JP2010283263A - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP2010283263A
JP2010283263A JP2009137103A JP2009137103A JP2010283263A JP 2010283263 A JP2010283263 A JP 2010283263A JP 2009137103 A JP2009137103 A JP 2009137103A JP 2009137103 A JP2009137103 A JP 2009137103A JP 2010283263 A JP2010283263 A JP 2010283263A
Authority
JP
Japan
Prior art keywords
coil
power transmission
magnetic body
magnetic
transmission device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009137103A
Other languages
Japanese (ja)
Other versions
JP5372610B2 (en
Inventor
Yasuharu Takase
康治 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2009137103A priority Critical patent/JP5372610B2/en
Publication of JP2010283263A publication Critical patent/JP2010283263A/en
Application granted granted Critical
Publication of JP5372610B2 publication Critical patent/JP5372610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-contact power transmission device which improves power transmission efficiency and a signal communication distance, suppresses conduction noise and magnetic near-field noise, and responds to size reduction. <P>SOLUTION: Two or more magnetic bodies are arranged on surfaces of a first coil 31 and a second coil 32 opposite to a side where the first coil 31 and second coil 32 face to each other. The first coil 31 and second coil 32 have both a power transmission function and a signal transmission/reception function. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、携帯型電子機器や接触による給電が難しい環境下で用いられる電子機器に、電磁誘導により非接触で電力を送受信する機能を有する非接触電力伝送装置に係り、特に電力送信コイルと電力受信コイル間の高効率化を必要とする非接触電力伝送装置に関するものである。   The present invention relates to a non-contact power transmission apparatus having a function of transmitting and receiving power in a non-contact manner by electromagnetic induction in a portable electronic device and an electronic device used in an environment where power supply by contact is difficult, and in particular, a power transmission coil and a power The present invention relates to a non-contact power transmission device that requires high efficiency between receiving coils.

近年、電子部品の小型化に伴い、携帯電話や携帯型音楽プレーヤー等に代表される携帯電子機器は、小型化や軽量化が図られ、広く普及してきている。一般的に、携帯電子機器の二次電池への充電は、携帯電子機器の充電端子と充電装置の充電台(クレードル)に設置してある充電端子を接触させて電気的に接続し、充電台から電力を供給して内蔵する二次電池に充電する方式がとられる。   In recent years, with the miniaturization of electronic components, portable electronic devices typified by mobile phones and portable music players have been widely spread due to the reduction in size and weight. In general, the charging of a secondary battery of a portable electronic device is performed by bringing the charging terminal of the portable electronic device into contact with the charging terminal installed on the charging stand (cradle) of the charging device and electrically connecting the charging terminal. A method of charging power to the built-in secondary battery is adopted.

充電端子同士を接触して接続する充電方式では、充電端子の汚れや、充電端子間への異物侵入により充電ができない場合があるので、最近は電磁誘導の原理を利用した非接触の電力供給方式が多く使用されており、これに用いる非接触電力伝送装置の需要が増加している。   In the charging method in which the charging terminals are connected in contact with each other, charging may not be possible due to contamination of the charging terminals or foreign object intrusion between the charging terminals, so recently a non-contact power supply method using the principle of electromagnetic induction Are often used, and the demand for non-contact power transmission devices used therefor is increasing.

電磁誘導を用いた非接触電力供給では、近接に配置されている他のデバイスへの影響を無くすため、近傍磁界ノイズや伝導ノイズを抑制する必要がある。このようなノイズ対策を施した非接触電力伝送装置は、例えば特許文献1に開示されており、高透磁率磁性層と低透磁率磁性層をコイル背面に積層することにより伝送効率を上げてノイズを出にくくする構成が記載されている。   In non-contact power supply using electromagnetic induction, it is necessary to suppress near magnetic field noise and conduction noise in order to eliminate the influence on other devices arranged in the vicinity. A non-contact power transmission device with such noise countermeasures is disclosed in, for example, Patent Document 1, and increases the transmission efficiency by laminating a high-permeability magnetic layer and a low-permeability magnetic layer on the back surface of a coil to reduce noise. The structure which makes it hard to come out is described.

特開2009−005475号公報JP 2009-005475 A

従来の非接触電力伝送装置では、第一のコイルと第二のコイルで、非接触での電力伝送のみを行っていたので、他に通信用の例えばRFID通信用のアンテナを設ける必要があり、特に第二のコイルを設置する小型携帯機器の小型化を十分に図ることができなかった。また、従来の磁性体によるノイズ対策が十分と言えなかった。   In the conventional non-contact power transmission device, since only the non-contact power transmission is performed by the first coil and the second coil, it is necessary to provide an antenna for communication, for example, RFID communication, In particular, it has not been possible to sufficiently reduce the size of a small portable device in which the second coil is installed. Moreover, it cannot be said that noise countermeasures using conventional magnetic materials are sufficient.

そこで本発明は、上記のような従来の技術課題を解決し、電力伝送効率と信号通信距離が改善され、伝導ノイズ及び近傍磁界ノイズが抑制される、小型化対応が出来る電力伝送装置を目的とする。   Therefore, the present invention aims to solve the conventional technical problems as described above, improve the power transmission efficiency and signal communication distance, suppress conduction noise and near magnetic field noise, and aim at a power transmission device capable of miniaturization. To do.

上記の問題を解決するために、本発明は、第一のコイルと第二のコイルに対向する側とは反対の第一のコイルと第二のコイル面に、2つ以上の磁性体を配置し、第一のコイルと、第二のコイルで、電力送受信機能、信号送受信機能を兼ね備えた非接触電力伝送装置である。   In order to solve the above-mentioned problem, the present invention has two or more magnetic bodies arranged on the first coil and the second coil surface opposite to the side facing the first coil and the second coil. The first coil and the second coil are non-contact power transmission devices having a power transmission / reception function and a signal transmission / reception function.

すなわち、本発明によれば、第一のコイルと、前記第一のコイルに対向配置された第二のコイルに電力を伝送する非接触電力伝送装置であって、前記第一のコイルと前記第二のコイルに対向する側とは反対の前記第一のコイルと前記第二のコイルの面に、少なくとも2つ以上の磁性体を配置し、前記第一のコイルと前記第二のコイルは前記電力を伝送する機能と信号を送受信する機能を兼ね備えたことを特徴とする非接触電力伝送装置が得られる。   That is, according to the present invention, there is provided a non-contact power transmission device that transmits power to a first coil and a second coil disposed opposite to the first coil, wherein the first coil and the first coil At least two or more magnetic bodies are arranged on the surfaces of the first coil and the second coil opposite to the side facing the second coil, and the first coil and the second coil are A non-contact power transmission device having a function of transmitting power and a function of transmitting and receiving signals can be obtained.

すなわち、本発明によれば、前記磁性体は、複素比透磁率実部200以上または飽和磁束密度4000G以上を有する第一の磁性体と、複素比透磁率実部100以上200以下かつ複素比透磁率虚部10以下の第二の磁性体と、複素比透磁率虚部10以上の第三の磁性体のいずれか少なくとも2つ以上の磁性体により構成されていることを特徴とする非接触電力伝送装置が得られる。   That is, according to the present invention, the magnetic body includes a first magnetic body having a complex relative permeability real part 200 or more or a saturation magnetic flux density of 4000 G or more, a complex relative permeability real part 100 or more and 200 or less, and a complex relative permeability. Non-contact power characterized in that it is composed of at least two magnetic bodies of a second magnetic body having a magnetic imaginary part of 10 or less and a third magnetic body having a complex relative permeability imaginary part of 10 or more. A transmission device is obtained.

すなわち、本発明によれば、前記第一の磁性体、前記第二の磁性体、前記第三の磁性体のいずれか少なくとも2つ以上の磁性体の配置は、積層されたものであることを特徴とする非接触電力伝送装置が得られる。   That is, according to the present invention, the arrangement of at least two of the first magnetic body, the second magnetic body, and the third magnetic body is laminated. A characteristic contactless power transmission device is obtained.

すなわち、本発明によれば、前記第一の磁性体、前記第二の磁性体、前記第三の磁性体のいずれか少なくとも2つ以上の磁性体の配置は、リング状に形成した磁性体を同一平面で同心円状に配置した構成であることを特徴とする非接触電力伝送装置が得られる。   That is, according to the present invention, the arrangement of at least two of the first magnetic body, the second magnetic body, and the third magnetic body is a magnetic body formed in a ring shape. A non-contact power transmission apparatus characterized by being concentrically arranged on the same plane can be obtained.

すなわち、本発明によれば、前記第一の磁性体、前記第二の磁性体、前記第三の磁性体は、シート状に形成されたもの、または、メッキ、蒸着、スパッタリング、により作成されたことを特徴とする非接触電力伝送装置が得られる。   That is, according to the present invention, the first magnetic body, the second magnetic body, and the third magnetic body are formed in a sheet shape, or formed by plating, vapor deposition, or sputtering. A non-contact power transmission apparatus characterized by the above can be obtained.

