in such a manner that a certain line gap was maintained between the linear conductors 110 forming the coil unit 100, and the inter-line magnetic body 120 was present in the gap.
図3に示すように、コイルユニット100は、線状導体110と、その隣接する線状導体110間に一定の間隙を設け、その間隙に線間磁性体120を介在させる。さらに、送受電面の方向とは逆の面に磁性体シート130を設ける。
As shown in FIG. 3, in the coil unit 100, a certain gap is provided between the linear conductor 110 and the adjacent linear conductor 110, and the inter-line magnetic body 120 is interposed in the gap. Further, the magnetic sheet 130 is provided on the surface opposite to the direction of the power transmission / reception surface.
線状導体110は、一定の太さを有する素線1本から構成される場合や、矩形状のものや、細い素線を複数本並べたものや、複数の素線を束ねたリッツ線の構成とすることができる。
The linear conductor 110 is composed of a single strand having a certain thickness, a rectangular shape, a plurality of thin strands arranged, or a litz wire bundled with a plurality of strands. It can be configured.
図3では、好ましい一つの構成として、正方形のような矩形状の線状導体110を使用した構成を示す。単位断面積当たりの導線の占めうる領域が多くなり、コイルユニット100のインダクタンスを高める効果が得られる。そして、矩形状の線間磁性体120間に高透磁率の線間磁性体120を介在させることで、コイルユニット100のインダクタンスを高めることができる。また、磁界が線間磁性体120により集中する効果が得られ、これにより近接効果が抑制され、線状導体110での抵抗値増大を防ぐ効果を得ることができる。
FIG. 3 shows a configuration using a rectangular linear conductor 110 such as a square as a preferable configuration. The area that the conducting wire per unit cross-sectional area can occupy increases, and the effect of increasing the inductance of the coil unit 100 can be obtained. And the inductance of the coil unit 100 can be raised by interposing the high magnetic permeability line magnetic body 120 between the rectangular line magnetic bodies 120. In addition, the effect of concentrating the magnetic field by the interline magnetic body 120 is obtained, whereby the proximity effect is suppressed, and the effect of preventing the resistance value increase in the linear conductor 110 can be obtained.
図4及び図5は、本実施の形態の他のコイルユニットの線状導体の構成を示す断面図である。
4 and 5 are cross-sectional views showing a configuration of a linear conductor of another coil unit according to the present embodiment.
図4に示すように、コイルユニット100Aは、1本の素線からなる線状導体110Aを有する。
As shown in FIG. 4, the coil unit 100A has a linear conductor 110A made of one strand.
また、図5に示すように、コイルユニット100Bは、細い素線を複数本並べた線状導体110Bを有する。図5では、線状導体110Bは、4本を平行に配置した素線である。また、線状導体110Bとして、複数の素線を束ねて巻き回したリッツ線の構成とすることも好ましい。
Further, as shown in FIG. 5, the coil unit 100B has a linear conductor 110B in which a plurality of thin strands are arranged. In FIG. 5, the linear conductor 110B is a strand in which four wires are arranged in parallel. It is also preferable that the linear conductor 110B has a litz wire configuration in which a plurality of strands are bundled and wound.
本実施の形態のコイルユニット100は、線状導体110間にフェライト等の線間磁性体120を介在させる構成を採る。この構成により、コイルユニット100のインダクタンスを増加させることができる。また、コイルユニット100の抵抗損失を低減でき、コイルユニット100のQ値を向上させて、電送効率を改善することができる。
The coil unit 100 according to the present embodiment employs a configuration in which an interline magnetic body 120 such as ferrite is interposed between the linear conductors 110. With this configuration, the inductance of the coil unit 100 can be increased. Moreover, the resistance loss of the coil unit 100 can be reduced, the Q value of the coil unit 100 can be improved, and the transmission efficiency can be improved.
ここで、線状導体110の断面横幅長さWcと、線状導体110の間に介在させる線間磁性体120の幅Wgについて説明する。
Here, the cross-sectional width Wc of the linear conductor 110 and the width Wg of the interline magnetic body 120 interposed between the linear conductors 110 will be described.
本実施の形態のコイルユニット100は、コイルを形成する線状導体110の断面横幅長さをWc、線状導体110の間に介在させる線間磁性体120の幅をWgとすると、以下の関係をみたす構成とすることが好ましい。
0.2≦Wg/Wc≦3.5 Thecoil unit 100 of the present embodiment has the following relationship, where Wc is the cross-sectional width of the linear conductor 110 forming the coil, and Wg is the width of the interline magnetic body 120 interposed between the linear conductors 110. It is preferable to have a configuration that satisfies the above.
0.2 ≦ Wg / Wc ≦ 3.5
0.2≦Wg/Wc≦3.5 The
0.2 ≦ Wg / Wc ≦ 3.5
線間磁性体120の幅Wgを線状導体110の断面最大長さWcの0.2倍以上で、3.5倍以下とする構成とすることにより、近接効果を抑制してコイルユニット100の損失抵抗を低減させるとともに、コイルユニット100のインダクタンスをより高める効果を発揮させる範囲を明確にした。発生する磁界を線間磁性体120に集中させて受電側の2次コイルとの電磁結合をより強くする。0.2倍よりも短くすると近接効果抑制効果が弱まり、3.5倍よりも大きくなると、コイルユニット100インダクタンスが低下して発生する磁界を線間磁性体120に集中させる効果が弱まる傾向にある。好ましくは、線間磁性体120の幅Wgを線状導体110の断面最大長さWcの0.4倍以上で、2.5倍以下、より好ましくは線間磁性体120の幅Wgを線状導体110の断面最大長さWcの0.6倍以上で、1.5倍以下である。
By setting the width Wg of the interline magnetic body 120 to be not less than 0.2 times and not more than 3.5 times the maximum cross-sectional length Wc of the linear conductor 110, the proximity effect is suppressed and the coil unit 100 While reducing the loss resistance, the range in which the effect of increasing the inductance of the coil unit 100 was further clarified was clarified. The generated magnetic field is concentrated on the interline magnetic body 120 to further strengthen the electromagnetic coupling with the secondary coil on the power receiving side. If it is shorter than 0.2 times, the proximity effect suppressing effect is weakened, and if it is larger than 3.5 times, the effect of concentrating the generated magnetic field on the interline magnetic body 120 tends to be weakened when the coil unit 100 inductance is reduced. . Preferably, the width Wg of the interline magnetic body 120 is not less than 0.4 times and not more than 2.5 times the maximum cross-sectional length Wc of the linear conductor 110, more preferably the width Wg of the interline magnetic body 120 is linear. The cross section maximum length Wc of the conductor 110 is 0.6 times or more and 1.5 times or less.
また、線間磁性体120の透磁率は、1000[H/m]以上、磁性体シート130の透磁率は、50[H/m]以上500[H/m]以下の構成とすることが好ましい。
The magnetic permeability of the interline magnetic body 120 is preferably 1000 [H / m] or higher, and the magnetic permeability of the magnetic sheet 130 is preferably 50 [H / m] or higher and 500 [H / m] or lower. .
この構成により、発生する磁界を線間磁性体120に集中させて近接効果を抑制し、線状導体110での抵抗値増大を防ぐとともに、集中した磁束が受電側の2次コイルとの電磁結合をより強いものとできる。そして、コイルユニット100から発生した磁束の漏れを低減して磁気シールド効果を発揮できるとともに、磁束の指向性を高めて電送効率を上げる構成を明確にした。
With this configuration, the generated magnetic field is concentrated on the interline magnetic body 120 to suppress the proximity effect, prevent an increase in the resistance value in the linear conductor 110, and the concentrated magnetic flux is electromagnetically coupled to the secondary coil on the power receiving side. Can be made stronger. In addition, a configuration in which leakage of magnetic flux generated from the coil unit 100 can be reduced and the magnetic shielding effect can be exhibited, and the directivity of the magnetic flux is increased to increase the transmission efficiency is clarified.
線間磁性体120の透磁率が1000よりも小さいと線状導体110での抵抗値増大を防ぐ効果が発揮されにくく、また、受電側の2次コイルとの電磁結合をより強くする効果が弱まる傾向にある。磁性体シート130の透磁率が50[H/m]よりも小さいと、コイルユニット100における電力伝送方向へのインダクタンス特性を高める効果が弱くなる傾向になる。磁性体シート130の透磁率が500[H/m]よりも大きいと、電力伝送方向外での面の磁気シールド機能が弱まる傾向になる。
If the magnetic permeability of the interline magnetic body 120 is less than 1000, the effect of preventing an increase in the resistance value of the linear conductor 110 is difficult to be exhibited, and the effect of strengthening the electromagnetic coupling with the secondary coil on the power receiving side is weakened. There is a tendency. When the magnetic permeability of the magnetic sheet 130 is smaller than 50 [H / m], the effect of improving the inductance characteristics in the power transmission direction in the coil unit 100 tends to be weakened. When the magnetic permeability of the magnetic sheet 130 is larger than 500 [H / m], the magnetic shield function of the surface outside the power transmission direction tends to be weakened.
また、線間磁性体120の透磁率は、3000[H/m]以下とすることが好ましい。3000[H/m]よりも大きいと、電送効率が低下する傾向にある。
The magnetic permeability of the interline magnetic body 120 is preferably 3000 [H / m] or less. If it is larger than 3000 [H / m], the transmission efficiency tends to be lowered.
また、磁性体としては、Ni-Zn系のフェライト、Mn-Zn系のフェライト、Mg-Zn系のフェライトシート等が使用可能である。アモルファス金属も磁性シートとして用いることができる。磁性体としてフェライトを使用する場合は、コイルユニット100の交流抵抗を低下させる点で有利である。磁性体としてアモルファス金属を使用する場合はコイルユニット100を薄型化することができる。
As the magnetic material, Ni—Zn ferrite, Mn—Zn ferrite, Mg—Zn ferrite sheet, etc. can be used. Amorphous metal can also be used as the magnetic sheet. When ferrite is used as the magnetic body, it is advantageous in that the AC resistance of the coil unit 100 is reduced. When amorphous metal is used as the magnetic body, the coil unit 100 can be thinned.
また、電力伝送用の1次送電コイルから発生した磁束が、線間磁性体120内を通り、反対面にまで通過することなく線間磁性体120端部から前面に出て行く。その前面から放出された磁束は受電側の2次受電コイルへと収束される。磁性体材料としては、鉄の酸化物を含んだ化合物の結晶体が集まってできたフェライト、特に比抵抗が大きく、フェライト内部での渦電流損失の少ないNi-Zn系フェライトを用いることが好ましい。また、樹脂中に磁性体であるフェライト粒子を分散させたグリーンシートのような構造のものは透磁率(μ)を低くすることができる。
Also, the magnetic flux generated from the primary power transmission coil for power transmission passes through the interline magnetic body 120 and goes out from the end of the interline magnetic body 120 to the front without passing to the opposite surface. The magnetic flux emitted from the front surface is converged to the secondary power receiving coil on the power receiving side. As the magnetic material, it is preferable to use a ferrite made of a crystal of a compound containing an iron oxide, particularly a Ni—Zn ferrite having a large specific resistance and a small eddy current loss inside the ferrite. Moreover, the thing of the structure like the green sheet which disperse | distributed the ferrite particle which is a magnetic body in resin can make magnetic permeability (micro) low.
次に、本実施の形態のコイルユニット100の製造方法について説明する。
Next, a method for manufacturing the coil unit 100 of the present embodiment will be described.
まず、磁性体シート130全面にドライフィルムレジストを塗布し、配線パターン以外の部分を熱硬化又は紫外線硬化を施し、エッチング処理により、非箇所を除去する。その後、シリカ微粒子によるサンドブラスト処理することにより、幅0.1~1mm程度の螺旋状の溝を設けることができる。その溝に線状導体110を挿入し固定する。そして電力電送方向とは逆の面に一定の厚さと透磁率を持つ磁性体シート130を接着等で固定して、コイルユニット100を得ることができる。
First, a dry film resist is applied to the entire surface of the magnetic sheet 130, portions other than the wiring pattern are subjected to heat curing or ultraviolet curing, and non-parts are removed by etching treatment. Thereafter, a sandblast treatment with silica fine particles can be performed to provide a spiral groove having a width of about 0.1 to 1 mm. The linear conductor 110 is inserted into the groove and fixed. The coil unit 100 can be obtained by fixing the magnetic sheet 130 having a certain thickness and magnetic permeability on the surface opposite to the direction of power transmission by bonding or the like.
また、フェライト基板に一定の深さの凹部を形成するため、その形状の非磁性絶縁体(誘電体等)を未焼成の磁性材料に埋め込み、フェライト基板を焼成する。その後この非磁性絶縁体をサンドブラスト(パウダービーム)、レーザ、エッチング等の処理により除去する。除去された凹の螺旋状パターンに線状導体110を挿入し固定することができる。あるいは、線状導体110を挿入する代わりに、フェライト基板全表面に対して、めっき、蒸着、スパッタ等の処理を行うことによりCu等の導体層を形成する。続いて、凹部の溝のみに導体が残るように表面を研磨して、溝部の導体以外を削除して螺旋状導体を形成してコイル部とする。その後、電力電送方向とは逆の面に一定の厚さと透磁率を持つフェライト磁性粉入りのエポキシ樹脂を、スクリーン印刷法等により磁性体シート130をコイル上に塗布して、熱硬化させ(例えば約150℃)、コイル上に一定の厚さのフェライト磁性粉入りエポキシ樹脂層を形成することができる。
Further, in order to form a concave portion having a certain depth in the ferrite substrate, a nonmagnetic insulator (dielectric material or the like) having the shape is embedded in an unfired magnetic material, and the ferrite substrate is fired. Thereafter, the nonmagnetic insulator is removed by a process such as sandblasting (powder beam), laser, or etching. The linear conductor 110 can be inserted and fixed in the removed concave spiral pattern. Alternatively, instead of inserting the linear conductor 110, a conductor layer made of Cu or the like is formed by performing processing such as plating, vapor deposition, and sputtering on the entire surface of the ferrite substrate. Subsequently, the surface is polished so that the conductor remains only in the groove of the concave portion, and the portion other than the conductor of the groove portion is deleted to form a spiral conductor to obtain a coil portion. After that, an epoxy resin containing ferrite magnetic powder having a certain thickness and permeability on the surface opposite to the direction of power transmission is applied onto the coil by a screen printing method or the like, and thermally cured (for example, About 150 ° C.), an epoxy resin layer containing ferrite magnetic powder having a certain thickness can be formed on the coil.
次に、コイルユニット100を、送電装置の1次側送電コイル、又は電子機器の2次側受電コイルとして用いる場合について説明する。
Next, the case where the coil unit 100 is used as a primary power transmission coil of a power transmission device or a secondary power reception coil of an electronic device will be described.
図1に示すように、コイルユニット100は、平面渦巻きコイルである線状導体110と、線状導体110の線間に介在させた線間磁性体120と、線状導体110及び線間磁性体120の一方の面を覆う磁性体シート130と、始端端子140と、終端端子150と、を備える。
As shown in FIG. 1, the coil unit 100 includes a linear conductor 110 that is a planar spiral coil, a line magnetic body 120 interposed between the lines of the linear conductor 110, and the line conductor 110 and the line magnetic body. The magnetic sheet 130 which covers one surface of 120, the start terminal 140, and the termination terminal 150 are provided.
始端端子140及び終端端子150は、図示しない送電回路部又は受電回路部に電気的に接続される。コイルユニット100から生成される磁束は、紙面に垂直なZ軸方向に向かう。
The start terminal 140 and the termination terminal 150 are electrically connected to a power transmission circuit unit or a power reception circuit unit (not shown). The magnetic flux generated from the coil unit 100 is directed in the Z-axis direction perpendicular to the paper surface.
図6は、コイルユニット200を、送電装置の1次側送電コイル210と電子機器の2次側受電コイル220として用いた構成を示す断面図である。
FIG. 6 is a cross-sectional view showing a configuration in which the coil unit 200 is used as a primary power transmission coil 210 of a power transmission device and a secondary power reception coil 220 of an electronic device.
図6に示すように、コイルユニット200は、電磁誘導により電力を送電する1次側送電コイル210と、1次側送電コイル210からの電力を受電する2次側受電コイル220と、1次側送電コイル210を収容する送電装置のハウジング230と、2次側受電コイル220を収容する電子機器のハウジング240と、を備える。
As shown in FIG. 6, the coil unit 200 includes a primary power transmission coil 210 that transmits power by electromagnetic induction, a secondary power reception coil 220 that receives power from the primary power transmission coil 210, and a primary side. A power transmission device housing 230 that houses the power transmission coil 210 and an electronic device housing 240 that houses the secondary power receiving coil 220 are provided.
1次側送電コイル210は、線状導体110をスパイラル状(渦巻き状)に巻回して形成され、線状導体110の線間に磁性体120を介在させた平面渦巻きコイル111と、平面渦巻きコイル111の一方の面を覆う磁性体シート130Aと、を備える。1次側送電コイル210は、送電装置のハウジング230の内面に磁性体シート130A側が収容されるように設置されている。
The primary power transmission coil 210 is formed by winding a linear conductor 110 in a spiral shape (spiral shape), and a planar spiral coil 111 in which a magnetic body 120 is interposed between the lines of the linear conductor 110, and a planar spiral coil. And a magnetic material sheet 130 </ b> A covering one surface of 111. The primary power transmission coil 210 is installed on the inner surface of the housing 230 of the power transmission device so that the magnetic material sheet 130 </ b> A side is accommodated.
2次側受電コイル220は、線状導体110をスパイラル状に巻回して形成され、線状導体110の線間に磁性体120を介在させた平面渦巻きコイル111と、線状導体110の線間に介在された線間磁性体120と、平面渦巻きコイル111の一方の面を覆う磁性体シート130Bと、を備える。
The secondary power receiving coil 220 is formed by winding a linear conductor 110 in a spiral shape, and a planar spiral coil 111 having a magnetic body 120 interposed between the lines of the linear conductor 110 and a line between the linear conductors 110. And a magnetic sheet 130 </ b> B that covers one surface of the planar spiral coil 111.