すなわち、本発明によれば、前記第一の磁性体は、扁平形状を有する扁平状の軟磁性粉末とシロキサン結合(Si−O−Si)を有するシリコーンレジンを混合し、かつ、面内に磁化容易方向を有することを特徴とする非接触電力伝送装置が得られる。   That is, according to the present invention, the first magnetic body is a mixture of a flat soft magnetic powder having a flat shape and a silicone resin having a siloxane bond (Si—O—Si), and is magnetized in the plane. A non-contact power transmission device having an easy direction can be obtained.

すなわち、本発明によれば、前記第二の磁性体は、結晶粒径2μm以下のフェライト粉末を焼成して作成し、かつ、回転磁化範囲の強磁化を有することを特徴とする非接触電力伝送装置が得られる。   That is, according to the present invention, the second magnetic body is produced by firing a ferrite powder having a crystal grain size of 2 μm or less, and has strong magnetization in a rotational magnetization range. A device is obtained.

すなわち、本発明によれば、前記第三の磁性体は、熱収縮性を有する樹脂中に磁性体粉末を混入した複合磁性体から成ることを特徴とする非接触電力伝送装置が得られる。   That is, according to the present invention, there can be obtained a non-contact power transmission device characterized in that the third magnetic body is composed of a composite magnetic body in which a magnetic powder is mixed in a heat-shrinkable resin.

すなわち、本発明によれば、前記第三の磁性体は、少なくとも第一鉄イオンを含む反応液を基体に接触させる工程と、少なくとも酸化剤を含んだ酸化液を基体に接触させる工程と、前記反応液、酸化液の内磁性体生成に寄与しない残分を基体から除去する工程とから作成されることを特徴とする非接触電力伝送装置が得られる。   That is, according to the present invention, the third magnetic body comprises a step of bringing a reaction solution containing at least ferrous ions into contact with the substrate, a step of bringing an oxidation solution containing at least an oxidizing agent into contact with the substrate, A non-contact power transmission device is obtained which is formed from a step of removing from the substrate a residue that does not contribute to the generation of the inner magnetic substance of the reaction solution and the oxidizing solution.

すなわち、本発明によれば、第一のコイルと、前記第一のコイルに対向配置された第二のコイルに電力を伝送する非接触電力伝送装置であって、前記第一のコイルと前記第二のコイルに対向する側とは反対の前記第一のコイルと前記第二のコイルの面に、複素比透磁率実部200以上または飽和磁束密度4000G以上を有する磁性体を配置し、前記第一のコイルと前記第二のコイルは前記電力を伝送する機能と信号を送受信する機能を兼ね備えたことを特徴とする非接触電力伝送装置が得られる。   That is, according to the present invention, there is provided a non-contact power transmission device that transmits power to a first coil and a second coil disposed opposite to the first coil, wherein the first coil and the first coil A magnetic body having a complex relative permeability real part 200 or more or a saturation magnetic flux density 4000 G or more is disposed on the surfaces of the first coil and the second coil opposite to the side facing the second coil, and the first coil One coil and the second coil have a function of transmitting the electric power and a function of transmitting and receiving a signal.

すなわち、本発明によれば、前記第一のコイルを備えてなる非接触電力伝送装置を構成する充電装置が得られる。   That is, according to this invention, the charging device which comprises the non-contact electric power transmission apparatus provided with said 1st coil is obtained.

すなわち、本発明によれば、前記第二のコイルを備えてなる非接触電力伝送装置を構成する携帯端末機器が得られる。   That is, according to this invention, the portable terminal device which comprises the non-contact electric power transmission apparatus provided with said 2nd coil is obtained.

前記第一のコイル、前記第二のコイルは、平板型のコイルを用いることにより、小型化、高効率化を図ることが好ましい。   The first coil and the second coil are preferably reduced in size and efficiency by using flat-plate coils.

前記第一のコイル、前記第二のコイル、前記磁性体は同じような大きさで構成されることが効率的に好ましいが、それぞれが、大きさの構成が変わっても対応することが出来るのは明白である。   The first coil, the second coil, and the magnetic body are preferably configured to have the same size, but each can cope with a change in size configuration. Is obvious.

本発明により、前記第一のコイルと前記第二のコイルに対向する側とは反対面に、少なくとも2つ以上の磁性体をそれぞれ配置することで、電力伝送効率とデータ通信特性を共に低下させることなく、伝導ノイズと近傍磁界ノイズを抑制することができる。   According to the present invention, the power transmission efficiency and the data communication characteristics are both lowered by disposing at least two or more magnetic bodies on the opposite surfaces of the first coil and the second coil. Therefore, conduction noise and near magnetic field noise can be suppressed.

さらに、第一のコイルと第二のコイルは電力送受信機能と信号送受信機能を兼ね備えており、電力伝送と切り分ける回路を使用して、同様の方法でRFID等の信号の送受信も行っている。同じ周波数で、電力の送受信と、RFID等の信号送受信の両方を可能としており、部品数を大きく増やすことなく、組立工程の簡素化、低コスト化、小型効率化を行うことが可能である。   Furthermore, the first coil and the second coil have both a power transmission / reception function and a signal transmission / reception function, and signals such as RFID are transmitted and received in a similar manner using a circuit that separates power transmission. Both power transmission / reception and signal transmission / reception such as RFID can be performed at the same frequency, and the assembly process can be simplified, the cost can be reduced, and the size can be reduced without increasing the number of components.

よって本発明を行うことで、電力伝送効率と信号通信距離が改善され、伝導ノイズ及び近傍磁界ノイズが抑制される、小型化対応が出来る電力伝送装置の提供が可能になる。   Therefore, by carrying out the present invention, it is possible to provide a power transmission device that can improve the power transmission efficiency and the signal communication distance, suppress conduction noise and near magnetic field noise, and can be reduced in size.

本発明の非接触電力伝送装置の構成図である。It is a block diagram of the non-contact electric power transmission apparatus of this invention. 本発明の実施の形態1の非接触電力伝送装置の第一のコイルと第二のコイルと磁性体の構成を示した図で、図2(a)は概略図、図2(b)は断面図である。FIG. 2A is a schematic diagram, and FIG. 2B is a cross-sectional view illustrating a configuration of a first coil, a second coil, and a magnetic body of the contactless power transmission device according to the first embodiment of the present invention. FIG. 本発明の実施の形態2の非接触電力伝送装置の第一のコイルと第二のコイルと磁性体の構成を示した図で、図3(a)は概略図、図3(b)は断面図である。FIG. 3A is a schematic diagram and FIG. 3B is a cross-sectional view illustrating a configuration of a first coil, a second coil, and a magnetic body of a non-contact power transmission apparatus according to a second embodiment of the present invention. FIG. 本発明の非接触電力伝送装置の電力伝送効率測定結果を示すグラフである。It is a graph which shows the electric power transmission efficiency measurement result of the non-contact electric power transmission apparatus of this invention. 本発明の非接触電力伝送装置の通信距離測定結果を示すグラフである。It is a graph which shows the communication distance measurement result of the non-contact electric power transmission apparatus of this invention. 本発明の非接触電力伝送装置のノイズ抑制測定結果を示すグラフである。It is a graph which shows the noise suppression measurement result of the non-contact electric power transmission apparatus of this invention.

以下、本発明の実施の形態について図面を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
図1は、本発明の非接触電力伝送装置の構成図である。図2は、本発明の実施の形態1の非接触電力伝送装置の第一のコイルと第二のコイルと磁性体の構成を示した図で、図2(a)は概略図、図2(b)は断面図である。
(Embodiment 1)
FIG. 1 is a configuration diagram of a non-contact power transmission apparatus according to the present invention. FIG. 2 is a diagram illustrating the configuration of the first coil, the second coil, and the magnetic body of the contactless power transmission device according to the first embodiment of the present invention. FIG. 2 (a) is a schematic diagram, and FIG. b) is a sectional view.

図1の構成図に示す非接触電力伝送装置10は、第一のコイルを有する第一の筺体14に、電力伝送と信号伝送を行うための第一のコイル11と、前記第一のコイル11による電力伝送、信号伝送の送受信を切替える第一の送受信回路19と、電力伝送用の電源回路16と、信号伝送用の第一の信号通信回路17が設置されている。第二のコイルを有する第二の筺体15に、電力伝送と信号伝送を行うための第二のコイル12と、前記第二のコイル12による電力伝送、信号伝送の送受信を切替える第二の送受信回路20と、電力伝送用の充電制御回路21と充電用の二次電池22と、信号伝送用の第二の信号通信回路18を設置されている。   A non-contact power transmission apparatus 10 shown in the configuration diagram of FIG. 1 includes a first coil 11 for performing power transmission and signal transmission on a first housing 14 having a first coil, and the first coil 11. A first transmission / reception circuit 19 for switching between transmission and reception of power transmission and signal transmission, a power supply circuit 16 for power transmission, and a first signal communication circuit 17 for signal transmission are installed. A second casing 15 having a second coil, a second coil 12 for performing power transmission and signal transmission, and a second transmission / reception circuit for switching transmission / reception of power transmission and signal transmission by the second coil 12 20, a charging control circuit 21 for power transmission, a secondary battery 22 for charging, and a second signal communication circuit 18 for signal transmission are installed.