以上の構成において、送電装置のハウジング230と電子機器のハウジング240とが近接して電磁誘導結合することにより、ワイヤレスで電力伝送を行うことができる。
In the above configuration, the power transmission device housing 230 and the electronic device housing 240 are close to each other and electromagnetically coupled to each other, so that power can be transmitted wirelessly.
以下、本発明に係るワイヤレス電力伝送についてより具体的な実施例を挙げて説明する。
Hereinafter, the wireless power transmission according to the present invention will be described with more specific examples.
[実施例1]
図1に示すコイルユニット100を使用してワイヤレス電力伝送を評価した。スイッチング周波数は150kHz、1次側送電コイルと2次側受電コイルとの伝送距離は40mm、送電装置からの送電電力は20W、という条件で評価を行った。 [Example 1]
Wireless power transmission was evaluated using thecoil unit 100 shown in FIG. The evaluation was performed under the condition that the switching frequency was 150 kHz, the transmission distance between the primary side power transmission coil and the secondary side power reception coil was 40 mm, and the transmission power from the power transmission device was 20 W.
図1に示すコイルユニット100を使用してワイヤレス電力伝送を評価した。スイッチング周波数は150kHz、1次側送電コイルと2次側受電コイルとの伝送距離は40mm、送電装置からの送電電力は20W、という条件で評価を行った。 [Example 1]
Wireless power transmission was evaluated using the
図7は、コイルユニット100の電力伝送効率を測定する回路図である。
FIG. 7 is a circuit diagram for measuring the power transmission efficiency of the coil unit 100.
図7の測定回路250において、電力伝送効率(η=V2×I2/V1×I1)を測定した。
In the measurement circuit 250 of FIG. 7, the power transmission efficiency (η = V 2 × I 2 / V 1 × I 1 ) was measured.
測定回路250は、送電側が定電圧電源251、送電回路252及び1次側送電コイル210を備え、受電側が2次側受電コイル220、受電回路253、及び負荷254を備える。
The measurement circuit 250 includes a constant voltage power source 251, a power transmission circuit 252, and a primary power transmission coil 210 on the power transmission side, and a secondary power reception coil 220, a power reception circuit 253, and a load 254 on the power reception side.
定電圧電源251により定電圧源供給される電流(I1)、電圧(V1)を、送電回路252を通じて1次側送電コイル210に送る。そして、電磁誘導により2次側受電コイル220に誘起された電圧を、受電回路253を通じて、電流(I2)、負荷254にかかる電圧(V2)から電力電送効率を測定した。
The current (I 1 ) and voltage (V 1 ) supplied from the constant voltage source 251 by the constant voltage power supply 251 are sent to the primary power transmission coil 210 through the power transmission circuit 252. And the electric power transmission efficiency was measured from the voltage (V 2 ) applied to the voltage (V 2 ) applied to the current (I 2 ) and the load 254 through the power receiving circuit 253 for the voltage induced in the secondary side receiving coil 220 by electromagnetic induction.
表1は、比較例1-3と本実施例1におけるコイル特性を示す。Wc[mm]は、コイルユニット100の横幅の最大長さ、この場合は導線の直径を示す。Wg[mm]は、コイルユニット100を構成する近接する線状導体110間の間隙又はその間隙に介在させる線間磁性体120の幅を示す。コイルユニット100が円形の場合は、内径R1[mm]、外径D1[mm]、矩形状コイルの場合は内径は、N1、外径はM1に相当する。Re[Ω]は、コイルユニット100の抵抗、Qはコイルユニット100のQ値、η[%]は電力電送の伝送効率を示す。
Table 1 shows the coil characteristics in Comparative Example 1-3 and Example 1. Wc [mm] indicates the maximum width of the coil unit 100, in this case, the diameter of the conducting wire. Wg [mm] indicates a gap between adjacent linear conductors 110 constituting the coil unit 100 or a width of the inter-line magnetic body 120 interposed in the gap. When the coil unit 100 is circular, the inner diameter R1 [mm] and the outer diameter D1 [mm], and when the coil unit 100 is a rectangular coil, the inner diameter corresponds to N1, and the outer diameter corresponds to M1. Re [Ω] is the resistance of the coil unit 100, Q is the Q value of the coil unit 100, and η [%] is the transmission efficiency of power transmission.
比較例1は、従来のコイルユニットである。このコイルユニットは、スパイラル状に直径0.6mmの線状導体を巻き回した構成である。
Comparative Example 1 is a conventional coil unit. This coil unit has a configuration in which a linear conductor having a diameter of 0.6 mm is wound in a spiral shape.
比較例2は、上記従来のコイルユニットにおいて、電力電送面と反対側に透磁率2200[H/m]の厚さ0.8mmの磁性体シート13を配置した構成である。
Comparative Example 2 has a configuration in which the magnetic sheet 13 having a permeability of 2200 [H / m] and a thickness of 0.8 mm is disposed on the side opposite to the power transmission surface in the conventional coil unit.
比較例3は、従来の他のコイルユニットである。このコイルユニットは、エポキシ樹脂の基板上にスパイラル状のパターンの溝を形成し、溝にスパイラル状に直径0.6mmの線状導体を巻き回し、隣接する線状導体間に一定の間隙Wgを設けた構成である。
Comparative Example 3 is another conventional coil unit. In this coil unit, a spiral pattern groove is formed on an epoxy resin substrate, and a linear conductor having a diameter of 0.6 mm is wound spirally around the groove, and a certain gap Wg is provided between adjacent linear conductors. This is a configuration provided.
実施例1は、図2及び図3に示すコイルユニット100のコイル特性である。コイルユニット100は、透磁率400の磁性体シート130の上にスパイラル状に直径0.6mmの線状導体110を巻き回して平面コイルを形成し、隣接する線状導体110間の間隙Wgに透磁率2800[H/m]の厚さ0.8mmの線間磁性体120を介在させた構成である。
Example 1 shows the coil characteristics of the coil unit 100 shown in FIGS. The coil unit 100 forms a planar coil by spirally winding a linear conductor 110 having a diameter of 0.6 mm on a magnetic sheet 130 having a magnetic permeability of 400, and passes through a gap Wg between adjacent linear conductors 110. This is a configuration in which a linear magnetic body 120 having a magnetic permeability of 2800 [H / m] and a thickness of 0.8 mm is interposed.
上述したように、コイルユニット100は、まず、磁性体シート130全面にドライフィルムレジストを塗布し、配線パターン以外の部分を紫外線硬化を施し、エッチング処理により、配線箇所部を除去する。その後、シリカ微粒子によるサンドブラスト処理することにより、幅0.6mmの螺旋状の溝を設ける。その溝に線状導体110を挿入し固定する。そして電力電送方向とは逆の面に0.8mmの厚さの磁性体シート130を接着等で固定して、図3に示したコイルユニット100を得た。
As described above, the coil unit 100 first applies a dry film resist to the entire surface of the magnetic sheet 130, performs UV curing on portions other than the wiring pattern, and removes the wiring portion by etching. Then, a spiral groove having a width of 0.6 mm is provided by sandblasting with silica fine particles. The linear conductor 110 is inserted into the groove and fixed. And the magnetic body sheet 130 of thickness 0.8mm was fixed to the surface opposite to the electric power transmission direction by adhesion | attachment etc., and the coil unit 100 shown in FIG. 3 was obtained.
表1に示すように、比較例2では、コイルユニット100の電送面と逆の面に磁性体シート130を配置すると、コイルインダクタンスは増加する。しかしながら、コイルユニット10の損失抵抗が増加し、その結果、コイルユニット100のQ値が低下し、電送効率を下げてしまう。比較例3では、近接する線状導体110間に一定の間隙を設けることにより、コイルインダクタンスは減少する。近接効果の抑制によりコイルユニット200の損失抵抗が減少し、コイルユニット100のQ値が高くなり、電送効率の向上につながっている。
As shown in Table 1, in Comparative Example 2, when the magnetic sheet 130 is disposed on the surface opposite to the power transmission surface of the coil unit 100, the coil inductance increases. However, the loss resistance of the coil unit 10 increases, and as a result, the Q value of the coil unit 100 decreases and the transmission efficiency decreases. In Comparative Example 3, the coil inductance is reduced by providing a certain gap between the adjacent linear conductors 110. By suppressing the proximity effect, the loss resistance of the coil unit 200 is reduced, the Q value of the coil unit 100 is increased, and the transmission efficiency is improved.
上記比較例1-3に対して、本実施例1のコイルユニット100は、近接する線状導体110間に線間磁性体120を介在させることにより、コイルの損失抵抗は増加するものの、コイルインダクタンスは増加し、コイルのQ値が高くなることで、電送効率が改善する効果が得られている。
In contrast to the comparative example 1-3, the coil unit 100 of the first embodiment has a coil inductance increased by interposing the interline magnetic body 120 between the adjacent linear conductors 110, but the coil inductance increases. As the Q value of the coil is increased, the effect of improving the transmission efficiency is obtained.
図8及び図9は、コイルユニットの磁束発生経路の磁束発生をシミュレーションにより示す図である。図8は、比較例3のコイルユニット200の線状導体110間に一定の間隙を設けた場合の磁束発生経路の磁束発生を示す。図9は、本実施例1のコイルユニット100の磁性体シート130の上にスパイラル状に線状導体110を巻き回し、近接する線状導体110間の間隙に線間磁性体120を介在させた場合の磁束発生経路の磁束発生を示す。
8 and 9 are diagrams showing the magnetic flux generation in the magnetic flux generation path of the coil unit by simulation. FIG. 8 shows magnetic flux generation in the magnetic flux generation path when a certain gap is provided between the linear conductors 110 of the coil unit 200 of Comparative Example 3. In FIG. 9, the linear conductor 110 is spirally wound on the magnetic sheet 130 of the coil unit 100 of the first embodiment, and the interline magnetic body 120 is interposed in the gap between the adjacent linear conductors 110. The magnetic flux generation of the magnetic flux generation path in the case is shown.
図9に示すように、コイルユニット100付近から強い磁束の発生が見られ、それが上方に誘導されている状態が観察される。
As shown in FIG. 9, strong magnetic flux is generated from the vicinity of the coil unit 100, and a state in which it is guided upward is observed.
表2は、コイルユニット100のWgを変えたときのコイル特性を示す。N1、M1は、図2に示す内辺長、外辺長である。
Table 2 shows the coil characteristics when the Wg of the coil unit 100 is changed. N1 and M1 are the inner side length and the outer side length shown in FIG.
図10は、コイルユニット100の伝送特性を示す図である。横軸は線状導体110の断面最大幅長Wcに対する線間磁性体120の幅Wgの割合(Wg/Wc)、縦軸は各実施例のコイルユニット100の抵抗値Re[Ω]を示す。
FIG. 10 is a diagram showing the transmission characteristics of the coil unit 100. The horizontal axis represents the ratio (Wg / Wc) of the width Wg of the interline magnetic body 120 to the cross-sectional maximum width Wc of the linear conductor 110, and the vertical axis represents the resistance value Re [Ω] of the coil unit 100 of each example.
図10に示すように、Wg/Wcの増加に伴い、つまり、線状導体110の断面最大幅長Wcに対して、近接する線状導体110間の間隔に介在する線間磁性体120の幅Wgを大きくするに従い、コイルユニット100の抵抗値が減少する傾向にある。近接する線状導体110間での近接効果の抑制の効果と考えられる。
As shown in FIG. 10, with the increase in Wg / Wc, that is, with respect to the maximum cross-sectional width length Wc of the linear conductor 110, the width of the interline magnetic body 120 interposed in the interval between the adjacent linear conductors 110. As Wg is increased, the resistance value of the coil unit 100 tends to decrease. This is considered to be an effect of suppressing the proximity effect between adjacent linear conductors 110.
図11は、コイルユニット100の伝送特性を示す図である。横軸はWg/Wc、縦軸は各コイルのQ値を示す。
FIG. 11 is a diagram showing the transmission characteristics of the coil unit 100. The horizontal axis represents Wg / Wc, and the vertical axis represents the Q value of each coil.
図11に示すように、Wg/Wcの増加に伴い、コイルユニット100のインダクタンスの低下が抑えられ、コイル抵抗の減少により、コイルQ値は上昇する。一定のWg/Wcからやや減少する傾向にあるが、全体として高いコイルのQ値を維持している。
As shown in FIG. 11, with the increase in Wg / Wc, the decrease in inductance of the coil unit 100 is suppressed, and the coil Q value increases due to the decrease in coil resistance. Although it tends to decrease slightly from the constant Wg / Wc, the high Q value of the coil is maintained as a whole.
図12は、コイルユニット100の伝送特性を示す図である。横軸はWg/Wc、縦軸は電送効率を示す。
FIG. 12 is a diagram showing the transmission characteristics of the coil unit 100. The horizontal axis represents Wg / Wc, and the vertical axis represents the transmission efficiency.
図12に示すように、コイルのQ値と似た傾向を示しており、全体的に、高い電送効率を保持することが可能となる。
As shown in FIG. 12, it shows a tendency similar to the Q value of the coil, and it is possible to maintain high transmission efficiency as a whole.
このように、本実施例1のコイルユニット100は、前述した比較例1-3に対して、近接する線状導体110間に間隙を設け線間磁性体120を介在させることにより、コイルの損失抵抗はやや増加する傾向にあるものの、コイルインダクタンスは増加し、コイルQ値が高くなることで、電送効率が改善する効果が得られている。
As described above, the coil unit 100 according to the first embodiment has a coil loss by providing a gap between the adjacent linear conductors 110 and interposing the interline magnetic body 120 with respect to the comparative example 1-3 described above. Although the resistance tends to increase slightly, the coil inductance increases and the coil Q value becomes higher, so that the effect of improving the transmission efficiency is obtained.
表3は、図3における線間磁性体120の透磁率(μ1)及び磁性体Bの透磁率(μ2)を変えたときのコイルユニット100の特性を示す。
Table 3 shows the characteristics of the coil unit 100 when the magnetic permeability (μ1) of the interline magnetic body 120 and the magnetic permeability (μ2) of the magnetic body B in FIG. 3 are changed.
図13は、コイルユニット100の伝送特性を示す図である。横軸は線間磁性体120の透磁率と磁性体シート130の透磁率(μ1/μ2)の値、縦軸はコイルの抵抗値Re(Ω)を示す。
FIG. 13 is a diagram showing the transmission characteristics of the coil unit 100. The horizontal axis represents the magnetic permeability of the interline magnetic body 120 and the magnetic permeability (μ1 / μ2) of the magnetic sheet 130, and the vertical axis represents the coil resistance value Re (Ω).
図13に示すように、透磁率の増加に伴い、コイルの抵抗値がやや増加する傾向にある。
As shown in FIG. 13, as the magnetic permeability increases, the coil resistance value tends to increase slightly.
図14は、コイルユニット100の伝送特性を示す図である。横軸は線間磁性体120の透磁率と磁性体シート130の透磁率(μ1/μ2)の値、縦軸は各コイルのQ値を示す。
FIG. 14 is a diagram showing the transmission characteristics of the coil unit 100. The horizontal axis represents the magnetic permeability of the interline magnetic body 120 and the magnetic permeability of the magnetic sheet 130 (μ1 / μ2), and the vertical axis represents the Q value of each coil.
図14に示すように、μ1/μ2が一定の高い値である場合には、コイルの高いインダクタンス値が支配的になり、高いコイルQ値を保持する傾向にある。μ1/μ2が下がることで、やや減少する傾向にあるが、全体として高いコイルのQ値を維持している。
As shown in FIG. 14, when [mu] 1 / [mu] 2 is a constant high value, the high inductance value of the coil dominates and tends to maintain a high coil Q value. As μ1 / μ2 decreases, it tends to decrease slightly, but the high Q value of the coil is maintained as a whole.
図15は、コイルユニット100の伝送特性を示す図である。横軸は線間磁性体120の透磁率と磁性体シート130の透磁率(μ1/μ2)の値、縦軸は電送効率を示す。
FIG. 15 is a diagram showing the transmission characteristics of the coil unit 100. The horizontal axis represents the magnetic permeability of the interline magnetic body 120 and the magnetic permeability (μ1 / μ2) of the magnetic sheet 130, and the vertical axis represents the transmission efficiency.
図15に示すように、コイルのQ値と似た傾向を示しており、全体的に、高い電送効率を保持することが可能となる。
As shown in FIG. 15, it shows a tendency similar to the Q value of the coil, and it is possible to maintain high transmission efficiency as a whole.
このように、近接する線状導体110間に間隙を設け、線間磁性体120を介在させ、一定の透磁率を有する線間磁性体120を使用することにより、高いコイルインダクタンスにより、高いコイルQ値を保持でき、電送効率が向上する効果が得られる。
Thus, by providing a gap between the adjacent linear conductors 110, interposing the interline magnetic body 120, and using the interline magnetic body 120 having a certain permeability, a high coil inductance causes a high coil Q. The value can be held, and the effect of improving the transmission efficiency can be obtained.
以上詳細に説明したように、本実施の形態によれば、コイルユニット100は、線状導体110をスパイラル状の平面曲線状に巻回して形成され、線状導体110の線間に磁性体120を介在させた平面渦巻きコイル111と、平面渦巻きコイル111の送受電面と反対の面を覆う磁性体シート130と、を備える。線状導体110の断面最大長さをWc、線間磁性体120の幅をWgとした場合、0.2≦Wg/Wc≦3.5である。また、線間磁性体120の透磁率は、1000[H/m]以上3000[H/m]以下、かつ、磁性体シート130の透磁率は、50[H/m]以上500[H/m]以下である。
As described in detail above, according to the present embodiment, the coil unit 100 is formed by winding the linear conductor 110 into a spiral planar curved line, and the magnetic body 120 between the lines of the linear conductor 110. And a magnetic sheet 130 that covers a surface opposite to the power transmission / reception surface of the planar spiral coil 111. When the maximum cross-sectional length of the linear conductor 110 is Wc and the width of the interline magnetic body 120 is Wg, 0.2 ≦ Wg / Wc ≦ 3.5. Further, the magnetic permeability of the line magnetic body 120 is 1000 [H / m] or more and 3000 [H / m] or less, and the magnetic permeability of the magnetic sheet 130 is 50 [H / m] or more and 500 [H / m]. It is the following.