非接触電力伝送装置の第一のコイルを有する第一の筺体は、電気エネルギーを磁気エネルギーに変換する手段を備え、第二のコイルを有する第二の筺体は、磁気エネルギーを電気エネルギーに変換する手段を備えている。以上のようにして、電力の伝送が行われる。また、電力伝送と切り分ける回路を使用して、RFID等の信号の送受信も行っている。同じ13.56MHzの周波数で、電力の伝送と、RFID等の信号の送受信の両方を可能としている。   The first housing having the first coil of the contactless power transmission device includes means for converting electrical energy into magnetic energy, and the second housing having the second coil converts magnetic energy into electrical energy. Means. Power transmission is performed as described above. In addition, signals such as RFID are transmitted and received using a circuit that separates power transmission. Both the transmission of electric power and the transmission / reception of signals such as RFID are possible at the same 13.56 MHz frequency.

図2に示したように、銅線を巻き回して平板形状の平板型コイルを形成した第一のコイル31の背面に、第一の磁性体33a、第二の磁性体34a、第三の磁性体35aをそれぞれ円状に形成し積層して第一の磁性体層36として配置し、同様に銅線を巻き回して平板形状の平板型コイルを形成した第二のコイル32の背面に、第一の磁性体33b、第二の磁性体34b、第三の磁性体35bを円状に形成し積層して第二の磁性体層37を配置した構造である。   As shown in FIG. 2, the first magnetic body 33a, the second magnetic body 34a, and the third magnetic body are formed on the back surface of the first coil 31 formed by winding a copper wire to form a flat plate coil. Each of the bodies 35a is formed in a circular shape and laminated to be arranged as the first magnetic layer 36. Similarly, on the back surface of the second coil 32 in which a copper wire is wound to form a flat plate coil, In this structure, the first magnetic body 33b, the second magnetic body 34b, and the third magnetic body 35b are formed in a circular shape and stacked, and the second magnetic body layer 37 is disposed.

第一の磁性体33a、33bは、伝送電力を上げるために、磁束密度を高くする必要があり、特性が複素比透磁率実部200以上または飽和磁束密度4000G以上を有したシート状の磁性体を使用する。第二の磁性体34a、34bは、データ通信距離を長くするために、伝播損失を減らし、磁束密度を高くする必要があり、特性が複素比透磁率実部100以上200以下かつ複素比透磁率虚部10以下のシート状の磁性体を使用する。また、第二の磁性体34a、34bは、この特性を満たす磁性体を実現するために、フェライト粉末を結晶粒径2μm以下に粒径微細化し、Snoek限界を伸張させ、透磁率の周波数特性を上げる。第三の磁性体35a、35bは、ノイズ対策としてコイル近傍に発生する近傍磁界を抑制し、かつ他のデバイスに伝導する不要な高調波ノイズを防ぐため、磁性体内を伝播する電磁界を磁性体の損失として抑制する必要から、特性が複素比透磁率虚部10以上を有している磁性体を使用する。   The first magnetic bodies 33a and 33b need to have a high magnetic flux density in order to increase transmission power, and have a characteristic of a complex relative permeability real part of 200 or more or a saturation magnetic flux density of 4000 G or more. Is used. The second magnetic bodies 34a and 34b need to reduce the propagation loss and increase the magnetic flux density in order to increase the data communication distance, and the characteristics are complex relative permeability real part 100 to 200 and complex relative permeability. A sheet-like magnetic body having an imaginary part of 10 or less is used. The second magnetic bodies 34a and 34b have a ferrite frequency reduced to a crystal grain size of 2 μm or less, a Snoek limit, and a permeability frequency characteristic, in order to realize a magnetic body that satisfies this characteristic. increase. The third magnetic bodies 35a and 35b suppress the near magnetic field generated in the vicinity of the coil as a noise countermeasure, and prevent the unnecessary harmonic noise that is conducted to other devices. Therefore, a magnetic material having characteristics having a complex relative permeability imaginary part 10 or more is used.

このように、第一のコイルと第二のコイルの背面に磁性体を3層に配置した構造を示したが、磁性体の配置順を変えた構造でも良い。また、実装機器に応じて1層構造、または4層以上の構造でも良い。更に、第三の磁性体の配置は、第一の筺体14と第二の筺体15に設置されている回路上に配置した構造でも良い。また、本構造では、第一の磁性体33a、33bは同じ磁性体を使用したが、異なる磁性体を用いても良い。同様に第二の磁性体34a、34bは同じ磁性体でも、異なる磁性体でも良い。同様に第三の磁性体35a、35bは同じ磁性体でも、異なる磁性体でも良い。   Thus, although the structure which has arrange | positioned the magnetic body in three layers on the back surface of the 1st coil and the 2nd coil was shown, the structure which changed the arrangement | positioning order of a magnetic body may be sufficient. Further, a single-layer structure or a structure of four or more layers may be used depending on the mounted device. Further, the third magnetic body may be arranged on a circuit installed in the first housing 14 and the second housing 15. Moreover, in this structure, although the same magnetic body was used for the 1st magnetic bodies 33a and 33b, you may use a different magnetic body. Similarly, the second magnetic bodies 34a and 34b may be the same magnetic body or different magnetic bodies. Similarly, the third magnetic bodies 35a and 35b may be the same magnetic body or different magnetic bodies.

本実施の形態では、第一のコイル31と第二のコイル32の形状を円形で説明したが、多角形等でも問題はない。それに従い、第一の磁性体層36、第二の磁性体層37も同様に形状を円形で説明したが、多角形等でも問題はない。   In the present embodiment, the shapes of the first coil 31 and the second coil 32 have been described as circular, but there is no problem with polygons or the like. Accordingly, the first magnetic layer 36 and the second magnetic layer 37 have also been described as having a circular shape, but there is no problem with a polygon or the like.

第一のコイル31、第二のコイル32、第一の磁性体層36、第二の磁性体層37は同じような大きさで構成されるのが、効率的に優れている。第一のコイル31と第一の磁性体層36の方が、大きい構成の場合においては、効率が低下するが、第二のコイル32と第二の磁性体層37の大きさを第二の筺体15の大きさに合わせて小さくすることができる。また、第二の筺体15を変更したときの場合、いろいろな第二の筺体15に対応することが出来ることとなり、第一の筺体14と第二の筺体15の組合せが、限定されるわけではなく、第一の筺体14に対して複数の第二の筺体15が対応し、本発明の非接触電力伝送装置10が汎用性に富むことが可能となる。さらに、第一のコイルを備えてなる非接触電力伝送装置が、携帯電話等の携帯端末機器用の充電装置として用いられ、第二のコイルを備えてなる非接触電力伝送装置が、携帯電話等の携帯端末機器として用いられるなど、いろいろな応用が可能である。   It is efficient that the first coil 31, the second coil 32, the first magnetic layer 36, and the second magnetic layer 37 are configured in the same size. In the case where the first coil 31 and the first magnetic layer 36 are larger, the efficiency is reduced, but the size of the second coil 32 and the second magnetic layer 37 is set to the second size. The size can be reduced according to the size of the casing 15. Further, when the second casing 15 is changed, various second casings 15 can be handled, and the combination of the first casing 14 and the second casing 15 is not limited. Instead, the plurality of second casings 15 correspond to the first casing 14, and the non-contact power transmission device 10 of the present invention can be highly versatile. Furthermore, the non-contact power transmission device including the first coil is used as a charging device for a portable terminal device such as a mobile phone, and the non-contact power transmission device including the second coil is a mobile phone or the like. Various applications are possible, such as being used as a portable terminal device.

(実施の形態2)
図3は、本発明の実施の形態2の非接触電力伝送装置の第一のコイルと第二のコイルと磁性体の構成を示した図で、図3(a)は概略図、図3(b)は断面図である。図3は、本発明の実施の形態2の非接触電力伝送装置の第一のコイルと第二のコイルと磁性体の構成を説明している。図3に示したように、銅線を巻き回して平板形状の平板型コイルを形成した第一のコイル41の背面に、第一の磁性体43a、第二の磁性体44a、第三の磁性体45aをリング状に形成かつ同一平面で同心円状の第一の磁性体環46として配置し、同様に銅線を巻き回して平板形状の平板型コイルを形成した第二のコイル42の背面に、第一の磁性体43b、第二の磁性体44b、第三の磁性体45bをリング状に形成かつ同一平面で同心円状の第二の磁性体環47を配置した構造である。
(Embodiment 2)
FIG. 3 is a diagram illustrating the configuration of the first coil, the second coil, and the magnetic body of the contactless power transmission device according to the second embodiment of the present invention. FIG. 3 (a) is a schematic diagram, and FIG. b) is a sectional view. FIG. 3 illustrates the configuration of the first coil, the second coil, and the magnetic body of the non-contact power transmission apparatus according to the second embodiment of the present invention. As shown in FIG. 3, the first magnetic body 43a, the second magnetic body 44a, and the third magnetic body are formed on the back surface of the first coil 41 formed by winding a copper wire to form a flat plate coil. A body 45a is formed in a ring shape and arranged as a first magnetic ring 46 that is concentric with the same plane, and is similarly wound on the back surface of a second coil 42 that is formed by winding a copper wire to form a flat plate coil. The first magnetic body 43b, the second magnetic body 44b, and the third magnetic body 45b are formed in a ring shape, and a concentric second magnetic ring 47 is arranged on the same plane.