この構成により、以下の効果を得ることができる。
With this configuration, the following effects can be obtained.
(1)近接する線状導体同士において、導体断面の電流分布は中心軸側に偏った形となり、コイルの抵抗値が増大しやすい傾向にある。そこで、コイルを構成する線状導体110間に一定の間隙を設けることで、線間での近接効果を抑制して抵抗損失を抑えることができる。
(1) Between adjacent linear conductors, the current distribution in the conductor cross section is biased toward the central axis, and the resistance value of the coil tends to increase. Therefore, by providing a certain gap between the linear conductors 110 constituting the coil, it is possible to suppress the proximity effect between the wires and suppress the resistance loss.
(2)線状導体110の線間に高透磁率の線間磁性体120を介在させることで、磁界が磁線間磁性体120に集中する。これにより近接効果が抑制され、線状導体110での抵抗値増大を防ぐことができる。また、発生する磁束が線間磁性体120に集中し、その集中した磁束が受電側の2次コイルとの電磁結合をより強くすることができる。
(2) By interposing the high-permeability inter-line magnetic body 120 between the lines of the linear conductor 110, the magnetic field concentrates on the inter-magnetic line magnetic body 120. As a result, the proximity effect is suppressed, and an increase in resistance value in the linear conductor 110 can be prevented. Further, the generated magnetic flux is concentrated on the interline magnetic body 120, and the concentrated magnetic flux can further strengthen the electromagnetic coupling with the secondary coil on the power receiving side.
(3)線状導体110間に介在させた線間磁性体120よりも透磁率の低い磁性体シート130で、線状導体110の送受電面と反対側の面を覆うことで、線状導体110から発生した磁束の漏れを低減して磁気シールド効果を発揮することができる。また、磁束の指向性を高め、コイルのインダクタンスを高くすることができる。その結果、コイル伝送特性のQ値を上げることが可能になり、伝播損失の低減を図ることができる。
(3) By covering the surface opposite to the power transmission / reception surface of the linear conductor 110 with the magnetic sheet 130 having a lower magnetic permeability than the interline magnetic body 120 interposed between the linear conductors 110, the linear conductor is covered. The leakage of magnetic flux generated from 110 can be reduced and the magnetic shielding effect can be exhibited. Moreover, the directivity of magnetic flux can be improved and the inductance of a coil can be made high. As a result, it is possible to increase the Q value of the coil transmission characteristics and to reduce the propagation loss.
以上のことから、コイルユニット100は、高出力のワイヤレス電力伝送に使用しても、電力電送効率の低下を抑えることができ、1次側・2次側コイル間での長距離の電力伝送が可能となる。また、1次側・2次側コイル間に少しの位置ずれがあったとしても、電力電送効率が大きく低下することがないという優れた効果を奏する。
From the above, even when the coil unit 100 is used for high-power wireless power transmission, it is possible to suppress a decrease in power transmission efficiency, and long-distance power transmission between the primary side and secondary side coils is possible. It becomes possible. Moreover, even if there is a slight misalignment between the primary side and secondary side coils, there is an excellent effect that the power transmission efficiency is not greatly reduced.
(実施の形態2)
実施の形態1では、コイルユニット100について説明した。 (Embodiment 2)
In the first embodiment, thecoil unit 100 has been described.
実施の形態1では、コイルユニット100について説明した。 (Embodiment 2)
In the first embodiment, the
実施の形態2は、コイルユニット100を備えるワイヤレス電力伝送装置について説明する。
Embodiment 2 describes a wireless power transmission device including a coil unit 100.
図16及び図17は、本発明の実施の形態2のコイルユニットを備えるワイヤレス電力伝送装置の構成を示す図である。図16は、上記ワイヤレス電力伝送装置の電子機器と送電装置の主要構成図、図17は、充電装置と電子機器端末間でのワイヤレス電力伝送の制御回路図である。図6と同一構成部分には同一符号を付している。
16 and 17 are diagrams showing a configuration of a wireless power transmission device including the coil unit according to the second embodiment of the present invention. FIG. 16 is a main configuration diagram of the electronic device and the power transmission device of the wireless power transmission device, and FIG. 17 is a control circuit diagram of wireless power transmission between the charging device and the electronic device terminal. The same components as those in FIG. 6 are denoted by the same reference numerals.
図16及び図17に示すように、ワイヤレス電力伝送装置300は、送電装置310と、受電装置である電子機器320と、を含んで構成される。
16 and 17, the wireless power transmission device 300 includes a power transmission device 310 and an electronic device 320 that is a power reception device.
送電装置310と電子機器320とは、電磁誘導結合することにより、ワイヤレスで電力伝送を行うワイヤレス電力伝送装置を形成する。
The power transmission device 310 and the electronic device 320 form a wireless power transmission device that wirelessly transmits power by electromagnetic induction coupling.
<送電装置310>
送電装置310は、電子機器320が載置されて、電子機器320の2次電池321の充電を行う充電装置である。 <Power transmission device 310>
Thepower transmission device 310 is a charging device on which the electronic device 320 is placed and charges the secondary battery 321 of the electronic device 320.
送電装置310は、電子機器320が載置されて、電子機器320の2次電池321の充電を行う充電装置である。 <
The
送電装置310は、1次側送電コイル210と、送電制御部312と、送電回路部313と、を備える。
The power transmission device 310 includes a primary power transmission coil 210, a power transmission control unit 312, and a power transmission circuit unit 313.
1次側送電コイル210は、電子機器320の2次電池321の充電を行う際の送電側のワイヤレス電力伝送コイルである。1次側送電コイル210は、本実施例1のコイルユニット100を用いる。
The primary side power transmission coil 210 is a wireless power transmission coil on the power transmission side when charging the secondary battery 321 of the electronic device 320. The primary power transmission coil 210 uses the coil unit 100 of the first embodiment.
送電制御部312は、1次側送電コイル210へ電力供給とその制御を行う。
The power transmission control unit 312 supplies power to the primary power transmission coil 210 and controls it.
<電子機器320>
電子機器320は、受電側の電子機器である。ここでは、電子機器内の負荷として蓄電用の2次電池321を内蔵する電子機器に適用している。 <Electronic device 320>
Theelectronic device 320 is a power receiving side electronic device. Here, the present invention is applied to an electronic device having a built-in secondary battery 321 for power storage as a load in the electronic device.
電子機器320は、受電側の電子機器である。ここでは、電子機器内の負荷として蓄電用の2次電池321を内蔵する電子機器に適用している。 <
The
電子機器320は、2次側受電コイル220と、2次電池321と、充電制御回路322と、を含む回路基板を備える。
The electronic device 320 includes a circuit board including a secondary power receiving coil 220, a secondary battery 321, and a charge control circuit 322.
2次側受電コイル220は、2次電池321の充電を行う際の受電側となる受電側のワイヤレス電力伝送コイルであり、本実施例1のコイルユニット100を用いる。
The secondary-side power receiving coil 220 is a power-receiving-side wireless power transmission coil that serves as a power-receiving side when the secondary battery 321 is charged, and uses the coil unit 100 of the first embodiment.
2次電池321は、端末の動作電力を発生する。
The secondary battery 321 generates operating power for the terminal.
次に、ワイヤレス電力伝送装置300の動作を説明する。
Next, the operation of the wireless power transmission device 300 will be described.
電子機器320の2次側受電コイル220が、送電装置310の1次側送電コイル210に接近することで、両コイルの電磁誘導結合により2次側受電コイル220に交流電圧が誘起される。誘起された交流電圧は、受電回路部323に供給される。
When the secondary power reception coil 220 of the electronic device 320 approaches the primary power transmission coil 210 of the power transmission device 310, an AC voltage is induced in the secondary power reception coil 220 by electromagnetic induction coupling of both coils. The induced AC voltage is supplied to the power receiving circuit unit 323.
商用電源311である100[V]の交流電圧を、図示しないAC/DCコンバータにより所定の直流電圧に変換し、その直流電圧を所定の周波数の交流電圧を生成して、その生成された交流電圧を送電回路部313に送る。生成された交流電圧は、送電回路部313から1次側送電コイル210に供給され、1次側送電コイル210を所定の共振周波数で発振させる。共振コンデンサの容量は、電力伝送の信号の搬送波周波数F[Hz]と、コイルのインダクタンスから決定することができ、F=1/2π√LC、で与えられる。
The AC voltage of 100 [V], which is the commercial power supply 311, is converted into a predetermined DC voltage by an AC / DC converter (not shown), the DC voltage is generated as an AC voltage having a predetermined frequency, and the generated AC voltage is generated. To the power transmission circuit unit 313. The generated AC voltage is supplied from the power transmission circuit unit 313 to the primary side power transmission coil 210, and causes the primary side power transmission coil 210 to oscillate at a predetermined resonance frequency. The capacity of the resonance capacitor can be determined from the carrier frequency F [Hz] of the power transmission signal and the inductance of the coil, and is given by F = 1 / 2π√LC.