このように、第一のコイルと第二のコイルの背面に磁性体をリング状に形成し、同一平面で同心円状に3重に配置することにより磁性体の厚みを薄くし、非接触電力伝送装置の薄型化した構造を示したが、磁性体の配置順を変えた構造でも良い。また、実装機器に応じて2重構造、または4重以上の構造でも良い。   In this way, the magnetic body is formed in a ring shape on the back surface of the first coil and the second coil, and the thickness of the magnetic body is reduced by arranging three layers concentrically on the same plane, so that contactless power transmission is possible. Although the thin structure of the device is shown, a structure in which the arrangement order of the magnetic bodies is changed may be used. Further, a double structure or a structure of four or more layers may be used depending on the mounted device.

このように、第一のコイル部と第二のコイル部の背面に磁性体をリング状に形成し、同一平面で同心円状に3重に配置した構造を示したが、磁性体の配置順を変えた構造でも良い。また、実装機器に応じて1重構造、または4重以上の構造でも良い。更に、第三の磁性体の配置は、第一の筺体14と第二の筺体15に設置されている回路上に配置した構造でも良い。また、本構造では、第一の磁性体43a、43bは同じ磁性体を使用したが、異なる磁性体を用いても良い。同様に第二の磁性体44a、44bは同じ磁性体でも、異なる磁性体でも良い。同様に第三の磁性体45a、45bは同じ磁性体でも、異なる磁性体でも良い。   As described above, the magnetic body is formed in a ring shape on the back surfaces of the first coil part and the second coil part, and the structure in which the magnetic bodies are arranged in a concentric triple on the same plane is shown. A changed structure may be used. Further, a single structure or a structure of four or more may be used depending on the mounted device. Further, the third magnetic body may be arranged on a circuit installed in the first housing 14 and the second housing 15. Moreover, in this structure, although the same magnetic body was used for the 1st magnetic bodies 43a and 43b, you may use a different magnetic body. Similarly, the second magnetic bodies 44a and 44b may be the same magnetic body or different magnetic bodies. Similarly, the third magnetic bodies 45a and 45b may be the same magnetic body or different magnetic bodies.

本実施の形態では、第一のコイル41と第二のコイル42の形状を円形で説明したが、多角形等でも問題はない。それに従い、第一の磁性体環46、第二の磁性体環47も同様に形状を円形で説明したが、多角形等でも問題はない。   In the present embodiment, the shapes of the first coil 41 and the second coil 42 have been described as circular, but there is no problem with a polygon or the like. Accordingly, the first magnetic ring 46 and the second magnetic ring 47 have been described as circular in shape, but there is no problem with a polygon or the like.

第一のコイル41、第二のコイル42、第一の磁性体環46、第二の磁性体環47は同じような大きさで構成されるのが、効率的に優れている。第一のコイル41と第一の磁性体環46の方が、大きい構成の場合においては、効率が低下するが、第二のコイル42と第二の磁性体環47の大きさを第二の筺体15の大きさに合わせて小さくすることができる。また、第二の筺体15を変更したときの場合、いろいろな第二の筺体15に対応することが出来ることとなり、第一の筺体14と第二の筺体15の組合せが、限定されるわけではなく、第一の筺体14に対して複数の第二の筺体15が対応し、本発明の非接触電力伝送装置10が汎用性に富むことが可能となる。さらに、第一のコイルを備えてなる非接触電力伝送装置が、携帯電話等の携帯端末機器用の充電装置として用いられ、第二のコイルを備えてなる非接触電力伝送装置が、携帯電話等の携帯端末機器として用いられるなど、いろいろな応用が可能である。   It is efficient that the first coil 41, the second coil 42, the first magnetic ring 46, and the second magnetic ring 47 are configured in the same size. In the case where the first coil 41 and the first magnetic ring 46 are larger, the efficiency is reduced, but the size of the second coil 42 and the second magnetic ring 47 is set to the second size. The size can be reduced according to the size of the casing 15. Further, when the second casing 15 is changed, various second casings 15 can be handled, and the combination of the first casing 14 and the second casing 15 is not limited. Instead, the plurality of second casings 15 correspond to the first casing 14, and the non-contact power transmission device 10 of the present invention can be highly versatile. Furthermore, the non-contact power transmission device including the first coil is used as a charging device for a portable terminal device such as a mobile phone, and the non-contact power transmission device including the second coil is a mobile phone or the like. Various applications are possible, such as being used as a portable terminal device.

以下、実施例を用いて詳述する。   Hereinafter, it explains in full detail using an Example.

上記各々の実施の形態のうち、図1及び図2に示した実施の形態1の非接触電力伝送装置の実施例について詳述する。先ず、第一のコイルとして、銅線を4ターン巻回した直径30mmの第一のコイル31、第二のコイル32を用いた。第一の磁性体33a、33bとして、Fe−Si−Al系合金を用い、平均アスペクト比30の扁平粉末を作製し、シリコーンレジンを含有量5wt.%混同して、厚み0.1mmの円形シート状に成型した磁性体を用いた。第二の磁性体34a、34bとして、NiZnフェライトを用い、粒径微細化し平均結晶粒径1.7μmの粉末を、厚み0.1mmの円形シート状に成型した磁性体を用いた。第三の磁性体35aとして、Fe−Si−Al系合金を用い、平均アスペクト比35の微細な扁平粉末を作製し、熱収縮性を有する塩素化ポリエチレン樹脂を含有量15wt.%混同して、厚み0.1mmの円形シート状に成型した磁性体を用いた。第三の磁性体35bとして、脱酸素イオン交換水中にFeCl・4HO、NiCl・6HO、ZnClを溶かした反応液と、脱酸素イオン交換水中にNaNOとCHCOONHを溶かした酸化液と用い、それぞれノズルにより噴射させて形成したNi0.2Zn0.3Fe2.54.0の平均組成を有する厚み0.003mmのメッキ膜を使用した。 Of the above embodiments, examples of the non-contact power transmission apparatus according to the first embodiment shown in FIGS. 1 and 2 will be described in detail. First, as the first coil, a first coil 31 and a second coil 32 each having a diameter of 30 mm, in which a copper wire was wound for 4 turns, were used. As the first magnetic bodies 33a and 33b, an Fe—Si—Al-based alloy was used to produce a flat powder having an average aspect ratio of 30 and a silicone resin content of 5 wt. %, And a magnetic material molded into a circular sheet having a thickness of 0.1 mm was used. As the second magnetic bodies 34a and 34b, NiZn ferrite was used, and a magnetic body obtained by refining the grain size and molding a powder having an average crystal grain size of 1.7 μm into a circular sheet shape having a thickness of 0.1 mm was used. As the third magnetic body 35a, a fine flat powder having an average aspect ratio of 35 was prepared using an Fe—Si—Al-based alloy, and a content of 15 wt. %, And a magnetic material molded into a circular sheet having a thickness of 0.1 mm was used. The as third magnetic 35b, FeCl 2 · 4H 2 O in deoxygenated ion exchange water, NiCl 2 · 6H 2 O, and the reaction solution prepared by dissolving ZnCl 2, NaNO 2 and CH 3 COONH 4 deoxygenated deionized water A plating film having a thickness of 0.003 mm having an average composition of Ni 0.2 Zn 0.3 Fe 2.5 O 4.0 formed by spraying with a nozzle was used.

第一の磁性体33a、33bは、飽和磁束密度特性が5000Gを有している。第二の磁性体34a、34bは、複素比透磁率実部120と複素比透磁率虚部3の特性を有している。第三の磁性体35aは、複素比透磁率虚部24の特性を有している。
第三の磁性体35bは、複素比透磁率虚部20の特性を有している。
The first magnetic bodies 33a and 33b have a saturation magnetic flux density characteristic of 5000G. The second magnetic bodies 34 a and 34 b have characteristics of a complex relative permeability real part 120 and a complex relative permeability imaginary part 3. The third magnetic body 35 a has the characteristics of the complex relative permeability imaginary part 24.
The third magnetic body 35 b has the characteristics of the complex relative permeability imaginary part 20.

上記の要領により作製した、非接触電力伝送装置の実施例について、電力伝送効率、データ通信距離、ノイズ抑制効果を測定し、磁性体を配置する前の実施例と比較した。比較は、実施例の非接触電力伝送装置と同様に作成され、磁性体が第一のコイルと第二のコイルに設置されていない状態の非接触電力伝送装置とした。   About the Example of the non-contact electric power transmission apparatus produced by said point, the power transmission efficiency, the data communication distance, and the noise suppression effect were measured, and it compared with the Example before arrange | positioning a magnetic body. The comparison was made in the same manner as the non-contact power transmission device of the example, and a non-contact power transmission device in which the magnetic body was not installed in the first coil and the second coil.

図4は、本発明の非接触電力伝送装置の電力伝送効率測定結果を示すグラフである。発信器からの13.56MHzの正弦波信号を、パワーアンプを介して増幅し、第一のコイルに入力して励振させた。第二のコイルの出力端子間に50Ωの負荷抵抗を接続した第二のコイルを、第一のコイルに接触させて、その時の第二のコイルに発生する電流を、オシロスコープに接続した電流プローブにより測定し、実効出力電力を計算した。第一のコイルの実効入力電力との比から電力伝送効率を算出した。その結果、充電電力伝送効率については、第一の磁性体層36、第二の磁性体層37を配置する前と比較して、70%の効率が90%に向上した。   FIG. 4 is a graph showing the power transmission efficiency measurement result of the non-contact power transmission apparatus of the present invention. A 13.56 MHz sine wave signal from the transmitter was amplified via a power amplifier and input to the first coil to be excited. A second coil with a 50Ω load resistance connected between the output terminals of the second coil is brought into contact with the first coil, and the current generated in the second coil at that time is measured by a current probe connected to the oscilloscope. Measured and calculated effective output power. The power transmission efficiency was calculated from the ratio with the effective input power of the first coil. As a result, with respect to the charging power transmission efficiency, the efficiency of 70% was improved to 90% compared to before the first magnetic layer 36 and the second magnetic layer 37 were arranged.

図5は、本発明の非接触電力伝送装置の通信距離測定結果を示すグラフである。RFIDリーダ/ライタのアンテナとして、第一のコイルを用いて、13.56MHzのデータ信号を出力励振させた。RFID用のICチップと第二のコイルを接続し、第二のコイルをアンテナとした仮のRFIDカードを作成した。仮のRFIDカードが、第一のコイルをアンテナとしたRFIDリーダ/ライタと通信可能か、第一のコイルの距離を鉛直方向に離して行き、通信可能な最大距離を測定した。磁性体を配置した前の距離を100%として比較した。データ通信距離は、第一の磁性体層36、第二の磁性体層37を配置する前と比較して、105%に向上した。   FIG. 5 is a graph showing a communication distance measurement result of the non-contact power transmission apparatus of the present invention. As the RFID reader / writer antenna, a first coil was used to excite a 13.56 MHz data signal. A temporary RFID card was created by connecting the IC chip for RFID and the second coil, and using the second coil as an antenna. Whether the provisional RFID card can communicate with the RFID reader / writer using the first coil as an antenna, the distance of the first coil was moved in the vertical direction, and the maximum communicable distance was measured. The comparison was made assuming that the distance before the magnetic material is arranged is 100%. The data communication distance was improved to 105% compared to before the first magnetic layer 36 and the second magnetic layer 37 were arranged.

図6は、本発明の非接触電力伝送装置のノイズ抑制測定結果を示すグラフである。伝導ノイズ測定は、第一のコイルに本発明の磁性体を配置し、ネットワークアナライザより1mWの電力をマイクロプローブにより第一のコイルの片端に入力し、励振電力を与えた。第一のコイルの他端より透過電力の減衰を、ネットワークアナライザにより測定した。また、近傍磁界ノイズ測定は、第一のコイルに本発明の磁性体を配置し、ネットワークアナライザより1mWの電力をマイクロプローブにより第一のコイルの片端に入力し、励振電力を与えた。第一のコイルの他端を、50Ωの負荷抵抗にて終端し、第一のコイルの磁界をネットワークアナライザに接続した電界プローブを第一のコイルの高さ1mmに配置して透過電力として磁界結合量を測定した。磁性体を配置した前の同様の測定値を基準(0dB)として比較した。ノイズ抑制効果は、第一の磁性体層36を配置する前と比較して、携帯電話のRFアンテナ使用周波数である2GHzにおいて、伝導ノイズが2.3dB、近傍磁界ノイズが1dB抑制されることがわかった。   FIG. 6 is a graph showing noise suppression measurement results of the non-contact power transmission apparatus of the present invention. In the conduction noise measurement, the magnetic material of the present invention was placed in the first coil, and 1 mW of power was input from a network analyzer to one end of the first coil with a microprobe to give excitation power. The attenuation of transmitted power from the other end of the first coil was measured with a network analyzer. In the near magnetic field noise measurement, the magnetic material of the present invention was arranged in the first coil, and 1 mW of power was input from a network analyzer to one end of the first coil with a microprobe to give excitation power. The other end of the first coil is terminated with a load resistance of 50Ω, and an electric field probe in which the magnetic field of the first coil is connected to the network analyzer is arranged at a height of 1 mm of the first coil and magnetically coupled as transmitted power. The amount was measured. The same measured value before placing the magnetic material was compared as a reference (0 dB). The noise suppression effect is that conduction noise is suppressed by 2.3 dB and near magnetic field noise is suppressed by 1 dB at 2 GHz, which is the RF antenna usage frequency of the mobile phone, as compared with the case before the first magnetic layer is disposed. all right.

以上の測定結果より、本発明の非接触電力伝送装置の方が比較品より、電力伝送効率と信号通信距離が改善され、伝導ノイズ及び近傍磁界ノイズが抑制されることが分かる。   From the above measurement results, it can be seen that the non-contact power transmission apparatus of the present invention improves the power transmission efficiency and the signal communication distance, and suppresses conduction noise and near magnetic field noise, compared with the comparative product.

以上、実施例を用いて、本発明の実施の形態を説明した。実施例では、第一のコイルと第二のコイルの中空部の形状を略円形と略四角形で説明したが、多角形でも問題はない。また、凸部を有する磁性体の凸部断面も略円形と略四角形で説明したが、多角形でも問題ない。要するに、本発明は、この実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしうるであろう各種変更、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the examples. In the embodiments, the shapes of the hollow portions of the first coil and the second coil have been described as a substantially circular shape and a substantially quadrangular shape, but there is no problem with a polygonal shape. Moreover, although the convex part cross section of the magnetic body which has a convex part was demonstrated with the substantially circular shape and the substantially square shape, it is satisfactory even if it is a polygon. In short, the present invention is not limited to this embodiment, and design changes within a range not departing from the gist of the present invention are included in the present invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

本発明の非接触充電装置は、携帯電話、ヘッドセット、デジタルカメラ、デジタルビデオ等の携帯機器に利用することができる。また、自動車やバス等、大電力が必要な充電にも応用可能である。   The non-contact charging device of the present invention can be used for portable devices such as a mobile phone, a headset, a digital camera, and a digital video. It can also be applied to charging that requires high power, such as cars and buses.

10 非接触電力伝送装置
11 第一のコイル
12 第二のコイル
14 第一の筺体
15 第二の筺体
16 電源回路
17 第一の信号通信回路
18 第二の信号通信回路
19 第一の送受信回路
20 第二の送受信回路
21 充電制御回路
22 二次電池
31 第一のコイル
32 第二のコイル
33a、33b 第一の磁性体
34a、34b 第二の磁性体
35a、35b 第三の磁性体
36 第一の磁性体層
37 第二の磁性体層
41 第一のコイル
42 第二のコイル
43a、43b 第一の磁性体
44a、44b 第二の磁性体
45a、45b 第三の磁性体
46 第一の磁性体環
47 第二の磁性体環
DESCRIPTION OF SYMBOLS 10 Contactless power transmission apparatus 11 1st coil 12 2nd coil 14 1st housing 15 2nd housing 16 Power supply circuit 17 1st signal communication circuit 18 2nd signal communication circuit 19 1st transmission / reception circuit 20 Second transmission / reception circuit 21 Charging control circuit 22 Secondary battery 31 First coil 32 Second coils 33a, 33b First magnetic bodies 34a, 34b Second magnetic bodies 35a, 35b Third magnetic bodies 36 First Magnetic layer 37 second magnetic layer 41 first coil 42 second coils 43a, 43b first magnetic bodies 44a, 44b second magnetic bodies 45a, 45b third magnetic bodies 46 first magnetism Body ring 47 Second magnetic ring

Claims (12)