一方、電子機器320では、送電装置310の1次側送電コイル210の発振によって2次側受電コイル220に交流電圧が誘起される。誘起された交流電圧は、図示しない整流回路を通じて整流され、平滑回路にて平滑化した直流電圧により2次電池321の充電を行う。
On the other hand, in the electronic device 320, an AC voltage is induced in the secondary power receiving coil 220 by the oscillation of the primary power transmitting coil 210 of the power transmitting device 310. The induced AC voltage is rectified through a rectifier circuit (not shown), and the secondary battery 321 is charged with the DC voltage smoothed by the smoothing circuit.
ここで、送電装置310の1次側送電コイル210の発振によって2次側受電コイル220に交流電圧が誘起され2次電池321の充電を行う前に、受電装置である電子機器320が送電装置310の端末載置台に設置されていることを検知する。
Here, before an AC voltage is induced in the secondary power receiving coil 220 by the oscillation of the primary power transmission coil 210 of the power transmission device 310 and the secondary battery 321 is charged, the electronic device 320 serving as the power reception device transmits the power transmission device 310. It is detected that it is installed on the terminal mounting table.
まず、送電装置310の端末載置台に電子機器320が置かれ、電子機器320の2次側受電コイル220と送電装置310の1次側送電コイル210とが近接配置される。この近接配置により、負荷インピーダンスが変化して、1次側送電コイル210に電圧又は電流値の変動が生じる。送電制御部312は、上記変動値を予め定めておいた値と比較して、充電対象である電子機器320が存在することを検知する。
First, the electronic device 320 is placed on the terminal mounting base of the power transmission device 310, and the secondary side power receiving coil 220 of the electronic device 320 and the primary side power transmission coil 210 of the power transmission device 310 are disposed close to each other. Due to this proximity arrangement, the load impedance changes, and the voltage or current value fluctuates in the primary side power transmission coil 210. The power transmission control unit 312 detects the presence of the electronic device 320 to be charged by comparing the fluctuation value with a predetermined value.
同様に、受電側である電子機器320でも、送電装置310の端末載置台に電子機器320が置かれて、2次側受電コイル220と1次側送電コイル210とが近接配置されることで、負荷インピーダンスが変化することにより1次側送電コイル210に生じた電圧又は電流値の変動を検知する。受電制御回路322は、上記変動値を予め定めておいた値と比較して、電子機器320が充電装置である送電装置310の載置台に置かれたことを検知する。
Similarly, in the electronic device 320 on the power receiving side, the electronic device 320 is placed on the terminal mounting base of the power transmission device 310, and the secondary power receiving coil 220 and the primary power transmission coil 210 are disposed in proximity to each other. A change in voltage or current value generated in the primary side power transmission coil 210 due to a change in load impedance is detected. The power reception control circuit 322 compares the fluctuation value with a predetermined value and detects that the electronic device 320 is placed on the mounting table of the power transmission device 310 that is a charging device.
電子機器320が、送電装置310の載置台に置かれる際、コイル同士が適切な近接配置に置かれることにより高効率の電力伝送がなされる。しかし、電子機器320が不適切な位置に置かれると、電力電送効率は低下する傾向にある。そのため、適切な位置関係に置かれているかどうかをユーザに何らかの方法で通知し、適切な位置に置くように促すことが好ましい。
When the electronic device 320 is placed on the mounting table of the power transmission device 310, highly efficient power transmission is performed by placing the coils in an appropriate proximity. However, when the electronic device 320 is placed at an inappropriate position, the power transmission efficiency tends to decrease. For this reason, it is preferable to notify the user whether or not it is placed in an appropriate positional relationship by some method, and to prompt the user to place it in an appropriate position.
本実施の形態のワイヤレス電力伝送装置300は、両コイル間の少々の位置ずれがあったとしても、電力電送効率が大きく低下することがないため、比較的ラフな位置決めであっても一定の電力電送効率が得られる。
The wireless power transmission device 300 according to the present embodiment does not greatly reduce power transmission efficiency even if there is a slight misalignment between both coils. Transmission efficiency can be obtained.
また、本実施の形態のワイヤレス電力伝送装置300は、送電装置310と電子機器320とは、1次側送電コイル210と2次側受電コイル220を介して双方の機器に関する情報信号の伝達が可能である。例えば、1次側送電コイル210と2次側受電コイル220とが近接配置され、そのときの電圧変動を検出して、適切な配置を検知した場合、1次側送電コイル210及び2次側受電コイル220間で各々の機器及び装置の識別情報をやりとりして、互いに相手方の認証を行う。そして、1次側送電コイル210と2次側受電コイル220とが適切な近接配置された検知し、各々の機器及び装置が互いに相手方を認証できた場合に、1次側送電コイル210から2次側受電コイル220に電力伝送が行われ、その伝送された電力により電子機器320の2次電池321の充電が行われる。
In addition, in the wireless power transmission device 300 according to the present embodiment, the power transmission device 310 and the electronic device 320 can transmit information signals regarding both devices via the primary power transmission coil 210 and the secondary power reception coil 220. It is. For example, when the primary-side power transmission coil 210 and the secondary-side power reception coil 220 are arranged close to each other, the voltage fluctuation at that time is detected and an appropriate arrangement is detected, the primary-side power transmission coil 210 and the secondary-side power reception coil The identification information of each device and apparatus is exchanged between the coils 220 to mutually authenticate each other. When the primary side power transmission coil 210 and the secondary side power reception coil 220 are detected to be appropriately arranged close to each other and the respective devices and devices can authenticate each other, the secondary side from the primary side power transmission coil 210 Power is transmitted to the side power receiving coil 220, and the secondary battery 321 of the electronic device 320 is charged with the transmitted power.
次に、送電装置310と電子機器320間でのワイヤレス電力伝送の制御について説明する。
Next, control of wireless power transmission between the power transmission device 310 and the electronic device 320 will be described.
図17に示すように、送電装置310は、送電制御部312、送電回路部312、及び1次側送電コイル210を備える。
As shown in FIG. 17, the power transmission device 310 includes a power transmission control unit 312, a power transmission circuit unit 312, and a primary side power transmission coil 210.
商用電源311から供給される交流電圧は、図示しないAC/DCコンバータを通じて所定の直流電圧に変換される。この直流電圧は、送電制御部312を介して送電回路部312へ供給される。
AC voltage supplied from the commercial power supply 311 is converted into a predetermined DC voltage through an AC / DC converter (not shown). This DC voltage is supplied to the power transmission circuit unit 312 via the power transmission control unit 312.
送電回路部313は、少なくともドライバ及び共振回路(いずれも図示略)を有している。ドライバは、送電制御部312による制御によって、AC/DCコンバータからの直流電圧を所定の周波数を有する交流電圧に変換する。共振回路は、コンデンサの容量CとコイルのインダクタンスLからなる共振回路により、ドライバからの交流電圧に応じて共振する。これにより、1次側送電コイル210を所定の共振周波数で発振させる。
The power transmission circuit unit 313 has at least a driver and a resonance circuit (both not shown). The driver converts the DC voltage from the AC / DC converter into an AC voltage having a predetermined frequency under the control of the power transmission control unit 312. The resonance circuit resonates according to the AC voltage from the driver by a resonance circuit composed of a capacitor C and an inductance L of the coil. Thereby, the primary side power transmission coil 210 is oscillated at a predetermined resonance frequency.
また、送電回路部313は、送電制御部312から供給される装置の状態や認証のための情報を含んだ変調信号を電力伝送用の交流信号に重畳するか又は、その情報のみを単独で電子機器320への情報送信も行うことが可能である。
In addition, the power transmission circuit unit 313 superimposes a modulation signal including information on the state of the device supplied from the power transmission control unit 312 and information on the AC signal for power transmission, or electronically only the information alone. Information transmission to the device 320 can also be performed.
送電制御部312は、送電装置310から電子機器320へ充電電力を伝送する場合には、送電回路部313のドライバを制御し、ドライバから1次側送電コイル210へ所定の周波数の交流電圧を供給させる。また、送電制御部312は、送電装置310の載置台へ電子機器320の接近配置や移動により1次側送電コイル210に発生する電圧又は電流変動を検知する。そして、送電装置310の載置台へ電子機器320の接近配置や移動の検知に基づいて、ドライバから1次側送電コイル210への交流電圧の供給と停止の制御などを行う。さらに、送電制御部312は、送電装置310と電子機器320間での各々の機器状態の情報を送信する変復調回路(図示略)を有している。機器の状態の情報に応じて変調した信号を生成して送信を行うことにより、1次側送電コイル210から、2次側受電コイル220へ情報送信が行われる。
When transmitting charging power from the power transmission device 310 to the electronic device 320, the power transmission control unit 312 controls the driver of the power transmission circuit unit 313 and supplies an AC voltage of a predetermined frequency from the driver to the primary power transmission coil 210. Let In addition, the power transmission control unit 312 detects voltage or current fluctuations generated in the primary power transmission coil 210 due to the close arrangement or movement of the electronic device 320 to the mounting table of the power transmission device 310. Then, based on the detection of the close arrangement and movement of the electronic device 320 to the mounting table of the power transmission device 310, the control of the supply and stop of the AC voltage from the driver to the primary power transmission coil 210 is performed. Furthermore, the power transmission control unit 312 has a modulation / demodulation circuit (not shown) that transmits information on each device state between the power transmission device 310 and the electronic device 320. Information is transmitted from the primary side power transmission coil 210 to the secondary side power reception coil 220 by generating and transmitting a signal modulated according to information on the state of the device.