第一のコイルと、前記第一のコイルに対向配置された第二のコイルに電力を伝送する非接触電力伝送装置であって、前記第一のコイルと前記第二のコイルに対向する側とは反対の前記第一のコイルと前記第二のコイルの面に、少なくとも2つ以上の磁性体を配置し、前記第一のコイルと前記第二のコイルは前記電力を伝送する機能と信号を送受信する機能を兼ね備えたことを特徴とする非接触電力伝送装置。   A non-contact power transmission device that transmits electric power to a first coil and a second coil disposed to face the first coil, the first coil and a side facing the second coil; Arranges at least two or more magnetic bodies on the opposite surfaces of the first coil and the second coil, and the first coil and the second coil have functions and signals for transmitting the power. A non-contact power transmission device having a function of transmitting and receiving. 前記磁性体は、複素比透磁率実部200以上または飽和磁束密度4000G以上を有する第一の磁性体と、複素比透磁率実部100以上200以下かつ複素比透磁率虚部10以下の第二の磁性体と、複素比透磁率虚部10以上の第三の磁性体のいずれか少なくとも2つ以上の磁性体により構成されていることを特徴とする請求項1に記載の非接触電力伝送装置。   The magnetic body includes a first magnetic body having a complex relative permeability real part of 200 or more or a saturation magnetic flux density of 4000 G or more; a second complex relative permeability real part of 100 to 200 and a complex relative permeability imaginary part of 10 or less. 2. The non-contact power transmission device according to claim 1, comprising at least two of the magnetic bodies and a third magnetic body having a complex relative permeability imaginary part of 10 or more. . 前記第一の磁性体、前記第二の磁性体、前記第三の磁性体のいずれか少なくとも2つ以上の磁性体の配置は、積層されたものであることを特徴とする請求項1または2に記載の非接触電力伝送装置。   3. The arrangement of at least two of the first magnetic body, the second magnetic body, and the third magnetic body is a laminated structure. The non-contact power transmission device described in 1. 前記第一の磁性体、前記第二の磁性体、前記第三の磁性体のいずれか少なくとも2つ以上の磁性体の配置は、リング状に形成した磁性体を同一平面状に配置した構成であることを特徴とする請求項1または2に記載の非接触電力伝送装置。   The arrangement of at least two of the first magnetic body, the second magnetic body, and the third magnetic body is a configuration in which magnetic bodies formed in a ring shape are arranged on the same plane. The contactless power transmission device according to claim 1, wherein the contactless power transmission device is provided. 前記第一の磁性体、前記第二の磁性体、前記第三の磁性体は、シート状に形成されたもの、または、メッキ、蒸着、スパッタリング、により作成されたことを特徴とする請求項1〜4のいずれかに記載の非接触電力伝送装置。   2. The first magnetic body, the second magnetic body, and the third magnetic body are formed in a sheet shape, or formed by plating, vapor deposition, or sputtering. The non-contact electric power transmission apparatus in any one of -4. 前記第一の磁性体は、扁平形状を有する扁平状の軟磁性粉末とシロキサン結合(Si−O−Si)を有するシリコーンレジンを混合し、かつ、面内に磁化容易方向を有することを特徴とする請求項1〜5のいずれかに記載の非接触電力伝送装置。   The first magnetic body is characterized by mixing a flat soft magnetic powder having a flat shape and a silicone resin having a siloxane bond (Si-O-Si), and having an in-plane easy magnetization direction. The non-contact power transmission device according to claim 1. 前記第二の磁性体は、結晶粒径2μm以下のフェライト粉末を焼成して作成し、かつ、回転磁化範囲の強磁化を有することを特徴とする請求項1〜6のいずれかに記載の非接触電力伝送装置。   7. The non-magnetic material according to claim 1, wherein the second magnetic body is prepared by firing ferrite powder having a crystal grain size of 2 μm or less and has strong magnetization in a rotational magnetization range. Contact power transmission device. 前記第三の磁性体は、熱収縮性を有する樹脂中に磁性体粉末を混入した複合磁性体から成ることを特徴とする請求項1〜7のいずれかに記載の非接触電力伝送装置。   The non-contact power transmission device according to claim 1, wherein the third magnetic body is composed of a composite magnetic body in which a magnetic powder is mixed in a resin having heat shrinkability. 前記第三の磁性体は、少なくとも第一鉄イオンを含む反応液を基体に接触させる工程と、少なくとも酸化剤を含んだ酸化液を基体に接触させる工程と、前記反応液、酸化液の内磁性体生成に寄与しない残分を基体から除去する工程とから作成されることを特徴とする請求項1〜8のいずれかに記載の非接触電力伝送装置。   The third magnetic body includes a step of bringing a reaction solution containing at least ferrous ions into contact with the substrate, a step of bringing an oxidation solution containing at least an oxidizing agent into contact with the substrate, and an inner magnetism of the reaction solution and the oxidation solution. The non-contact power transmission device according to claim 1, wherein the non-contact power transmission device is created from a step of removing a residue that does not contribute to body generation from the substrate. 第一のコイルと、前記第一のコイルに対向配置された第二のコイルに電力を伝送する非接触電力伝送装置であって、前記第一のコイルと前記第二のコイルに対向する側とは反対の前記第一のコイルと前記第二のコイルの面に、複素比透磁率実部200以上または飽和磁束密度4000G以上を有する磁性体を配置し、前記第一のコイルと前記第二のコイルは前記電力を伝送する機能と信号を送受信する機能を兼ね備えたことを特徴とする非接触電力伝送装置。   A non-contact power transmission device that transmits electric power to a first coil and a second coil disposed to face the first coil, the first coil and a side facing the second coil; Is arranged on the opposite surfaces of the first coil and the second coil with a magnetic body having a complex relative magnetic permeability real part 200 or more or a saturation magnetic flux density 4000 G or more, and the first coil and the second coil The non-contact power transmission device, wherein the coil has a function of transmitting the power and a function of transmitting and receiving signals. 前記第一のコイルを備えてなる請求項1〜10記載の非接触電力伝送装置を構成する充電装置。   The charging device constituting the non-contact power transmission device according to claim 1, comprising the first coil. 前記第二のコイルを備えてなる請求項1〜10記載の非接触電力伝送装置を構成する携帯端末機器。   The portable terminal device which comprises the non-contact electric power transmission apparatus of Claims 1-10 provided with said 2nd coil.
JP2009137103A 2009-06-08 2009-06-08 Non-contact power transmission device Active JP5372610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009137103A JP5372610B2 (en) 2009-06-08 2009-06-08 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009137103A JP5372610B2 (en) 2009-06-08 2009-06-08 Non-contact power transmission device

Publications (2)

Publication Number Publication Date
JP2010283263A true JP2010283263A (en) 2010-12-16
JP5372610B2 JP5372610B2 (en) 2013-12-18

Family

ID=43539729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009137103A Active JP5372610B2 (en) 2009-06-08 2009-06-08 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP5372610B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4835796B1 (en) * 2011-01-26 2011-12-14 パナソニック株式会社 Receiving side non-contact charging module and receiving side non-contact charging device
JP2012147638A (en) * 2011-01-14 2012-08-02 Tdk Corp Secondary side coil unit for noncontact electricity feeding and noncontact electricity feeding device
WO2012101729A1 (en) * 2011-01-26 2012-08-02 パナソニック株式会社 Non-contact charging module and non-contact charging instrument
JP2012156481A (en) * 2011-01-26 2012-08-16 Panasonic Corp Reception side non-contact charging module and reception side non-contact charging apparatus
WO2012114563A1 (en) * 2011-02-24 2012-08-30 ユー・ディ・テック株式会社 Contactless power transmission system
WO2013069270A1 (en) * 2011-11-08 2013-05-16 株式会社 東芝 Magnetic sheet for non-contact power receiving devices, non-contact power receiving device using same, electronic device, and non-contact charger
JP2013120837A (en) * 2011-12-07 2013-06-17 Panasonic Corp Non-contact charging module and mobile terminal comprising the same
WO2013107620A1 (en) * 2012-01-19 2013-07-25 Sew-Eurodrive Gmbh & Co. Kg Coil arrangement for a system for inductive energy transmission
JP2013534041A (en) * 2010-05-26 2013-08-29 エー ビー ビー リサーチ リミテッド Use of a wireless power receiving unit for receiving power, a wireless power transmitting unit, a wireless power transmitting device, and a wireless power transmitting device for transmitting power
WO2013150784A1 (en) * 2012-04-02 2013-10-10 パナソニック株式会社 Coil unit, and power transmission device equipped with coil unit
WO2013150785A1 (en) * 2012-04-02 2013-10-10 パナソニック株式会社 Coil unit, and power transmission device equipped with coil unit
WO2014002373A1 (en) * 2012-06-28 2014-01-03 パナソニック株式会社 Mobile terminal
WO2014002372A1 (en) * 2012-06-28 2014-01-03 パナソニック株式会社 Mobile terminal
CN103683525A (en) * 2012-09-05 2014-03-26 李尔公司 Apparatus for providing concentrated inductive power transfer
WO2014061082A1 (en) * 2012-10-15 2014-04-24 富士通株式会社 Power reception apparatus, power transmission apparatus, and power transmission/reception system
KR101397167B1 (en) * 2013-03-29 2014-05-19 (주)다이나텍 Wireless power system of rotating body, receiving device and transmitting device for the same
JP2014132658A (en) * 2013-01-04 2014-07-17 Lg Innotek Co Ltd Soft magnetic layer, and receiver antenna and radio power receiver having the same
JP2015173593A (en) * 2011-10-24 2015-10-01 エルジー イノテック カンパニー リミテッド Shielding apparatus and wireless power transmission apparatus
JP2015185719A (en) * 2014-03-25 2015-10-22 Tdk株式会社 Coil unit and wireless power transmission device
JP2015185720A (en) * 2014-03-25 2015-10-22 Tdk株式会社 Coil unit and wireless power transmission device
US9412513B2 (en) 2012-03-30 2016-08-09 Tdk Corporation Wireless power transmission system
JP2017045988A (en) * 2015-08-25 2017-03-02 モトローラ モビリティ エルエルシーMotorola Mobility Llc Multiple coil structure supporting multiple types of wireless charging and short-range wireless communication
US9607757B2 (en) 2011-11-02 2017-03-28 Panasonic Corporation Non-contact wireless communication coil, transmission coil, and portable wireless terminal
US9667086B2 (en) 2012-06-28 2017-05-30 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal
EP3065149A4 (en) * 2013-11-01 2017-07-12 Toda Kogyo Corporation Soft magnetic ferrite resin composition, soft magnetic ferrite resin composition molded body, and power transmission device for non-contact power supply system
US9935481B2 (en) 2012-02-17 2018-04-03 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal including wireless charging module and battery pack
US9954396B2 (en) 2011-06-14 2018-04-24 Panasonic Corporation Electronic device including non-contact charging module
US10204734B2 (en) 2011-11-02 2019-02-12 Panasonic Corporation Electronic device including non-contact charging module and near field communication antenna
JP2019505983A (en) * 2015-11-23 2019-02-28 アモセンス・カンパニー・リミテッドAmosense Co., Ltd. Magnetic shielding unit and multi-function composite module including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6502056B2 (en) * 2014-10-22 2019-04-17 日本圧着端子製造株式会社 Electrical connection device
GB2551990A (en) * 2016-07-04 2018-01-10 Bombardier Primove Gmbh Transferring energy by magnetic induction using a primary unit conductor arrangement and a layer comprising magnetic and/or magnetizable material

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236512U (en) * 1985-08-20 1987-03-04
JPS6252910A (en) * 1985-08-30 1987-03-07 Sony Corp Rotary transformer
JPH0231405A (en) * 1988-07-21 1990-02-01 Kawasaki Heavy Ind Ltd Electric connector
JPH038307A (en) * 1989-06-06 1991-01-16 Sharp Corp Rotary transformer
JPH0437104A (en) * 1990-06-01 1992-02-07 Tokin Corp Ferrite core for rotary transformer and manufacture thereof
JPH04122007A (en) * 1990-09-12 1992-04-22 Unitika Ltd Non-contact transformer
JPH0837119A (en) * 1994-07-26 1996-02-06 Matsushita Electric Ind Co Ltd Flat rotary transformer and its manufacturing method
JPH08148360A (en) * 1994-11-18 1996-06-07 Tokin Corp Cordless power station
WO1999001878A1 (en) * 1997-07-03 1999-01-14 The Furukawa Electric Co., Ltd. Split transformer and transmission controller comprising the split transformer
JPH11176676A (en) * 1997-12-09 1999-07-02 Tokin Corp Small-sized noncontact transmitter
JP2000124032A (en) * 1998-03-06 2000-04-28 Nippon Paint Co Ltd Film composed of amorphous metal foils and insulating resin layer, and coil or transformer
JP2002015912A (en) * 2000-06-30 2002-01-18 Tdk Corp Dust core powder and dust core
JP2005268685A (en) * 2004-03-22 2005-09-29 Tdk Corp Powder magnetic core and manufacturing method of the same
JP2006032466A (en) * 2004-07-13 2006-02-02 Nec Tokin Corp Magnetic core and coil component using it
JP2006080166A (en) * 2004-09-07 2006-03-23 Fuji Electric Holdings Co Ltd Dust core
WO2007080820A1 (en) * 2006-01-12 2007-07-19 Kabushiki Kaisha Toshiba Power receiver, electronic apparatus using same and non-contact charger
WO2007122788A1 (en) * 2006-03-24 2007-11-01 Kabushiki Kaisha Toshiba Power receiving device, electronic apparatus using same and non-contact charger
JP2008289241A (en) * 2007-05-16 2008-11-27 Seiko Epson Corp Electronic apparatus, charger, and charging system
JP2009005475A (en) * 2007-06-20 2009-01-08 Panasonic Electric Works Co Ltd Non-contact power transfer device
WO2009025279A1 (en) * 2007-08-21 2009-02-26 Kabushiki Kaisha Toshiba Noncontact power receiving apparatus, electronic device using noncontact power receiving apparatus and charging system
JP2009112137A (en) * 2007-10-31 2009-05-21 Meleagros Corp Power transmission device of power transmission apparatus

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236512U (en) * 1985-08-20 1987-03-04
JPS6252910A (en) * 1985-08-30 1987-03-07 Sony Corp Rotary transformer
JPH0231405A (en) * 1988-07-21 1990-02-01 Kawasaki Heavy Ind Ltd Electric connector
JPH038307A (en) * 1989-06-06 1991-01-16 Sharp Corp Rotary transformer
JPH0437104A (en) * 1990-06-01 1992-02-07 Tokin Corp Ferrite core for rotary transformer and manufacture thereof
JPH04122007A (en) * 1990-09-12 1992-04-22 Unitika Ltd Non-contact transformer
JPH0837119A (en) * 1994-07-26 1996-02-06 Matsushita Electric Ind Co Ltd Flat rotary transformer and its manufacturing method
JPH08148360A (en) * 1994-11-18 1996-06-07 Tokin Corp Cordless power station
WO1999001878A1 (en) * 1997-07-03 1999-01-14 The Furukawa Electric Co., Ltd. Split transformer and transmission controller comprising the split transformer
JPH11176676A (en) * 1997-12-09 1999-07-02 Tokin Corp Small-sized noncontact transmitter
JP2000124032A (en) * 1998-03-06 2000-04-28 Nippon Paint Co Ltd Film composed of amorphous metal foils and insulating resin layer, and coil or transformer
JP2002015912A (en) * 2000-06-30 2002-01-18 Tdk Corp Dust core powder and dust core
JP2005268685A (en) * 2004-03-22 2005-09-29 Tdk Corp Powder magnetic core and manufacturing method of the same
JP2006032466A (en) * 2004-07-13 2006-02-02 Nec Tokin Corp Magnetic core and coil component using it
JP2006080166A (en) * 2004-09-07 2006-03-23 Fuji Electric Holdings Co Ltd Dust core
WO2007080820A1 (en) * 2006-01-12 2007-07-19 Kabushiki Kaisha Toshiba Power receiver, electronic apparatus using same and non-contact charger
WO2007122788A1 (en) * 2006-03-24 2007-11-01 Kabushiki Kaisha Toshiba Power receiving device, electronic apparatus using same and non-contact charger
JP2008289241A (en) * 2007-05-16 2008-11-27 Seiko Epson Corp Electronic apparatus, charger, and charging system
JP2009005475A (en) * 2007-06-20 2009-01-08 Panasonic Electric Works Co Ltd Non-contact power transfer device
WO2009025279A1 (en) * 2007-08-21 2009-02-26 Kabushiki Kaisha Toshiba Noncontact power receiving apparatus, electronic device using noncontact power receiving apparatus and charging system
JP2009112137A (en) * 2007-10-31 2009-05-21 Meleagros Corp Power transmission device of power transmission apparatus