逆に、電子機器320から機器情報の受信を行う場合、電子機器320から送られてきた変調信号を取り出し、変復調回路で変調信号の復調が行われ、電子機器320から送られる情報の受信が行われる。
On the contrary, when receiving device information from the electronic device 320, the modulation signal sent from the electronic device 320 is taken out, the modulation signal is demodulated by the modulation / demodulation circuit, and the information sent from the electronic device 320 is received. Is called.
一方、電子機器320は、2次側受電コイル220、受電回路部323、受電制御部324、充電制御回路322、及び2次電池321を、主に備える。
Meanwhile, the electronic device 320 mainly includes a secondary power receiving coil 220, a power receiving circuit unit 323, a power receiving control unit 324, a charging control circuit 322, and a secondary battery 321.
受電回路部323は、1次側送電コイル210からの電磁誘導により2次側受電コイル220に誘起された交流電圧を直流電圧に変換する整流回路(図示略)と、整流回路から送られた直流電圧を電子機器320の充電で使用される所定電圧に変換するレギュレータ(図示略)から構成される。また送電装置310へ機器状態の情報を送るための2次側受電コイル220の共振回路とドライバ(いずれも図示略)を備えている。
The power receiving circuit unit 323 includes a rectifier circuit (not shown) that converts an alternating voltage induced in the secondary power receiving coil 220 into a direct voltage by electromagnetic induction from the primary power transmitting coil 210, and a direct current sent from the rectifier circuit. It is comprised from the regulator (not shown) which converts a voltage into the predetermined voltage used by charge of the electronic device 320. FIG. In addition, a resonance circuit and a driver (both not shown) of the secondary power receiving coil 220 for sending device state information to the power transmission device 310 are provided.
レギュレータにより、所定電圧に変換された直流電圧は、受電制御部324に送られる。受電制御部324は、受電回路部323が受電した電力を、充電制御回路322へ送り、2次電池321の充電を行う。また、受電制御部324は、電子機器320の機器状態、例えば温度上昇、2次電池321の充電状態、2次側受電コイル220に発生する電圧変動等を検出する。さらに、受電制御部324は、送電装置310へ機器情報に応じた変調した信号を受電回路部323へ送る変復調回路(図示略)を備える。
The DC voltage converted into a predetermined voltage by the regulator is sent to the power reception control unit 324. The power reception control unit 324 sends the power received by the power reception circuit unit 323 to the charge control circuit 322 and charges the secondary battery 321. In addition, the power reception control unit 324 detects a device state of the electronic device 320, for example, a temperature rise, a charging state of the secondary battery 321, a voltage variation generated in the secondary power receiving coil 220, and the like. Furthermore, the power reception control unit 324 includes a modulation / demodulation circuit (not shown) that sends a signal modulated according to the device information to the power transmission device 310 to the power reception circuit unit 323.
受電回路部323の発振回路は、電子機器320から送電装置310へ情報伝送を行う際、ドライバは受電制御部324により、共振回路を共振させることにより、2次側受電コイル220を所定の共振周波数で発振させる。ドライバは、受電制御部324から供給される情報送信用の変調信号を送信する。
When the oscillation circuit of the power reception circuit unit 323 transmits information from the electronic device 320 to the power transmission device 310, the driver causes the power reception control unit 324 to resonate the resonance circuit so that the secondary side reception coil 220 has a predetermined resonance frequency. Oscillate with. The driver transmits a modulation signal for information transmission supplied from the power reception control unit 324.
送電装置310と電子機器320間での情報信号の送受信は、単純なビット通信でもあってもよいし、コード化通信であってもよい。
Transmission / reception of information signals between the power transmission apparatus 310 and the electronic device 320 may be simple bit communication or coded communication.
また、本実施の形態では、送電装置310は、負荷インピーダンスの変化に基づく電圧値が予め定めた所定の電圧値にならなかった時や、相互の機器間での識別認証ができなかった時は何らかの異常な状態にあるものとして、1次側送電コイル210への電力供給を行わないように制御される。
Further, in the present embodiment, the power transmission device 310 is used when the voltage value based on the change in the load impedance does not become a predetermined voltage value determined in advance or when the identification and authentication between the devices cannot be performed. It is controlled not to supply power to the primary side power transmission coil 210 as being in some abnormal state.
また、本実施の形態では、1次側送電コイル210と2次側受電コイル220の両コイルが、電磁誘導結合により2次側受電コイル220に交流電圧が誘起され、受電回路部323に供給され、電子機器320の2次電池321の充電が行われている場合、送電装置310と電気機器2との間で、1次側送電コイル210及び2次側受電コイル220を介して2次電池321の充電情報の送信が行われる。例えば、2次電池321の充電の継続が必要な場合は、1次側送電コイル210からの電力伝送を継続する。また、2次電池321の充電が完了した場合は、電力伝送を停止する。また何らかの異常を示す情報が供給されたような場合にも電力伝送を停止する制御を行う。
In the present embodiment, an AC voltage is induced in the secondary power receiving coil 220 by the electromagnetic induction coupling between both the primary power transmitting coil 210 and the secondary power receiving coil 220 and is supplied to the power receiving circuit unit 323. When the secondary battery 321 of the electronic device 320 is charged, the secondary battery 321 is interposed between the power transmission device 310 and the electrical device 2 via the primary side power transmission coil 210 and the secondary side power reception coil 220. The charging information is transmitted. For example, when the secondary battery 321 needs to be continuously charged, the power transmission from the primary power transmission coil 210 is continued. Further, when the charging of the secondary battery 321 is completed, the power transmission is stopped. Control is also performed to stop power transmission when information indicating some abnormality is supplied.
なお、本実施の形態では、コイルユニットを充電装置及び電子機器、またワイヤレス電力伝送装置に用いた例について説明したが、コイルユニットは、携帯端末等どのような電子機器に適用してもよい。電磁誘導により非接触で電力を伝送する機器であれば、どのような装置でもよく、例えば携帯電話機等の携帯端末装置に適用してもよい。当然のことながら、コイルユニットは、送電コイル又は受電コイルのいずれであってもよい。
In this embodiment, an example in which the coil unit is used for a charging device and an electronic device or a wireless power transmission device has been described. However, the coil unit may be applied to any electronic device such as a portable terminal. Any device may be used as long as the device transmits electric power in a non-contact manner by electromagnetic induction. For example, the device may be applied to a mobile terminal device such as a mobile phone. As a matter of course, the coil unit may be either a power transmission coil or a power reception coil.
以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに限定されることはない。
The above description is an illustration of a preferred embodiment of the present invention, and the scope of the present invention is not limited to this.
また、上記各実施の形態では、コイルユニット及び電力伝送装置という名称を用いたが、これは説明の便宜上であり、コイルユニットは平面コイル、送電コイル又は受電コイル、電力伝送装置はワイヤレス電力伝送装置、非接触電力伝送システム等であってもよい。
In the above embodiments, the names of the coil unit and the power transmission device are used. However, this is for convenience of explanation, and the coil unit is a planar coil, a power transmission coil or a power reception coil, and the power transmission device is a wireless power transmission device. A non-contact power transmission system or the like may be used.
さらに、上記コイルユニットを構成する各部、例えば線状導体、線間磁性体、磁性体シート等の種類・形状、取付方法などは前述した実施の形態に限られない。また、線状導体は、スパイラル状に巻回して形成されていればよく、形状は円形のほか、矩形を含む多角形でもよい。
Furthermore, the parts constituting the coil unit, for example, the type / shape of the linear conductor, the inter-line magnetic body, the magnetic sheet, and the mounting method are not limited to the above-described embodiment. The linear conductor may be formed by being spirally wound, and the shape may be a circle or a polygon including a rectangle.
2012年4月2日出願の特願2012-083960の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
The disclosures of the description, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2012-083960 filed on April 2, 2012 are incorporated herein by reference.
本発明のコイルユニット及び電力伝送装置は、例えば充電装置などの送電装置に受電対象物である電子機器等を着脱可能に装着又は接近させ、送電装置から電子機器等に対して電磁誘導により非接触で電力伝送するためのコイルユニット及びコイルユニットを備える電力伝送装置全般に適用することが可能である。
The coil unit and the power transmission device according to the present invention are detachably mounted or approached to a power transmission device such as a charging device, so that the electronic device or the like as a power reception target is detachably attached to the electronic device from the power transmission device by electromagnetic induction. The present invention can be applied to a coil unit for transmitting electric power and a power transmission device including the coil unit in general.