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8829732B2 (en) 2010-05-26 2014-09-09 Abb Research Ltd. Wireless power receiving unit or wireless power transferring unit with guide member providing magnetic permeability transition between a concentrator core and surrounding medium
JP2013534041A (en) * 2010-05-26 2013-08-29 エー ビー ビー リサーチ リミテッド Use of a wireless power receiving unit for receiving power, a wireless power transmitting unit, a wireless power transmitting device, and a wireless power transmitting device for transmitting power
JP2012147638A (en) * 2011-01-14 2012-08-02 Tdk Corp Secondary side coil unit for noncontact electricity feeding and noncontact electricity feeding device
JP2012156481A (en) * 2011-01-26 2012-08-16 Panasonic Corp Reception side non-contact charging module and reception side non-contact charging apparatus
JP2012156480A (en) * 2011-01-26 2012-08-16 Panasonic Corp Reception side non-contact charging module and reception side non-contact charging apparatus
JP4835796B1 (en) * 2011-01-26 2011-12-14 パナソニック株式会社 Receiving side non-contact charging module and receiving side non-contact charging device
US10218222B2 (en) 2011-01-26 2019-02-26 Panasonic Intellectual Property Management Co., Ltd. Non-contact charging module having a wireless charging coil and a magnetic sheet
WO2012101729A1 (en) * 2011-01-26 2012-08-02 パナソニック株式会社 Non-contact charging module and non-contact charging instrument
WO2012114563A1 (en) * 2011-02-24 2012-08-30 ユー・ディ・テック株式会社 Contactless power transmission system
JP2012175896A (en) * 2011-02-24 2012-09-10 Ud Tech Kk Non-contact power transmission system
US9954396B2 (en) 2011-06-14 2018-04-24 Panasonic Corporation Electronic device including non-contact charging module
US10003219B1 (en) 2011-06-14 2018-06-19 Panasonic Corporation Electronic device including non-contact charging module
US10044225B2 (en) 2011-06-14 2018-08-07 Panasonic Corporation Electronic device including non-contact charging module
US10468913B2 (en) 2011-06-14 2019-11-05 Sovereign Peak Ventures, Llc Electronic device including non-contact charging module
JP2015173593A (en) * 2011-10-24 2015-10-01 エルジー イノテック カンパニー リミテッド Shielding apparatus and wireless power transmission apparatus
US9595381B2 (en) 2011-10-24 2017-03-14 Lg Innotek Co., Ltd. Shielding apparatus and wireless power transmission apparatus
US9607757B2 (en) 2011-11-02 2017-03-28 Panasonic Corporation Non-contact wireless communication coil, transmission coil, and portable wireless terminal
US9634515B2 (en) 2011-11-02 2017-04-25 Panasonic Corporation Non-contact wireless communication coil, transmission coil, and portable wireless terminal
US10204734B2 (en) 2011-11-02 2019-02-12 Panasonic Corporation Electronic device including non-contact charging module and near field communication antenna
US9941048B2 (en) 2011-11-02 2018-04-10 Panasonic Corporation Non-contact wireless communication coil, transmission coil, and portable wireless terminal
WO2013069270A1 (en) * 2011-11-08 2013-05-16 株式会社 東芝 Magnetic sheet for non-contact power receiving devices, non-contact power receiving device using same, electronic device, and non-contact charger
JPWO2013069270A1 (en) * 2011-11-08 2015-04-02 株式会社東芝 Magnetic sheet for non-contact power receiving device, non-contact power receiving device using the same, electronic device, and non-contact charging device
CN103918048A (en) * 2011-11-08 2014-07-09 株式会社东芝 Magnetic sheet for non-contact power receiving devices, non-contact power receiving device using same, electronic device, and non-contact charger
US9443648B2 (en) 2011-11-08 2016-09-13 Kabushiki Kaisha Toshiba Magnetic sheet for non-contact power receiving device, non-contact power receiving device, electronic apparatus, and non-contact charger
JP2013120837A (en) * 2011-12-07 2013-06-17 Panasonic Corp Non-contact charging module and mobile terminal comprising the same
WO2013107620A1 (en) * 2012-01-19 2013-07-25 Sew-Eurodrive Gmbh & Co. Kg Coil arrangement for a system for inductive energy transmission
US9991735B1 (en) 2012-02-17 2018-06-05 Panasonic Intellectual Property Management Co., Ltd. Electronic device including non-contact charging module and battery
US9997952B2 (en) 2012-02-17 2018-06-12 Panasonic Intellectual Property Management Co., Ltd. Wireless charging module and mobile terminal including the same
US11070075B2 (en) 2012-02-17 2021-07-20 Sovereign Peak Ventures, Llc Electronic device including non-contact charging module and battery
US9935481B2 (en) 2012-02-17 2018-04-03 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal including wireless charging module and battery pack
US10020673B2 (en) 2012-02-17 2018-07-10 Panasonic Intellectual Property Management Co., Ltd. Electronic device including non-contact charging module and battery
US10574082B2 (en) 2012-02-17 2020-02-25 Sovereign Peak Ventures, Llc Electronic device including non-contact charging module and battery
US9412513B2 (en) 2012-03-30 2016-08-09 Tdk Corporation Wireless power transmission system
WO2013150784A1 (en) * 2012-04-02 2013-10-10 パナソニック株式会社 Coil unit, and power transmission device equipped with coil unit
WO2013150785A1 (en) * 2012-04-02 2013-10-10 パナソニック株式会社 Coil unit, and power transmission device equipped with coil unit
US10574090B2 (en) 2012-06-28 2020-02-25 Sovereign Peak Ventures, Llc Mobile terminal including wireless charging coil and magnetic sheet having inwardly receding portion
US9735606B2 (en) 2012-06-28 2017-08-15 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal including charging coil and wireless communication coil, wireless charging module including charging coil and wireless communication coil
US11616395B2 (en) 2012-06-28 2023-03-28 Sovereign Peak Ventures, Llc Mobile terminal and chargeable communication module
WO2014002372A1 (en) * 2012-06-28 2014-01-03 パナソニック株式会社 Mobile terminal
US9667086B2 (en) 2012-06-28 2017-05-30 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal
WO2014002373A1 (en) * 2012-06-28 2014-01-03 パナソニック株式会社 Mobile terminal
US10291069B2 (en) 2012-06-28 2019-05-14 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal and chargeable communication module
US10230272B2 (en) 2012-06-28 2019-03-12 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal including wireless charging coil and magnetic sheet having inwardly receding portion
JP2014011852A (en) * 2012-06-28 2014-01-20 Panasonic Corp Portable terminal
JP2014011851A (en) * 2012-06-28 2014-01-20 Panasonic Corp Portable terminal
US9441603B2 (en) 2012-09-05 2016-09-13 Lear Corporation Apparatus for providing concentrated inductive power transfer
CN103683525A (en) * 2012-09-05 2014-03-26 李尔公司 Apparatus for providing concentrated inductive power transfer
WO2014061082A1 (en) * 2012-10-15 2014-04-24 富士通株式会社 Power reception apparatus, power transmission apparatus, and power transmission/reception system
JP2014132658A (en) * 2013-01-04 2014-07-17 Lg Innotek Co Ltd Soft magnetic layer, and receiver antenna and radio power receiver having the same
KR101397167B1 (en) * 2013-03-29 2014-05-19 (주)다이나텍 Wireless power system of rotating body, receiving device and transmitting device for the same
EP3065149A4 (en) * 2013-11-01 2017-07-12 Toda Kogyo Corporation Soft magnetic ferrite resin composition, soft magnetic ferrite resin composition molded body, and power transmission device for non-contact power supply system
JP2015185719A (en) * 2014-03-25 2015-10-22 Tdk株式会社 Coil unit and wireless power transmission device
JP2015185720A (en) * 2014-03-25 2015-10-22 Tdk株式会社 Coil unit and wireless power transmission device
JP2017045988A (en) * 2015-08-25 2017-03-02 モトローラ モビリティ エルエルシーMotorola Mobility Llc Multiple coil structure supporting multiple types of wireless charging and short-range wireless communication
US9825484B2 (en) 2015-08-25 2017-11-21 Motorola Mobility Llc Multiple coil structure for supporting multiple types of wireless charging and near field communications
JP2019505983A (en) * 2015-11-23 2019-02-28 アモセンス・カンパニー・リミテッドAmosense Co., Ltd. Magnetic shielding unit and multi-function composite module including the same

Also Published As

Publication number Publication date
JP5372610B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5372610B2 (en) Non-contact power transmission device
JP5985366B2 (en) Composite coil module and electronic device
US10658870B2 (en) Combo antenna unit and wireless power receiving module comprising same
US20200358192A1 (en) Magnetic isolator, method of making the same, and device containing the same
KR101795546B1 (en) Shielding unit for a wireless charging and wireless power transfer module including the same
CN107980166A (en) radio energy receiving module
JP2014078847A (en) Composite coil module and portable apparatus
JP2010284059A (en) Noncontact power transmission apparatus
US20180359885A1 (en) Magnetic isolator, method of making the same, and device containing the same
US20190214180A1 (en) Magnetic sheet and wireless power receiving device comprising same
US10692648B2 (en) Magnetic field shielding structure and mobile device including the magnetic field structure
WO2018100975A1 (en) Combined coil module and magnetic sheet
WO2014061702A1 (en) Electronic device and coil module
KR20160100786A (en) Shielding unit for combo antenna and wireless charging module having the same
JP2008117944A (en) Magnetic core member for antenna module, antenna module, and portable information terminal equipped with the same
EP3387702A1 (en) Magnetic isolator, method of making the same, and device containing the same
JP2014036116A (en) Receiver for non-contact power supply
KR20130060995A (en) Composite magnetic sheet and rear case for mobile using the same
KR20140108946A (en) Soft magnetism sheet
WO2019111848A1 (en) Coil module
KR20140071183A (en) Contactless power transmission device
KR20150128031A (en) Soft magnetic alloy, wireless power transmitting apparatus and wireless power receiving apparatus comprising the same
JP5481231B2 (en) Non-contact power transmission system
KR20150001417A (en) Receiving antennas and wireless power receiving apparatus comprising the same
JP2013017108A (en) Antenna structure for portable telephone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5372610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250