100、100A、100B、200 コイルユニット
110、110A、110B 線状導体
111 平面渦巻きコイル
120 線間磁性体(第1の磁性体)
130、130A、130B 磁性体シート(第2の磁性体)
140 始端端子
150 終端端子
210 1次側送電コイル
220 2次側受電コイル
300 ワイヤレス電力伝送装置
310 送電装置
312 送電制御部
313 送電回路部
320 電子機器
321 2次電池
322 充電制御回路
323 受電回路部
324 受電制御部
100, 100A, 100B, 200 Coil unit 110, 110A, 110B Linear conductor 111 Planar spiral coil 120 Interlinear magnetic body (first magnetic body)
130, 130A, 130B Magnetic sheet (second magnetic body)
140 Start terminal 150Termination terminal 210 Primary power transmission coil 220 Secondary power reception coil 300 Wireless power transmission device 310 Power transmission device 312 Power transmission control unit 313 Power transmission circuit unit 320 Electronic device 321 Secondary battery 322 Charge control circuit 323 Power reception circuit unit 324 Power reception control unit
110、110A、110B 線状導体
111 平面渦巻きコイル
120 線間磁性体(第1の磁性体)
130、130A、130B 磁性体シート(第2の磁性体)
140 始端端子
150 終端端子
210 1次側送電コイル
220 2次側受電コイル
300 ワイヤレス電力伝送装置
310 送電装置
312 送電制御部
313 送電回路部
320 電子機器
321 2次電池
322 充電制御回路
323 受電回路部
324 受電制御部
100, 100A, 100B, 200
130, 130A, 130B Magnetic sheet (second magnetic body)
140 Start terminal 150
Claims (6)
- 線状導体をスパイラル状に巻回して形成された平面コイルと、
前記線状導体の線間に介在された第1の磁性体と、
前記平面コイルの一側の面を覆って設けられた第2の磁性体と、
を備えるコイルユニット。 A planar coil formed by spirally winding a linear conductor;
A first magnetic body interposed between lines of the linear conductor;
A second magnetic body provided to cover one surface of the planar coil;
A coil unit comprising: - 前記線状導体の断面最大長さをWc、前記第1の磁性体の幅をWgとした場合、以下の関係を満たす、
請求項1記載のコイルユニット。
0.2≦Wg/Wc≦3.5 When the maximum cross-sectional length of the linear conductor is Wc and the width of the first magnetic body is Wg, the following relationship is satisfied:
The coil unit according to claim 1.
0.2 ≦ Wg / Wc ≦ 3.5 - 前記第1の磁性体の透磁率は、前記第2の磁性体の透磁率よりも高い、請求項1記載のコイルユニット。 The coil unit according to claim 1, wherein the magnetic permeability of the first magnetic body is higher than the magnetic permeability of the second magnetic body.
- 前記第1の磁性体の透磁率は、1000[H/m]以上3000[H/m]以下、かつ、前記第2の磁性体の透磁率は、50[H/m]以上500[H/m]以下である、請求項3記載のコイルユニット。 The magnetic permeability of the first magnetic body is 1000 [H / m] or more and 3000 [H / m] or less, and the magnetic permeability of the second magnetic body is 50 [H / m] or more and 500 [H / m]. The coil unit according to claim 3, wherein m] or less.
- 請求項1に記載のコイルユニットを用いて構成され、前記平面コイルの前記第2の磁性体との対向面とは反対側の面が送電側の面に配置された送電コイルと、該送電コイルに電力を供給する送電部と、
を含む電力伝送装置。 A power transmission coil configured using the coil unit according to claim 1, wherein a surface of the planar coil opposite to the surface facing the second magnetic body is disposed on a power transmission surface, and the power transmission coil A power transmission section for supplying power to
Power transmission device including - 請求項1に記載のコイルユニットを用いて構成され、前記平面コイルの前記第2の磁性体との対向面とは反対側の面が受電側の面に配置された受電コイルと、該受電コイルで受電された電力を出力する受電装置と、
を含む電力伝送装置。
A power receiving coil configured using the coil unit according to claim 1, wherein a surface of the planar coil opposite to the surface facing the second magnetic body is disposed on a power receiving side surface, and the power receiving coil A power receiving device that outputs the power received at
Power transmission device including
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012083960A JP2013214613A (en) | 2012-04-02 | 2012-04-02 | Coil unit and power transmission device having coil unit |
JP2012-083960 | 2012-04-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013150784A1 true WO2013150784A1 (en) | 2013-10-10 |
Family
ID=49300287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/002293 WO2013150784A1 (en) | 2012-04-02 | 2013-04-02 | Coil unit, and power transmission device equipped with coil unit |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013214613A (en) |
WO (1) | WO2013150784A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017011079A (en) * | 2015-06-19 | 2017-01-12 | 矢崎総業株式会社 | Coil unit |
WO2018194984A1 (en) * | 2017-04-18 | 2018-10-25 | Te Connectivity Corporation | Printed inductors for wireless charging |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6502056B2 (en) * | 2014-10-22 | 2019-04-17 | 日本圧着端子製造株式会社 | Electrical connection device |
JP6814608B2 (en) * | 2016-11-14 | 2021-01-20 | 矢崎総業株式会社 | Coil unit and non-contact power supply system |
JP7373709B2 (en) * | 2019-08-23 | 2023-11-06 | Spiral Tech株式会社 | High frequency coil parts, coil parts for wireless power supply, wireless power supply device, and manufacturing method of frequency coil parts |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002299138A (en) * | 2001-04-02 | 2002-10-11 | Kawasaki Steel Corp | Planar magnetic element for noncontact charger |
JP2003173921A (en) * | 2001-12-07 | 2003-06-20 | Kawasaki Steel Corp | Planar magnetic element for non-contact charger |
JP2004047700A (en) * | 2002-07-11 | 2004-02-12 | Jfe Steel Kk | Planar magnetic element for non-contact charger |
JP2010283263A (en) * | 2009-06-08 | 2010-12-16 | Nec Tokin Corp | Non-contact power transmission device |
-
2012
- 2012-04-02 JP JP2012083960A patent/JP2013214613A/en active Pending
-
2013
- 2013-04-02 WO PCT/JP2013/002293 patent/WO2013150784A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002299138A (en) * | 2001-04-02 | 2002-10-11 | Kawasaki Steel Corp | Planar magnetic element for noncontact charger |
JP2003173921A (en) * | 2001-12-07 | 2003-06-20 | Kawasaki Steel Corp | Planar magnetic element for non-contact charger |
JP2004047700A (en) * | 2002-07-11 | 2004-02-12 | Jfe Steel Kk | Planar magnetic element for non-contact charger |
JP2010283263A (en) * | 2009-06-08 | 2010-12-16 | Nec Tokin Corp | Non-contact power transmission device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017011079A (en) * | 2015-06-19 | 2017-01-12 | 矢崎総業株式会社 | Coil unit |
WO2018194984A1 (en) * | 2017-04-18 | 2018-10-25 | Te Connectivity Corporation | Printed inductors for wireless charging |
Also Published As
Publication number | Publication date |
---|---|
JP2013214613A (en) | 2013-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230327491A1 (en) | Transmitting assembly for a universal wireless charging device and a method thereof | |
WO2013150785A1 (en) | Coil unit, and power transmission device equipped with coil unit | |
JP5118394B2 (en) | Non-contact power transmission equipment | |
US9548621B2 (en) | Contactless connector system tolerant of position displacement between transmitter coil and receiver coil and having high transmission efficiency | |
US9264107B2 (en) | Wireless power transmitting device for wireless power communication system | |
EP3128524B1 (en) | Power transmission apparatus and power reception apparatus | |
KR101461549B1 (en) | Non-Contact Charging Module and Non-Contact Charging Apparatus | |
US10014105B2 (en) | Coil unit and wireless power transmission device | |
JP2012143091A (en) | Remotely and wirelessly driven charger | |
JP5924496B2 (en) | Power transmission system | |
JP2016504755A (en) | Coil arrangement in a wireless power transfer system for low electromagnetic radiation | |
US10308124B2 (en) | Power reception apparatus and power transmission apparatus | |
KR20180038281A (en) | Coil block for wireless charging and the method of manufacturing the same | |
KR20130049608A (en) | Apparatus for receiving wireless power and method for controlling thereof | |
WO2013150784A1 (en) | Coil unit, and power transmission device equipped with coil unit | |
US9570935B2 (en) | Magnetic coupling unit and magnetic coupling system | |
KR20120116802A (en) | A wireless power transmission system and a wireless power receiver using a relay device | |
JP2014044994A (en) | Coil unit | |
CN108879864A (en) | A kind of communication electronic equipment | |
KR102183887B1 (en) | Antenna for wireless charging and Dualmode antenna having the same | |
JP2014197757A (en) | Antenna coil | |
JP2012143093A (en) | Proximity wireless charging ac adapter | |
KR101396497B1 (en) | Relay Device Using Wireless Power Transmission Apparatus | |
US20170149268A1 (en) | Communication device | |
JP6968391B1 (en) | Contactless power supply coil unit and contactless power supply system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13772408 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13772408 Country of ref document: EP Kind code of ref document: A1 |